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Abstract
In this note we show that a compact solvmanifold admits &l&r structure if
and only if it is a finite quotient of a complex torus which hastaicture of a com-
plex torus bundle over a complex torus. We can show in paaticihat a compact
solvmanifold of completely solvable type has &@tder structure if and only if it is
a complex torus, which is known as the Benson-Gordon’s ctunje.

1. Introduction

We know that the existence of&Kler structure on a compact complex manifold
imposes certain homological or even homotopical restmation its underlining topo-
logical manifold. Hodge theory is of central importance fistline. There have been
recently certain extensions and progresses in this areasefarch. Among them is the
field of Kahler groups, in which the main subject to study is the furelatal group of
a compact Khler manifold (see [1]). Once there was a conjecture thabraatoelian,
finitely generated and torsion-free nilpotent group (whistthe fundamental group of
a nilmanifold) can not be a &hler group, which is a generalized assertion of the result
[9, 14] that a non-toral nilmanifold admits noakler structures. A counter-example to
this conjecture was given by Campana [12]. Later a detaitadysof solvable Kahler
groups was done by Arapura and Nori [3]; they showed in paeicthat a solvable
Kahler group must be almost nilpotent, that is, it has a ndpbtsubgroup of finite
index. On the other hand, the author stated in the paper [1g@reeral conjecture on
compact Kahlerian solvmanifolds: a compact solvmanifold admits &hleér structure if
and only if it is a finite quotient of a complex torus which iss@la complex torus
bundle over a complex torus; and showed under some reastritiat the conjecture is
valid.

In this note we will see that the above conjecture can be pravithout any re-
striction, based on the result (mentioned above) by Arapmih Nori [3], and applying
the argument being used in the proof of the main theorem oratiieor's paper [15].
We also see that the Benson-Gordon’s conjecture @hlé¢ structures on a class of
compact solvmanifolds [10] (so-called solvmanifolds ofrgietely solvable type) can
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be proved as a special case of our main result.

In this note we mean by a solvmanifold (nilmanifold) a comphomogeneous
space of solvable Lie group, that is, a compact differetgiabanifold on which a
connected solvable (nilpotent) Lie group acts transitively. We can assume, by tak-
ing the universal covering grou@ of G, that a solvmanifoldM is of the formG/ D,
where G is a simply connected solvable Lie group andis a closed subgroup of
(which contains no non-trivial connected normal subgrofipGd. It should be noted
that unlessM is a nilmanifold, a closed subgroup may not be a discrete subgroup
(a lattice) of G. However, it is known (due to Auslander [4]) that a solvmalufin
general has a solvmanifol@ /" with discrete isotropy subgroup as a finite (normal)
covering.

We recall some terminologies which we use in this note. A malrifold M =
G/T, whereT is a discrete subgroup of a simply connected solvable Liemi@, is
of completely solvable typd the adjoint representation of the Lie algelyyaf G has
only real eigenvalues; anaf rigid type (or of type (R)), in the sense of Auslander [5],
if the adjoint representation gf has only pure imaginary (including 0) eigenvalues. It
is clear thatM is both of completely solvable and of rigid type if and only gfis
nilpotent, that is,M is a nilmanifold. We can see in the proof of main theorem that a
Kahlerian solvmanifold is of rigid type, and not of complgtsblvable type unless it
is a complex torus. This gives a proof of the Benson-Gordanisjecture as a special
case of the theorem.

We state now our main theorem in the most general form:

Main Theorem. A compact solvmanifold admits aaHKler structure if and only if
it is a finite quotient of a complex torus which has a structofea complex torus bun-
dle over a complex torus. In particular, a compact solvmaldifof completely solvable
type has a WKhler structure if and only if it is a complex torus.

2. Proof of main theorem

Let M be a compact solvmanifold of dimensiom 2vhich admits a Khler struc-
ture. We will first show thatM is a finite quotient of a complex torus. We can as-
sume, taking a finite covering if necessary, thtis of the formG/I", wherel is a
lattice of a simply connected solvable Lie groGp By the result of Arapura and Nori,
we know that the fundamental grodp of M is almost nilpotent, that is’ contains a
nilpotent subgroupA of finite index. Then we can find a normal nilpotent subgralip
of T', which is commensurable withh, and thus defines another lattice 6f There-
fore M’ = G/A’ is a finite normal covering oM, which is a solvmanifold with the
fundamental groupd’, a finitely generated torsion-free nilpotent group. Acdogdto
the well-known theorem of Mostow [18’ is diffeomorphic to a nilmanifold. Since
M’ has a canonical &hler structure induced fronM, it follows from the result on
Kahlerian nilmanifolds [9, 14] thad/” must be a complex torus. Henadé is a finite
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quotient of a complex torus.

We will show thatM has a structure of a complex torus bundle over a complex
torus. We follow the argument in the proof of the main theor@mthe paper [15] to
which we refer for full detail. Letl" be the fundamental group d¥/. Then we can
expressI’ as the extension of a finitely generated and torsion-fregotéht groupN
of rank 2 by the free abelian group of rankk 2where we can assume 2s the first
Betti numberb; of M (we have 2 < by in general) [7] andn =k +1:

0> No>T 572%50

Since M is also a finite quotient of a torus?”, I' contains a maximal normal free
abelian subgroupA of rank 2n with finite index inI". We can see thatv must be
free abelian of rank 12 In fact, sinceN N A is a abelian subgroup a¥ with finite in-
dex, it follows that the real completioN of N is abelian, and thus/ is also abelian.
Therefore we have the following

0—>22’—>I‘—>22"—>0,

where A =72 x 517 X 552 X - - x sy Z, aNd H = Z/s1Z X Z/s2Z X - - - x Z /s Z (Some

of Z/s;Z may be trivial) is the holonomy group df. We have now thail = C"/T,
whereT is a Bieberbach group with holomomy group. Since the action off on
C!/Z? is holomorphic, we see thalf is a holomorphic fiber bundle over the complex
torus C¥/z% with fiber the complex toru€!/z?.

Conversely, letM be a finite quotient of a complex torus which is also a complex
torus bundle over a complex torus. The fundamental grbupf M is a Bieberbach
group which is expressed as the extension of a free abelmumpg@? by another free
abelian groupZ®. As observed before, since the actionZ# on ZZ is actually the
action of the finite abelian holonomy grou of T" on Z%, and the action ofd on
the fiber is holomorphic, we may assume that the actiorz®fis in U(/) and thus
extendable to the action d&2@%* on RZ, defining a structure of solvmanifold oW of
the form G/T", wherel is a lattice of a simply connected solvable Lie groGp In
fact, consideringR? asC/, we haveG = C' x R% with the action¢: R¥* — Aut(C')
defined by

—Tp) 1) —Tp)
o(t)(z1, 22, - .-, 21) = (eﬂgl’u, eV 07y, eV ’z;) :

wheret; =re; (e;: the j-th unit vector inR%), andeY=1% is the primitive s;-th root
of unity, i =1,2,...,1, j=12,..., 2.

As seen in the first part of the proof, we can always takea2 the first Betti
number of M, and makes the fibration the Albanese map into the Albanass.tbet
g be the Lie algebra of5; then we can expresg as a vector space ové& having
a basis{Xy, X2, ..., X2, X241, ..., X242} for which the bracket multiplications are
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defined by the following:
[Xor4is Xoj—1] = —X2j, [ Xo+is X2j]1 = X2j-1

foralli withs; Z1,i=1,2,...,2k, j=1,2,...,1, and all other brackets vanish. It
is clear thatg is of rigid type, and is of completely solvable type if and yoiill g is
abelian, that isM is a complex torus. This completes the proof of the theorem.

REMARK. 1. A flat solvmanifold is a solvmanifold with flat Riemannianet-
ric (which may not be invariant by the Lie group action). Itksown [6, 17] that an
abstract groud” is the fundamental group of a flat solvmanifold if and onlyTifis
an extension of a free abelian grodp by another free abelian group* where the
action of Z¥ on Z! is finite, and the extension corresponds to a torsion eleroént
H?(Z*¥,Z". We can check these conditions for the class @hlérian solvmanifolds
we have determined in this paper.

2. A four-dimensional solvmanifold with &hler structure is nothing but a hyperellip-
tic surface. It is not hard to classify hyperelliptic sudacas solvmanifolds [16].

3. According to a result of Auslander and Szczarba [7], amahifold M = G/D
hasthe canonical torus fibratiomver the torusG/N D of dimensionb; (the first Betti
number of M) with fiber a nilmanfold, whereV is the nilradical of G (the maximal
connected normal subgroup 6f). Since a solvmanifold (in general) is an Eilenberg-
Macline space, for a &hlerian solvmanifoldM, we can see that the canonical torus
fibration and the Albanese map are homotopic. However it is apiori clear that
they actually coincide (up to translation). Since that is #ey point in the proof of
the conjecture on Khlerian solvmanifolds by Arapura [2], the proof is incoetgl It
should be also noted that by the theorem of Grauert-Fisehéhration (a proper sur-
jective holomorphic map) from a compactakler manifold to a complex torus with
fibers complex tori is locally trivial. This is well known foKahler surfaces ([8],
Chap. Ill), and also known to be valid in general [13].

4. There is a recent result of Brudnyi [11], from which we cdrectly see that a
Kahlerian solvmanifold must be a finite quotient of a complesus.

5. An abstract groupt” is the fundamental group of a solvmanifod if and only if

I' is aWang group(which is an extension of a finitely generated torsion-frdpatent
group by a free abelian group of finite rank) [19]. We denote My the solvman-
ifold with the fundamental groug” (which is uniquely determined due to Mostow).
We have then thal” is a subgroup ofl” with finite index if and only if M is a
finite covering of M. In perticularI”" is almost nilpotent if and only ifM is a fi-
nite quotient of a nilmanifold. Furthermore, due to Ausland5], expressingM as
G/D with T' = D/Dqy (where Dy denotes the identity component &f), I" is almost
nilpotent if and only if the Lie algebrg of G is of rigid type. In perticular, from this
result, together with the result on solvablétder groups [3] and that on &tlerian
nilmanifolds [9, 14], we can derive another proof for the Bem-Gordon’s conjecture.
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