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1. Introduction

Let

ρ : −→ (C)

be a finite group acting onC as a complex reflection group. For an irreducible char-
acterχ of , we define a rational function

(1.1) (χ; ) = | |−1
∑

∈

χ( 2)
det(1 + ρ( ))
det(1− ρ( ))

in an indeterminate . Note that, at = 0, this reduces to the Frobenius-Schur index
of χ. When is the symmetric group on letters, we have [6] an explicit formula
for (1.1). In a recent work [4], [5] (this and the present work were done largely in-
dependently), A. Gyoja, K. Nishiyama and K. Taniguchi explicitly calculated (1.1) in
the cases of real reflection groups of type 4 2( ) and ; in the case of
type , their proof depends upon one of the main result (Theorem 1.1 below) of the
present paper. The authors of [4], [5] also observed a mysterious connection between

(χ; ), Lusztig’s cells and modular representations of Iwahori Hecke algebras.
The main purpose of this paper is to calculate (χ; ) explicitly when is an

imprimitive complex reflection group ( ) (in the notation of G.C. Shephard and
J.A. Todd [12]). This includes, as special cases, the cases of real reflection groups of
type and 2( ).

Theorem 1.1. Let = ( 1 2 3 . . .) and = ( 1 2 3 . . .) be two infinite se-
quences of independent variables. For a partitionλ let λ( ) = λ( 1 2 3 . . .) and

λ( ) = λ( 1 2 3 . . .) be the corresponding Schur functions in and respectively.
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Then we have the following identities:
(1.2)
∏ ∞∏

=0

1 + 2 +1

1− 2 +1

1 + 2 +1

1− 2 +1

∏ 1
1− =

∑

λ µ

|λ−µ|+|µ−λ|
λµ( 2) λ( ) µ( )

and

(1.3)

∏ ∞∏

=0

1 + 2 +1

1− 2 +1

1 + 2 +1

1− 2 +1

∏
(1 + )

=
∑

λ µ

|λ−µ′|−|µ′−λ|
λµ′( 2) λ( ) µ( )

where µ′ is the dual partition ofµ, λµ( ) is a rational function defined inSection
2.1, and the sums are taken over all partitionsλ and µ.

Since, at = 0, the identities (1.2) and (1.3) reduce to the classical Cauchy iden-
tities

(1.4)
∏ 1

1− =
∑

λ

λ( ) λ( )

and

(1.5)
∏

(1 + ) =
∑

λ

λ( ) λ′( )

respectively, we shall refer to (1.2) and (1.3) as the-Cauchy identities.
The paper is organized as follows. In Section 2, we give two different definitions

of λµ( ); one (2.3) is combinatorial and the other (2.6) is analytic, the equivalence
of them being non-trivial (Lemma 2.3). We also recall some basic facts on the com-
plex reflection groups ( ). In Section 3, assuming the validity of the -Cauchy
identity (1.2), we show that (χ; ) for = ( ) can be written explicitly us-
ing λµ( ) (Theorems 3.1 and 3.2). In Section 4, we derive some consequences of the

-Cauchy identity; in particular, we briefly discuss new inner products and new ba-
sis in the space of symmetric functions. Finally in Section 5, we prove the -Cauchy
identities (1.2), (1.3). The main technical tools for this are symmetrizing operators of
A. Lascoux and P. Pragacz [7] and divided differences of higher order in the calculus
of finite differences [10], [11].

The author thanks A. Gyoja for explaining the results in [5], by which the author
came to realize that the calculation of (χ; ) for = ( ) can be reduced
almost immeadiately to the one for = ( 1 ).
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2. Preliminaries

2.1. Combinatorics on partitions and diagrams. A partition

(2.1) λ = (λ1 λ2 . . . λ )

is a finite sequence of non-negative integersλ in non-increasing order; we consider
(λ1 λ2 . . . λ ) = (λ1 λ2 . . . λ 0). The set of partitions are denoted byP . The sum
of the parts ofλ ∈ P is denoted by|λ|, the number of non-zero parts by (λ), and the
multiplicity of ( 6= 0) as a part by (λ). A partition (2.1) is often identified with the
correspondingYoung diagram, which is the set of points ( )∈ Z2 such that 1≤ ≤
λ . In particular, the Young diagram corresponding to the partitionφ = (0 0 0 . . . 0)
is empty. The set theoretical differenceλ − µ = λ − λ ∩ µ of two Young diagramsλ
andµ is called askew diagram. Note that we arenot assumingλ ⊃ µ. An element of
a Young (or skew) diagramλ is called anode of λ. For λ ∈ P , we define thedual
partition λ′ of λ by

λ′ = {( ) ∈ Z2 | ( ) ∈ λ}

For λ ∈ P , the hook-length λ of λ is a positive-integer-valued function onλ defined
by

λ( ) = λ + λ′ − − + 1 = ( )∈ λ

As a natural generalization ofλ, we define, for anyλ µ ∈ P , an integer-valued func-
tion λµ on the set{ = ( ) | = 1 2 3 . . .} by

λµ( ) = λ + µ′ − − + 1 = ( )

We also define:

(λ µ) =
∑

( )∈λ−µ

(λ′ − ) =
∑

( )∈λ−µ

( − µ′ − 1)

We put (λ) = (λ φ), which coincides with the one appearing in [9], I, 1.
We have:

Lemma 2.1. (i) λλ( ) = λ( ) ∈ λ

(ii) λ′µ′( ′) = µλ( ) ∈ λ ∪ µ
where we put ′ = ( ) ∈ λ′ ∪ µ′ for = ( ) ∈ λ ∪ µ
(iii) λφ( ) = λ(α( )) ∈ λ

where λ : λ −→ Z is the content function(see, e.g, [9], I, 1, Ex. 3) defined by

λ(( )) = − ( ) ∈ λ
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and α is a permutation ofλ defined by

α(( )) = ( λ − + 1) ( ) ∈ λ

(iv) There exists a permutationβ of λ− µ such that

λµ(β( )) = − µλ( ) ∈ λ− µ

(v) (λ µ) + (µ λ) +
∑

∈µ

µλ( ) = (µ′) + (λ) + |λ ∩ µ|

Proof. Parts (i)(ii) and (iii) are obvious. Part (iv) follows from a stronger asser-
tion proved in Lemma 2.2 below. For a proof of part (v), we note

∑

∈µ

µλ( ) =
∑

( )∈µ

{(µ − ) + 1 + (λ′ − )} = (µ′) + |µ| +
∑

( )∈µ

(λ′ − )

Hence

(λ µ) +
∑

∈µ

µλ( ) = (µ′) + |µ| +
∑

( )∈λ∪µ

(λ′ − )

= (µ′) + |µ| +
∑

( )∈λ

(λ′ − ) +
∑

( )∈µ−λ

{(λ′ − + 1)− 1}

= (µ′) + |µ| + (λ) − (µ λ) − |µ− λ|
= (µ′) + (λ) + |µ ∩ λ| − (µ λ)

which proves part (v).

Let = ( ) ∈ λ− µ. We define

λµ( ) = λ − ′
λµ( ) = − µ − 1

λµ( ) = λ′ − ′
λµ( ) = − µ′ − 1

so that

λµ( ) = λµ( ) − ′
λµ( ) ∈ λ− µ

and

µλ( ) = λµ( ) − ′
λµ( ) ∈ λ− µ

For a proof of Lemma 2.1 (iv), it is enough to show the following:
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Lemma 2.2. Let λ µ ∈ P . Then there exists a permutationβ of λ−µ such that

λµ(β( )) = ′
λµ( ) and ′

λµ(β( )) = λµ( )

for ∈ λ− µ.

Proof. Let us call a non-empty skew diagram of the form

(2.2) {( ) | ≤ ≤ ≤ ≤ }

a rectangle. The ‘vertex’ ( ) (resp. ( ) ( ) ( )) is called the NW (resp.
NE, SW, SE)-vertex of the rectangle (2.2). We denote byR(λ− µ) the set of all rect-
angles contained inλ−µ. Note that a rectangle is inR(λ−µ) if and only if its NW-
and SE-vertices are both contained inλ−µ. Let ′ ∈ R(λ−µ). We write ∼ ′,
if ′ = ± (1 0) or ± (0 1). Let ≈ be the equivalence relation inR(λ− µ) gener-
ated by∼. Let ∈ λ−µ Then there exists a unique largest rectangle inR(λ−µ)
which has as its NE-vertex, and also there exists a unique largest rectangle which
has as its SW-vertex. Moreover, there exists a unique rectangle∈ R(λ − µ) such
that ≈ and that = for some ∈ λ− µ. (The existence of is trivial. The
uniqueness follows from the fact that the condition ‘ +(1 0) +(0 1)∈ R(λ−µ)’
implies +(1 1)∈ R(λ−µ). ) Thus we can define a permutationβ of λ−µ by putting
β( ) = . Since, e.g., λµ(β( )) + 1 and ′

λµ( ) + 1 are the ‘width’ of = and
respectively, we get the lemma.

Let be an indeterminate. Forλ µ ∈ P , we define a rational functionλµ( ) in
by

(2.3) λµ( ) = (λ µ)
∏

∈λ

1 + λµ( )

1− λ( )
(µ λ)

∏

∈µ

1 + µλ( )

1− µ( )

In particular, we have

λµ( ) = µλ( )

λλ( ) =

(
∏

∈λ

1 + λ( )

1− λ( )

)2

and

λφ( ) = (λ)
∏

∈λ

1 + λ( )

1− λ( )
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For an integer , we put

(2.4) [ ] =





∏ −1
=0 (1 + ) if ≥ 1

1 if = 0
∏−

=1(1 + − )−1 if ≤ −1

In other words, [ ] is defined by:

(2.5) [0] = 1 [ + 1] = (1 + )[ ]

Then we have the following

Lemma 2.3. Let = 2. Let λ µ ∈ P , and λ = (λ1 λ2 λ3 . . . λ ) ( ≥ (λ))
and µ′ = (µ′

1 µ′
2 µ′

3 . . . µ′ ) ( ≥ (µ′)). We put

σ = λ + − (1 ≤ ≤ ) τ ′ = µ′ + − (1 ≤ ≤ )

Then

|λ−µ|+|µ−λ|
λµ( ) = A

∏

=1

[σ − − + 1]
∏

=1

[τ ′ − − + 1]

×
∏

=1

∏

=1

(1 + σ +τ ′− − +1)
+ −1∏

=1

(1 + ) + −

×
∏

<

(1− σ −σ )
∏

<

(1− τ ′−τ ′

)

×
∏

=1

σ∏

=1

(1− )−1
∏

=1

τ ′

∏

=1

(1− )−1

(2.6)

where

A = A( λ µ) =
∑

=1

(2 − 1)σ +
∑

=1

(2 − 1)τ ′ −
+ −1∑

=1

( + 1)

+
∑

=1

(2 − 1)(− + ) +
∑

=1

(2 − 1)(− + )

= 2 (λ) + 2 (µ′) + |λ| + |µ| −
+ −1∑

=1

( + 1)

Proof. Since

∏

∈λ

1
1− λ( )

=

∏
< (1− σ −σ )

∏ ∏σ
=1 (1− )
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([9], I.1, Ex. 1), it is enough to prove that

B
∏

∈λ

(1 + λµ( ))
∏

∈µ

(1 + µλ( ))(2.7)

with B = 2 (λ µ) + 2 (µ λ) + |λ− µ| + |µ− λ| − A( λ µ)

is equal to

∏
[σ − − + 1]

∏
[τ ′ − − + 1]

∏
(1 + σ +τ ′− − +1)

+ −1∏

=1

(1 + ) + −

or to

(2.8)
∏

[λ − − + 1]
∏

[µ′ − − + 1]
∏

(1 + λµ( ))
+ −1∏

=1

(1 + ) + −

Denote the product (2.8) by ( λ µ)( ). Then we have

(2.9) ( + 1 λ µ)( ) = ( + 1 λ µ)( ) = ( + )( + +1)/2 ( λ µ)

for any ≥ (λ) and any ≥ (µ′). In fact, if we replace, e.g., with + 1 in (2.8),
we should multiply (2.8) by

[− − ]
∏ [µ′ − − ]

[µ′ − − + 1]

∏
(1 + µ′− − )

+∏

=1

(1 + )

which is equal to ( + )( + +1)/2, as required. We assume, for the moment, that and
to be large enough; in particular

λ − − + 1< 0 µ − − + 1< 0

for any and . Then we have

∏

=1

[λ − − + 1] =

where

=
∏

=1

+ −1∏

=1

(1 + − )−1 =
∏

=1

−λ + + −1∏

= +

(1 + − )−1

and

=
∏

= +1

+ −1∏

= +

(1 + − )−1
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where = (λ) and = (µ′). We also have

∏

=1

[µ′ − − + 1] =

where

=
∏

=1

+ −1∏

=1

(1 + − )−1 =
∏

=1

−µ′+ + −1∏

= +

(1 + − )−1

and

=
∏

= +1

+ −1∏

=1

(1 + − )−1

We further write

∏

=1

∏

=1

(1 + λµ( )) =

where

=
∏

=1

∏

=1

(1 + λµ( )) =
∏

=1

∏

= +1

(1 + λ − − +1)

=
∏

= +1

∏

=1

(1 + µ′− − +1) and =
∏

= +1

∏

= +1

(1 + − − +1)

and also

+ −1∏

=1

(1 + ) + − =
+ −1∏

=1

∏

=1

(1 + ) =

where

=
−1∏

=1

∏

=1

(1 + ) =
+ −1∏

=

∏

=1

(1 + )

and

=
+ −1∏

= +

∏

=1

(1 + )

Then we have

= δ −1

(
δ =

+ −1∑

=

( + 1)
2

)
= −1
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and

= κ −1

(
κ =

+ −1∑

= +

( + 1)
2

)

We also have

=
∏

=1

{
+ −1∏

=−λ + +

(1 + − )
−λ + + −1∏

= +

(1 + − )

}

=

{
∏

=1

+ −1∏

=−λ + +

(1 + − )

}
−1

and

=
∏

=1





+ −1∏

=−µ′+ +

(1 + − )
−µ′+ + −1∏

= +

(1 + − )





=




∏

=1

+ −1∏

=−µ′+ +

(1 + − )





−1

Thus we have

( λ µ) = ( )( )( )( )

= δ+κ

×
∏

=1

+ −1∏

=−λ + +

(1 + − )
∏

=1

+ −1∏

=−µ′+ +

(1 + − )

= C
−1∏

=1

∏

=1

(1 + − )
∏

=1

+ −1∏

=−λ + +

(1 + − )

×
∏

=1

+ −1∏

=−µ′+ +

(1 + − )
∏

=1

∏

=1

(1 + λµ( ))

×
∏

=1

+ −1∏

=1

(1 + − )−1

(2.10)

where

C =
+ −1∑

=1

( + 1)
2

Although, in deriving (2.10), we have assumed and to be large, the formula (2.10)
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itself is true for any ≥ (λ) and any ≥ (µ′) by (2.9). Let

(2.11) 0 = min{ | −λ + + ≥ 1}

and

(2.12) 0 = min{ | −µ′ + + ≥ 1}

Then, we can further rewrite (2.10) as follows.

( λ µ) = C
−1∏

=1

∏

=1

(1 + − )
∏

= 0

+ −1∏

=−λ + +

(1 + − )

×
0−1∏

=1

{
0∏

=−λ + +

(1 + − )
+ −1∏

=1

(1 + − )

}

×
0−1∏

=1

0∏

=−µ′+ +

(1 + − )

×
∏

=1

∏

=1

(1 + λµ( ))
∏

= 0

−µ′+ + −1∏

=1

(1 + − )−1

= C
0+ −2∏

=1

∏

=1

(1 + − )
+ −1∏

= 0+ −1

∏

=−λ − +1+ +1

(1 + − )

×
0−1∏

=1

0∏

=−λ + +

(1 + − )
0−1∏

=1

0∏

=−µ′+ +

(1 + − )

×
∏

=1

∏

=1

(1 + λµ( ))
∏

= 0

−µ′+ + −1∏

=1

(1 + − )−1

Hence, by Lemma 2.4 given below, we have

( λ µ) = C
∏

∈λ−µ

λµ ( )≥0

(1 + λµ( ))
∏

∈µ−λ

λµ ( )≥0

(1 + λµ( ))

×
∏

∈λ∩µ

(1 + λµ( ))
∏

∈λ∪µ

µλ ( )>0

(1 + − µλ( ))

Hence, by Lemma 2.1 (iv), we get
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( λ µ) = C
∏

∈λ−µ

λµ ( )≥0

(1 + λµ( ))
∏

∈µ−λ

µλ( )≤0

(1 + − µλ( ))

×
∏

∈λ∩µ

(1 + λµ( ))
∏

∈µ

µλ( )>0

(1 + − µλ( ))
∏

∈λ−µ

λµ ( )<0

(1 + λµ( ))

= C
∏

∈λ

(1 + λµ( ))
∏

∈µ

(1 + − µλ( ))

= D
∏

∈λ

(1 + λµ( ))
∏

∈µ

(1 + µλ( ))

where

D = C −
∑

∈µ

µλ( )

Thus, it is enough to prove

B = 2D

But this is equivalent to the formula in Lemma 2.1 (v).

Lemma 2.4. Under the notation in the proof ofLemma 2.3,we have:

(2.13)
∏

∈λ−µ
λµ( )≥0

(1 + λµ( )) =
0−1∏

=1

0∏

=−λ + +

(1 + − )
∏

∈
∈λ−µ

λµ( )≥0

(1 + λµ( ))

(2.14)
∏

∈µ−λ
λµ( )≥0

(1 + λµ( )) =
0−1∏

=1

0∏

=−µ′+ +

(1 + − )
∏

∈
∈µ−λ

λµ( )≥0

(1 + λµ( ))

and

∏

∈λ∪µ
µλ( )>0

(1 + − µλ( )) =
0+ −2∏

=1

∏

=1

(1 + − )
+ −1∏

= 0+ −1

∏

=−λ − +1+ +1

(1 + − )

×
∏

∈
λµ( )<0

(1 + λµ( ))
∏

= 0

−µ′+ + −1∏

=1

(1 + − )−1

(2.15)

where

= {( ) | 1 ≤ ≤ 1 ≤ ≤ }
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Proof. If = ( ) 6∈ , and ∈ λ− µ, then

λµ( ) = λ − − + 1 1≤ ≤ + 1 ≤ ≤ λ

Hence (2.13) follows from (2.11). Similarly, we get (2.14). For a proof of (2.15),
it is convenient to introduce the notion ofλ-sequences; an infinite integer sequence
{ } ( = 1 2 3 . . .) is a λ-sequence, if

− λ′ + is independent of

For a λ-sequence{ }, let

0 = max{ | > 0 }

Then

{ }+ = { }1≤ ≤ 0

is called thepositive partof the λ-sequence{ }. (If 1 ≤ 0, then { }+ is empty.)
Since we are only interested in the positive part of aλ-sequence, we call a finite se-
quence with terms aλ-sequence, if it is the first terms of an (infinite)λ-sequence
{ } containing{ }+.
In connection with (2.15), we now state three constructions (i)(ii)(iii) ofλ-sequences.
(i) For a fixed , the sequence

µλ( ) = 1 2 3 . . .

is a λ-sequence.
(ii) For a fixed such that 0 ≤ ≤ ( = (µ′) = µ1 0 is as in (2.12)), we
consider the sequence

−µ′ + + − 1 −µ′ + + − 2 −µ′ + + − 3 . . .

with = (λ) = λ′1, and delete from it the terms contained in

− λµ( ) = − 1 − 2 . . . 1

then we get aλ-sequence. (See [9], I, (1.7).)
(iii) Let λ̃ = ( . . . λ1 λ2 . . . λ ) ∈ P with sufficiently large, and (̃λ) = + −
1. To each node ( ) of̃λ, we attach the number:

= − + 1

We put

(0) = λ̃′ = 1 2 3 . . .
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Then the (finite) sequence{ (0)} is a λ-sequence. More generally, if we put, for each
0 ≤ ≤ + − 2,

( ) = λ̃′− = 1 2 3 . . . ( = max{ | λ̃′ > })

then{ ( )} is a λ-sequence. (We get the sequence(0) = { (0)} by reading, from west to
east, the numbers attached to the ‘south coast’{(λ̃′ ) | 1 ≤ ≤ } of λ̃. Likewise
we get the sequence(1) by reading the numbers attached to the south coast of the
diagram λ̃ − (the south coast of̃λ) and so on. The last term of each sequence( )

lies either in the first row or in the -th column; hence it must be less than or equal
to 1. This shows the squence( ) surely contains the positive part of the infiniteλ-
sequence with the first term( )

1 .)
Let ( ) = 1 2 3 . . . be theλ-sequences constructed in (i), and( )

+ = { ( )} =
1 2 3 . . . their positive parts; we can similarly define, from the constructions (ii) and
(iii), ( )

+ = { ( )} 0 ≤ ≤ and ( )
+ = { ( )} 0 ≤ ≤ + − 2 respectively.

Then we have:

∏
(1 + − ( )

) =
∏

∈λ∪µ
µλ( )>0

(1 + − µλ( ))

∏
(1 + − ( )

)−1 =
∏

∈
λµ( )<0

(1 + λµ( ))
∏

= 0

−µ′+ + −1∏

=1

(1 + − )−1

and

∏
(1 + − ( )

) =
0+ −2∏

=1

∏

=1

(1 + − )
+ −1∏

= 0+ −1

∏

=−λ − +1+ +1

(1 + − )

Thus, for a proof of (2.15), it is enough to show that any( )
+ = 1 2 3 . . . and

any ( )
+ 0 ≤ ≤ appears among ( )

+ 0 ≤ ≤ + − 2, and, conversely, any
( )
+ 0 ≤ ≤ + −2 appears either in ( )

+ = 1 2 3 . . . or in ( )
+ 0 ≤ ≤

exactly once. Since, aλ-sequence is determined by its first term, we concentrate on
the first terms of ( )

+
( )
+ and ( )

+ . The first terms of ( )
+

( )
+ and ( )

+ are

1 = {µ1 + − 1 µ2 + − 2 µ3 + − 3 . . . µ 0 + − 0}
( 0 = max{ | µ + − ≥ 1})

1 = {−µ′ + + − 1 −µ′
−1 + + ( − 1)− 1

− µ′
−2 + + ( − 2)− 1 . . . −µ′

0
+ + 0 − 1}

( 0 = min{ | −µ′ + + − 1 ≥ 1})
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and

1 = { + − 1 + − 2 + − 3 . . . 2 1}

respectively. What we need to show is:

(2.16) 1 = 1 ∪ 1 (disjoint)

Let α be a positive integer such that +α > µ′
1. Then, by [9], I, (1.7),

(2.17) { + α + − 1 +α + − 2 +α + − 3 . . . 1 0}

is the disjoint union of

(2.18) {−µ′ + +α + − 1 −µ′
−1 + +α + ( − 1)− 1 . . . −µ′

1 + +α + 1− 1}

and

(2.19) {µ1 + +α− 1 µ2 + +α− 2 . . . µ +α−1 + 1 µ +α = 0}

Subtractingα from each member of (2.17)–(2.19), and then taking intersections with
the set of positive numbers, we get (2.16). The proof of (2.15), and hence, that of
Lemma 2.3 are now complete.

2.2. Complex reflection groupsG(m 1 n). We fix a positive integer . Let
= be the cyclic group of order generated byζ = 2π / . The symmetric group
acts on = × × · · · × ( times) by permuting the factors. Hence we can

form the semidirect product

= ( 1 ) =

The group acts on the complex vector spaceC by

ρ = ρ : −→ (C)

where

ρ(ζ 1 1 . . . 1) = the diagonal matrix (ζ 1 1 . . . 1)

and, for ∈ ,

ρ( ) = the permutation matrix corresponding to

Hence, ( ρ) is a complex reflection group; in particular, if = 2 , ( ρ) is a real
reflection group of type . Below, we summarize the character theory of , due to
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W. Specht, following [9].
Let P be the set of partitions, andP( ) the set ofP-valued functions on . Forµ ∈
P( ), we put

|µ| =
∑

∈

|µ( )|

The conjugacy classes of are parametrized by

P ( ) = {µ ∈ P( ) | |µ| = }

If ∈ is of typeµ ∈ P ( ), we have

(2.20) det(1− ρ ( )) =
∏

∈

∏
(1− ) (µ( ))

The number of elements of of typeµ is equal to

(2.21) | |
/{

∏∏
( ) (µ( )) (µ( ))!

}

For ∈ , and a positive integer , let

(2.22) ( ) =
∑

be the -th power sum symmetric function in a sequence of variables
= ( 1 2 3 . . .). For α ∈ ˆ =Hom( C×), we also put

(2.23) ( α) = −1
∑

∈

α( ) ( )

and regard it as the -th power sum of a new sequence of variables

α = ( 1α 2α 3α . . .), i.e.,

(2.24) ( α) =
∑

α

As usual, we also put

0( ) = 0( α) = 1

For a partitionλ = (λ1 λ2 . . .), let

λ( ) = λ1( ) λ2( ) . . .
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and similarly for λ( α). For ∈ of type µ ∈ P ( ), we put

(2.25) = µ =
∏

∈

µ( )( )

Let P( ˆ ) be the set ofP-valued functions onˆ . For λ ∈ P( ˆ ), we put

|λ| =
∑

α∈ ˆ

|λ(α)|

The irreducible characters of are parametrized by

P ( ˆ ) = {λ ∈ P( ˆ ) | |λ| = };

we denote by λ the irreducible character corresponding toλ ∈ P ( ˆ ). For λ ∈ P( ˆ ),
let

(2.26) λ =
∏

α∈ ˆ

λ(α)( α)

where λ(α)( α) is the Schur function

λ(α)( 1α 2α . . .)

Then we have

(2.27) λ = | |−1
∑

∈

λ( )

where =|λ|.

2.3. Complex reflection groupsG(m p n). Let π : −→ be the natural
homomorphism. Thenθ : −→ C× defined by

θ( ) = detρ( ) detρ(π( )) ∈

is a linear character of . More explicitly, we have

(2.28) θ( ) =
∏

∈

(µ( ))

if ∈ is of typeµ ∈ P ( ). Let be a natural number dividing , and let

= ( ) = kerθ /

which is of index in . We have (see [12], [1]):
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(i) The group acts onC by ρ (in 2.2) as a complex reflection group.
(ii) The group ( (2 2 )ρ) (resp. ( ( 2)ρ)) is a real reflection group of type

(resp. 2( )).
(iii) The groups ( ( ) ρ) ( ≥ 2 | ≥ 2 ( ) 6= (2 2 2)) can be
characterized as the irreducible imprimitive finite complex reflection groups.
(iv) Besides ( ( )ρ) and = (1 1 ) acting onC −1, there exist only fi-
nite (exactly speaking, 34) isomorphism classes of irreducible finite complex reflection
groups.
Since, for each irreducible characterλ of , λ ⊗ θ is again irreducible, the cyclic
group 〈θ〉 (of order ) acts on the set of irreducible characters of , and, hence, on
the parameter spaceP ( ˆ ); more explicitly, we have

λ ⊗ θ = µ λ µ ∈ P ( ˆ )

if

µ(ǫ ) = λ(ǫ −1) 0 ≤ ≤ − 1

with ǫ ∈ ˆ defined by

(2.29) ǫ ( ) = ∈

By Clifford’s theorem, we have the following description for the irreducible characters
of .

Proposition 2.5. Let be a natural number dividing . Let(λ ) be the order
of the stabilizer ofλ ∈ P ( ˆ ) in 〈θ / 〉
(i) The restriction λ| is a sum

∑
λ of (λ ) distinct irreducible characters

λ (1 ≤ ≤ (λ )) of , which are mutually conjugate under .
(ii) We have

λ| = µ|

if and only if λ and µ are in the same orbit under〈θ / 〉.
(iii) Any irreducible character of can uniquely be obtained asλ (1 ≤ ≤
(λ )), whereλ is taken over a complete set of representatives of the〈θ / 〉-orbits

in P ( ˆ ).
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3. q-Frobenius-Schur indices

3.1. Statement of the results. The main purpose of this section is to prove:

Theorem 3.1. Under the notation in2.1–2.3,let

(3.1) (λ ) = | |−1
∑

∈

¯λ( 2)θ ( )
det(1 + ρ ( ))
det(1− ρ ( ))

where is an integer, λ ∈ P( ˆ ), = |λ| and ¯λ is the complex conjugate of λ.
Then we have the following.
(i)

(3.2) (λ ) =
∏

{α β}⊂ ˆ

αβ=ǫ

(λ | {α β} )

where ǫ ∈ ˆ is defined by(2.29), and λ | {α β} is an element ofP( ˆ ) given by

(λ | {α β})(ω) =

{
λ(ω) if ω = α or β

φ otherwise

for ω ∈ ˆ .
(ii) Let {α β} ⊂ ˆ be such thatαβ = ǫ . We putλ1 = λ(α) and λ2 = λ(β). Then

(λ|{α β} ) =

{
[α2ǭ ]|λ1−λ2|+[β2ǭ ]|λ2−λ1|

λ1λ2( ) if α 6= β
λ1( ) if α = β

where λ1λ2( ) is as defined in2.1,

λ1( ) =
∏

∈λ1

1 + λ1( )

1− λ1( )

and, for α ∈ ˆ [α] ∈ {0 1 . . . − 1} is defined by

(3.3) α = ǫ[α]

Using Theorem 3.1, we can explicitly calculate the -Frobenius-Schur index (1.1)
of an irreducible character λ of the group ( ):
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Theorem 3.2. Let be a natural number dividing , and let = ( ).
For an irreducible character λ (λ ∈ P ( ˆ ) 1 ≤ ≤ (λ )) of , we have

( λ; ) = (λ )−1
−1∑

=0

(
λ

)

Remark. For = 1 and = 2, this was proved in [6] and [5] respectively. For
= = 2, this was conjectured in [4] in a somewhat different form (and proved in

[5] using a consequence (Theorem 4.2 below) of our -Cauchy identities (1.2), (1.3)).

3.2. Proof of Theorem 3.1. Let λ
λ (λ ∈ P( ˆ )) and ( ∈ ) be as in

2.2. We put

(λ ; ) = | |−1
∑

∈

¯λ( 2)θ ( )
det(1 + ρ( ))
det(1− ρ( ))

where =|λ|. Then, by (2.27),

(3.4)
∑

λ∈P( ˆ )

(λ ; ) λ =
∞∑

=0

| |−1
∑

∈

θ ( )
det(1 + ρ( )

det(1− ρ( ))
2

By (2.20), (2.21), (2.25), and (2.28), the right hand side of (3.4) is equal to

∑

µ∈P( )

∏

odd
∈

( 2) (µ( ))

( ) (µ( )) (µ( ))!

(
1 +
1−

) (µ( ))

×
∏

∈

( )2 2 (µ( ))

(2 ) 2 (µ( ))
2 (µ( ))!

(
1− 2

1− 2

) 2 (µ( ))

=
∏

odd

∑

( )( )

1
!

(
1 +
1−

( 2)
)

1
!

(
1− 2

1− 2

( )2

2

)

=
∏
{
∏

odd

exp

(
1 +
1−

( 2)
) ∏

exp

(
1− 2

1− 2

( )2

2

)}

Hence, by (2.23), we have

log

(
∑

λ

(λ ; ) λ

)
=
∑

odd

1 +
1−

1


∑

σ∈ ˆ

( σ)σ̄( 2)




+
∑ 1− 2

1− 2

1
2



∑

σ∈ ˆ

( σ)σ̄( )





∑

τ∈ ˆ

( τ )τ̄ ( )



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We note

1 ∑ 1− (− )
1− σ̄( 2) =

∞∑

=0
≡[σ2ǭ ]

−
∞∑

=0
≡[σ2ǭ ]−1

(− )

and

1 ∑ 1− 2

1− 2
σ̄( )τ̄ ( ) =

∞∑

=0
≡[στǭ ]

2 −
∞∑

=0
≡[στǭ ]−1

( )2

where≡ means the congruence modulo , and, forα ∈ ˆ , [α] is defined by (3.3).
Hence, we have

log

(
∑

λ

(λ ; ) λ

)

=
∑

σ




∑

≡[σ2ǭ ]

∞∑

=1

( σ) −
∑

≡[σ2ǭ ]−1

∞∑

=1

(− σ)



+
∑

σ


−

∑

≡[σ2ǭ ]

∞∑

=1

( σ)2

2
+

∑

≡[σ2ǭ ]−1

∞∑

=1

( σ)2

2




+
∑

σ τ




∑

≡[στǭ ]

∞∑

=1

( 2
σ τ )

2
−

∑

≡[στǭ ]−1

∞∑

=1

( 2 2
σ τ )

2




=
∑

σ




∑

≡[σ2ǭ ]

( σ) −
∑

≡[σ2ǭ ]−1

(− σ)



+
∑

(σ τ )∈S




∑

≡[στǭ ]

( 2
σ τ ) −

∑

≡[στǭ ]−1

( 2 2
σ τ )




where

S = {(σ τ ) | [σ] < [τ ]} ∪ {(σ τ ) | σ = τ < }

Hence, we have

log

(
∑

λ

(λ ; ) λ

)
= −

∑

σ

∑

≥0
≡[σ2ǭ ]

log(1− σ) +
∑

σ

∑

≥0
≡[σ2ǭ ]−1

log(1 + σ)

−
∑

(σ τ )∈S

∑

≥0
≡[στǭ ]

log(1− 2
σ τ ) +

∑

(σ τ )∈S

∑

≥0
≡[στǭ ]−1

log(1− 2 2
σ τ )
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Hence

(3.5)

∑

λ

(λ ; ) λ

=
∏

σ

∏
+1≡[σ2ǭ ](1 + σ)

∏
≡[σ2ǭ ](1− σ)

∏

(σ τ )∈S

∏
+1≡[στǭ ](1− 2 2

σ τ )
∏

≡[στǭ ](1− 2
σ τ )

Now we consider the case = . Noting that only takes non-negative integer values,
we have

∑

λ

(λ ) λ =
∑

λ

(λ ; ) λ

=
∏

σ∈ ˆ
σ2=ǫ




∞∏

=1

∞∏

=0

1 + ( +1)
σ

1− σ

∏

<

1
1− σ σ




×
∏

{σ τ}⊂ ˆ

στ=ǫ
σ 6=τ




∞∏

=1

∞∏

=0

1 + [σ2ǭ ]+
σ

1− [σ2ǭ ]+
σ

1 + [τ2ǭ ]+
τ

1− [τ2ǭ ]+
τ

∏ 1
1− σ τ




(3.6)

We fix an α ∈ ˆ such thatα2 = ǫ (if it exists). If we put, in (3.6), σ = 0 ( =
1 2 3 . . .) for any σ 6= α, then we have

(3.7)
∑

λ
λ(σ)=φ
if σ 6=α

(λ ) λ(α)( α) =
∏ ∞∏

=0

1 + ( +1)
α

1− α

∏

<

1
1− α α

Similarly, if we fix {α β} ⊂ ˆ such thatαβ = ǫ α 6= β, and put, in (3.6), σ = 0
for any σ 6= α β, then we have

(3.8)

∑

λ
λ(σ)=φ

if σ 6=α β

(λ ) λ(α)( α) λ(β)( β)

=
∞∏

=1

∞∏

=0

1 + [α2ǭ ]+
α

1− [α2ǭ ]+
α

1 + [β2ǭ ]+
β

1− [β2ǭ ]+
β

∏ 1
1− α β

By (3.6), (3.7), and (3.8), we have

∑

λ

(λ ) λ =
∏

{α β}⊂ ˆ

αβ=ǫ





∑

λ
λ(σ)=φ

if σ 6=α β

(λ )
∏

σ∈{α β}

λ(σ)( σ)




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Comparing the coefficients ofλ on both sides, we get Part (i). By [6], we know that
the right hand side of (3.7) is equal to

∑

λ1∈P

∏

∈λ1

1 + ( ) λ1 ( )

1− ( ) λ1 ( ) λ1( α) =
∑

λ1∈P

λ1( ) λ1( α)

which implies Part (ii) in the caseα = β. Now we put

[α2ǭ ]− /2
α = [β2ǭ ]− /2

β = = 1 2 3 . . .

on the right hand side of (3.8), then the product is transformed to

(3.9)
∏∏ 1 + (2 +1)/2

1− (2 +1)/2

1 + (2 +1)/2

1− (2 +1)/2

∏ 1
1−

By the -Cauchy identity (1.2), whose proof is given in Section 5, the product (3.9)
is equal to

∑

λ1 λ2

(|λ1−λ2|+|λ2−λ1|) /2
λ1λ2( ) λ1( ) λ2( )

which, after going back to the original variablesα = ( α) and β = ( β), is equal to

∑

λ1 λ2

[α2ǭ ]|λ1−λ2|+[β2ǭ ]|λ2−λ1|
λ1λ2( ) λ1( α) λ2( β)

Comparing this with the left hand side of (3.8), we get Part (ii) in the caseα 6= β.
The proof of Part (ii) is now completely reduced to that of Theorem 1.1.

3.3. Proof of Theorem 3.2. We first note that ( λ; ) does not depend
on , since, by Propsition 2.1, λ (1 ≤ ≤ (λ )) are mutually conjugate under .
Hence

(λ ) ( λ) =
∑

( λ) = ( λ| )

On the other hand, since

−1
−1∑

=0

θ / ( ) =

{
1 if ∈
0 otherwise

we have

−1∑

=0

(
λ

)
= | |−1

∑

∈

λ( 2)
det(1 + ρ( ))
det(1− ρ( ))

= ( λ| )
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Hence Theorem 3.2 follows.

4. Skew Schur functions and Inner Products.

Here we discuss some results which follow easily from the -Cauchy identity
(1.2). Let = be the ring of symmetric functions [9] in the variables =
( 1 2 3 . . .). We consider the following specialization of :

φ : ( ) −→
∏

=1

1 + 2 −2

1− 2
= 0 1 2 . . .

where ( ) is the -th complete symmetric function, i.e., the Schur function( )( ).
In general, we have [9], I, 3. Ex. 3:

(4.1) φ ( λ( )) = 2 (λ)+|λ|
∏

∈λ

1 + 2 λ( )

1− 2 λ( )
= |λ|

λφ( 2)

for any λ ∈ P . Since

∏ 1
1− =

∏
(

∞∑

=0

( )

)

we have

(4.2) φ

(
∏ 1

1−

)
=
∏ ∞∏

=0

1 + 2 +1

1− 2 +1

by [9], I, 2, Ex. 5. Forλ β ∈ P , the skew Schur functionλ/β( ) is defined by

(4.3) λ/β( ) =
∑

α∈P

λ
α β α( )

where{ λ
αβ}λ α β∈P are theLittlewood-Richardson coefficientsappearing in the expan-

sion

(4.4) α( ) β( ) =
∑

λ∈P

λ
αβ λ( )

Let us consider the infinite matrix ( ) = (λ/µ( ))λ µ∈P . If we choose the total or-
der onP compatible with the (set theoretical) inclusion, then the matrix ( ) is lower
unitriangular.
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Lemma 4.1. The matrix ( ) has the following properties.
(i) Let = ( 1 2 3 . . .) be another series of variables. Then the matrix( ) and
the transpose ( ) of ( ) almost commute with each other. More explicitly, we have

∏ 1
1− ( ) ( ) = ( ) ( )

(ii) The inverse ( )−1 of ( ) is given by

( )−1 =
(
(−1)|λ/µ|

λ′/µ′( )
)
λ µ

Proof. (i) This is nothing but the identity

(4.5)
∑

ρ∈P

ρ/µ( ) ρ/λ( ) =
∑

σ∈P

λ/σ( ) µ/σ( )
∏ 1

1−

given in [9], I, 5, Ex. 26.
(ii) Let ν/µ( / )(ν µ ∈ P) be the skew Schur function associated with the series

( ) =
∏ 1 +

1−

in the sense of Littlewood (see [7] and [9], I, 3, Ex. 23). Then

ν/µ

( )
=
∑

λ

ν′/λ′( ) λ/µ( )

If we put =− = 1 2 3 . . ., then, since ( ) = 1, we have

∑

λ

(−1)|ν
′/λ′|

ν′/λ′( ) λ/µ( ) =

{
1 if µ = ν

0 if µ 6= ν

which proves Part (ii).

Theorem 4.2. Under the above notation, the following holds.
(i) For λ µ ∈ P , we have

φ

(
∑

σ∈P

λ/σ( ) µ/σ( )

)
= |λ−µ|+|µ−λ|

λµ( 2)

(ii) For a ‘ rectangular’ Young diagram

= {( ) | 1 ≤ ≤ 1 ≤ ≤ }
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and a Young diagramω contained in , we put

(ω) = {( + 1− + 1− ) | ( ) ∈ − ω }

which is again a Young diagram contained in . For two rectangular Young diagrams
and , we have

φ

(
∑

ω⊂ ∩

(ω)( ) (ω)( )

)
= | − |+| − | ( 2)

In particular, when = , we have

(4.6) φ

(
∑

ω⊂

ω( )2

)
= ( 2)

(iii) For λ µ ∈ P , we have

(4.7) φ

(
∑

ρ

ρ/λ( ) ρ/µ( )

)
= |λ−µ|+|µ−λ|

λµ( 2)
∞∏

=1

(
1 + 2

1− 2

)2

Proof. (i) Let = ( 1 2 3 . . .) = ( 1 2 3 . . .) = ( 1 2 3 . . .) =
( 1 2 3 . . .). By the classical Cauchy identity (1.4), we have

∏ 1
1−

∏ 1
1−

∏ 1
1−

=

(
∑

π

π( ) π( )

)(
∑

ρ

ρ( ) ρ( )

)(
∑

σ

σ( ) σ( )

)

=
∑

π ρ σ

( π( ) σ( ))( ρ( ) σ( )) π( ) ρ( )

=
∑

π ρ σ

(
∑

λ

λ
πσ λ( )

)(
∑

µ

µ
ρσ µ( )

)

π( ) ρ( )

=
∑

λ µ

(
∑

σ

λ/σ( ) µ/σ( )

)

λ( ) µ( )

Putting = in the above equality and applyingφ , we get
(4.8)
∏ 1 + 2 +1

1− 2 +1

1 + 2 +1

1− 2 +1

∏ 1
1− =

∑

λ µ

φ

(
∑

σ

λ/σ( ) µ/σ( )

)

λ( ) µ( )

by (4.2). Comparing this with the -Cauchy identity (1.2), we get Part (i).
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(ii) Let ω be a Young diagram contained in a rectangular Young diagram . By
the Littlewood-Richardson rule (see, e.g. [9], Ch.I, 9), we easily see that

αω =

{
1 if α = (ω)

0 otherwise

This means

/ω( ) = (ω)( )

Hence Part (ii) follows from Part (i) by puttingλ = µ = .
(iii) We first prove this in the caseλ = µ = φ. Then the left hand side of (4.7) is

equal to

φ

(
∑

λ

λ( )2

)
= lim

→∞
φ

(
∑

ω⊂

λ( )2

)

where ={( )| 1 ≤ ≤ } Hence, by Part (ii), we have

φ

(
∑

λ⊂

λ( )2

)
= lim

→∞
( 2) =

∞∏

=1

(
1 + 2

1− 2

)2

This proves (4.7) in the caseλ = µ = φ. For a proof in the general case, we use the
identity (4.5). Putting = in (4.5) and specializing underφ , we get, by Part (i) and
(4.6),

φ



∑

ρ∈P

ρ/µ( ) ρ/λ( )


 = φ

(
∑

σ∈P

λ/σ( ) µ/σ( )

)
φ

(
∑

λ

λ( )2

)

= |λ−µ|+|µ−λ|
λµ( 2)

∏(
1 + 2

1− 2

)2

which proves Part (iii).

The equality (4.8) can also be writtn as:

(4.9)
∏ 1 + 2 +1

1− 2 +1

1 + 2 +1

1− 2 +1

∏ 1
1− =

∑

λ

˜λ( )˜λ( )

where ˜λ( ) is the infinite formal sum defined by

(4.10) ˜λ( ) =
∑

ρ

φ ( ρ/λ( )) ρ( )
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Let ( ) be the standard inner product on the space of finite linear combinations
of Schur functions defined by

( λ( ) µ( )) = δλµ λ µ ∈ P

We extend it formally to infinite linear conbinations of Schur functions, although in
some cases this does not make sense. Then Theorem 4.2 (iii) is equivalent to

(˜λ( ) ˜µ( )) = |λ−µ|+|µ−λ|
λµ( 2)

∞∏

=1

(
1 + 2

1− 2

)2

Similarly, Theorem 4.2 (i) is equivalent to

(ˆλ( ) ˆµ( )) = |λ−µ|+|µ−λ|
λµ( 2)

where

ˆλ( ) =
∑

σ

φ ( λ/σ( )) σ( ) =
∑

σ

φ ( σ( )) λ/σ( ) = φ ( λ( ))

Just as the classical Cauchy identity is related to the standard inner product ( )
(see [9], Ch.I, 4), the -Cauchy identity (4.9) suggests to introduce an inner product
〈 〉1 on finite linear combinations of̃λ( )’s by putting

(4.11) 〈˜λ( ) ˜µ( )〉1 = δλµ

Then, since

µ( ) =
∑

λ

(−1)|λ
′/µ′|φ ( λ′/µ′( ))˜λ( )

=
∑

λ

(−1)|λ/µ|φ ( λ/µ( ))˜λ( )

by Lemma 4.1 (ii), after extending〈 〉1 to infinite linear conminations of̃λ( )’s, we
have

〈 µ( ) ν( )〉1 =
∑

λ

(−1)|λ/µ|+|λ/ν|φ ( λ/µ( ) λ/ν ( ))

= (−1)|µ|+|ν| |µ−ν|+|ν−µ|
µν( 2)

∞∏

=1

(
1 + 2

1− 2

)2

One can also define an inner product〈 〉2 on by putting

〈ˆλ( ) ˆµ( )〉2 = δλµ
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Then, since

ρ( ) =
∑

λ

(−1)|ρ/λ|φ ( ρ/λ( ))ˆλ( )

we have

〈 ρ( ) σ( )〉2 = (−1)|ρ|+|σ| |ρ−σ|+|σ−ρ|
ρσ( 2)

5. Proof of the q-Cauchy identities

5.1. Symmetrizing operators. Let be the ring of series in variables

1 2 . . . . For an element of , and an element of the symmetric group
,we put

( 1 2 . . . ) = ( −1(1) −1(2) . . . −1( ))

The symmetrizing operator[7]

π : −→

is defined by

(5.1) π ( ) =



∏

<

( − )




−1
∑

∈

sgn( )( δ( )) ∈

where

δ( ) = −1
1

−2
2 · · · −1

We recall some of the fundamental properties ofπ :

(5.2) π ( ) = π ( ) ∈ ∈

(5.3) π ( 1
1

2
2 · · · ) = 0

unless + − 1 ≤ ≤ are all distinct.

(5.4) λ( 1 2 . . . ) = π ( λ1
1

λ2
2 · · · λ )

whereλ = (λ1 λ2 . . . λ ) ∈ P , and the symmetric polynomial on the left hand side
is obtained from λ( ) = λ( 1 2 3 . . .) by putting +1 = +2 = · · · = 0.

Lemma 5.1 ([7]). Let λ = (λ1 λ2 . . . λ −1) be a partition with (λ) ≤ − 1,
and a non-negative integer. Then we have

π ( λ( 1 2 . . . −1) ) = 0
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if = λ + − for some1 ≤ ≤ − 1, and

π ( λ( 1 2 . . . −1) ) = sgn( ) µ( 1 2 . . . )

otherwise, where the element = (λ ) of and the partitionµ = µ(λ ) =
(µ1 µ2 . . . µ ) are uniquely determined by:

(λ1 + − 1 λ2 + − 2 . . . λ −1 + 1 ) = (µ1 + − 1 µ2 + − 2 . . . µ )

where, on the right hand side, acts as a permutation of numbers.

5.2. Divided differences. Let ( ) be a function in a variable , and let

1 2 3 . . . be distinct numbers. We put

(5.5) δ −1[ ( )] = δ −1[ ( )]{ 1 2 . . . } =
∑

=1

( )∏
6= ( − )

which is called the ( − 1)-th divided differenceof at { 1 2 . . . }. What we
need is the following easy properties ofδ −1, which can be extracted from text books
(e.g. [10], [11]) on the calculus of finite differences. See also [8].

Lemma 5.2. Under the above notation, we have the following.
(i) δ −1[ ( + )]{ 1 2 . . . } = −1δ −1[ ( )]{ 1 + 2 + . . . + }
(ii)

(5.6) δ −1[ ( )] =
∏

<

( − )−1

∣∣∣∣∣∣∣∣

1 1
2
1 · · · −2

1 ( 1)
1 2

2
2 · · · −2

2 ( 2)

1 2 · · · −2 ( )

∣∣∣∣∣∣∣∣

δ −1[ ] =

{
1 if = − 1

0 if 0 ≤ ≤ − 2
(iii)

δ −1[ −1] =(−1) −1

(
∏

=1

)−1

(iv)

δ −1[( + )−1] =(− ) −1

{
∏

( + )

}−1

(v)

Proof. Parts (i) and (ii) follow from (5.5). Part (iii) follows from Part (ii), Part
(iv) from Parts (ii) and (iii), and Part (v) from Parts (i) and (iv).
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5.3. Proof of Theorem 1.1. Since (1.2) can be obtained from (1.3) by apply-
ing the involutionω in [9], Ch.I, to the symmetric functions of the variables, it is
enough to prove (1.3). Moreover, for a proof of (1.3), it is enough to prove it in the
case +1 = +2 = · · · = 0. Thus we want to show:

(5.7)
∏


∏

=1

1 + 2 +1

1− 2 +1

∞∏

=1

1 + 2 +1

1− 2 +1



∏

=1

∞∏

=1

(1 + )

=
∑

λ µ
(λ)≤

|λ−µ′|+|µ′−λ|
λ µ′( 2) λ( 1 2 . . . ) µ( )

for any non-negative integer . When = 0, (5.7) amounts to say:

∏∏ 1 + 2 +1

1− 2 +1
=
∑

µ

|µ|
φµ( 2) µ( )

which follows from (1.4), (4.1) and (4.2). By induction assumption, the left hand side
of (5.7) is equal to




∑

α β
(α)≤ −1

αβ′( ) α( 1 . . . −1) β( )



∏ 1 + 2 +1

1− 2 +1

∞∏

=1

(1 + )

where αβ′ ( ) = |α−β′|+|β′−α|
αβ′ ( 2). By the -binomial identity (see [9], I, 2,

Ex. 5, or [2])

∞∑

=0

(
∏

=1

1 + −1

1−

)
=

∞∏

=0

1 +
1−

this is equal to




∑

α β
(α)≤ −1

αβ′ ( ) α( 1 . . . −1) β( )




×
(

∞∑

=0

∏

=1

1 + 2 −2

1− 2
( )

)(
∞∑

=0

( )

)
(5.8)
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where ( ) is the -th elementary symmetric function in . We recall the well-
known formula (see [9], I, 5):

(5.9) β( ) ( ) =
∑

µ⊃β
µ−β∈ ( )

µ( )

where ( ) is the set of vertical strips with nodes; a skew diagramν is called a
vertical strip if the condition ‘ ( ) ( )∈ ν ’ implies = . By (5.9), the coefficient
of µ( ) in (5.8) is equal to

∞∑

=0





∑

(α)≤ −1
ν∈ (µ )

αν′( ) α( 1 . . . −1)





(
∞∑

=0

∏

=1

1 + 2 −2

1− 2
+

)

where

(µ ) = {ν ∈ P | µ ⊃ ν µ− ν ∈ ( )}

Thus, for a proof of (5.7), it is enough to show

(5.10)

∑

(λ)≤

λµ′( ) λ( 1 . . . )

=
∑ ∑

(α)≤ −1
ν∈ (µ )

αν′( )
∏

=1

1 + 2 −2

1− 2 α( 1 . . . −1) +

Since both sides of (5.10) are symmetric functions in , (5.10) is equivalent to

(5.11)

∑

(λ)≤

λµ′( ) λ( 1 . . . )

=
∑ ∑

(α)≤ −1
ν∈ (µ )

αν′( )
∏

=1

1 + 2 −2

1− 2
π ( α( 1 . . . −1) + )

where π is the symmetrizing operator defined in 5.1. By Lemma 5.1, for partitions
α = (α1 α2 . . . α −1) andλ = (λ1 λ2 . . . λ ) with (α) ≤ − 1 (λ) ≤ , we have

π ( α( 1 2 . . . −1) + ) = λ( 1 2 . . . )

for some constant , if and only if

+ = λ + −

and

(α1 α2 . . . α −1) = λ( )
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for some with 1≤ ≤ , where

λ( ) = (λ1 λ2 . . . λ −1 λ +1 − 1 λ +2 − 1 . . . λ − 1);

moreover, in that case we have = (−1) − . Hence, by comparing the coefficients of

λ( 1 . . . ) on both sides of (5.11), we see that (5.11) is equivalent to

(5.12) λµ′( ) =
∑ ∑

ν∈ (µ )

∑

=1

(−1) −
λ( )ν′( )[σ − ]{σ − } σ −

whereσ = λ + − , and, for an integer , [ ] is defined by (2.4), and{ } by

(5.13) { } =





∏

1=1

(1− )−1 if ≥ 1

1 if = 0

0 if ≤ −1

or by

(5.14) {0} = 1 { } = (1− +1){ + 1}

with = 2. Let = (µ). For a subset of the set{1 2 . . . }, we define a se-
quence

µ = (µ1 µ2 . . . µ )

of non-negative integersµ as follows:

µ =

{
µ − 1 if ∈
µ if 6∈

Then µ ∈ (µ ) if and only if µ ∈ P . Moreover everyν ∈ (µ ) can be
obtained uniquely in this way. Hence we can write (5.12) in the following form:

(5.15) λµ′( ) =
∑

=0

∑

| |=
µ ∈P

∑

=1

(−1) −
λ( )µ′ ( )[σ − ]{σ − } σ −

Now, by Lemma 2.3, we see that, after cancelling out some factors using (2.5) and
(5.14), (5.15) is equivalent to
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∏

=1

(1 + )
∏

(1 + σ +τ − )
∏

<

(1− σ −σ )
∏

<

(1− τ −τ )

=
∑

=1

(−1) −
∑

=0

∑

| |=
µ ∈P

D
∏

6=

(1− σ )
−1∏

=0

(1− σ − )
∏

= +1

(1 + σ − )

×
∏

∈

(1− τ )
∏

6∈

(1 + τ − )
∏

6=

(1 + σ +τ − )

×
∏

<
6=

(1− σ −σ )
∏

<

(1− τ −τ )

(5.16)

where

D = D( ) = σ − | | + A( − 1 λ( ) µ′ ) −A( λ µ′)

= + − 1

and, for 1 ≤ ≤ , τ = µ + − and τ = µ + − . Note that, on the
right hand side of (5.16), the sum on can be taken over the set of all subsets of
{1 2 . . . } such that| | = , not necessarily satisfyingµ ∈ P . In fact, if µ 6∈ P ,
then there exists a such thatµ < µ +1 ; this means thatµ = µ +1 and that ∈

+ 1 6∈ . Hence, we getτ = τ +1 , i.e., (1− τ −τ +1 ) = 0, which means the
corresponding term vanishes.

Thus, if we put

= σ 1 ≤ ≤

and

= τ 1 ≤ ≤

then (5.16) can be written as

∏

=1

(1 + )
∏

( + )
∏

<

( − )
∏

<

( − )

=
∑

=1

(−1) −
∑

=0

∑

| |=

∏

6=

(1− )
−1∏

=0

( − )
∏

= +1

( + )

×
∏

∈

(1− )
∏

6∈

( + )

×
∏

6=

( + )
∏

<
6=

( − )
∏

<

( − )
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where

=

{
−1 if ∈

if 6∈

or, equivalently, as

(5.17)
∏

=1

(1 + )
∏

( + )
∏

<

( − ) =
∑

=0

∑

=1

( )∏
6= ( − )

where

( ) =
∏

=1

(1− )

×




∑

| |=

∏

<

( − )
∏

( + )
∏

∈

(1− )
∏

6∈

( + )





×
∏ −1

=0 ( − )
∏

= +1( + )

(1− )
∏

=1( + )

We are going to prove (5.17) viewing it as an identity for rational functions in in-
dependent variables (1≤ ≤ ) (1 ≤ ≤ ). We have the partial fraction
expansion:

(5.18)

∏ −1
=0 ( − )

∏
= +1( + )

(1− )
∏

=1( + )
= ( ) +

1− +
∑

=1
+

where ( ) is a polynomial of degree− 2 in ,

=





∏

=1

(1 + )
∏

=1

( + )−1 if = 0

0 if 6= 0

and

=

∏ −1
=0 ( + −1 )

∏
= +1( − −1 )

(1 + −1 )
∏

6= ( − −1 )
1 ≤ ≤

If = 0, then =φ and = φ = for any . Hence, by Lemma 5.2(iii)(v) and
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(5.18), we have

∑

=1

0( )∏
6= ( − )

=
∏

=1

(1 + )
∏

( + )
∏

<

( − )

+ −( −1)
∏

(1− )





∑

=1

(−1) +
∏

6=

( + )

×
∏

6=

( + )
∏

=1

( − )
∏

<
6=

( − )





(5.19)

Similarly, for ≥ 1, we have

∑

=1

( )∏
6= ( − )

= ( − +1)
∏

(1− )
∑

| |=

∏

∈

(1− )
∏

6∈

( + )

×





∑

=1

(−1) +
∏

6=

( + )
−1∏

=1

( + )

×
∏

= +1

( − )
∏

<
6=

( − )





(5.20)

Note that the first term of the right hand side of (5.19) is equal to the left hand side
of (5.17). Hence, by (5.19) and (5.20), for a proof of (5.17), it is enough to show:

∑

=1

(−1)
∏

6=

( + )
∏

6=

( + )
∏

=1

( − )
∏

<
6=

( − )

+
∑

=1

∑

| |=

∏

∈

(1− )
∏

6∈

( + )





∑

=1

(−1)
∏

6=

( + )

×
−1∏

=1

( + )
∏

= +1

( − )
∏

<
6=

( − )





= 0

(5.21)
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The left hand side of (5.21) is the sum of the terms ( ) corresponding to∈
{0 1 2 . . . } ⊂ {1 2 . . . } with | | = and ∈ {1 2 . . . }. For any
and , it is easy to see:

( ) + ( + 1 ∪ { } ) = 0 if 6∈

Hence, (5.21) holds. The proof of Theorem 1.1 is now complete.
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