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SYMMETRY ON LINEAR RELATIONS

FOR MULTIPLE ZETA VALUES

KENTARO IHARA and HIROYUKI OCHIAI∗

Abstract. We find a symmetry for the reflection groups in the double shuffle

space of depth three. The space was introduced by Ihara, Kaneko and Zagier

and consists of polynomials in three variables satisfying certain identities which

are connected with the double shuffle relations for multiple zeta values. Gon-

charov has defined a space essentially equivalent to the double shuffle space

and has calculated the dimension. In this paper we relate the structure among

multiple zeta values of depth three with the invariant theory for the reflection

groups and discuss the dimension of the double shuffle space in this view point.

§1. Introduction

The multiple zeta value (MZV for short) is a number defined via con-

vergent series

ζ(k1, k2, . . . , kn) =
∑

m1>m2>···>mn>0

1

mk1
1 mk2

2 · · ·mkn
n

∈ R,

where (k1, k2, . . . , kn) is an index set of positive integers with k1 > 1. Here

n is called the depth and k = k1 + · · · + kn the weight of the MZV. Let

Z =
⊕

k>0 Zk be the graded vector space over Q, where Zk is the Q-vector

space generated by MZV’s of weight k. It is known that Z is equipped with

a filtered graded algebra structure over Q : Z
(n)
k Z

(n′)
k′ ⊂ Z

(n+n′)
k+k′ , where

Z
(n)
k is the subspace spanned by MZV’s of weight k and depth 6 n. The

algebra Z is deeply connected with the theory of mixed motives and Galois

representation on the fundamental group of a curve (see [3], [4], [5], [10]

for further details). There is a conjectural formula due to Broadhurst and

Kreimer in [1], giving the numbers Dk,n of algebra generators of Z of weight

k and depth n. (The precise statement is in Section 4.)
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In [8], Kaneko, Zagier and the first author define a Q-vector space

DShn(d) (called double shuffle space) for each n, d whose dimension gives

an upper bound of the numbers Dd+n,n. The space DShn(d) consists of

homogeneous polynomials of degree d in n variables with rational coefficients

which satisfy certain identities. These identities are connected with two

kinds of product structures in Z, which is called double shuffle products.

For example, for the case n = 2, it is a necessary and sufficient condition

for f ∈ Q[x1, x2] of homogeneous degree d to belong to DSh2(d) to satisfy

the following conditions:

f(x1, x2) + f(x2, x1) = 0, f(x1 + x2, x1) + f(x1 + x2, x2) = 0.

The general definition of DShn(d) is given in the next section. In an unpub-

lished manuscript ‘Multiple zeta values (1995)’ (see also [9]), Zagier shows

that the dimension of DSh2(d) is 0 for odd d and
[

d
6

]

for even d and that

Dd+2,2 equals 0 for odd d and is less than or equals
[

d
6

]

for even d. A fur-

ther development is given in [8]. In [7], the dimension of a space ShCn(d)

is determined for small n 6 5. The space is introduced in [8] and contains

DShn(d) as a subspace. So this gives an upper bound of Dd+n,n, but is not

the best estimate. In [2], as a result in case of n = 3, Goncharov defines

a space, called dihedral Lie coalgebra, essentially equivalent to the double

shuffle space and proves that the number Dd+3,3 of generators of depth 3 is

0 for odd d and is less than or equals
[

d2−1
48

]

for even positive d.

In this paper, we concentrate our attention on the double shuffle space

DSh3 of depth 3. We find a symmetry of the reflection group of type B3

on the double shuffle space DSh3 and as a corollary we have an expression

of the space DSh3 in terms of the invariants under the reflection groups.

Here is the brief organization of the paper. We begin with the review

of the definition of DShn according to [8] in Section 2.1, and in Section 2.2

we show that DSh3 can be regarded as the intersection of the kernels of two

averaging maps associated to the reflection group and its subgroups. The

key result in this section is Theorem 7. In Section 3 we show that the images

of the averaging maps above have trivial intersection. In the last section,

we summarize our main result with a short exact sequence and determine

the dimension of DSh3(d). This leads to the estimate of Dd+3,3 which is

compatible with Broadhurst-Kreimer conjecture.
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§2. Double shuffle space of depth three

2.1. Preliminary

In this subsection, we review the definition of the space DShn according

to [8].

Let Sn be the symmetric group of degree n and Z[Sn] its group ring.

We denote by Q[x] the polynomial algebra Q[x1, . . . , xn] in n variables with

rational coefficients and by Q[x](d) its subspace of homogeneous polynomials

of degree d. We define a right action of Sn on these spaces by permutation of

variables: (f |σ)(x1, . . . , xn) = f(xσ−1(1), . . . , xσ−1(n)). This action extends

to an action of Z[Sn] additively. For each integer l with 1 6 l < n, define

the lth shuffle element by shl =
∑

σ ∈ Z[Sn], where the sum runs over the

element σ ∈ Sn satisfying σ(1) < · · · < σ(l) and σ(l + 1) < · · · < σ(n).

Then the double shuffle space DShn is defined by

DShn = {f ∈ Q[x] | f |shl = f ]|shl = 0 for 1 6 l < n}

where f ] is given by f ](x1, . . . , xn) = f(x1 + x2 + · · · + xn, x2 + · · · +

xn, . . . , xn−1 + xn, xn). We write DShn(d) for its homogeneous part of

degree d.

Let C = (1, 2, . . . , n) ∈ Sn be a cyclic element of order n. Using the

identity shlC
l = shn−l for any l, we can remove the half of defining relations

of DShn. For example, DSh3 ⊂ Q[x1, x2, x3] is defined by the relations

{

(f |sh1)(x1, x2, x3) = f(x1, x2, x3) + f(x2, x1, x3) + f(x2, x3, x1) = 0,

(f ]|sh1)(x1, x2, x3) = f ](x1, x2, x3) + f ](x2, x1, x3) + f ](x2, x3, x1) = 0.

In [8], it is proved that dimDShn(d) gives an upper bound of the number

Dd+n,n of algebra generators of Z of weight d + n and depth n and that

DShn(d) = {0} for odd d. In this paper we discuss the structure of DSh3(d)

for even d.

2.2. Reflection group symmetry

In this subsection, we prove that DSh3(d) with even d is embedded

in the algebra of invariant polynomials for the reflection group of type B3

and the embedded image is the intersection of the kernels of two averaging

maps.

For later use, we first extend the action of S3 to an action of GL3(Q).

For S ∈ GL3(Q) and f ∈ Q[x] with x = (x1, x2, x3), we define (f |S)(x) :=

f(xS−1), which agrees with the above action of S3 if the element σ of S3
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is identified with permutation matrix (we also denote it by σ for simplicity)

in GL3(Q) characterized by xσ−1 = (xσ−1(1), xσ−1(2), xσ−1(3)). This action

also extends to that of group ring Z[GL3(Q)]. If we put P ∈ GL3(Q) by

P =





1 0 0
−1 1 0
0 −1 1



 , P−1 =





1 0 0
1 1 0
1 1 1



 ,

then f ] = f |P for f ∈ Q[x].

Let W be the subgroup of GL3(Q) generated by the permutation matri-

ces and diagonal matrices whose entries are ±1. Note that W ∼= S3n{±1}3,

which is of order 3! × 23 = 48, and is isomorphic to the reflection group of

type B3. Let W ′ be the subgroup of W (of order 16) which consists of the

matrices whose (2, 2)-entry is ±1.

Define the matrix R := J − 2I, where J is the matrix of size 3 whose

entries are all 1, and I is the unit matrix. Then R ∈ GL3(Q) and R−1 =

(J − I)/2.

Theorem 1. For any f ∈ DShn(d) with even d, put g := f |R. Then

g ∈ Q[x]W
′

where Q[x]W
′

is the invariant subalgebra for W ′.

The theorem will be proved later.

Lemma 2. The group W ′ is generated by −I, T and Q−1TQ: W ′ =

〈−I, T,Q−1TQ〉, where

T =





0 0 1
0 1 0
1 0 0



 , Q =





1 0 1
0 1 0
−1 0 1



 .

Proof. It is clear since Q−1TQ = diag(−1, 1, 1).

Proposition 3. For any f ∈ Q[x] and g = f |R, we have

(i) f |sh1 = 0 ⇐⇒ g|sh1 = 0,

(ii) f ]|sh1 = 0 ⇐⇒ g|Q−1sh1 = 0.

Proof. Use the equations J 2 = 3J and σJ = Jσ = J for any permuta-

tion matrix σ, it is easy to verify that R±1σR∓1 = σ. In particular we have

R±1sh1R
∓1 = sh1. For (i), we have

f |sh1 = 0 ⇐⇒ g|R−1sh1R = g|sh1 = 0.
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For (ii), using an interesting identity 2R−1P = Q−1R,

f ]|sh1 = 0 ⇐⇒ g|R−1Psh1 = 0 ⇐⇒ g|Q−1Rsh1R
−1 = g|Q−1sh1 = 0.

This proves the proposition.

Proof of Theorem 1. By Lemma 2, it is enough to show the invariance

of g for −I, T and Q−1TQ. First, g|(−I) = (−1)dg = g since d is even.

Next, it is easy to check the equation sh1(I − T ) = I − T . From this and

Proposition 3, we have

g|(I − T ) = g|sh1(I − T ) = (g|sh1)|(I − T ) = 0.

Similarly we have

g|(I − Q−1TQ) = g|Q−1(I − T )Q = g|Q−1sh1(I − T )Q

= (g|Q−1sh1)|(I − T )Q = 0.

Let us define the groups by W = Q−1WQ and W ′ = Q−1W ′Q.

Proposition 4. We have W ′ = W ′.

Proof. By Lemma 2, we have W ′ = 〈−I,Q−1TQ,Q−2TQ2〉. It is easy

to see W ′ = W ′, because Q−2TQ2 =





0 0 −1
0 1 0
−1 0 0



.

Corollary 5. The action of Q gives a linear automorphism on

Q[x]W
′

= Q[x]W
′

.

Corollary 6. We have W ∩ W = W ′.

In the next section we will prove that the intersection of two invariant

polynomial algebras Q[x]W and Q[x]W is trivial.

Let π : Q[x]W
′

→ Q[x]W , and π : Q[x]W
′

→ Q[x]W be the averaging

maps defined by

π(g) :=
∑

σ∈W ′\W

g|σ, π(g) :=
∑

σ∈W ′\W

g|σ =
∑

σ∈W ′\W

g|Q−1σQ,
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where σ runs over the set of left-coset representatives of W ′ \W or W ′ \W .

Since one can choose the set of terms of sh1 as a set of coset represen-

tatives of W ′ \ W , we obtain that

π(g) = g|sh1, π(g) = g|Q−1sh1Q.(1)

We denote the part of degree d of π and π by π(d) and π(d) respectively.

It is well-known (e.g., Chap. 3 of [6]) that the ring of invariants under the

reflection group is isomorphic to the polynomial ring and that the degrees

of generators are read off from the exponents. To be more explicit, we have

Q[x]W = Q[x2
1 + x2

2 + x2
3, x

2
1x

2
2 + x2

2x
2
3 + x2

3x
2
1, x

2
1x

2
2x

2
3],(2)

Q[x]W
′

= Q[x2
1 + x2

3, x
2
2, x

2
1x

2
3].(3)

We have the decomposition of Q[x]W
′

as a Q[x]W - or Q[x]W -module

Q[x]W
′

= Q[x]W ⊕ g2Q[x]W ⊕ g4Q[x]W(4)

= Q[x]W ⊕ g2Q[x]W ⊕ g4Q[x]W ,(5)

where g2 = x2
1 + x2

3 − 2x2
2, g4 = x2

1x
2
2 + x2

2x
2
3 − 2x2

1x
2
3 and g2 = g2|Q and

g4 = g4|Q. Then 1
3π and 1

3π are the projections to the first components of

(4) and (5) respectively.

Theorem 7. The action of R (f 7→ g = f |R) gives a linear isomor-

phism from the space DSh3(d) with even d to kerπ(d) ∩ kerπ(d).

Proof. This follows directly from Theorem 1, Proposition 3 and equa-

tion (1).

§3. Triviality of the kernel

In this section, we prove that a polynomial which is W -invariant and

W -invariant should be constant. Slightly more generally, we prove that

a continuous W and W invariant function on R3 should be constant. In

Section 3.1, we give a statement of the invariants for a general subgroup of

index finite. In Section 3.2, we define a group Γ for a general size n and

prove to be of finite index. We go back to the setting with W and W in

Section 3.3.
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3.1. Invariants

Proposition 8. Let Γ ⊂ GLn(Z) be a group with finite index. Let f

be a continuous function on Rn and suppose f is Γ-invariant. Then f is

constant.

Proof. Let GLn(Z) =
⋃N

j=1 gjΓ be a coset decomposition. Let us take

and fix an x ∈ Rn. We will prove f(x) = f(0). It is enough to prove that

for any ε > 0 we have |f(x) − f(0)| < ε. Take an ε > 0. Then, since f is

continuous,

(i) there exists a δ > 0 such that

|f(zgj) − f(0)| < ε/2

for all j = 1, . . . , N and for all z ∈ Rn with ‖z‖ < δ,

where ‖z‖ = max{|z1|, . . . , |zn|} for z = (z1, . . . , zn) ∈ Rn,

(ii) there exists y = (y1, . . . , yn) ∈ Rn such that |f(x) − f(y)| < ε/2 and

that y1, . . . , yn are linearly independent over Q.

The following Lemma 9 implies that there exists a g ∈ GLn(Z) such

that ‖yg‖ < δ. In particular we can apply (i) for z = yg. We can write

g−1 = gjγ with some γ ∈ Γ and j (1 6 j 6 N). Then

f(y) = f(zg−1) = f(zgjγ) = f(zgj).

Hence

|f(x) − f(0)| 6 |f(x) − f(y)| + |f(zgj) − f(0)| < ε,

which proves the desired assertion.

Lemma 9. Let n > 2 be an integer. Let y = (y1, . . . , yn) ∈ Rn such

that y1, . . . , yn are linearly independent over Q. Then for any δ > 0, there

exists g ∈ GLn(Z) such that ‖yg‖ < δ.

Proof. We write `(x) = min16i6n |xi| for x = (x1, . . . , xn) ∈ Rn.

Note that for all g ∈ GLn(Z), no entry of yg is zero because of the linear

independence over Q. In particular `(yg) > 0 for all g ∈ GLn(Z).

For a z = yg, we take an index i0 such that `(z) = |zi0 |. For each

j 6= i0, there are a qj ∈ Z and a z′j ∈ R such that zj = qjzi0 + z′j with
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|z′j | 6 |zi0 |/2. We take qi0 = 0 and z′i0 = zi0 . We set z
′ = (z′1, . . . , z

′
n) ∈ Rn

and

g′ =
n

∏

j=1

(I + Ei0,j)
qj = I +

∑

j 6=i0

qjEi0,j ∈ GLn(Z),

where Eij is the matrix unit. Then this z
′ satisfies that z

′g′ = z, ‖z′‖ =

|zi0 | = `(z) and `(z′) 6 |zi0 |/2 = `(z)/2.

Repeating this process, we obtain an element z in the GLn(Z)-orbit of

y such that `(z) < δ. Finally, again by the construction above, we have

‖z′‖ = `(z) < δ. This z
′ is the desired element contained in the GLn(Z)-

oribit.

We will apply Proposition 8 to our situation later.

3.2. The group Γ

We set

Γ(2) = Γn(2) = {(aij) ∈ GLn(Z) | aij ≡ δij mod 2 for all i, j}.

Let ∆n be the set of diagonal matrices in GLn(Z), that is,

∆n = {diag(ε1, . . . , εn) | ε1, . . . , εn ∈ {1,−1}}.

We define Γ = Γn to be the subgroup of GLn(Z) generated by all I + 2Eij

with i 6= j. Then ∆n ⊂ Γn(2) and Γn ⊂ Γn(2).

We set

X :=

{

x = (x1, . . . , xn) ∈ Zn

∣

∣

∣

∣

x1 − 1, x2, . . . , xn ∈ 2Z,
x /∈ mZn for all m ∈ Z>1

}

.

It is easy to see that the group Γ(2) acts on X. We give the orbit decom-

position of the action of Γ ⊂ Γ(2) on X.

Lemma 10. We have X = e1Γ∪ (−e1)Γ, where e1 = (1, 0, . . . , 0) ∈ X.

Proof. For x ∈ X, there exists an index i0 such that xi0 6= 0 and

|xj | > |xi0 | unless xj = 0. For each j 6= i0, there exist integers qj and x′
j

such that xj = 2qjxi0 + x′
j with |x′

j| 6 |xi0 |. We take qi0 = 0 and x′
i0

= xi0 .

Also we take qj = x′
j = 0 if xj = 0. This implies that |x′

j | 6 |xj| for all j.

We set x
′ = (x′

1, . . . , x
′
n) and γ = I +

∑n
j=1 2qjEi0,j =

∏n
j=1(I + 2Ei0,j)

qj .
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Then we have x
′ ∈ X, γ ∈ Γ, and x

′γ = x. That is, x and x
′ belong to the

same Γ-orbit. We see that

‖x‖ = max
16i6n

|xi| > min
16i6n

(|xi| 6= 0) = |xi0 | = max
16i6n

|x′
i| = ‖x′‖.

The equality ‖x‖ = ‖x′‖ holds only for x = ±e1. In fact, in such a case,

x2 = · · · = xn = 0 since x1 is odd and others are even. This implies that x

is a multiple of e1. By the condition x /∈ mZn for m > 1, we have x = ±e1.

Note that e1Γ and (−e1)Γ are distinct since (±e1)Γ ⊂ {x ∈ X | x1 ∈

±1 + 4Z}.

Proposition 11. For g ∈ Γn(2), there is a γ ∈ Γn such that gγ ∈ ∆n.

Proof. Take a g ∈ Γn(2). We will construct such a γ ∈ Γn by induction

on the size “n”. Set x = e1g then we see that x ∈ X. By Lemma 10, there

exists γ1 ∈ Γn and ε1 = ±1 such that xγ1 = ε1e1. Then gγ1 =

[

ε1 0

∗ g2

]

where g2 ∈ Mn−1. The form above and gγ1 ∈ Γn(2) imply that g2 ∈ Γn−1(2).

By induction hypothesis we have γ ′
2 ∈ Γn−1 such that t2 := g2γ

′
2 ∈ ∆n−1.

We set γ2 =

[

1 0

0 γ′
2

]

∈ Γn, t =

[

ε1 0

0 t2

]

∈ ∆n and γ3 := t−1gγ1γ2.

Then γ3 is of the form

[

1 0
tv In−1

]

and the property γ3 ∈ Γn(2) implies

that v = (2q2, . . . , 2qn) ∈ 2Zn−1. Thus γ3 =
∏n

i=2(I + 2Ei,1)
qi ∈ Γn and

we finally see that γ := γ1γ2γ
−1
3 ∈ Γn. Hence we have the desired assertion

gγ = t.

Corollary 12. (i) The map ∆n ×Γ 3 (t, γ) 7→ tγ ∈ Γ(2) is surjec-

tive.

(ii) The group Γ ⊂ GLn(Z) is of finite index.

(iii) Any Γ-invariant continuous function on Rn is constant.

Proof. (i) is a paraphrase of the proposition above. (ii) follows from

(i) and the fact that Γ(2) is of index finite in GLn(Z). (iii) follows from (ii)

and Proposition 8.
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3.3. The group generated by W and W

We denote by 〈W,W 〉 the subgroup of GL3(Q) generated by W and

W = Q−1WQ.

Lemma 13. Γ3 ⊂ 〈W,W 〉.

Proof. We will construct generators of Γ3 explicitly. Recall that T =

(13) ∈ S3 and C = (123) ∈ S3 are regarded as elements in GL3(Q). We

set

g1 := (Q−1CTQ)C ∈ WW ⊂ 〈W,W 〉.

By an explicit computation, we know that N1 := g2
1 − I ∈ M3(Q) satisfies

N2
1 = O. We set N2 = diag(−1, 1, 1)N1 diag(−1, 1, 1), then N 2

2 = N1N2 =

N2N1 = O. We set N3 = N1−N2, and N4 = diag(1, 1,−1)N3 diag(1, 1,−1),

then N2
3 = N2

4 = N3N4 = N4N3 = O. We set N5 = N4−N3. These relations

show that

I + N1, I + N2, I + N3 = (I + N1)(I + N2)
−1,

I + N4, I + N5 = (I + N4)(I + N3)
−1 ∈ 〈W,W 〉.

To be more explicit,

g1 =





−1/2 1/2 1/2
1 1 0

1/2 −1/2 1/2



 ,

N1 =





0 0 0
1/2 1/2 1/2
−1/2 −1/2 −1/2



 =
1

2





0
1
−1





[

1 1 1
]

,

N3 = E21−E31, N4 = E21 +E31, and N5 = 2E31. Hence we have I +2E31 ∈

〈W,W 〉.

Finally, using the conjugation by permutation matrices, we have I +

2Eij ∈ 〈W,W 〉 for all i 6= j. This proves Γ3 ⊂ 〈W,W 〉.

Corollary 14. (i) Any 〈W,W 〉-invariant continuous function on

R3 is constant.

(ii) Q[x]W ∩Q[x]W = Q.

Proof. (i) follows from (iii) of Corollary 12 and Lemma 13. (ii) follows

from (i) and the definition of 〈W,W 〉.
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Remark 15. There is another way to derive the statement (ii) from the

fact that Γn is Zariski dense in SLn(C). In fact, C[x]〈W,W 〉 = C[x]〈W,W 〉 ⊂

C[x]Γn = C[x]SLn(C) = C, where 〈W,W 〉 and Γn stand for the Zariski

closure of 〈W,W 〉 and Γn respectively. Any 〈W,W 〉-invariant polynomial is

also invariant under the Zariski closure of 〈W,W 〉, which contains SLn(C)

by Lemma 13. Then such a polynomial is constant since SLn(C) has an

open dense orbit Cn \ {0} on Cn.

§4. The dimension of DSh3(d)

Recall that Z =
⊕

k>0 Zk is the graded algebra generated by all MZV’s

over Q, where Zk is the Q-vector space generated by MZV’s of weight k.

The algebra Z has a filtration defined by Z =
⋃

n>0 Z
(n) where Z(n) =

⊕

k>0 Z
(n)
k and Z

(n)
k is the Q-vector space spanned by MZV’s of weight k

and depth 6 n.

Let Dk,n be the number of algebra generators of Z which sit in the

part of weight k and depth n. As mentioned in Introduction, there is a

conjectural formula due to Broadhurst and Kreimer, which gives Dk,n:

Conjecture 16. ([1]) Define the numbers Dk,n by D2,1 := 1 and by

the equation:

∏

k>3
n>1

(1 − xkyn)Dk,n = 1 −
x3y

1 − x2
+

x12y2(1 − y2)

(1 − x4)(1 − x6)
(6)

then Dk,n = Dk,n hold for all k > 2, n > 1.

Remark 17. In general, it is out of reach at present to show the in-

equality Dk,n 6 Dk,n. For example, D5,1 6= 0 (note that D5,1 = 1) implies

the algebraic independence among ζ(2), ζ(3) and ζ(5) over Q, but nobody

has been able to prove this.

Picking up the coefficients of y3 in (6) (taking the logarithmic differ-

ential for y and use the Möbius inversion formula), we have a generating

function

∑

d>0

Dd+3,3x
d =

x8(1 + x2 − x4)

(1 − x2)(1 − x4)(1 − x6)
=

∑

d>0, d∈2Z

[

d2 − 1

48

]

xd.(7)
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As mentioned in Introduction, Goncharov shows the inequality Dd+3,3 6

Dd+3,3 in [2]. In the following, we can give the same estimate, by quite dif-

ferent method, using the theory of invariants for reflection groups.

For d > 0, let us define the map $(d) : Q[x]W
′

(d) → Q[x]W(d) ⊕ Q[x]W(d)

by $(d)(g) = (π(d)(g), π(d)(g)) = (g|sh1, g|Q
−1sh1Q). Since ker $(d) =

ker π(d) ∩ ker π(d), we have the isomorphism DSh3(d) ' ker$(d) (f 7→ g =

f |R) for even d by Theorem 7. So we obtain an exact sequence:

0 −→ DSh3(d)
R

−−→ Q[x]W
′

(d)

$(d)
−−−→ Q[x]W(d) ⊕Q[x]W(d).

Theorem 18. For even d > 0, the following is an exact sequence:

0 −→ DSh3(d)
R

−−→ Q[x]W
′

(d)

$(d)
−−−→ Q[x]W(d) ⊕Q[x]W(d) −→ 0.(8)

Proof. It is enough to show that $(d) is surjective, which is equivalent

to show the injectivity of the dual map of $(d):

($(d))
∗ : (Q[x]W(d))

∗ ⊕ (Q[x]W(d))
∗ −→ (Q[x]W

′

(d) )
∗.

If we identify the dual of invariant space for a finite group with the in-

variants of dual space: (Q[x]∗(d))
W ∼= (Q[x]W(d))

∗ via the composition map

(Q[x]∗(d))
W → Q[x]∗(d) → (Q[x]W(d))

∗, where the first map is the natural in-

clusion and the second is the dual map of the inclusion Q[x]W(d) ⊂ Q[x](d)

(resp. for W and W ′), then it is easy to check that the map ($(d))
∗ :

(Q[x]∗(d))
W ⊕ (Q[x]∗(d))

W → (Q[x]∗(d))
W ′

is induced from the inclusion maps

(Q[x]∗(d))
W ⊂ (Q[x]∗(d))

W ′

and (Q[x]∗(d))
W ⊂ (Q[x]∗(d))

W ′

. So the triviality

of the intersection of the spaces (Q[x]∗(d))
W and (Q[x]∗(d))

W in Q[x]∗(d) im-

plies the injectivity of ($(d))
∗. It can be proved by Corollary 14 (ii), since

(Q[x]∗(d))
〈W,W 〉 is isomorphic to Q[x]

〈W,W 〉
(d) .

Theorem 19. For even d > 0, we have dimDSh3(d) = Dd+3,3 =
[

d2−1
48

]

and consequently Dd+3,3 6 Dd+3,3.

Proof. From (2) and (3), we have generating functions

∑

d>0

dimQ[x]W(d)x
d =

∑

d>0

dimQ[x]W(d)x
d =

1

(1 − x2)(1 − x4)(1 − x6)
,(9)

∑

d>0

dimQ[x]W
′

(d)x
d =

1

(1 − x2)2(1 − x4)
.(10)
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By (8), we have

dimDSh3(d) = dimQ[x]W
′

(d) − 2 dimQ[x]W(d)

for d > 0. Hence we obtain the generating function of dimDSh3(d):

∑

d>0

dimDSh3(d)xd

=

(

1

(1 − x2)2(1 − x4)
− 1

)

− 2

(

1

(1 − x2)(1 − x4)(1 − x6)
− 1

)

=
x8(1 + x2 − x4)

(1 − x2)(1 − x4)(1 − x6)
,

which coincides with (7). This proves the first claim. Apply this to the

result Dd+n,n 6 dimDShn(d) in [8], we have the last claim in the theorem.

This completes the proof.
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