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1. Introduction
Let
p: G — Uy,(C)

be a finite group acting o&” as a complex reflection group. For an irreducible char-
actery of G, we define a rational function

- det(1 +qp(w))
11 Ws (x;q) = |G| ™2 w?)—— T
(1.1) ¢ () =G| w;x( ) GotL= qp(w)
in an indeterminatey . Note that, at = 0, this reduces to the Frobenius-Schur index

of x. When G is the symmetric group on letters, we have [6] an explicit formula
for (1.1). In a recent work [4], [5] (this and the present work were done largely in-
dependently), A. Gyoja, K. Nishiyama and K. Taniguchi explicitly calculated (1.1) in
the cases of real reflection groups of typg, E,, Fy4, Io(m) and D, ; in the case of

type D, , their proof depends upon one of the main result (Theorem 1.1 below) of the
present paper. The authors of [4], [5] also observed a mysterious connection between
Ws(x; q), Lusztig's cells and modular representations of lwahori Hecke algebras.

The main purpose of this paper is to calculdtg x;¢) explicitly when G is an
imprimitive complex reflection grou@ »{, p,n ) (in the notation of G.C. Shephard and
J.A. Todd [12]). This includes, as special cases, the cases of real reflection groups of
type B,, D,, andl>(m).

Theorem 1.1. Let x = (x1,x2,x3,...) and y = (y1, y2, ¥3, .. .) be two infinite se-
guences of independent variables. For a partitidriet sy(x) = sx(x1, x2, x3,...) and
sx(y) =sa(y1, y2, ¥3, - . .) be the corresponding Schur functionsin and respectively.
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Then we have the following identities

(1.2)
1+x;g%* 1+y,¢4? _ _

HH T MH 1_x =37 g EEN L (gP)sA ()5 ().

; iq yiq® i
and

1+xig”™ 1+yig?
HH 1—x; q2r+11 Vi q2r+l H(l+x,yl

(1.3) i

= qu\—# [—In _)\‘])\u’(qz)s)\()(f)su(y),
Ap

where 1/ is the dual partition ofy, Jy,(f) is a rational function defined irBection
2.1, and the sums are taken over all partitionsand .

Since, atg =0, the identities (1.2) and (1.3) reduce to the classical Cauchy iden-
tities

(1.4) [T =Y smno.
ij XiYj A

and

(15) [[@+xy) =3 5w ()
ij A

respectively, we shall refer to (1.2) and (1.3) as ¢h€auchy identities

The paper is organized as follows. In Section 2, we give two different definitions
of J,.(t); one (2.3) is combinatorial and the other (2.6) is analytic, the equivalence
of them being non-trivial (Lemma 2.3). We also recall some basic facts on the com-
plex reflection groupss ¢, p,n ). In Section 3, assuming the validity of¢ghe -Cauchy
identity (1.2), we show tha@; X ¢) for G = G(m, p,n) can be written explicitly us-
ing Jy.(t) (Theorems 3.1 and 3.2). In Section 4, we derive some consequences of the
g-Cauchy identity; in particular, we briefly discuss new inner products and new ba-
sis in the space of symmetric functions. Finally in Section 5, we provegthe -Cauchy
identities (1.2), (1.3). The main technical tools for this are symmetrizing operators of
A. Lascoux and P. Pragacz [7] and divided differences of higher order in the calculus
of finite differences [10], [11].

The author thanks A. Gyoja for explaining the results in [5], by which the author
came to realize that the calculation &f; x;¢) for G = G(m, p,n) can be reduced
almost immeadiately to the one f&¢ Gm( ,A ).
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2. Preliminaries

2.1. Combinatorics on partitions and diagrams. A partition
(2‘1) >\ = ()\17 )\2’ M) )\11)

is a finite sequence of non-negative integérsin non-increasing order; we consider
(A1, A2y ooy M) = (A1, A2, ..., Ay, 0). The set of partitions are denoted By The sum
of the parts of\ € P is denoted by )|, the number of non-zero parts By\)( and the
multiplicity of k(# 0) as a part byn; X). A partition (2.1) is often identified with the
correspondingroung diagramwhich is the set of pointsi(j & Z? such that 1< j <
Ai. In particular, the Young diagram corresponding to the partition (0, 0, Q ..., 0)

is empty. The set theoretical differenee— 1 = A — AN of two Young diagrams\
and p is called askew diagramNote that we areot assuming\ O p. An element of
a Young (or skew) diagram is called anode of \. For A € P, we define thedual
partition A’ of A\ by

XN ={(, ) €Z%|(j.i) € A}

For A € P, the hook-lengthiz, of X is a positive-integer-valued function on defined
by

ha) =N+ N, —i —j+1, v=_3j)E M\

As a natural generalization @f,, we define, for any\, u € P, an integer-valued func-
tion iy, on the se{v =(i, j)|i,j=1,2 3 ...} by

hapu) =X +pf—i—j+1, v=_3J)

We also define:

np= > W)= > (-1

(i, )EXN—1 (I,))EA—p

We putn Q) =n(), ¢), which coincides with the one appearing in [9], I, 1.
We have:

Lemma 2.1. (i) ha(v) =hy\(v), veEA
(i) Axpw@)=hu(v), veAiUp,
where we puw’ = (j,i) e N Uy forv=_(=, j) e AU p.
(iii) hap(v) = cala(v)), veEA,
wherecy : A — Z is the content functioifsee e.g [9], |, 1, Ex. 3) defined by

C)\((iv J)):.I_l’ (lv j)EA,
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and « is a permutation of\ defined by

(iv) There exists a permutatiofi of A — n such that

hap(BO)) = =hua(v), v EA—p.

(v) n(\, 1) + 0, A+ hyav) = n@) 1) AN ).

veEp

Proof. Parts (i)(ii) and (iii) are obvious. Part (iv) follows from a stronger asser-
tion proved in Lemma 2.2 below. For a proof of part (v), we note

STha@) = D {n — DAL+ =D} =a) +ul+ Y (N —i).

vEW (i,j)en (i.))en
Hence
n\ @)+ @) =n@) + Y (N =)
vE (i, ))exUp
=n@)*lul+ 3 =0+ S K i+ -1}
@.))ex (ISITEDN

=n(u) +[pl +n(\) —n(u, A) = [p— Al
= n() +n(N) + [N A = n(u, ),

which proves part (v). O
Letv =(, j)€ A — u. We define

axuv) =N —j, a0 =j-m—1
D) = XN — i, BaW)y=i—p)—1,

so that

hu(¥) = arnav) = 1, 0), ver—p,
and

hua(v) = I (v) — ag\ﬂ(v), VEN— L.

For a proof of Lemma 2.1 (iv), it is enough to show the following:
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Lemma 2.2. Let A, u € P. Then there exists a permutatighof A\ — . such that
ax(B)) =5, (). and 15,(B(v)) = L (v),
for v e A\ — p.
Proof. Let us call a non-empty skew diagram of the form
(2.2) {(k,1)|b<k<B, c<I<C}

a rectangle The ‘vertex’ ¢,c) (resp. 4, C ) B,c ) B,C )) is called the NW (resp.
NE, SW, SE)-vertex of the rectangle (2.2). We denoteR{) — 1) the set of all rect-
angles contained it — i Note that a rectangle is iR(A — ) if and only if its NW-
and SE-vertices are both containedNmn- pi. Let R, R’ € R(\ — ). We write R ~ R/,

if R”=R4+(1,0)orR=+(0,1). Let~ be the equivalence relation iR(\ — 1) gener-
ated by~. Let v € A— u. Then there exists a unique largest rectanBfe R\ — 1)
which hasv as its NE-vertex, and also there exists a unique largest rect@gle  which
hasv as its SW-vertex. Moreover, there exists a unique rectahgleéR(A — ) such
that S = RY and thatS =,R for somav € A — u. (The existence of s trivial. The
uniqueness follows from the fact that the conditigty R +(1L B) +(0cIR(\—p)’
implies R +(1 1)e R(A—p). ) Thus we can define a permutatignof A—u by putting
B(v) = w. Since, e.g.ax,(3(v)) +1 anda) ,(v) +1 are the ‘width’ of S =,R andR®
respectively, we get the lemma. ]

Let r be an indeterminate. Fo, u € P, we define a rational functioti,(¢) in ¢
by
1 +1 Au( ) 1 +thu>\(v)
— n(\,p) (e, \)
(2.3) @ = T "V =

VEA VEW

In particular, we have

JA;A(t) = J;Ak(t)a
1+ 2
J)\/\(t) - 1 thk(v)
and
1+t6/\(U)

= ()
J)\¢(t) 1 H tlu(v)
ve>\
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For an integer , we put

IT= (1 +11), if a > 1,
(2.4) [a] = 1, if a=0,
(M7 i e < -1

In other words, 4 ] is defined by:
(2.5) 01=1 [a+1]=@1+)k]

Then we have the following

Lemma 2.3. Letr =¢2 Let A\, u € P, and X = (A1, A2, Az, ..., \) (> 1())
and p' = (uf, p, i, - - -, ) (N > 1(i)). We put

op=N+n—i, A<i<n), 7{=u,+N—k, (1<k<N).

Then
n N
g A @0 = ¢ [ Jlor —n = N+ [ [I7 —n = N +1]
i=1 k=1
n+N-—1
% HH(l +[‘71+TL —n— N+l) H (1+lh)n+N h
(2.6) i=1 k=1
< [[a-r]Ja-)
i<j k<l
n o N 7‘{
<[TTJa-M"[TTIa-""
i=1 h=1 k=1 h=1
where
n+N—-1
A=A, N, \, p) = Z(Zz —1)o; + Z(Zk —Dr— Y s(s+1)
=1 s=1

+ Z(Zi —1)(~n+i)+ Z(Zk —1)(—N +k)

i=1 k=1
n+N—-1
=20 () + 20 (W) + A+l — D s(s+1).
s=1

Proof. Since

H 1 _ Hi<j (1_t0i70j)
veEA 1— @) I1; HZ':l (L—th)”
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([9], 1.1, Ex. 1), it is enough to prove that
(2.7) ¢® [T+ T+,

VEA vep
with B =21\, ) + 20 (1. A) + A — p| + | — A = A(n, N, A, pr),

is equal to
n+N—1
H[a, —n—N+1] H[Tk —n—N+1] H(l oo Ny T (@ 4 ghyreV=h
h=1
or to
n+N—1

(28) H[/\, —i— N+ l] H[‘LLI/( —k—n+ ]_] H(]_ +th>\p(i’k)) H (1 +l‘h )n+N—h.
i k ik h=1

Denote the product (2.8) by n(N, X, 1)(z). Then we have

(29  pa +LN. A )= pln, N +L A p)e) = (NN D2p0 NN )

for any n > I(\) and anyN > I(1/). In fact, if we replace, e.gn  with +1 in (2.8),
we should multiply (2.8) by

n+N

)N ) | R} | (R

h=

which is equal tor**M@+N+1)/2 " a5 required. We assume, for the moment, that and
N to be large enough; in particular

AN—Ii—N+1<0, w—-—k—n+1<0

for anyi andk . Then we have

[[tn —i—N+1]=DEF,
i=1

where
n i+tA-1 a —\+i+N-1
p=]] [T @+t E=]] JI @+m"
i=1 h=1 i=1 h=i+A
and
n i+N-1

F=11 ] @+:"™"

i=a+l h=i+A
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wherea =l ) and A =[ (/). We also have

N
[T —k—n+11=HIK,
k=1

where
A k+a—1 A —pptktn—1
H = H H (1 +lih)7l’ I = H H (1 +t7/1)71’
k=1 h=1 k=1 h=k+a
and
N  k+tn—1
k=1] I @+
k=A+1 h=1

We further write

where
P =
R =
and also
where
and

Then we have

n N
[J@+e@0) = pors,
i=1 k=1

a A a N
H H(l +we@R) g = H H (1 + N —ike),
i=1 k=1 i=1 k=A+1
n A n N
H(l +t“i——"—’<+1), and S = H H (1 +7~ik+y,

=a+lk=1 iza+1k=A+1

—

n+tN-1 n+N—1 i

H 1 +th)n+N—h - H H(1+th) -“TUV,

h=1 i=1 h=1

A—-1 i n+A—1 i

r= @+, v= ][ J[Ja+".

i=1 h=1 i=A  h=1

n+tN—-1 i

v=]1 TIa+")

i=n+A h=1

n+tA—1
+
D=9U"1 (5: E S(Sz 1)>’ F:S_l,

S=A
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and

We also have

Q

i+A—1 —XHAN—1
Q= { IT a+" I (1+t’1)}

i=1 (h=—\;+i+A h=i+A
a itA—1
{11 T avn}e
i=1 h=—X\;+i+A
and
A k+ta—1 —pptntk—1
rR=]] T a+" JI @+
i=1 h:7ﬂ2+k+a h=k+a
A k+ta—1
IT I a+hpr™
i=1 h=—p +k+a

Thus we have

p(n, N, \, ) =(DEF)HIK)(PORS)TUV)

=t*""HPT
a itA—1 A k+ta—1
[T TI @+MIT I @+
i=1 h=—M\;+i+A k=1 h=—p;+k+a
A-1 i a i+tA—1
(2.10) =1] H(l T I @+
i=1 h= i=1 h=—\;+i+A
A kta—1
% H H (1 +t7h)HH(1 +t]””(l k))
k=1 h=—p;+k+a i=1 k=1
A kta—1
< IT TT @+e™7"
k=1 h=1
where
n+N—1 S(S + 1)
c=> =5

s=1

Although, in deriving (2.10), we have assumed awd to be large, the formula (2.10)
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itself is true for anyn > I(\) and anyN > I(i) by (2.9). Let

(2.11) ap=min{i | -\ +i+A>1}
and
(2.12) Ag=min{k | —pp +k +a > 1}.

Then, we can further rewrite (2.10) as follows.

A-1 i a i+A—1
pn, N, A, u)—tCHH(1+f")H [T a+™
i=1 h= i=ag h=—\;+i+A
ap—1 0 i+A—1
< ] { II a+e"JJa +th)}
i=1 Uh=—)\+i+A h=1
Ao—1

X H H @+

k=1 h=—p+k+a

a A —pptkta—1

A
X H(l + ARy H H (L+r1)1
=1 k=1

i= k=Ap =1
aptA—2 i atA—1 i

T e T T ase
i=1 h=1

i=agtA—1 h=—X\;_an+i+l

ap—1 Ap—1

< ] H @+ ] H @+:"
i=1 h=—X\;+i+A k=1 h=—p+k+a
a A A —,u,‘+k+a 1

< [TTI@+ 1] H (I
i=1 k=1 k=Ao  h=1

Hence, by Lemma 2.4 given below, we have

Pl NoA ) =€ [T @O T @+t

VEXN—u vEU—N
By, (0)>0 hxu (>0
< [T @+em®y T @+ee0).
VEANL VEAUL
hyx @)>0

Hence, by Lemma 2.1 (iv), we get



CAUCHY IDENTITY 785

pln, NN ) = 1€ [T @m0 TT @+r o)
VEA—p vEB—A
II)\“(U)EO /1“>\(v)§0
% H 1 +thx,¢(v)) H ¢ +fh,m(v)) H 1 +thm(v))
vExw o ks
— tC H(l +[h>‘“(v)) H(l +l,—/1“>\(v))
vEA VEW
=P [T+ O) [T +0),
VEA vEWN
where
D=C— hu).
vep

Thus, it is enough to prove
B=2D.

But this is equivalent to the formula in Lemma 2.1 (v). ]

Lemma 2.4. Under the notation in the proof dfemma 2.3,we have

ap—1
(2.13) I @a+™>=1] H @+ [ @+emeo),
VEA— i=1 h=—X\;+i+A veEQ
it
Ag—1
(2.14) [T @a+>t=1] H @+ ] @+,
VEU—A k=1 h=—p;+k+a VEQ
I3 (v)>0 hlff(bv;go
and
aptA—2 | a+tA—1 i
I @+e=0y=11 TIa+™ ]I [T @+
vEAUL i=1  h=1 i=aptA—1 h=—X\;_snti+l
hux(©)>0
(2.15)
A —pptkta—1
H @+ T H @+
k=Ao h=1
h,\,L(v)<O
where

Q={@Gj)]1<i<a,1<j<A}
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Proof. Ifv=(,j )¢ R, andv € A — u, then
) =Xi—i—j+1, 1<i<a, A+1<j <)

Hence (2.13) follows from (2.11). Similarly, we get (2.14). For a proof of (2.15),
it is convenient to introduce the notion ofFsequencesan infinite integer sequence
{c;} (s=1,2 3...) is a A-sequence, if

cs — AL +s is independent of.
For a A-sequence(c, }, let
so=maxs |c, >0 }.
Then

{eshe = {C.v}lgsgso

is called thepositive partof the A-sequence{c,}. (If ¢; < 0, then{c}+ is empty.)
Since we are only interested in the positive part ok-aequence, we call a finite se-
guence withN terms a-sequence, if it is the firsW terms of an (infinitdysequence
{cs} containing{c }+.

In connection with (2.15), we now state three constructions (i)(ii)(iii)\esequences.
(i) For a fixedi , the sequence

hli)\(ivj)s J:1s23

is a A\-sequence.
(i) For a fixedk such thatdg < k < A (A = I(i) = p1, Agis as in (2.12)), we
consider the sequence

—pta+k—1, —pta+tk—2,—p,+ra+k—3, ...,
with a =1(\) = A}, and delete from it the terms contained in
—hxu(i k), i=a,a—la-2,...,1,

then we get a\-sequence. (See [9], I, (1.7).)
(i) Let A=(r,r,...1, A1, A2, ..., A\y) € P with r sufficiently large, and \) =a+A —
1. To each nodei(j ) of, we attach the number:
1jj =i—j+ 1.
We put

0) — —
tl(;)_ti;,,p’ p=123...,r
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Then the (finite) sequenc@rl(,o)} is a A-sequence. More generally, if we put, for each
0<g<a+A-2,

tl(,q) =l —gp PT 123....5q (sg=maX{p|XN,>q})

then {¥} is a A\-sequence. (We get the sequente= {:("} by reading, from west to
east, the numbers attached to the ‘south cofSt,, p) | 1 < p < r} of . Likewise

we get the sequence? by reading the numbers attached to the south coast of the
diagram P (the south coast of\), and so on. The last term of each sequerite

lies either in the first row or in the -th column; hence it must be less than or equal
to 1. This shows the squene&’ surely contains the positive part of the infinite
sequence with the first ternf”).)

Let ¢¥,i = 1,2 3..., be the \-sequences constructed in (i), agd’ = {V}.i =

1,2 3 ..., their positive parts; we can similarly define, from the constructions (ii) and
(iii), D(") ={d®}, Ag <k < A, andEX = {{7},0 < g < a+ A — 2, respectively.
Then we have:

[Ta+)= T @+rao,
ij

vEAUL
hux(v)>0

A 4¢h+a+k 1

H(1+t7d’()) 1_ H (1+thw(”))H H L+

k=Ag h=
h,\“(v)<0
and
0 aptA—2 i a+tA—1 i
[Maw= [ Jawe I I1 aw
D.q i=1 h=1 i=agtrA—1 h=—M\;_pa+i+l

Thus, for a proof of (2.15), it is enough to show that adf/,i = 1,2 3..., and

any D®, Ay < k < A, appears among?,0 < ¢ < a+ A — 2, and, conversely, any
EE,‘”, 0<qg <a+A-2, appears either iIGL(.'),l =123...,0rin DS,"), Ag <k <A,
exactly once. Since, a-sequence is determined by its first term, we concentrate on
the first terms ofc), DY, and E. The first terms ofc{), DY, and E are

Cr={mat+ta—-1 pp+ta—2,pu3+a—3,...,pj,+a— jo}
(o=max{(j | p;+a—j=>1}),

Dy ={-py+a+A—1 —p, +a+(A-1)-1
— Wy ptat(A=2)—1,...,—, ta+ko—1}
(ko=min{k | —p, +a+k —1>1}),
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E;={a+A—-1a+A—-2,a+A-3,...,2 1},
respectively. What we need to show is:
(2.16) E1=C1UD,, (disjoint).
Let « be a positive integer such that ot> p}. Then, by [9], I, (1.7),
(2.17) {ata+A-La+a+r+A—-2,a+ta+A-3,...,1 0}

is the disjoint union of

218) {—py+ra+a+A -1, —p) +a+ta+(A-1)-1,...,—pj+ta+a+1-1}
and
(2.19) {ma+ta+ra—-1up+ra+a—2,..., gra—1+1 tigee = 0}.

Subtractinga from each member of (2.17)—(2.19), and then taking intersections with
the set of positive numbers, we get (2.16). The proof of (2.15), and hence, that of
Lemma 2.3 are now complete. O

2.2. Complex reflection groupsG(m, 1,n). We fix a positive integem . Let
C = C,, be the cyclic group of orden  generated Oy ¢?™/™. The symmetric group
S, acts onC" =C x C x --- x C (n times) by permuting the factors. Hence we can
form the semidirect product

G,=G(m,1n)=C"S,.
The groupG, acts on the complex vector sp&eby
p=pn: Gy — Uy(C),
where
p(¢,1,1,...,1) =the diagonal matrix{( 1, 1,...,1)
and, fors € S,
p(s) = the permutation matrix corresponding 40

Hence, G,, p) is a complex reflection group; in particular,if =2G/, p) is a real
reflection group of typeB, . Below, we summarize the character theor,of , due to
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W. Specht, following [9].
Let P be the set of partitions, anB(C) the set ofP-valued functions orC
P(C), we put

=) [ue)l.

ceC

The conjugacy classes @f, are parametrized by
Pu(C) ={pn € P(C) | |u| =n}.
If we G, is of typepu € P,(C), we have

(2.20) det(1- gp,(w)) = [T [J@ — cq*ym .

ceC k

The number of elements af, of typeis equal to

(2.21) |G| / {H H(km)mwnmk(u(c))!}.
c k
For ¢ € C, and a positive integet , let

(2.22) pile) =Y xf

be thek -th power sum symmetric function in a sequence of variables
Xe = (X10, X260, X3, .. .). FOr o € C =Hom(C, C*), we also put

(2.23) Pra) =m Y ale) prlxe),

ceC

and regard it as thé -th power sum of a new sequence of variables
xa = (xla’ x2a, x30¢5 . ')1 Iey

(2.24) IADEDIES

As usual, we also put

polxe) = po(xa) = L.

For a partitionA = (A1, Ao, ...), let

p/\(xc) = pAl(xc)pAz(xC) ceey

789

. Fon €
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and similarly for py(x,). Forw € G, of type n € P,(C), we put

(2.25) Py =Py = [ [ puwo(xo).
ceC

Let P(C) be the set ofP-valued functions orC. For A € P(C), we put

A= M)

aEé

The irreducible characters @, are parametrized by
PC)={AeP) | A =n};

we denote byX* the irreducible character correspondingtt@ P,(C). For A € P(C),
let

(226) Sy = H S)\(a)(xa)’

aeé
where sy (xo) is the Schur function
s)\((l)(xloé’ x2a, .. ')'

Then we have

(2.27) Sx =G|t D X (w)Py,
weG,

wheren =|A|.

2.3. Complex reflection groupsG(m, p, n). Letw : G, — S, be the natural
homomorphism. Thel : G, — C* defined by

6(w) = detp(w) detp(m(w)), we G,
is a linear character of;, . More explicitly, we have

(2.28) O(w) = H RO

ceC

if we G, is of typeu € P,(C). Let p be a natural number dividing , and let
Gu,p=G(m, p,n)= kerg™/?,

which is of indexp inG, . We have (see [12], [1]):
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(i) The groupG, , acts orC" by p (in 2.2) as a complex reflection group.

(i) The group G (2 2n )p) (resp. G (n,m, 2)p)) is a real reflection group of type

D, (resp. I(m)).

(iii) The groups G fn, p,n)p) (m > 2, plm, n > 2,(m, p,n) # (2,2 2)) can be
characterized as the irreducible imprimitive finite complex reflection groups.

(iv) Besides G £, p,n )p) and S, =G (1 1n ) acting orC"~1, there exist only fi-

nite (exactly speaking, 34) isomorphism classes of irreducible finite complex reflection

groups.
Since, for each irreducible charact& of G,, X* ® 6 is again irreducible, the cyclic
group (0) (of orderm ) acts on the set of irreducible charactersGef , and, hence, on

the parameter spacg,(C); more explicitly, we have

X @60=X" A peP(C)

p(€) = M, 0<k<m-1
with € € C defined by
(2.29) (c) = ¢, cecC.

By Clifford’s theorem, we have the following description for the irreducible characters
of G, p.

Proposition 2.5. Let p be a natural number dividinge . Le{\, p) be the order
of the stabilizer ofA € P,(C) in (6"/7).
(i) The restrictionX*|G, , is a sumy_, X}* of s(), p) distinct irreducible characters
X} (1<i <s(\ p)) of G, ,, which are mutually conjugate undeg,
(i) We have

X*G,.p = X"G,,p

if and only if A and ; are in the same orbit undefd”/?).

(iii) Any irreducible character ofG,, can uniquely be obtained ¥ (1 < i <
s(\, p)), where \ is taken over a complete set of representatives of (#é”)-orbits
in P,(C).
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3. g-Frobenius-Schur indices

3.1. Statement of the results. The main purpose of this section is to prove:

Theorem 3.1. Under the notation in2.1-2.3,let

det(1 +g p, (w))

(3.1) FQ\d)=|G,|™* Z X (w?)o! (w) det(1— gp,(w))’

weG,

whered is an integerA € P(C), n = |A|, and X* is the complex conjugate of*.
Then we have the following.

(i)
(3.2) FO.d)= [[ FO|{a8}.d)
{oz,ﬁ}Cé
ap=e!

wheree? e C is defined by(2.29),and A | {a, 8} is an element of?(C) given by

AMw), ifw=aorg,
o, otherwise

(A [H{e, BH(w) = {

for w e C.
(i) Let{a, B} C C be such thaty3 = ¢?. We putd; = A(e) and A = A\(3). Then

[a®e T A=A HAE N X221 5 myif o #8,
F““mﬂhwz{q B s
where Jy,»,(7) is as defined ir.1,

zhm:II%fggg
VEAL
and, fora € C,[o] € {0, 1, ..., m — 1} is defined by
(3.3) o= el

Using Theorem 3.1, we can explicitly calculate the -Frobenius-Schur index (1.1)
of an irreducible charactex? of the groupG fz, p,n ):
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Theorem 3.2. Let p be a natural number dividing:, and letG, , = G(m, p, n).
For an irreducible characterx} (A € P,(C), 1<i < s(), p)) of G,.», We have

p—1
Ve, ,,(X,-’\;q) =s(\, p)*lz F <)\, ﬂk) .
' P

k=0

Remark. Form =1 andn = 2, this was proved in [6] and [5] respectively. For
m = r = 2, this was conjectured in [4] in a somewhat different form (and proved in
[5] using a consequence (Theorem 4.2 below) of gur -Cauchy identities (1.2), (1.3)).

3.2. Proof of Theorem 3.1. Let S\, X* (A € P(C)) and P, @ € G,) be as in
2.2. We put

det(1 +zp(w))

FOLdig ) =1Ga[ 7 3 XA (w) = 2rs

weG,

wheren =|)|. Then, by (2.27),

= _ det(1 +rp(w)
3.4 S FNdig. 08 =D G Y 0lw) e P
€P(C) n weG,

By (2.20), (2.21), (2.25), and (2.28), the right hand side of (3.4) is equal to

pk(xcz)mk(ll«(c)) 4 1 +ctk mi(p(c))
Z H (k)" D (1(c)))! (C 1 k>

HEP(C)  odd —cq
« H pl(xC)ZIﬂZI(M(C)) Cd 1— Clzl may(u(c))
2 @myr 2D my () T 1—cq?

10 Z l+ct )\ 1 al=c? pix)’ .
km ] 1—cq? 2m

_ |
¢ odd B0k cq* Jr:

1 {Hexp(dl et pk(xcz)) Hexp(d _C;z plz(g)}

c k odd q

Hence, by (2.23), we have

1+ct
log ( F(\, d;q,1)S ) ¢ Pi(xs)a(c?)
> )= T e (z : )

k Odd oceC

s1-
+Z i qu 2lm(z p[(xg)a(c)) (Z p[()CT)T(C))

oceC Tel
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We note
1 C( l) — — u
Z ‘ A= Y Y
u=0 u=0
u=[c?e] u=[c?e1—-1
and
PN LRI DR DI OO
m C[ q)
u=0 u=0

c
u=[ore?]—-1

u=[ore]

where = means the congruence modulo , and, for C, [o] is defined by (3.3).

Hence, we have

log (Z F(\.d;q, t)S,\>

A

- ( ”xia)k - (—t Mxia)k
D I

u=[o2ed] i=1 u=[o2e?]—-1 i=1

w(uia)zl - (tq"xis)?
+IZ—ZZCI; _p> Zq;z

u=[o2e] i=1 u=[o2e?]—1 i=1

+ Z Z i (qz“xg;xjr)l - Z f: (tZQZ')ZC;oij)l
Lo.1 \u=s[ore]i,j=1 u=[orel]—-1i,j=1

(q"xio )k (—1q"xio)*
- Z Z_ %_ Z %

u=[o2el]—1

+ Z Z (qzuxiloxjr)l_ Z (1292”);,'0)5;7)[ ’
u=[orel]-1

I u=[oTe]
(o,7,i,j)€ES

where
S={lo, 7. i, j)[lo]l <[]} U{(o, 7 i, j)[o=T, i <j}

Hence, we have

log <Z F(\.d;q, t)S/\> ==Y > log(l—g"xi,)+> > log(l+iq"xi,)
A i u>0

o,i u>0 o,i
u=[c?e] u=[c?]-1
2 2 2
- Z Z log(1— g™ xipxjr) + Z Z log(1— g™ xioxjr).
(o,7,0,j)ES  u>0 (o,7,i,j)ES u>0
u=[ore?]-1

u=[ore]
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Hence
> F(\.d;q.1)S)

H u+l [o2€?] (l +tq“xi0) Hu+1§[o’rg"](1 - t2q2uxi0xj7_)
H“ [026"](1 q"Xis) HME[JTE’](]' - qzuxioxj'r) .

(3.5)

(o,7.i,/))ES

Now we consider the case ¢ . Noting that only takes non-negative integer values,
we have

(3.6)
Z F(A d)Sx = Z F(\, d;q,q)Sx
A A
_ 1 +qm( )-xig
i };[é :ll_!lj([) 1_qlnrxi‘7 H 1_-x10'xja
o2=ed

[ olNe o]

1+ [0267[]+mr s 1+ [r2& +mr
< 1 I+t 1 = H
1 1— q[J € ]+mrxl_g 1— q['r € ]+mrx 1

- xlo'-x_/‘l'

We fix ana € C such thata? = ¢ (if it exists). If we put, in (3.6),x;; = 0 ( =
1,2 3..) for any o # «, then we have

m(r+1)
3.7) S PO d)sye(ra) = Hr[ll*j’qm,xx H1

A
A(o)=¢
if oZa

- -xta-xja

Similarly, if we fix {a, 8} C C such thataf = ¢, # 3, and put, in (3.6)x;, =0
for any o # «, 8, then we have

Z F(X, d)sx)(xa)sxg)(xs)

A
Ao)=¢
(3.8) i o7as

H1+qae]+mrxa1+q[ﬂe]+mrxﬁ 1

e 1 q[a 6d]+mr-xla 1 q[526(1]+mrxl,3 i 1- x,-axjg'

By (3.6), (3.7), and (3.8), we have

Y Fas= ] Yo FOD [ sxexo)
A {a,8}CC U)\: oc{a,B}
ap=e! ing;’a?ﬁ
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Comparing the coefficients df, on both sides, we get Part (i). By [6], we know that
the right hand side of (3.7) is equal to

1+ (qm )/ul(v) m
> 11 ; 1 (@) = > Iu(g")sa(xa),
epoen L@ MEP
which implies Part (ii) in the case = 5. Now we put

(8% —m/2

2—d
a“€e’l-m/2 —
[o?&]-m/2,.

= Xi, q xiﬁ:}% izlvza"'
on the right hand side of (3.8), then the product is transformed to

(3 9) H H 1 +qm(2p+1)/2 1 +qm(2r+l)/2y H
' : 1— qm(2r+l)/2x, 1— qm(2r+l)/2 1— Xy

By the ¢ -Cauchy identity (1.2), whose proof is given in Section 5, the product (3.9)
is equal to

D gl em /2, (g™, ()50, (),
A1 A2
which, after going back to the original variables = (x;») andxs = (x;3), is equal to

Z q[a2g‘1]|)\1—)\2|+[ﬂ2571]\)\Z—Al\J)\l)\z(ql1z)s>\1(xa)s>\z(xﬁ).
A1, A2

Comparing this with the left hand side of (3.8), we get Part (ii) in the casg .
The proof of Part (ii) is now completely reduced to that of Theorem 1.1.

3.3. Proof of Theorem 3.2. We first note that¥g, , X;;¢) does not depend
on i, since, by Propsition 2.1¥} (1 <i < s(), p)) are mutually conjugate undes,
Hence

s(A, P)lpGn.,y(XiA) = Z ve,, (X,/\) =Yg,, (X/\|Gn.1’)-

i

On the other hand, since

p—1 .

_ - 1, ifweG,,,

prY P (w) = o
pa 0, otherwise

we have
p—1
m _ det(1 +gp(w))
F (X —k)=plG,?t XM w?)—r———=
2 (7 5%) = vl 2 G gpfu)

=Yg, (X)\‘Gn,p)-
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Hence Theorem 3.2 follows.

4. Skew Schur functions and Inner Products.

Here we discuss some results which follow easily from the -Cauchy identity
(1.2). Let A = A, be the ring of symmetric functions [9] in the variables =
(uq,uz,us, ...). We consider the following specialization of,

m 1+q2i72

Gy hy() — g™ qu, m=0,12...,

i=1

whereh,, () is them -th complete symmetric function, i.e., the Schur funciigyu).
In general, we have [9], I, 3. Ex. 3:

1 +q2L'>\(v)
(4.1) bulsa(u)) = g O H m = q‘>\|]>\¢(q2)
VEA

for any A € P. Since

i, =1 (Z m(u)xf") ,
i e

i m=0
we have

1 +q2r+l

1
“2) 4 (hn 1—uhx,~> I

1

by [9], I, 2, Ex. 5. For), 8 € P, the skew Schur function, ,;(u) is defined by

(4.3) sx/pW) =Y en psalu),

a€EP

where {Céﬁ})\.aﬂe'p are thelLittlewood-Richardson coefficiengppearing in the expan-
sion

(4.4) sa(W)sp) =D cagsau).

AEP

Let us consider the infinite matri u( ) =, («))r..ep- If we choose the total or-
der on’? compatible with the (set theoretical) inclusion, then the mafrix ( ) is lower
unitriangular.
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Lemma 4.1. The matrixS(u) has the following properties.
(i) Letwv = (vy,vp,vs ...) be another series of variables. Then the mat§ix) and
the transposé S(v) of S(v) almost commute with each other. More expligitye have

; 1—l/tl'1)j

H 1 S(u) S() ="'SW)S(u).
(i) The inverseS(x)~! of S(u) is given by
Sw)~t= (- Pl @) 50

Proof. (i) This is nothing but the identity

1
1—I/t,'1)j.

(45) Z Sp/,u(u)sp/)\(v) = Z S)\/J(M)Su/a(v) H

pEP ocP i,j

given in [9], I, 5, EX. 26.
(i) Let S,/ (u/v)(v, n € P) be the skew Schur function associated with the series

foy =T o

1—tu;

in the sense of Littlewood (see [7] and [9], |, 3, Ex. 23). Then
u
Suim (5) = D2 sur @5/ 0)
A

If we putv, =—u;,i =1,2 3 ..., then, sincef « ) =1, we have

) 1, if uw=v,
(D)X s 50 @), () = { .
Z/\: a 0, if u#v,

which proves Part (ii). O

Theorem 4.2. Under the above notatigrthe following holds.
(i) For A\, € P, we have

bu (Z Sx/a(u)su/o(u)) = g =A@,

ocEP

(ii) For a ‘rectangulat Young diagram

Q={@)[1<i<l, 1<j<m}
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and a Young diagranv contained ing2, we put
Qu)={l+1-im+1-)) |G e —-w}

which is again a Young diagram contained én . For two rectangular Young diagrams
Q and ©, we have

Du ( Z SQ(w)(u)SG)(w)(u)> = q!9= OO jo o (g?).
wCRNO
In particular, whenQ = ®, we have
(46) Pu <Z sw(u)2> = JQQ(q2)~
wC

(iii) For A, u € P, we have

— P—plHp=A 1T (L+d” :
(47) bu Zsp/)\(u)sp/u(u) =-q s JAH(q )H (1_q2,'> .
P i=1

Proof. (i) Letx = (1, x2,x3...),y = (b1, ¥2, ¥3,-..),u = (ug,up us, ...),v =
(v1, vy, v3, ...). By the classical Cauchy identity (1.4), we have

1 1 1
1;:11 1—upx; g 1wy 1_][ 1-xy;
= (Z sﬂ(u)sﬂ(x)> (Z sp(v)sp(y)> (Z sg(x)sg(y)>
T P o

=) (52 ()50 (X)) (55 ()50 (1)) ()5, (v)

mp,0
=) (Z Cﬁgsx\(x)> (Z c;:osp(y)> 57 ()3, (v)
T,P,0 A o
= Z <Z s)\/o(u)su/o'(v)> s,\(x)s,t(y),
A o
Puttingv =u in the above equality and applyigg, we get
(4.8)
1 +q2r+1xl_ 1 +q2r+1yj 1 B
=g = i3 —;m PIRVAC O RIOME

by (4.2). Comparing this with the -Cauchy identity (1.2), we get Part (i).
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(i) Let w be a Young diagram contained in a rectangular Young diagfam

the Littlewood-Richardson rule (see, e.g. [9], Ch.l, 9), we easily see that

Cc

0 _ {1, if a=Q(),

“ o, otherwise
This means

sQ/w(u) = SQ(w)(u)‘

Hence Part (ii) follows from Part (i) by putting = @, i = ®.

(iif) We first prove this in the case = u = ¢. Then the left hand side of (4.7) is

equal to

Pu (Z s>\(u)2> = n|i~>moo bu ( Z s>\(u)2> s
A

wC"

where Q" ={(i, j)| 1 <i,j <n }. Hence, by Part (ii), we have

o i\ 2
o ( Z S)\(u)2> = ”ILmOO Jangr (qZ) = H <ii221> :

ACQ" i=1

. By

This proves (4.7) in the cask = i = ¢. For a proof in the general case, we use the

identity (4.5). Puttingv = in (4.5) and specializing undgr, we get, by Part (i) and

(4.6),

Du (Zsp/;t(u)sp/)\(u)) = ¢y <Z S)\/O’(M)S/L/O'(M)> Du <Z S)\(u)2>

pEP cEP A

1+g2%\?
= oA —plHp=A 2 9
-q JAp(Q)ll_[<l_q21) )

which proves Part (iii). O

The equality (4.8) can also be writtn as:

1 +q2r+1xi 1 +q2r+1y< 1 . .
(4.9) ’ =D S(x)sa),
11 1-q%*"x; 1— g%y, !—j[ 1-xy, ;

ri,j

wheres, (x) is the infinite formal sum defined by

(4.10) ) =) Buls,yn()s,(x).
P
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Let ( , ) be the standard inner product on the spage of finite linear combinations
of Schur functions defined by

(sx(x), 5u(x) =0xp, A peP.

We extend it formally to infinite linear conbinations of Schur functions, although in
some cases this does not make sense. Then Theorem 4.2 (iii) is equivalent to

1 +q2i 2
1_q2i .

Ga(x), 5u(x)) = g Ty (67) H <
i=1
Similarly, Theorem 4.2 (i) is equivalent to
(a(x), 3u(x)) = g HIME=AL L (67),

where

_’S\)\(X) = Z (z)u(s)\/o(u))sa(x) = Z (z)u(so'(u))s)\/a(x) = ¢u(s)\(“v )C))

Just as the classical Cauchy identity is related to the standard inner product ( )
(see [9], Ch.l, 4), theg -Cauchy identity (4.9) suggests to introduce an inner product
( , )1 on finite linear combinations of(x)'s by putting

(4.11) (Sa(x), 5u(x))1 = 0xp.

Then, since
5u@) = Y (DN G (s 0 @))3n(x)
A

= (=DM (sx ), )Ea(x)
A

by Lemma 4.1 (ii), after extending, )i to infinite linear conminations of(x)’s, we
have

(52 (x). s())1 = Y (=DM, (55, @) (1)
A

1+q2i >21

- (_1)|/t|+\V|q\u—”|+‘”_”|J,w(qz) H (1 — g2
i=1

One can also define an inner prodyct ), on A, by putting

(Sa(x), 54(x))2 = 0y
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Then, since

sp(0) =D (=) G (52 )51 (),
A

we have
(55(x), 5o (x))2 = (—1)PIHIolgle=eltlo=rl g (4?).

5. Proof of the g-Cauchy identities

5.1. Symmetrizing operators. Let F, be the ring of series im variables
X1, X2, ..., Xx,. FOr an elementf off, , and an element of the symmetric group
Sy,we put

fs(-xls X2y ey xn) = f(xsfl(l)’ B ) ) x5*1(11))'
The symmetrizing operatof7]

7T,1:E1 >Fn

is defined by
-1
(5.1) () = [ TJi —x) | son)(rx@y,  f e F,
i<j SES,
where

x00) = 2

We recall some of the fundamental propertiesmpf

(52) 71-n(f)s = le(f)’ feEF, ses,.

(5.3) (X7 x5% - x3") = 0,

n

unlessa; m —i,1<i <n, are all distinct.

(5.4) sa(x1, x2, ..., x,) = W,,(xf‘lxgz . -x,f‘"),
where A = (A1, A2, ..., A\y) € P, and the symmetric polynomial on the left hand side
is obtained fromsy (x) = sx(x1, x2, x3, . ..) by putting x,+1 = x42 =--- = 0.

Lemma 5.1 ([7]). Let A = (A1, Az, ..., \y—1) be a partition with/(\) < n — 1,
and m a non-negative integer. Then we have

7r11,(S>\(xlv X250y xn—l) X;T) =0
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ifm=X+n—i forsomel<i<n-1, and

Ta(sx(x1, X2, ..., Xy—1) X,) = SgN@ ¥, (x1, x2, .. ., X,)

otherwise where the elementv = w(\, m) of §, and the partitiony = p(A, m) =
(41, pt2, - - -, 1n) are uniquely determined by

M+tn=Lx+n—-2 ... N1t m)=wur+tn—1L ux+n—2,..., u,),
where on the right hand sidew acts as a permutation of numbers.

5.2. Divided differences. Let f(x) be a function in a variablec , and let
Pi, Py, P3, ..., P, be distinct numbers. We put

w1 ] = f(P)
(55) &M= TSP P B S ZH,;,(PI

which is called the { — 1)-th divided differenceof f at {Pi, Py, ..., P,}. What we
need is the following easy properties &, which can be extracted from text books
(e.g. [10], [11]) on the calculus of finite differences. See also [8].

Lemma 5.2. Under the above notatigrwe have the following.
0] U f(ex+d)]{P1, Pp, ..., P,} =" 2" Y f(x)]{cP1+d,cPy+d, ..., cP,+d}
(ii)
1P P P2 (P
_ 1P, P2... PI2 F(P
(5.6) e = [[# - Pyt 2 2~ f(P2)|

i ARCEIS IR RERLR ey
1Py PY o P72 f(Py)

1 ifk=n—1
(i) ] = neEnT S
0 ifo<k<n-2

\ 1
(lV) 511—l[x—l] :(_l)n—l <H P,> .

i=1

-1
V) 5" H(ex + d) ) =(—e) {H(cP,- +d)} :

Proof. Parts (i) and (ii) follow from (5.5). Part (iii) follows from Part (ii), Part
(iv) from Parts (ii) and (iii), and Part (v) from Parts (i) and (iv). Ul
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5.3. Proof of Theorem 1.1. Since (1.2) can be obtained from (1.3) by apply-
ing the involutionw in [9], Ch.l, to the symmetric functions of the variables, it is
enough to prove (1.3). Moreover, for a proof of (1.3), it is enough to prove it in the
casex,+1 = xp+2 = --- = 0. Thus we want to show:

1+ 1+
G ()1 Gee=a) i G = D DI CREED

i=1 j=1

= 3 g A (@G X2, - x)su()
A
I(N)<n

for any non-negative integer . When =0, (5.7) amounts to say:

2r
HH 1+q2,+1y L= Zq'”'w(q )5,(),

which follows from (1.4), (4.1) and (4.2). By induction assumption, the left hand side
of (5.7) is equal to

> Kap@salxr, .. xa-1)55(y) M H(l +X0¥;),

a,B
[(a)<n—1

where K,s:(q) = ¢!*71*19'=2lJ,5(4?). By the ¢ -binomial identity (see [9], |
Ex. 5, or [2])

1+1g' 1\, _ 7y l+izg’
Z;(H > r=01_qu7

this is equal to

Z Kaﬂ’(q)sa(xl’ ceey xnfl)sﬁ(y)
(5.8) I(a)ag’g—l

co I _ %S
x (ZHT" y (qx,,)> (Z_Oem(y)x;:'>,

=0 i=1
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where ¢, () is them -th elementary symmetric function yn . We recall the well-
known formula (see [9], I, 5):

(5.9) ssMen( = > suy).

uopB
u—pBEV(m)
where V n ) is the set of vertical strips withh  nodes; a skew diagraim called a
vertical strip if the condition ', j ) { k )¢ v’ implies j =k. By (5.9), the coefficient
of 5,(y) in (5.8) is equal to

Z Z Koy (Q)Sa(xl’ (R xﬂfl) (Z

1
m=0 | [(a)<n—1 =0 =1
veV (u,m)

1_,_(121'72 [ 1+m
1_42 4% |-
where

V(p,m)={v € PpDdv, p—veVmi

Thus, for a proof of (5.7), it is enough to show

Z KAﬂ/(q)sA(xl, ey x,,)

1(M\)<n

l .
1 +q2172
= Z Z Kau'(Q)ql H Wsa(xl, cee x/1—1)x,11+m-
i=1

I.m l(a)<n—1
veV(u,m)

(5.10)

Since both sides of (5.10) are symmetric functionscin , (5.10) is equivalent to

Z K/\u’(q)s)\(xl, s xn)

I(N)<n

= Z Z Kozu’(CI)ql

Im l(a)<n—1 i=1
veV(u,m)

l i
(5.11) 14422 .

1_—612,-7Tn(5a(x1, ceey Xn—l)xn, ),

where 7, is the symmetrizing operator defined in 5.1. By Lemma 5.1, for partitions
a= (a1, ...,a,_1) and X = (Ag, Ao, ..., \,) with I(a) <n —1,1(\) < n, we have

Th (sa(xla X250y xn—l)x,{,+1n) =

csa(x1, X2, - -+, Xp)
for some constant , if and only if
l+m=X\+n—e,

and

(ala aZv cety all—l) = A(e)
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for somee with 1< e < n, where
)\(e) = ()\1’ )\2’ ey )\671, )\e+1 - 1’ )\e+2 - 1> D) )\11 - 1)1

moreover, in that case we have =X)"—°. Hence, by comparing the coefficients of
sx(x1, ..., x,) on both sides of (5.11), we see that (5.11) is equivalent to

(5.12) Kiu(g) = Z Z Z(—l)"*eKA(e)w(q)[oe —ml{o, —m}qo ™,

m veV(u,m) e=1

whereo, = A\, +n — e, and, for an integet: o ] is defined by (2.4), agd} by

I[[ a-H" ifax>1,

(5.13) {a} = 171 1 it azo0,
0, if a <-1,

or by

(5.14) 0}=1 {a}=@A-t"YHYa+1}

with ¢+ = g2 Let N =1(u). For a subsetS of the sdtl, 2 ..., N}, we define a se-
guence

ps = (s, p2ss - -5 NS)
of non-negative integers,s as follows:
Mk — 1, ifkes,
Hiks =

ks if keS.

Then pus € V(u,m) if and only if ug € P. Moreover everyy € V(u,m) can be
obtained uniquely in this way. Hence we can write (5.12) in the following form:

N n
(5.15)  Kane@ =3 Y S (-1 K (@loe — mlfo —myg7 "

m=0 |S|=m e=1
useP

Now, by Lemma 2.3, we see that, after cancelling out some factors using (2.5) and
(5.14), (5.15) is equivalent to
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H(1 +rh)H(1 ot T - [Ja-mm)

i<j k<l
_Z( 1)n ez Z DH(l to,) H(l—l‘o" h) H (1 + 70— h)
m=0 |S|=m i7e h=m+1
(5.16) ns€P
<[la-mTJa+m s Ja+ems
kes kgs iZe
x [T@—em=onJa—ems—m),
i<j k<l
i, je
where
D =Dle,S) =0, —|S|+An — 1, N, ), us) — A(n, N, \, i),

L=n+N-1,

and, for 1< k < N, 7w = w4+ N —k and 75 = s + N — k. Note that, on the
right hand side of (5.16), the sum d¢h can be taken over the set of all subsets
{1,2 ..., N} such that/S| = m, not necessarily satisfyings € P. In fact, if us & P,
then there exists @& such thats < pg+1s; this means thajy, = i+ and thatk €
S,k+1¢& S. Hence, we getys = Ti+1s, €., (1— t™~715) = 0, which means the
corresponding term vanishes.

Thus, if we put

and

then (5.16) can be written as

H(l +1 )H(t + P Ak)H(P P;) H(Al — Ay)

i<j k<l
m—1
—Z( NI P II¢ - I[P
m=0 |S|=m i7e h=m+1

x [T - A JJ¢" + A
kes kés

X H(lL + P; Ags) H(Pj - P) H(AIS — As),
iZE ,”j<;_{(, k<l

of
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where

t71A,, if kes,
Ags = .
Ay, if k g S,

or, equivalently, as
- Jin(Pe)
(5.17) H(1+t )H(t +PA)[J(A - A = ZZ
k<l /11Oe11_‘[7"(P _P)
where

ﬁn(x) :tmL H(l - Pl)

i=1

{ Z H(AIS — Ags) H(l + P Ags) H(l Ag) H(t + Ak)}

|S|=m k<l kes kgs

H (th —X) Hh m+l(th +)C)
(1—x) Hk 1(tL + Apsx)
We are going to prove (5.17) viewing it as an identity for rational functions in in-

dependent variables P, (X i < n), Ax(1 < k < N). We have the partial fraction
expansion:

m—1cp L h + N
(518) h=0 (t x) Hh:m+1([ )C) - A()C) + B + Z Ca

(1-x) H/ivzl(tL*'Aksx) 1-x 4o th+ Agsx’

where A ) is a polynomial of degree— 2 in x,

L N
[Ta+M]Je" +Aw)™" if m=o0,
h= =1

0, if m#0,

B =

and

Hm l(th +Ag tL)Hh (0" — Aggth)
(1+Ag5th) [T (et — Ags LA stL)

If m=0, thenS =¢ and Axs =Axs = A; for any k. Hence, by Lemma 5.2(iii)(v) and

1<d<N.
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(5.18), we have

fo(P)
ZH
= H(l +th)H(f + P A [J(A — Ax)
k<l
(5.19) N
+WEDETT@ = P) Y (1™ T " + PiAY)
i d=1 k;’d
x ] + A H(A at" =1ty T A - 4y
k7d k<

ki7d

Similarly, for m > 1, we have

n

fm(Pe)
=1 H,‘;{g(Pe - Pl)

= N”’LH(l p) Y [Ta-an[Jet+an

|S|=m k€S k&S
P m—1
(5-20) Z( o T+ P [T+ st
ki

L
x ] (Aast" =) T] (Ais — Aws)

h=m+1 k<l
k,l7d

Note that the first term of the right hand side of (5.19) is equal to the left hand side
of (5.17). Hence, by (5.19) and (5.20), for a proof of (5.17), it is enough to show:

N
> -1y H(l +PA)[Je" + Ak)H(Adfh ") [T -4

d=1 k#d k<l
kd ki7d
oy + Y TIa- A0 TTe* + 40 Z( O § (GRS
m=1 |S|=m k€S kgZS k?‘d

m—1 L
) JT" + Aast”) T] (Aast™ — 1) ] (Ais — Avs) ¢ = 0.
h=1 h=m+1 )



810 N. KAWANAKA

The left hand side of (5.21) is the sum of the terihsn, §,d ) corresponding &
{0,1,2...,N},SC{L,2...,N} with |S| =m, andd € {1,2 ..., N}. For anym
andd , it is easy to see:

T(m,S,d)+T(m+1,SU{d},d)=0, if d&S.

Hence, (5.21) holds. The proof of Theorem 1.1 is how complete.
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