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Abstract
In this note we show that a compact solvmanifold admits a Kähler structure if

and only if it is a finite quotient of a complex torus which has astructure of a com-
plex torus bundle over a complex torus. We can show in particular that a compact
solvmanifold of completely solvable type has a Kähler structure if and only if it is
a complex torus, which is known as the Benson-Gordon’s conjecture.

1. Introduction

We know that the existence of Kähler structure on a compact complex manifold
imposes certain homological or even homotopical restrictions on its underlining topo-
logical manifold. Hodge theory is of central importance in this line. There have been
recently certain extensions and progresses in this area of research. Among them is the
field of Kähler groups, in which the main subject to study is the fundamental group of
a compact K̈ahler manifold (see [1]). Once there was a conjecture that a non-abelian,
finitely generated and torsion-free nilpotent group (whichis the fundamental group of
a nilmanifold) can not be a K̈ahler group, which is a generalized assertion of the result
[9, 14] that a non-toral nilmanifold admits no Kähler structures. A counter-example to
this conjecture was given by Campana [12]. Later a detailed study of solvable K̈ahler
groups was done by Arapura and Nori [3]; they showed in particular that a solvable
Kähler group must be almost nilpotent, that is, it has a nilpotent subgroup of finite
index. On the other hand, the author stated in the paper [15] ageneral conjecture on
compact K̈ahlerian solvmanifolds: a compact solvmanifold admits a Kähler structure if
and only if it is a finite quotient of a complex torus which is also a complex torus
bundle over a complex torus; and showed under some restriction that the conjecture is
valid.

In this note we will see that the above conjecture can be proved without any re-
striction, based on the result (mentioned above) by Arapuraand Nori [3], and applying
the argument being used in the proof of the main theorem on theauthor’s paper [15].
We also see that the Benson-Gordon’s conjecture on Kähler structures on a class of
compact solvmanifolds [10] (so-called solvmanifolds of completely solvable type) can
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be proved as a special case of our main result.
In this note we mean by a solvmanifold (nilmanifold) a compact homogeneous

space of solvable Lie group, that is, a compact differentiable manifold on which a
connected solvable (nilpotent) Lie groupG acts transitively. We can assume, by tak-
ing the universal covering group̃G of G, that a solvmanifoldM is of the formG̃=D,
where G̃ is a simply connected solvable Lie group andD is a closed subgroup of̃G
(which contains no non-trivial connected normal subgroup of G̃). It should be noted
that unlessM is a nilmanifold, a closed subgroupD may not be a discrete subgroup
(a lattice) ofG. However, it is known (due to Auslander [4]) that a solvmanifold in
general has a solvmanifold̃G=0 with discrete isotropy subgroup0 as a finite (normal)
covering.

We recall some terminologies which we use in this note. A solvmanifold M =G=0, where0 is a discrete subgroup of a simply connected solvable Lie group G, is
of completely solvable type, if the adjoint representation of the Lie algebrag of G has
only real eigenvalues; andof rigid type (or of type (R)), in the sense of Auslander [5],
if the adjoint representation ofg has only pure imaginary (including 0) eigenvalues. It
is clear thatM is both of completely solvable and of rigid type if and only ifg is
nilpotent, that is,M is a nilmanifold. We can see in the proof of main theorem that a
Kählerian solvmanifold is of rigid type, and not of completely solvable type unless it
is a complex torus. This gives a proof of the Benson-Gordon’sconjecture as a special
case of the theorem.

We state now our main theorem in the most general form:

Main Theorem. A compact solvmanifold admits a Kähler structure if and only if
it is a finite quotient of a complex torus which has a structureof a complex torus bun-
dle over a complex torus. In particular, a compact solvmanifold of completely solvable
type has a K̈ahler structure if and only if it is a complex torus.

2. Proof of main theorem

Let M be a compact solvmanifold of dimension 2m which admits a K̈ahler struc-
ture. We will first show thatM is a finite quotient of a complex torus. We can as-
sume, taking a finite covering if necessary, thatM is of the formG=0, where0 is a
lattice of a simply connected solvable Lie groupG. By the result of Arapura and Nori,
we know that the fundamental group0 of M is almost nilpotent, that is,0 contains a
nilpotent subgroup1 of finite index. Then we can find a normal nilpotent subgroup1′
of 0, which is commensurable with1, and thus defines another lattice ofG. There-
fore M ′ = G=1′ is a finite normal covering ofM, which is a solvmanifold with the
fundamental group1′, a finitely generated torsion-free nilpotent group. According to
the well-known theorem of Mostow [18],M ′ is diffeomorphic to a nilmanifold. SinceM ′ has a canonical K̈ahler structure induced fromM, it follows from the result on
Kählerian nilmanifolds [9, 14] thatM ′ must be a complex torus. HenceM is a finite
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quotient of a complex torus.
We will show thatM has a structure of a complex torus bundle over a complex

torus. We follow the argument in the proof of the main theoremon the paper [15] to
which we refer for full detail. Let0 be the fundamental group ofM. Then we can
express0 as the extension of a finitely generated and torsion-free nilpotent groupN
of rank 2l by the free abelian group of rank 2k, where we can assume 2k is the first
Betti numberb1 of M (we have 2k ≤ b1 in general) [7] andm = k + l:

0→ N → 0→ Z2k → 0

SinceM is also a finite quotient of a torusT 2m, 0 contains a maximal normal free
abelian subgroup1 of rank 2m with finite index in 0. We can see thatN must be
free abelian of rank 2l. In fact, sinceN ∩1 is a abelian subgroup ofN with finite in-
dex, it follows that the real completioñN of N is abelian, and thusN is also abelian.
Therefore we have the following

0→ Z2l → 0→ Z2k → 0;
where1 = Z2l× s1Z× s2Z×· · ·× s2kZ, andH = Z=s1Z×Z=s2Z×· · ·×Z=s2kZ (some
of Z=siZ may be trivial) is the holonomy group of0. We have now thatM = Cm=0,
where0 is a Bieberbach group with holomomy groupH . Since the action ofH on
Cl=Z2l is holomorphic, we see thatM is a holomorphic fiber bundle over the complex
torus Ck=Z2k with fiber the complex torusCl=Z2l .

Conversely, letM be a finite quotient of a complex torus which is also a complex
torus bundle over a complex torus. The fundamental group0 of M is a Bieberbach
group which is expressed as the extension of a free abelian group Z2l by another free
abelian groupZ2k. As observed before, since the action ofZ2k on Z2l is actually the
action of the finite abelian holonomy groupH of 0 on Z2l, and the action ofH on
the fiber is holomorphic, we may assume that the action ofZ2k is in U(l) and thus
extendable to the action ofR2k on R2l , defining a structure of solvmanifold onM of
the formG=0, where0 is a lattice of a simply connected solvable Lie groupG. In
fact, consideringR2l as Cl , we haveG = Cl ⋊ R2k with the action� : R2k → Aut(Cl)
defined by

�(tj )((z1; z2; : : : ; zl)) =
(e√−1� j1 tz1; e√−1� j2 tz2; : : : ; e√−1� jl tzl) ;

where tj = tej (ej : the j -th unit vector inR2k), and e√−1� ji is the primitive sj -th root
of unity, i = 1;2; : : : ; l, j = 1;2; : : : ;2k.

As seen in the first part of the proof, we can always take 2k as the first Betti
number ofM, and makes the fibration the Albanese map into the Albanese torus. Let
g be the Lie algebra ofG; then we can expressg as a vector space overR having
a basis{X1; X2; : : : ; X2l; X2l+1; : : : ; X2l+2k} for which the bracket multiplications are
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defined by the following:

[X2l+i; X2j−1] = −X2j ; [X2l+i; X2j ] = X2j−1

for all i with si 6= 1, i = 1;2; : : : ;2k, j = 1;2; : : : ; l, and all other brackets vanish. It
is clear thatg is of rigid type, and is of completely solvable type if and only if g is
abelian, that is,M is a complex torus. This completes the proof of the theorem.

REMARK . 1. A flat solvmanifold is a solvmanifold with flat Riemannianmet-
ric (which may not be invariant by the Lie group action). It isknown [6, 17] that an
abstract group0 is the fundamental group of a flat solvmanifold if and only if0 is
an extension of a free abelian groupZl by another free abelian groupZk where the
action of Zk on Zl is finite, and the extension corresponds to a torsion elementofH 2(Zk;Zl). We can check these conditions for the class of Kählerian solvmanifolds
we have determined in this paper.
2. A four-dimensional solvmanifold with K̈ahler structure is nothing but a hyperellip-
tic surface. It is not hard to classify hyperelliptic surfaces as solvmanifolds [16].
3. According to a result of Auslander and Szczarba [7], a solvmanifold M = G=D
has the canonical torus fibrationover the torusG=ND of dimensionb1 (the first Betti
number ofM) with fiber a nilmanfold, whereN is the nilradical ofG (the maximal
connected normal subgroup ofG). Since a solvmanifold (in general) is an Eilenberg-
Macline space, for a K̈ahlerian solvmanifoldM, we can see that the canonical torus
fibration and the Albanese map are homotopic. However it is not apriori clear that
they actually coincide (up to translation). Since that is the key point in the proof of
the conjecture on K̈ahlerian solvmanifolds by Arapura [2], the proof is incomplete. It
should be also noted that by the theorem of Grauert-Fischer,a fibration (a proper sur-
jective holomorphic map) from a compact Kähler manifold to a complex torus with
fibers complex tori is locally trivial. This is well known forKähler surfaces ([8],
Chap. III), and also known to be valid in general [13].
4. There is a recent result of Brudnyi [11], from which we can directly see that a
Kählerian solvmanifold must be a finite quotient of a complex torus.
5. An abstract group0 is the fundamental group of a solvmanifoldM if and only if0 is a Wang group(which is an extension of a finitely generated torsion-free nilpotent
group by a free abelian group of finite rank) [19]. We denote byM0 the solvman-
ifold with the fundamental group0 (which is uniquely determined due to Mostow).
We have then that0′ is a subgroup of0 with finite index if and only ifM0′ is a
finite covering ofM0. In perticular0 is almost nilpotent if and only ifM0 is a fi-
nite quotient of a nilmanifold. Furthermore, due to Auslander [5], expressingM0 asG=D with 0 = D=D0 (whereD0 denotes the identity component ofD), 0 is almost
nilpotent if and only if the Lie algebrag of G is of rigid type. In perticular, from this
result, together with the result on solvable Kähler groups [3] and that on Kählerian
nilmanifolds [9, 14], we can derive another proof for the Benson-Gordon’s conjecture.
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