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Abstract. In this paper, we study Lusztig’s a-function for a Coxeter group
with unequal parameters. We determine that function explicitly in the “asymp-
totic case” in type B,, where the left cells have been determined in terms of
a generalized Robinson-Schensted correspondence by Bonnafé and the second
author. As a consequence, we can show that all of Lusztig’s conjectural proper-
ties (P1)—(P15) hold in this case, except possibly (P9), (P10) and (P15). Our
methods rely on the “leading matrix coefficients” introduced by the first au-
thor. We also interprete the ideal structure defined by the two-sided cells in
the associated Iwahori-Hecke algebra H,, in terms of the Dipper-James-Murphy
basis of H,,.

§1. Introduction

Let (W, S) be a Coxeter system where W is finite. We shall be interested
in the Kazhdan-Lusztig cells and Lusztig’s a-function on W, which play an
important role in the representation theory of finite reductive groups. The
notions of cells and a-functions are defined in terms of the Iwahori-Hecke
algebra associated with W. Originally, Kazhdan-Lusztig [16] and Lusztig
[18] only considered the case of a one-parameter Iwahori-Hecke algebra;
subsequently, the theory has been extended to the case of unequal param-
eters by Lusztig [17], [20]. However, many results that are known to hold
in the equal parameter case (thanks to a geometric interpretation of the
Kazhdan-Lusztig basis) are only conjectural in the general case of unequal
parameters. A precise set of conjectures has been formulated by Lusztig in
[20, Chap. 14], (P1)—(P15). (We recall these conjectures in Section 2.)

The aim of this paper is to determine Lusztig’s a-function explicitly
in the case where W = W, is of type B,, and the parameters satisfy the

Received April 26, 2005.
2000 Mathematics Subject Classification: Primary 20C08; Secondary 20G40.



200 M. GECK AND L. IANCU

“asymptotic” conditions in Bonnafé-Tancu [2]. As an application, we show
that all of the conjectures in [20, Chap. 14] hold in this case, except possibly
(P9), (P10) and (P15)!. We also determine the structure of the associated
ring J. Our methods rely on the “leading matrix coefficients” introduced
by the first named author [10]. It is our hope that similar methods may
also be applied to other choices of parameters in type B,, where the left cell
representations are expected to be irreducible.

In a different direction, we show that the ideal structure defined by the
two-sided cells in the “asymptotic” case in type B, corresponds precisely
to the ideal structure given in terms of the Dipper-James-Murphy basis [6].

To state our main results more precisely, we have to introduce some no-
tation. In [20], an Iwahori-Hecke algebra with possibly unequal parameters
is defined with respect to an integer-valued weight function on W. Follow-
ing a suggestion of Bonnafé [3], we can slightly modify Lusztig’s definition
so as to include the more general setting in [17] as well. Let I' be an abelian
group (written additively) and assume that there is a total order < on I’
compatible with the group structure. (In the setting of [20], I' = Z with
the natural order.)

Let A = Z[I'| be the free abelian group with basis {e” | v € I'}. There
is a well-defined ring structure on A such that eve’ = et for all ~v,7 €T.
(Hence, if ' = Z, then A is nothing but the ring of Laurent polynomials
in an indeterminate e.) We write 1 = ¢® € A. Given a € A we denote by
a~ the coefficient of €7, so that a = Zwer a,€7. We denote by Axq the set
of Z-linear combinations of elements 7 where v > 0. Similarly, we define
Aso, Ago and Aog. We say that a function

LW —T

is a weight function if L(ww') = L(w) + L(w") whenever we have {(ww') =
l(w) + £(w'") where £: W — N is the usual length function. (We denote
N = {0,1,2,...}.) We assume throughout that L(s) > 0 for all s € S.
Let H = H(W,S,L) be the generic Iwahori-Hecke algebra over A with
parameters {vs | s € S} where v, := el(®) for s € S. The algebra H is free
over A with basis {T), | w € W}, and the multiplication is given by the rule

Tow if {(sw) > 4(w),
TsTy =
Tsw + (Us - Ugl)Tw if E(sw) < E(w),

'In a subsequent paper [12], using completely different methods, the first author shows
that (P9), (P10) and a weak version of (P15) also hold. Thus, eventually, (P1)-(P14)
and a weak version of (P15) are known to hold in the “asymptotic case” in type B,.
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where s € S and w € W. Having fixed a total order on I', we have a
corresponding Kazhdan-Lusztig basis {C], | w € W} of H; we have

C,=Tw+ Y Pr,T,cH
yeWw
y<w
where < denotes the Bruhat-Chevalley order on W and P/, € A< for
all y < w in W; see [17, §6]. (In the framework of [20], the polynomials
P, are denoted p,,, and the basis elements C}, are denoted c¢,.) Given

y?w
z,y € W, we write

ChLCl= hyy-Cl, wherehgy. € A.
zeW

For a fixed z € W, we set
a(z) :=min{y >0 € hyy. € Ax for all x,y € W};

this is Lusztig’s function a: W — I'. (If I' = Z with its natural order,
then this reduces to the function defined by Lusztig [18].) In Section 2, we
recall Lusztig’s conjectures concerning the a-function and its relation with
the pre-order relations <y, <r and <. In the case where W is a Weyl
group and L is constant on .S, these conjectures are known to hold, thanks
to a geometric interpretation which yields certain “positivity properties”;
see Lusztig [18]. In the general case of unequal parameters, it is known that
these positivity properties are no longer satisfied.

In this paper, we will be dealing with a Coxeter group of type B,, where
the parameters are specified as follows.

ExAMPLE 1.1. Let I' be any totally ordered abelian group. Let W, be
a Coxeter group of type B, (n > 2), with generators, relations and weight
function L: W,, — I" given by the following diagram:

t S1 82 Sn—1
Bn O—O—O— - - -
L : b a a a

where a,b € T are such that

b>(n—1)a>0.|
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(Here, (n — 1)a means a+ --- +a in I', with n — 1 summands.) We refer
to this hypothesis as the “asymptotic case” in type B,. Let H, be the
corresponding Iwahori-Hecke algebra over A = Z[I'|, where we set

b

a

Vi=yu=¢" and vi=vg =-=v,, , =e"

We have the following special case worth mentioning: Let I'g = Z2. Let <
be the usual lexicographic order so that (i,75) < (i/,j') if i < or if i = ¢
and j < j'. Then Ay = Z[['p] is nothing but the ring of Laurent polynomials
in two independent indeterminates Vy = e(1:0) and vy = e(O1) This is the
set-up originally considered by Bonnafé-Iancu [2]; we may refer to this case
as the “generic asymptotic case” in type B,,.

In Bonnafé-Tancu [2] (for the “generic” case), the left cells of W,, are
determined explicitly in terms of a generalized Robinson-Schensted corre-
spondence. This correspondence associates to each element w € W,, a pair
of standard bitableaux of the same shape and total size n. (By a bitableau,
we mean an ordered pair of two tableaux; the shape of a bitableau is an
ordered pair of partitions, that is, a bipartition.) Subsequently, Bonnafé [3]
has shown that these results remain valid in the general “asymptotic case”.
(In Section 5, we recall in more detail the main results of [2], [3].)

Our first main result gives an explicit description of the a-function.

THEOREM 1.2. In the setting of Example 1.1, let w € W, and assume
that w corresponds to a pair of bitableauz of shape (A1, A2) by the general-
ized Robinson-Schensted correspondance defined in [2], where A1 and Ao are
partitions such that |\ 1| + |A2| = n. Then

a(w) =b|Aa] + a(n(A1) + 2n(A3) —n(A2)).
Here, n(u) = 3.,(i — )p for any partition p = (u > p@ > ... > 0)
and p* denotes the conjugate partition.

In the “generic asymptotic case”, the above formula reads
a(w) = (|A2], n(A1) 4 2n(A3) — n(A2)).

The proof will be given in Section 5, using the general methods developed
in Section 4. The main ingredients in that proof are Bonnafé’s results
[3] on the two-sided cells in W, and the orthogonal representations and
leading matrix coefficients introduced in [10]. These are generalizations of
the leading coefficients of character values considered by Lusztig [19]. As
an application, we obtain the following result. (See Section 5 for the proof.)
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THEOREM 1.3. In the setting of Example 1.1, all the conjectures (P1)—
(P15) in [20, Chap. 14] hold except possibly (P9), (P10) and (P15). The set
of “distinguished involutions” is given by D = {z € W,, | 2% = 1}.

Thanks to the validity of the properties in Theorem 1.3, we can con-
struct the ring J as explained in [20, Chap. 18]. As an abelian group, J is
free with a basis {t,, | w € W), }. The multiplication is given by

by -ty = Z Vay,z-1tz  forall z,y € Wy,
zeW

where 7, , .-1 € Z is the constant term of ea(?) hagy,» € Axo.

THEOREM 1.4. In the setting of Example 1.1, we have an isomorphism
of rings J = @, My, (Z), where X = (A1, A2) runs over all bipartitions of n
and dy is the number of standard bitableauz of shape A. We have
JE= ifa~py Ty~ 2 aT]
Toz 0 otherwise.

The proof in Proposition 4.9 actually yields an explicit isomorphism
which shows that +t,, (w € W,,) corresponds to a matrix unit in Mg, (Z)
for some bipartition A. Furthermore, the signs are interpreted in terms of
leading matrix coefficients.

Finally, we show that the Kazhdan-Lusztig basis in the asymptotic case
is compatible with the basis constructed by Dipper-James-Murphy [6]. That
basis is denoted {zs} where (s,t) runs over all pairs of standard bitableaux
of total size n and of the same shape; see [6, Theorem 4.14]. Note that the
construction of the elements x4 does not rely on the choice of any total
order on I'. Given a bipartition X of n, let N* C H,, be the A-submodule
spanned by all x4 where the shape of s and t is a bipartition u of n such
that A < . By [6, Cor. 4.13], N* is a two-sided ideal of H,,. Now we can
state (see the end of Section 5 for the proof):

THEOREM 1.5. In the setting of Example 1.1, let X\ = (A1,A2) be a
bipartition of n. Then N> is spanned by the basis elements C!, where w €
W, corresponds, via the generalized Robinson-Schensted correspondence, to
a bitableau of shape v = (v1,v2) such that (A1, A2) < (v2,v]).
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This paper is organized as follows. In Section 2, we recall the basic defi-
nitions concerning the Kazhdan-Lusztig pre-orders on a finite Coxeter group
W and state Lusztig’s conjectures (P1)—(P15), following [20, Chap. 14].

In Section 3, we deal with the leading coefficients of the matrix repre-
sentations of the Iwahori-Hecke algebra associated with W and show that,
under suitable hypotheses, these leading coefficients can be used to detect
left, right and two-sided cells. This is an elaboration, with some refine-
ments, of the ideas in [10].

In Section 4, we present some criteria and tools for attacking Lusztig’s
conjectures. It is our hope that these methods will also be applicable to
other situations where the left cell representations are expected to be irre-
ducible.

In Section 5, we show that the hypotheses required for the criteria in
Section 4 are all satisfied for the “asymptotic case” in type B,,. This heavily
relies on the fact that Hoefsmit’s [15] matrix representations in type B,, are
“orthogonal representations” in the sense of [10]; hence the theory of leading
coefficients and the results in Sections 3 and 4 can be applied in this case.

§2. Left cells and Lusztig’s conjectures

We keep the basic set-up introduced in Section 1 where W is a finite
Coxeter group and H is the corresponding Iwahori-Hecke algebra over A,
with parameters {v, | s € S} where vy = () and L(s) > 0 for all s € S.

Since we will be dealing with a-invariants of elements in W and of
irreducible representations, it will be technically more convenient to work
with a slightly different version of the Kazhdan-Lusztig basis of H. (The
reasons can be seen, for example, in [20, Chap. 18].) For any a € A, we
define a := Zyer are” 7. Then we have a unique ring involution j: H — H
such that j(a) = a for a € A and j(Ty) = €, Ty for w € W, where we set
ew = (=1 As in [17, §6], we set Cy, = £,j(C’,). Then we have

Co=Tus+ Y eyewP,,T, forallweW.

yew
y<w

The multiplication rule now reads:

C.Cy = Z €xEyEzNgy . C, forany x,yc W.
zeW
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For example, if z = s € S, we have (see [17, §6]):

Csy — Z EyezM;yCZ if sy >y,
Cs Cy = szzszZy

—(vs +v;1) O, if sy <y,

where M7, € Ais determined as in [17, §3]. Note that we have Mi,y = M;,.
Throughout this paper, we will make use of another important feature
of Iwahori-Hecke algebras, namely, the fact that these algebras carry a

natural symmetrizing trace. Indeed, consider the linear map 7: H — A
defined by 7(T1) = 1 and 7(T,) = 0 for 1 # w € W. Then we have

1 ifw =wt,

Tt = {0 if w' # w™l;

see [14, §8.1]. Thus, 7 is a symmetrizing trace on H. In the following
discussion, we shall also need the basis of H which is dual to the basis
{C\} with respect to the symmetrizing trace 7. For any y € W we set

=5 *
Dy ::Ty+ § : wao,yonw EH?
weWw
y<w

where wy € W is the unique element of maximal length in W. Then we
have

1 if y =

7(CyDyr) = SY=

0 ify#w.
(See [10, 2.4]; see also [20, Prop. 11.5] where the analogous statement is
proved for the C’-basis.) This immediately yields the following result:

COROLLARY 2.1. For any z € W, we have

a(z) =min{y > 0| e" 7(C,CyD,-1) € Axg for all z,y € W}.

(Indeed, just note that 7(C,CyD,-1) = ez eye; hyy. 2.)

We recall the definition of the left cells of W and the corresponding left
cell representations of H (see [17] or [20]).

We write z < y if there exists some s € S such that hs, . # 0, that
is, C7, occurs in CgCy (when expressed in the C’-basis) or, equivalently,
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C. occurs in Cs Cy (when expressed in the C-basis). Let <, be the pre-
order relation on W generated by «,, that is, we have z <, y if there
exist elements z = zg,21,...,2r = y such that z;_1 <, z; for 1 <1 < k.
The equivalence relation associated with <, will be denoted by ~, and the
corresponding equivalence classes are called the left cells of W.

Similarly, we can define a pre-order < by considering multiplication by
C! on the right in the defining relation. The equivalence relation associated
with <z will be denoted by ~% and the corresponding equivalence classes
are called the right cells of W. We have

r<ry <= <yl
This follows by using the anti-automorphism b: H — H given by ng =T,-1;
we have CJ) = C! _, and C) = C,-1 for all w € W; see [20, 5.6]. Thus,
any statement concerning the left pre-order relation <, has an equivalent
version for the right pre-order relation <, via b.

Finally, we define a pre-order <,y by the condition that z <;r ¥y
if there exists a sequence x = x¢,x1,...,Tr = ¥y such that, for each i €
{1,...,k}, we have z;—1 <r w; or z;—1 <r x;. The equivalence relation
associated with <,r will be denoted by ~ /% and the corresponding equiv-
alence classes are called the two-sided cells of W.

Each left cell € gives rise to a representation of H. This is constructed
as follows (see [17, §7]). Let [€]4 be an A-module with a free A-basis
{cw | w € €}. Then the action of C, (w € W) on [€]4 is given by the above
multiplication formulas, i.e., we have

Cp-Co = Zew €reyhwapycy forallzeandweW.
yed

Remark 2.2. 1t is also possible to define a left cell module using the
C’-basis. Recall that Cy, = €,,j(C.,) for all w € W. Let € be a left cell of
W and let [€]’; be a free A-module with a basis {¢}, | z € €}. Then we have
an H-module structure on [€]’; given by the formula

Crych =Y hyayd, forallzeccandweW.
yeWw

The passage between the two definitions can be performed using the A-
algebra automorphism §: H — H given by T +— —T; ! for s € S. Note that,
by the definition of the Kazhdan-Lusztig basis, the elements C,, and C/, are
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fixed under the composition doj. Hence, we have C!, = £,,j(Cy) = €4,(Cy)
for all w € W. This shows that we have an isomorphism of H-modules

€] = [e]

where (€] 4 is the H-module obtained from [€]4 by composing the original
action of H with §. This remark will play a role in Example 3.11 below.

For the convenience of the reader, we restate here Lusztig’s conjectures
(P1)~(P15) in [20, Chap. 14] in the general framework involving a totally
ordered abelian group I'. For z € W, we define an element A(z) € I' and
an integer 0 # n, € Z by the condition

eAE P =n, mod Acg;  see [20, 14.1].

)

Note that A(z) > 0. Furthermore, given x,y,z € W, we define v, , .-1 € Z
by
Vp,y,»—1 = constant term of e2(?) hzy,. € Axg.

CONJECTURE 2.3. (Lusztig [20, 14.2]) Let D = {z € W | a(z) = A(z)}.
Then the following properties hold.

P1. For any z € W we have a(z) < A(z).

P2. Ifd €D and x,y € W satisfy vz.yq # 0, then z = y~ L.

P3. Ify € W, there exists a unique d € D such that y,-1 , 4 # 0.

P4. If 2/ <pr z then a(z’) > a(z). Hence, if 2/ ~rr z, then a(z) =

a(z’).

P5. IfdeD,yeW, vy-1,4#0, then vy—1 g =nqg = £1.

P6. Ifd € D, then d*> = 1.

P7. For any x,y,z € W, we have vz y . = Yy za-

P8. Let x,y,z €¢ W be such that v;y,. # 0. Then x ~p y oy ~p 2

zZn~r x~ L.

P9. If 2/ <, 2z and a(?’)
P10. If 2 <r z and a(?’)
P11. If 2 <yr z and a(2’) = a(z), then 2’ ~rr z.

P12. Let I C S and Wy be the parabolic subgroup generated by I. If y €

Wi, then a(y) computed in terms of Wt is equal to a(y) computed
in terms of W.

a(z), then 2/ ~p 2.

a(z), then 2/ ~g z.
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P13. Any left cell € of W contains a unique element d € D. We have
Yo1ad 7 0 forallz € €.

P14. For any z € W, we have z ~pg 27 1.

P15. If z,2',y,w € W are such that a(w) = a(y), then

E : hwaty @2 hay y = E : haw,y Oz hy oy 0 ARz A.
y'eWw y'eWw

(The above formulation of (P15) is taken from Bonnafé [3].)
Remark 2.4. For all z,y,z € W, we have
hx,%z = hy—l,x—l,z—l and P;jy = Px*—l,y_l'
Hence, we have a(z) = a(z7!), n, =n,-1, A(z) = A(z7}), D=D"L.

Proof. We have already remarked above that there is an anti-auto-
morphism b: H — H such that 7? = T,—1 for all w € W. By the argument
in [20, 5.6], we have C? = C,,-1. This yields all the above statements.  []

If W is the symmetric group &,,, the above conjectures are all known
to hold; see [20, Chap. 15]2. Hence the information about left, right and
two-sided cells, as well as the a-function, is rather complete in this case.
We close this section by summarizing some known results on &,,. (This
information will be needed in the proof of Theorem 1.2; see Section 5.)

EXAMPLE 2.5. Let &,, = (s1,...,S,—1) be the symmetric group, where
si = (i,i+ 1) for 1 <i <n—1. The diagram is given as follows.

51 59 Sp—1

Ap O O— o

We consider the abelian group I' = Z with its natural order and denote
v := e!. Then A = Z[v,v™!] is the ring of Laurent polynomials in an
indeterminate v. Let L: W — Z be any weight function such that L(s;) > 0
for all 4. Since all generators are conjugate, L takes the same value on each
s;. Thus, we are in the case of “equal parameters”, and we can assume

L(s;) =1 for all 4.

2In a recent preprint [13], the first named author has given elementary proofs of (P1)—
(P15) for W = G,,.
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The classical Robinson-Schensted correspondence associates with each
element o € &,, a pair of standard tableaux (P (o), Q(o)) of the same shape.
The tableau P(0) is obtained by “row-insertion” of the numbers 0.1, ... ,0.n
(in this order) into an initially empty tableau; the tableau Q(o) “keeps the
record” of the order by which the positions in P(o) have been filled; see
Fulton [9, Chap. 4]. For any partition v F n, we set

R, = {0 €6, | P(o), Qo) have shape v}.
Thus, we have &,, = [],.,, R,. Then the following hold.

(a) For a fized standard tableau T, the set {o € &, | Qo) = T} is
a left cell of &, and {c € &,, | P(o) = T} is a right cell of &,,.
Furthermore, all left cells and all right cells arise in this way.

This was first proved by Kazhdan-Lusztig [16, §4]; for a more direct and
elementary proof, see Ariki [1].

(b) The sets R,, v n are precisely the two-sided cells of &,,.

This is seen as follows. First note that the statements (P1)—(P15) in Conjec-
ture 2.3 are known to hold for W = &,, (see [20, Chap. 15] and the references
there). Now (P4), (P9), (P10) imply that z,y € &, lie in the same two-sided
cell if and only if there exists a sequence of elements x = xg,x1,...,2 =¥y
in &,, such that, for each i, we have x;,_; ~, z; or x;—1 ~g ;. Now (b)
follows from (a).

(¢) For any v F n, we have o,« € R, where o, is the longest element
in the Young subgroup G, C &, and v* denotes the conjugate par-
tition.

This is a purely combinatorial exercice: it is enough to apply the Robinson-
Schensted correspondence to the element o,, and to verify that the corre-
sponding tableaux have shape v.

(d) If o € R,, then a(c) = n(v), where n(v) is defined as in Theo-
rem 1.2.

This is seen as follows. Again, we use the fact that (P1)-(P15) in Con-
jecture 2.3 hold for W = &,,. Since, by (P4), the a-function is constant
on the two-sided cells, (c) shows that it is enough to compute a(o,) for
any v - n. But, since o, is the longest element in a parabolic subgroup,
we have a(o,) = ¢(o,) by (P12) and [20, 13.8]. It remains to note that

l(o,) =n(v").
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(e) Ifo € R, and o’ € R, are such that o <,r o, then we havev < V',
where < denotes the dominance order. This means that

) < Z /@ for all k > 0,
i=1 i=1

where v@ and V'Y are the parts of v and V', respectively.

This follows from a result of Lusztig-Xi [21, 3.2]; see Du-Parshall-Scott [8,
2.13.1] and the references there. (Note that, here again, (P1)-(P15) are
used.)

§3. Leading matrix coefficients

We now recall the basic facts concerning the leading matrix coefficients
introduced in [10]. We extend scalars from Z to R and consider the group
algebra R[I']. Since I' is totally ordered, R[I'] is an integral domain; let K
be its field of fractions. We define J-¢ C R[I'] to be the set of all f € R[I]
such that

f =1+ R-linear combination of elements of ¢” where v > 0.

Note that J~¢ is multiplicatively closed. Furthermore, every element x € K
can be written in the form

x=rye”f/g wherer, € R v, €' and f,g € J>0;

note that, if z # 0, then r, and -, indeed are uniquely determined by x; if
x = 0, we have rg = 0 and we set vy := +00 by convention. We set

O={xeK|v >0} and p:={zreK]|~, >0}

Then it is easily verified that O is a valuation ring in K, that is, O is a
subring of K such that, for any 0 # = € K, we have x € QO or z~! € O.
Furthermore, O is a local ring with maximal ideal p. The group of units in
O is given by

O ={xe€O|ry #0, v, =0}.

Note that we have

ONR[] = R[]0 := (7 | v = O)R,
pNR[T) =R[[sg := (7 | v > O)R.
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We have a well-defined R-linear ring homomorphism O — R with kernel
p. The image of x € O in R is called the constant term of x. Thus, the
constant term of x is 0 if z € p; the constant term equals 7, if x € O*.

Extending scalars from A to K, we obtain a finite dimensional K-
algebra Hg, with basis {1}, | w € W} and multiplication as specified in
Section 1. We have:

Remark 3.1. The algebra Hp is split semisimple and abstractly iso-
morphic to the group algebra of W over K.

Proof. Since the situation here is somewhat more general than usual,
let us indicate the main ingredients. To show that Hy is semisimple, we
use the R-linear ring homomorphism #: R[['] — R such that 6(e?) = 1 for
all v € I'. By extension of scalars, we obtain R ®gr) H = R[W], the group
algebra of W over R. Since the latter algebra is known to be semisimple,
a standard argument (using Tits’ Deformation Theorem) shows that H g
must be semisimple, too. (See, for example, [14, 7.4.6 and 8.1.7].) But then
it is also known that Hx is split and abstractly isomorphic to K[W]; see
[14, 9.3.5 and 9.3.9] and the references there. 0

Let Irr(Hg) be the set of irreducible characters of Hx. We write this
set in the form
Irr(HK) = {XA | AE A},

where A is some finite indexing set. The algebra Hy is symmetric with
respect to the trace function 7: Hxg — K defined by 7(71) = 1 and 7(T,) =
0 for 1 # w € W (see Section 2). The fact that H x is split semisimple yields
that )
T = Z X where 0 # ¢\ € R[I'].
AEA

The elements c) are called the Schur elements. By [14, 8.1.8], we have
cx = Pw,r/Dy where Pwp = > cw e2L() ig the Poincaré polynomial of
W, L and D) is the “generic degree” associated with x,. We can write

ey =7rye 2 fy where 7y € Rug, f) € Jso and ay > 0.

The element ay € I' is called the generalized a-invariant of x; see [10,
§3]. (Note that the notation in [loc. cit.] has to be adapted to the present
setting where we write the elements of R[I'] exponentially.)
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By [10, Prop. 4.3], every x, is afforded by a so-called orthogonal repre-
sentation. This means that there exists a matrix representation X, : Hx —
Mg, (K') with character x and an invertible diagonal matrix P € My, (K)
such that the following conditions hold:

(O1) We have X)(T,,-1) = P~ X\(T,)¥™ - P for all w € W, and
(O2) the diagonal entries of P lie in J-.
This has the following consequence. Let A € A and 1 < 4,5 < d). For any

h € Hg, we denote by Z{;J(h) the (i, j)-entry of the matrix X)(h). Then,
by [10, Theorem 4.4 and Remark 4.5], we have

e XY (T,) €O, eMxV(C,) €O, XY (D,)cO
for any w € W and
eO‘Af{f\j(Tw) = eO‘A.'fi\j(Cw) = eO‘A.'fi\j (Dy) mod p.

Hence, the above three elements of (’) have the same constant term which

we write as &, ¢ oA The constants c” w € R are called the leading matriz

coefficients of X . By [10, Theorem 4. 4] these coefficients have the following
property:

CUA:CZE%)\ for all w € W,
ch #0 for some w € W.

Furthermore, we have

a,\:min{’y20\67%§\7( w) € O forallwe W and 1 <i,j <dy}
:min{fy>0\e'yfl>\](0 )e O forallweW and 1 <i,j < dy}
:min{fy>0\67%§\j( w) € O forallwe W and 1 <14,j <dy}.

The leading matrix coefficients satisfy the following Schur relations. Let
ApeA 1<i,5<dyand 1<k, l<dy; then

S ojira  ifA=p,
2 cunin=) g it A £ g
weWw ’

see [10, Theorem 4.4]. Since |W| = Y., d3, we can invert the above
relations and obtain another set of relations (analogous to the “second”
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orthogonality relations for the characters of a finite group): For any y,w €

W we have .
ACwn = :
serim ™ 0 ify#w

The above relations immediately imply that W = [J,c, T, where we set
T ::{w€W|cgv/\7é0forsome1<i,j<d)\}.

The leading matrix coefficients are related to the left cells of W by the
following result. Recall that, given a left cell €, we have a corresponding
left cell module [€]4. Extending scalars from A to K, we obtain an H -
module [€]x. We denote by x¢ the character of [€]x. Then we have:

PROPOSITION 3.2. (See [10, Prop. 4.7]) Let A € A and € be a left cell
in W. Denote by [xe : xx] the multiplicity of x in xe. Then we have

dx
DY (@) =Ixe:xalra,  for any 1 <i < dy.
k=1yec

In particular, if w € Ty, then x\ occurs with non-zero multiplicity in xe,
where € is the left cell containing w.

Proof. The formula is proved in [loc. cit.]. Now fix A € A and let
w € ¥y; then chM % 0 for some 1 < 4,57 < dy. Let € be the left cell
containing w. Now all terms on the left hand side of the formula are non-
negative, and the term corresponding to y = w and k = j is strictly positive.
Hence the left hand side is non-zero and so [xe : xa] # 0. [

The Schur relations lead to particularly strong results when some addi-
tional hypotheses are satisfied. These are isolated in the following definition.

DEFINITION 3.3. We say that H is integral if
¢)\ €Z forallwe W, A€ Aand 1<i,j<dy

Furthermore, recall that ¢y = rye™2%* fy, where ) is a positive real number
and f) € Jso. We say that H is normalized if

ry=1 forall A € A.
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Remark 3.4. Suppose that H is normalized and that Lusztig’s conjec-
tures (P1)-(P15) in [20, Chap. 14] are satisfied. Then we necessarily have
that y¢ € Irr(Hg) for all left cells € in W; see [11, Cor. 4.8]. Thus, the con-
ditions in Definition 3.3 should be considered as rather severe restrictions
on the structure of H.

Since the Schur elements ¢y are known in all cases (see the appendices
of Carter [4] and Geck-Pfeiffer [14], for example) the condition that H be
normalized is rather straightforward to verify. The condition that H be
integral is more subtle. Let us describe here a convenient setting in which
this condition can be dealt with. Let A € A and assume that we have a
matrix representation Yy: Hx — Mg, (K) affording x» such that 9, is
integral, in the sense that

Dr(Ty) € Myg(A) for all w e W.

Furthermore, assume that there is a symmetric matrix Q = (w;;) € My, (A)
satisfying the following two conditions:

(F1) We have D (T,,-1) = Q71 - D\ (T,,)™ - Q for all w € W, and
(F2) all principal minors of  lie in 1+ A~.

Note that 1 + Asg = ANJsp.

LEMMA 3.5. In the above setting, there is an orthogonal representa-
tion Xx: Hx — Mg, (K) affording x such that the corresponding leading
coefficients satisfy cg)\ €Z for allw e W and 1 < 4,5 < dy. We have
X\(Tw) € Mg, (Ko), where Ky is the field of fractions of A.

Proof. Let R:={f/g|fe€ A, gel+ A-o} C K, a subring of K.

Now we consider the system of equations II* - Z - II = Q, where II =
(mi;) is an upper triangular matrix with 1 on the diagonal (and unknown
coefficients above the diagonal) and Z = (z;;) is a diagonal matrix (with
unknown coefficients on the diagonal). It is well-known and easy to see that
the above system has a unique solution (II, Z), where z;; € R* for all i and
mi; € R for all i < j. (Note that all principal minors of Q are invertible
in R.) Since 2 and Z have the same principal minors, there exists some
f €14 Asg such that

fzii €1+ As9 CTso for all i.
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We set P := fZ and define X, by
X\(Typ) :=11-YA(Ty) - T forallwe W.
Then, clearly, X, affords x), and a straightforward computation yields
X\(Ty-1)=Z 1 X\(T)" - Z = P71 X\(Ty,)™ - P.

So X and P satisfy the conditions (O1) and (O2). Now note that II (being
triangular with 1 on the diagonal) is invertible over R; let us denote

! = (7;;) where 7;; = 1 and 7;; € R for all i, j.
Hence, for any 1 < 7,5 < d), we obtain

dy dx

eNXY(Ty) =D > mip iy (ea*@lf\l(Tw)) € R.

k=1 1=1

On the other hand, X, is an orthogonal representation; hence the above
element lies in O N R. Consequently, the corresponding leading matrix
coefficient ¢;? | will lie in Z, as required. 0

EXAMPLE 3.6. Let W =W, and L: W,, — I" be as in Example 1.1 (the
“asymptotic case” in type By,). Let H,, be the corresponding Iwahori-Hecke
algebra and write H,, x = K ®4 H,. Then we have a natural parametriza-
tion

Irr(HmK) = {XA | A E An}

where A, is the set of all bipartitions A = (A1, A2) such that [A1]|+ |A2| = n;
see [14, Chap. 5]. For any (A1, A2) € A, we have

Touae) =1 and  agpy a) = b|A2| +a(n(Ar) +2n()2) — n(A3)),

where we set n(v) = 3_,(i — 1)v{¥) for any partition v = (v > ... > v() >
0) and where v* denotes the conjugate partition. Thus, H,, is normalized.
(For the proof, see [10, Remark 5.1] and the references there. Actually,
in [loc. cit.], we only consider the “generic asymptotic case”. But it is
readily checked, using the formula for ¢y in [4, p. 447], that the above
formulas also hold in the “asymptotic case”. For a weight function with
values in Z, explicit formulas for r(y, »,) and a(, »,) are given by Lusztig
[20, Prop. 22.14]; then it is a purely combinatorial exercise to show that, in
the case b > (n — 1)a, Lusztig’s formulas can be rewritten as above.)
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Furthermore, by the discussion in [10, §5], H,, is integral. Since that
discussion is somewhat sketchy (and only deals with the “generic asymp-
totic case”), let us add a more rigorous argument, based on Dipper-James-
Murphy [6], [7] and Lemma 3.5. That argument also shows that we can
work with the field of fractions of A instead of K.

Let A € A, and S* be the corresponding Specht module over K, as
constructed in [6, 4.19]. The modules SA are absolutely irreducible and
pairwise non-isomorphic [6, 4.22]. Let T be the set of standard bitableaux
of shape A. Then S* has a standard basis {e; | t € Ty} such that the corre-
sponding matrix representation is integral in the above sense. Furthermore,
by [6, §5], there is a non-degenerate bilinear form ( , ), on S*, satisfying
the condition (Tsz,2’)y = (x, Tsa')y for all 2,2’ € S* and all s € S. The
Gram matrix of (, )y with respect to the standard basis of S* has coef-
ficients in A and a non-zero determinant. We will have to slightly modify
the standard basis of S* in order to make sure that (F1) and (F2) hold for
the corresponding matrix representation.

Now, by [6, Theorem 8.11], there is an orthogonal basis {f; | t € T}
with respect to the above bilinear form; moreover, the matrix transform-
ing the standard basis into the orthogonal basis is triangular with 1 on
the diagonal®. Using the recursion formula in [7, Proposition 3.8], it is
straightforward to show that, for each basis element f;, there exist integers
St, Gty bij, Ci, dy € 7 such that

ag; = 07 bt] = 0) b+ Cr@ > 0) b+ dtla > 07

and

oy fo)n = €259 . L0+ e+ + ) L _|_€2(b+ctka))'
’ H](]_ —|—e2a+ ...+62bt]’a) Hl(1+e2(b+dtla))

The fact that b+ ci.a and b+ dya are strictly positive essentially relies on
the condition that b > (n — 1)a. Hence, setting

Fpim e (H(l 1 e2a +m+62btja)> . (H(l +62(b+dtla))> i,
l

we obtain <f~}, fth €1+ Ay for all . Now let

= S

& =e % forallteT,y.

31t is remarked in [6] that the orthogonal representation with respect to the basis {f:}
actually coincides with the one defined by Hoefsmit [15].
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Then {& | t € T} is a new basis of S*. Let 9 be the corresponding matrix
representation and €2 be the corresponding Gram matrix of ( , ). Then
2, is still integral, Q has coefficients in A and (F1) holds. Now, the matrix
transforming é; to the basis ft is triangular with quotients of elements from
14 A< on the diagonal. Hence, up to quotients of elements from 1 + A+,
the principal minors of Q are products of terms (f;, fi)x € 1 + Asg, for
various t. We conclude that each principal minor of €2 is a quotient of
elements from 1+ A~(. Since, on the other hand, the coeflicients of 2 lie in
A, so do all principal minors of 2. Hence (F2) holds. So Lemma 3.5 shows
that H,, is integral.

Remark 3.7. In the above setting, consider the special case where I' =
7Z and A is the ring of Laurent polynomials in v = e!. The parabolic
subgroup &,, := (s1,...,8,-1) C W, can be identified with the symmetric
group on {1,...,n} where s; corresponds to the basic transposition (7,74 1)
for 1 < i < n-—1 Let H(S,) C H, be the corresponding parabolic

subalgebra. We have the following diagram:

S1 52 Sn—1
&  O0—O— - —O
L: a a a

Now, by Hoefsmit [15, §2.3], we obtain a complete set of irreducible repre-
sentations of H(&,,)k by restricting the irreducible representations of H,, k
with label of the form A = (A1, @), where A; is a partition of n. Hence, the
fact that H,, is integral and normalized immediately implies that H(S,,)
is integral and normalized, too. Alternatively, one could also work directly
with the Dipper-James construction of Hoefsmit’s matrices for type A,_1
in [5, Theorem 4.9].

The following arguments are inspired from the proof of [10, Theo-
rem 4.10].

LEMMA 3.8. Assume that H is integral and normalized.

(a) We have cg/\G{O,:tl} forallwe W, AXe A and 1 <i,j <dy.

(b) For any A € A and 1 < i,j < dy, there exists a unique w € W
such that ¢} \ # 0; we denote that element by w = wy(i,j). The
correspondence (X, i,7) — wy(i,7) defines a bijective map

{Ni) A e AT <dy) — W
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In particular, the sets Ty defined above form a partition of W:

W=][% and [Ti|=d; forallXeA
AEA

Proof. First we construct the desired map in (b). Fix A € A and
1 < 4,5 < dy. Then consider the Schur relation where A = p, ¢ = [ and
j=k:

Since the leading matrix coefficients are integers, we conclude that there
exists a unique w = wy(4,7) such that cg)\ = £1 and cij)\ = 0 for all
y € W\ {w}. Thus, we have a map ()\,i,j)7 —w = wA(i,jg; furthermore,
note that once we have shown that this map is bijective, then (a) follows.
Next we show that the above map is surjective. Let w € W. Then the
“second Schur relations” show that there exist some A € A and 1 <4,j5 < d)
such that cji ) # 0. The previous argument implies that w = wy(7, 7). Thus,
the above map is surjective. Since dimHg = |[W|=>",., d3, that map is
between finits sets of the same cardinality. Hence, the map is bijective. []

Remark 3.9. In the setting of Lemma 3.8, let A € A and consider the
set T,. First of all, we have a unique labelling of the elements in ¥ y:

Tn=A{wa(i,)) [ 1< 6,5 <drj
It follows from [10, Theorem 4.4(b)] that
(a) wx (4, 5) 7" = wx(4, 1)

In particular, wy(7,7) is an involution if and only of ¢ = j. Furthermore,
let 7,5 € {1,...,d\} and define

() %y = {wr(k,7) |1 <k <dy} and T = {wr(i,1) | 1 <1< dy)

It is shown in [10, Theorem 4.10] that /) is contained in a left cell of W
and ‘Iﬁ\ is contained in a right cell of W. In particular, the whole set ¥ is
contained in a two-sided cell of W.

LEMMA 3.10. Assume that H is integral and normalized. Furthermore,
assume that x¢ € Irr(Hg) for all left cells € of W. Then the sets

PInlAe 1<j<dy}
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are precisely the left cells of W. The character of the left cell representation
afforded by %y is given by x . Furthermore, each left cell contains a unique
tnvolution.

Proof. Let A € A and 1 < j < dy. By Remark 3.9, there is a left cell
¢ of W such that /¥, C €. Now Proposition 3.2 shows that y occurs with
non-zero multiplicity in x¢. Since x¢ € Irr(H g ), we conclude that x¢ = x.
In particular, this means that the underlying H g-modules have the same
dimension and so |€] = xx(1) = dy. Consequently, we have ¢ = /. Thus,
we have shown that each set T is a left cell of . Since these sets form a
partition of W, we conclude that they are precisely the left cells of W. The
statement concerning involutions now follows from Remark 3.9(a). [

ExAMmPLE 3.11. Let W = W,, and L: W,, — I' be as in Example 1.1
(the “asymptotic case” in type B, ). We have already noted in Example 3.6
that H,, is integral and normalized. Thus, by Lemma 3.8, we have a parti-

Wn - H {3:()\1’)\2).
(A1,A2)EAR

tion

Let us identify the sets T(y, ),). For this purpose, we need the results
of Bonnafé-lTancu [2] concerning the left cells of W), and their characters.
These results remain valid in the “asymptotic case” by Bonnafé [3, §5].
More precisely, in [2, Theorem 7.7], the left cells in the “generic asymptotic
case” (that is, with respect to the weight function Lg: W, — T'y) are de-
scribed in terms of a generalized Robinson-Schensted correspondence. In
[3, Cor. 5.2], it is shown that two elements of W,, lie in the same left cell
with respect to L: W,, — I if and only if this is the case with respect to
Ly. Hence the combinatorial description of the left cells remains valid in
the “asymptotic case”. The fact that the characters afforded by the left
cells are all irreducible now follows by exactly the same argument as in [2,
Prop. 7.9].

Now let € be a left cell. Then € is precisely the set of elements in
a generalized Robinson-Schensted cell (RS-cell for short). Such a cell is
labelled by a pair of bitableaux of the same shape and size n. Let (A1, \2) €
A, be the bipartition specifying the shape of the bitableaux. Then we have

Xe = X, € Ir(Hy, k).

(Note that, in [2, Prop. 7.11], the labelling is given by (A2, A}). The reason
for the different labelling is that, in [2], the left cell representations are
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defined using the C’-basis while here we use the C-basis. As explained in
Remark 2.2, the character of the left cell representation defined with respect
to the C’-basis is given by yg o 4. On the level of characters of W,,, this
corresponds to tensoring with the sign character; see [14, 9.4.1] for a precise
statement and more details. The effect of tensoring with the sign character
is described in [14, 5.5.6].) Now we claim that

Taag) = {w € W | w belongs to an RS-cell of shape (A1, A2)}-

Indeed, let w € T(Al,Ag)' Then, by Proposition 3.2, the character X(A1.A3)
occurs with non-zero multiplicity in x¢, where € is the left cell containing
w. So the above formula for y ¢ shows that w belongs to an RS-cell of shape
(A1, A2). The reverse implication now follows formally from the fact that
both the sets Ty, x,) and the RS-cells form a partition of W.

84. On Lusztig’s conjectures

We keep the setting of the previous section. Now our aim is to de-
velop some tools and criteria for attacking the properties in Conjecture 2.3.
Throughout this section, we assume that

H is integral and normalized (see Definition 3.3).

We begin with an alternative characterization of the a-function. First note
that

a(z) =min{y > 0| e hyy . € O forall z,y € W}
for any z € W. This simply follows from the equality O N A = Axy.
ProroSITION 4.1. For any z € W, we have
a(z) =min{y > 0| ¢ %f\j(szl) €O forall e A, 1 <i,j <dy)}.
Furthermore, if z € Ty, (see Lemma 3.8), we have o), < a(z).

Proof. Let 79 = 0 be minimal such that e7° j{i\j(Dz_l) € O for all
A€ A1 <i,j <dy First we show that a(z) < 7. For this purpose, it
is enough to show that e°h;, . € O for all x,y € W. Let z,y € W. To
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evaluate hg , ., we use the formula

€x€y€zhgy . =T1(CoCyD,—1) = Z 1 XA(CzCyD, 1)

hea A
= Z — trace (%)\ )fA(Cy)%A(szl))
)\EA
-y Z n x” 2) 23 (Cy) 2Y(D.-1).
AEA i,j,k= 1

Now, for any A € A, we have 7y = 1 and so ¢y = e 2% fy where f\ € Jso.
Thus, we obtain

O hyye =+ Z S ez () (emxgi(y) (x5 (D).

AeA i,5,k=1

As we have already noted, for all w € W, we have
e %gj(cw) = ey cg y mod p.

Hence, since f L' ¢ 0, all terms on the right hand side of the above identity
lie in O. So we obtain €7h, , . € O as desired. Next we show that vy <
a(z). By the definition of vy, there exists some Ay € A such that

C’YO%I;?)iO(_DZ—l) #Z0 modp for some 1 < ip, ko < dy,.

i0ko
z0,\0

We also know by Lemma 3.8 that there exist xg,yg € W such that ¢
+1 and ckgkfo = +1. As before, we obtain an identity

S b e x (o)) (e 28 (Cn) ) (P25 (D))

AeA i,5,k=1

All terms on the right hand side lie in O. So we obtain

xoyoz_:tz Z cxo,)\c;];)\(e'm%m( 71)) mod p;

A€EA i,j,k=1
note that f)\_1 = 1 mod p since f) € J~9. Now, by Lemma 3.8, we have

”@#0 — (Md,5) = (Aoyio, ko),

c* FLAO = (A, k) = (Mo, ko, ko)
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Hence we obtain
Y0 — toko koko [ _vo~koio
e thvZ/Ov :l:cxo Ao cyo Ao € %)\O (‘DZ_I)
= :I:e'm%igzo( .-1) Z0 mod p.

Consequently, we must have vy < a(z) and so vy = a(z).
Finally, if z € T, then ¢/, = +1 for some 4, j. Since

£z ea*0%§Z(DZ_1) = Z_l = cz/\ =41 mod p,
we conclude that a(z) > ay,. U

DEFINITION 4.2. Recall that H is assumed to be normalized and inte-
gral. Let z € W. Then we set

Ay 1= (),

where A is the unique element of A such that z € ¥; see Lemma 3.8. By
Proposition 4.1, we have «, < a(z) for all z € W.

The following result shows that the identity a(z) = a holds for z € W
once we know that (P4) from the list of Lusztig’s conjectures holds. Note,
however, that it seems to be very hard to prove (P4) directly. Therefore,
in Lemma 4.4 below, we shall establish a somewhat different criterion for
proving that the identity a(z) = a, holds for all z € W (and it is this latter
criterion which will be used in Section 5 in dealing with type B,,).

LEMMA 4.3. Assume that (P4) holds. Then a(z) = o, for all z € W.

Proof. Let z € W. We already know by Proposition 4.1 that o, < a(z).
To prove the reverse inequality, let z,y € W be such that e2(?) hay,. € Ao
has a non-zero constant term. As in the proof of Proposition 4.1, we have

Y,z = + Z Z (ea(z) %]f\z(_DZ—l)> mod p.

AeAi,5,k=1

We are assuming that the left hand side is Z 0 mod p. So there exists some
)\OEAand1<z],k<d>\Osuchthatc”A #0, ¢, #0and

(f) ) 2 (D,-1) #0 mod p.
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The condition (}) implies that ay, > a(z). Furthermore, we have z,y € ¥,
and so a(x) > ay,, a(y) > ay, by Proposition 4.1. Hence we obtain

a(z) > ay, = a(z).

But, since hy, . # 0, we have z <g x and so a(z) < a(z), thanks to the
assumption that (P4) holds. Thus, we conclude that a(z) = a),. But then
(t) also yields that ci’f)\o = C];Z;l,AO # 0 and so z € T,,. Thus, we have
a(z) = ay, = az, as claimed. 0

LEMMA 4.4. Assume that the following implication holds for any x,y €
Ww:

(%) T<RY = oy < g
Then we have a(z) = o, for all z € W (and, consequently, (P4) holds).

Proof. Let z € W. By Proposition 4.1, we already know that o, <
a(z); furthermore, in order to prove equality, it will be enough to show that

=X (D, 1) €O forall A€ Aand 1<1i,j <dy.

To prove this, let A € A be such that %;\J (D,-1) # 0 for some i, j. Let € be a
left cell such that [x¢ : xa] # 0, that is, x\ occurs with non-zero multiplicity
in the character afforded by €. Then X, will occur (up to equivalence) in
the decomposition of X¢ as a direct sum of irreducible representations.
Hence, since X)(D,-1) # 0, we will also have X¢(D,-1) # 0. Recalling
the definition of X¢, we deduce that there exists some x € € such that
D,-1C, # 0. Since 7 is non-degenerate, we have

7(D,-1C;Cy) #0  for some w € W.

This yields £hy . = 7(CoCyD,-1) = 7(D,-1C,Cy) # 0 and so z <r z.
Hence (&) implies that «, < a,. Now we claim that a, = «). This can
be seen as follows. Let i € {1,...,dy}. Then the right hand side of the
formula in Proposition 3.2 is non-zero and so there exists some y € € and
some k such that c;’f)\ # 0. Consequently, we have y € T and so oy = a.
On the other hand, (&) implies that the function w +— «,, is constant on
two-sided cells. Hence we can deduce that a, = o, = a), as claimed.
Now the inequality o, < a, yields a) < o, and so

eaZ%f\j(szl) = eO‘A%f\j(szl) e N e O,
as desired. []
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We will now show that the validity of the identity a(z) = «, for all
z € W together with (P4) formally imply most of the remaining conjectures
from the list (P1)-(P15).

We introduce the following notation. Let x,y € W. By Lemma 3.8, we
can write z = wy(io, jo) and y = wy,(ko,lo) where A\, pn € A, 1 <'ig,jo < dy
and 1 < ko, lp < d, are uniquely determined. Then we set

z=ux*y:=wx(lp,io) if A= p and jo = ko.
We note the following equivalences for z,y, z € Ty:
(Q) Z=THRY = T=Yrkz = Y=zKI.
If z = x xy as above, we also set
o = Rl = 41

Note that (©) implies ng . = Ny 20 = N2 2y With this notation, we now
have the following result.

LEMMA 4.5. Assume that (P4) holds. Let x,y,z € W. If there is no
A € A such that x,y,z € Ty, then vy =0. If x,y,2 € Ty, then

Ngy,» if z=x*y,

Vx7y7z = ’yy7z7x = ’yz7x7y = .
0 otherwise.

Proof. By Remark 2.4, we have a(z) = a(z~!). This yields
Yoyz = ea(z)h%y,z_l mod p.

Writing hy , .1 = €z 6y, T(CCyD;) and 7 = u c;lxﬂ, we obtain

d
Vo2 = Z Zﬂ C;];M célfu <€Z e2(®) f{ﬁz(Dz)> mod p;

peEN G k=1

see the argument in the proof of Proposition 4.1. Now, if there is no A such
that x,y € ¥, then the above sum certainly is zero.

Hence it remains to consider the case where x,y € Ty for some A € A
(which is uniquely determined). We write x = w) (o, jo) and y = wy (ko, lo),
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where 1 < g, jo, ko, lo < d) are uniquely determined. Then the above sum
reduces to

ZOJO kol a lot
Ya,y,2 = Ojoko Cp ) yo}\o<€ € (Z):{OO( 2)> mod p.

First assume that z = x x y, that is, we have jo = ko and z = wy(ly, 7). In
particular, z € ¥ and so a(z) = a), by Lemma 4.3. Hence, we obtain

kolo 1
P}/x YsZ cl&tog\o Cyo)\o CZOZ)\O nxvyvz = :|:17
as desired.

Conversely, assume that 7, , . 7# 0. First of all, this means that jo = ko.
Furthermore, the constant term of e2(*) %l/\om (D) is non-zero and so ay >
a(z). On the other hand, we have h, , -1 # 0 and so 27! <z x. Hence
(P4) yields a(z) = a(z7!) > a(z) = ay (since 2 € T)) and so a(z) = aj.
Consequently, the constant term of e, e2(* )Z{ZO’O( D,) is c?’f\o and so

ol
Hence, we must have jo = kg and z = x x y.
The identity v y,> = Vy 2,0 = Vz,z,y €asily follows from the symmetry in

(©). 0

LEMMA 4.6. Assume that (P4) holds. Then (P1), (P2), (P3), (P5),
(P6), (P7), (P8) and (P14) hold.

Proof. (P1) Let z € W. We must show a(z) < A(z). Now, by the
definition of the symmetrizing trace 7, we have

7(C,) =€, ﬁiz.

On the other hand, we have 7 = >, chx,\. Using the expression c) =
e~ fy where fx L€ O, this yields the identity

I S E A

AEA i=1

Assume that the term in the sum corresponding to A € A and 1 <7 < d), is
non-zero. Let € be a left cell such that [x¢ : x| # 0, that is, x occurs with
non-zero multiplicity in the character afforded by €. Then X will occur (up
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to equivalence) in the decomposition of X¢ as a direct sum of irreducible

representations. Hence, since X,(C) # 0, we will also have X¢(C,) # 0.

Recalling the definition of X¢, we deduce that there exist some z,y € €

such that h ;, # 0. But then we have y <z z and so a(z) < a(y), by (P4).

Now, as in the proof of Lemma 4.4, We conclude that a(y) = a(y’) = ay,

where y' € € is chosen such that c y 7 0 for some k. Hence, we have
a(z) < ay, for all non-zero terms in the above sum. Thus, we obtain

,a(z Plz _ Z Zf)\ PRER %m )) ay—a(z) c 0.

AEA =1
a(z)<ay

Since the left hand side lies in A, we conclude that e~2(?) ﬁ;z € Ao and
so a(z) < A(z), as desired.

(P2), (P5) Let z,y € W and d € D be such that v, , 4 # 0. We must
show that z = y~! and Yy-1,4,d = Nd = £1. Now, using the expression of
Cy in terms of the T-basis, we obtain

E €€y €z hpy. T(C E €z &y xyzplz

zeW zeW
—_a(z) 5 *
o Z 61 €y 17%2( (Z) Pl,z)'
zeW

By the definition of a(z) and (P1) (see the proof above), we have
ea(?) hzy,. € Aso and e—al?) P;Z € A>p. So the terms of the above sum lie
in A>o and we have

T(CLCy) = Z €2 €y Vay,z—1 M= mod p.
z€D

By Remark 2.4, we have n, = n,-1 and D~! = D. So the above congruence
can also be written in the form

T7(C.Cy) = Z €2 Ey Yo,z M- mod p.
z€D

Now, Lemma 4.5 shows that the only non-zero term in the above sum is
Va,y,d and that d = z xy. So we have

T(CpCy) = €26y Vayana Z0 mod p.
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On the other hand, we also have
7(CeCy) = 6,-1, mod Ay,

where d,-1, denotes the Kronecker symbol. (This easily follows from the
defining formulas; see [20, 14.5(a)].) Hence we obtain the congruence

0p-1y =T(CoCy) = €x6yVay,ana Z0 mod p.

So we must have ! = y. But then we also get Vy—1,y,d7d = 1, as required.

(P3) Let y € W. We want to show that there exists a unique z € D
such that v,-1, . # 0. As in the proof of (P2), we have

Z Yy-14.:Mz =T7(Cy1Cy) =1 mod p.
2€D

Consequently, there exists some 2z € D such that v,-1,. # 0. By Lem-
ma 4.5, z =y~ x y is uniquely determined with this property.

(P6) This is a formal consequence of (P2) and (P3); see [20, 14.6].

(P7), (P8) This is clear by Lemma 4.5 and Remark 3.9.

(P14) This is clear by Remark 3.9. {

COROLLARY 4.7. We keep the hypotheses of Lemma 4.6. Let z € D
and A € A be such that z € 5. Then the constant n, = £1 is determined

by the formula
g, e xa(T,) =n, mod p.

Thus, n, s precisely the leading coefficient of a character value as defined
by Lusztig [19].

Proof. Since z € D, we have 22 = 1 and so z = w, (49, i) for a unique
ip € {1,...,dx}. Hence we obtain

e, e xa(T,) =&, ZeO‘A%” E cz \= cf‘;f\o mod p.

On the other hand, by (P5) and Lemma 4.5, we have n, =7, ., = CZZ‘);O, as
required.
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LEMMA 4.8. We keep the hypotheses of Lemma 4.6 and assume, in
addition, that x¢ € Irt(Hg) for every left cell € of W. Then (P13) holds
and we have

D={zecW|2*=1}.

Proof. Let € be a left cell of W. Let x € €. By Lemma 4.6, (P3) holds
and so there exists a unique d € D such that v,-1 , 4 # 0. By (P8), we have
d ~, x and so d € €. Thus, each left cell contains an element of D. Note
that the above argument also shows that (P13) holds, once we know that
each left cell contains a unique element of D.

Now, by Lemma 3.10, the total number of left cells equals >, ., da.

Thus, we have
D> da.
AEA
On the other hand, by a well-known result due to Frobenius-Schur, the
number on the right hand side is the number of all z € W such that 22 = 1.
(We also use the fact that every irreducible character of W can be realized
over R; see [14, 6.3.8].) Since d*> = 1 for all d € D by (P6), we conclude
that
D={zecW|2*=1}

and that € contains a unique element from D. 0

Finally, let J be the free abelian group with basis {t,, | w € W}. We
define a bilinear pairing on J by

by -ty = Z Vay,z-1 btz foralz,yeW,
zeW

where the constants v, , ,-1 € Z were introduced in Section 2.

PROPOSITION 4.9. Assume that (P4) holds. Then J is an associative
ring with identity 15 = .pn.t.. For any A € A, we set

J)\::<tw‘w€‘2)\>gl

Then Jy is a two-sided ideal which is isomorphic to the matriz ring My, (Z),
and we have J = @, I
We have t2 = n,t, for any z € D.

In Example 5.7, we will see that negative coefficients actually do occur
inljy.
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Proof. By Lemma 4.6, we know that (P1)—(P8) hold. Hence J can be
constructed as explained in [20, Chap. 18]. Now Lemma 4.5 immediately
shows that Jy is a two-sided ideal and so we have J = @, Jy. To estab-
lish the stated isomorphism Jy = My, (Z), we explicitly construct a set of
“matrix units” in Jy. This is done as follows. Let us fix A € A. For any
1<14,7 <dy, we set

E;J = " )\t where w = wy(i,7) and cg)\ =+l

Now let 1 < 4,j,k,l < dy and write x = wy(4,5), y = wx(k,l). Then we
have
k:l j j
zeW
Now Lemma 4.5 shows that the result will be zero unless j = k. So let us
finally assume that j = k. Then we obtain

i gl i3 gl
Ey-Ey =c, ,\C'; A Vz,y,20 20_1’

jl

= C;j,\cg], ,\Czo Az, y,zoE
where 29 := zxy = wy(l,i). By Lemma 4.5, the coefficient of E% in the
above expression equals 1. Thus, we have shown that

BY B = e L<ig k<

Hence, the elements E;\j multiply in exactly the same way as the matrix
units in My, (Z), which yields the desired isomorphism.

The formula for ¢2, where z € D, is obtained as follows. We have
t2 =y, uty—1 where x = zxz and 7, , » # 0. By (P2), (P6), (P7), we have
Yo,2,» # 0 and so © = 271 = 2. Then (P5) yields 7, , . = n, = +1. 0

Remark 4.10. We keep the setting of Proposition 4.9. Let us also as-
sume that y¢ € Irr(Hg) for all left cells € in W. Let z,y, 2 € W be such that
x,y,z € Ty for some A\. Then note that, by Remark 3.9 and Lemma 3.10,

the condition z = x * y is equivalent to the conditions x ~, vy~ y ~p 271,
z ~g 7', Thus, the multiplication rule in J can now be formulated as
follows:

+t,-1 ifx ~p yil, Y ~r zfl, zZr~r :1:*1,
ty -ty =

0 otherwise.
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Summarizing the results in this section, we see that for a normalized and
integral Iwahori-Hecke algebra, property (P4) (or the variant in Lemma 4.4)
implies all the remaining properties in the list of Lusztig’s conjectures except
(P9)—(P12) and (P15).

85. The a-function in the “asymptotic case” in type B,

Throughout this section, we place ourselves in the setting of Exam-
ple 1.1, where W,, is a Coxeter group of type B, and the weight function
L: W, — T is given by the following diagram:

t 81 82 Sn—1
Bn O—O0—O0O—  + —O b>m-1)a>0
{vs}: € e et e?

Let H,, be the corresponding Iwahori-Hecke algebra over A where V = e’ is
the parameter associated with the generator ¢ and v = e® is the parameter
associated with the generators si,...,s,—1 of W,,. Our aim is to see that
we can apply the methods in Section 4. In Corollary 5.5, we will be able to
show that the key condition (&) in Lemma 4.4 holds in the present setting.

We shall need some notation from [2]. Given w € W,,, we denote by
/;(w) the number of occurrences of the generator ¢ in a reduced expression
for w, and call this the “t-length” of w.

The parabolic subgroup &,, = (s1,...,S,—1) is naturally isomorphic
to the symmetric group on {1,...,n}, where s; corresponds to the basic
transposition (7,74 1). For 1 <l <n—1, we set X, := {s1,...,8n-1} \

{s1}. Forl=0o0r ! =n, we alsoset Xo,, = 2,0 ={s1,...,5,-1}. Let ¥},
be the set of distinguished left coset representatives of the Young subgroup
Sin—1 := (X n—1) in &,. We have the parabolic subalgebra H; ,,_; = (T}, |
0€61-1)a < Hn.

We denote by <,; the Kazhdan-Lusztig (left) pre-order relation on
S;n—1 and by ~,; the corresponding equivalence relation. The symbols
<Ry SCR ~R, and ~gr have a similar meaning.

Furthermore, as in [2, §4], we set ag = 1 and

a = t(s1t)(s2s1t) -+ (s1-181-2 - s1t)  for [ > 0.

Then, by [2, Prop. 4.4], the set Y} ,_;a; precisely is the set of distinguished
left coset representatives of &,, in W,, whose t-length equals [. Furthermore,
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every element w € W, has a unique decomposition
w= awalawb;1 where | = {i(w), 0w € 6y p—; and aw, by € Y n_;
see [2, 4.6]. With this notation, we have the following result.

THEOREM 5.1. (Bonnafé-lancu [2] and Bonnafé [3, §5]) In the above
setting, let x,y € W,,. Then we have x ~r y if and only if | := ly(x) = £(y),
by = by and o, ~z | 0y.

(In [2, Theorem 7.7], the above statement is proved in the “generic
asymptotic case”. As already discussed in Example 3.11, this remains valid
in the “asymptotic case” by [3, Cor. 5.2].)

We shall also need the following result on the elementary steps in the
relation <.

PROPOSITION 5.2. (Bonnafé-Iancu [2] and Bonnafé [3, §5]) In the above
setting, let x,y € Wy, be such that x < y. Then we have ly(x) = li(y) or

x =ty > y. In particular, we always have ¢ (y) < €(z). (A similar result
holds for «—x.)

(The precise references are Theorems 6.3, 6.6 and Corollary 6.7 in [2]
for the “generic asymptotic case”. In [3, Cor. 5.2], it is shown that, if
x «r y with respect to L: W,, — I', then we also have x «—, y with
respect to Lg: W,, — I'g as in Example 1.1. Hence the assertions hold in
the “asymptotic case” too.)

As discussed in Example 3.11, let A,, be the set of bipartitions of n.
Then the partition

W, = H T h2)
()\1,)\2)6An

is explicitly given by
Ta ) = {w € Wi, [ w belongs to an RS-cell of shape (A1, A2)}.
Furthermore, for w € Ty, \y), we have
=y 2g) = 0 [A2] + a(n(A1) + 2n(X3) — n(A2)).

Finally, we need the following result concerning the relation <,/x.
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THEOREM 5.3. (Bonnafé [3]) In the above setting, let x,y € W, be such
that | := £y(x) = £4(y). Then we have v <pr y if and only if 0p <pry oy.
Furthermore, the sets %y, x,), (M, \2) € A, are precisely the two-sided
cells of Wy,.

Using known results on the two-sided cells in the symmetric group
and the Robinson-Schensted correspondence, we can translate the above
statement into a combinatorial description of the relation <,r for W,. To
state this, we need to introduce some notation. Recall the definition of the
dominance order on partitions in Example 2.5. Following Dipper-James-
Murphy [6, §3], we can extend this partial order to bipartitions, as follows.

Let A = (A1, A2) and pu = (1, p2) be bipartitions of n, with parts

(2)

=000 20, =020 20),
=" =P =20, = e > >0

Then we write A < p if
Z)\gj) < Zugj) for all j
i=1 i=1
and } ,
A+ D08 <l + Do w o all j.
Note that, if |A1] = |u1], then we have
Adp <= M dpup and A D po,

where, on the right, the symbol < just denotes the usual dominance order
on partitions, as in Example 2.5. The following result is a refinement of [3,
Remark 3.7] (which only deals with elements of the same ¢-length).

PROPOSITION 5.4. Let x,y € W, be such that x <,r y. Assume that
x belongs to an RS-cell of shape (A1,A2) and y belongs to an RS-cell of
shape (p1, p2). Then we have

()\17 )\;) Sl (,ulv M;)v

with equality only if x ~rR y.
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Proof. Let w € W,, and write w = a,a;0,by," where | = £;(w). Now
the parabolic subgroup &;,_; is a direct product of &; = (s1,...,s,-1) and
Si+1,n) = (81415 -+ -+ 5n—1). Thus, we have

Ow = 0,0, Where g, € & and oy, € Gy ).

Since &; is a Coxeter group of type A;_1, the classical Robinson-Schensted
correspondence associates to o/, a pair of tableaux whose shape is a partition
of [, say vy. Similarly, since G4, is of type A, _, the classical Robinson-
Schensted correspondence associates to o), a pair of tableaux whose shape
is a partition of n — [, say v1. Then, by the discussion in [2, 4.7], we have

(#) w belongs to an RS-cell of shape (v1,v5).

Now consider the given two elements x,y € W, such that x <;r y. By
Proposition 5.2, this implies ¢;(y) < ¢;(z). In particular, z and y cannot lie
in the same two-sided cell unless z and y have the same t-length. We now
distinguish two cases.

Case 1. Assume that [ := l;(x) = ¢;(y). By Theorem 5.3, we know
that © <yr y implies that o, <ygr; 0y. Furthermore, it is well-known and
easy to check that the Kazhdan-Lusztig pre-order relations are compatible
with direct products; in particular, we have

/ / / " " "
0y SLR Oy and o, <,pp Ty,

where a single dash denotes the pre-order relation on &; and a double-dash
denotes the pre-order on &1 ,). Now (#) shows that

e o/ is associated with the partition A3,
e 0, is associated with the partition u3,
e o/ is associated with the partition A,
e 0, is associated with the partition j;.

Thus, we are reduced to statements concerning two-sided cells in the sym-
metric group. Now Example 2.5(e) shows that we have the implications

/ / / 7 / Z
0, Seroy = A Jps and oy <proy = A .

This yields (A1, A5) < (p1,p3) as required. Furthermore, if (A1, \5) =
(1, p3), then z ~,z% y by Theorem 5.3.
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Case 2. Assume that {;(y) < £;(z). By Case 1 and the definition of
<cR, it is enough to consider an elementary step, where ¢;(y) < ¢;(x) and
T,y or T «xy. Since w ~,yr w! for all w € W,,, we can even assume
that © < y, that is, hy s, # 0 for some s € {t,s1,52,...,5,—1}. Since
we are assuming {;(y) < ¢;(z), we must have s = ¢t and z = yt > y by
Proposition 5.2. Thus, it remains to consider the effect of multiplying with
t on the generalized Robinson-Schensted correspondence. We claim that, if
x =yt >y, then

e )\ is obtained from p; by decreasing one part by 1, and

e )\j is obtained from p5 by increasing one part by 1.

This is seen as follows. Recall the basic ingredients of the generalized
Robinson-Schensted correspondence. We write y € W, as a signed per-

mutation
1 ) n
€1°P1 €2:P2 - En-: Pn

where the sequence pq,...,p, is a permutation of 1,...,n and where ¢; =
+1 for all . The fact that ¢; = 1 follows from our assumption that yt > y.
Let 1 < i1 < ig < --- < i < n be the sequence of indices where the sign
is “+”7 and let 1 < j1 < j2 < -+ < 751 < n be the sequence of indices
where the sign is “—”. Applying the usual “insertion algorithm” to these
two sequences of numbers, we obtain a standard bitableau (A™(y), A~ (y))
of size n and shape (1, p2), where 44(y) = |ua| = 1.

Now let us multiply y on the right by ¢. Then the corresponding signed
permutation is given by

< 1 2 n )
—€1°DP1 €2°D2 ' En-Dn )

Thus, the only effect of multiplying by ¢ is to change the sign in the first po-
sition of the above array. Hence, in order to obtain the tableaux A (yt) and
A~ (yt), we must apply the insertion algorithm to the sequences p;,, ..., p;,
and p;,, pj,, Pjs, - - - » Pj;» Tespectively. Thus, we are reduced to a purely com-
binatorial statement. Using [9, §5, Prop. 1], one shows that the partition
giving the shape of A" (yt) is obtained from the partition giving the shape
of AT (y) by decreasing one part by 1. The same argument shows that the
partition giving the shape of A~ (yt) is obtained from the partition giving
the shape of A~ (y) by increasing one part by 1. (A much more general
statement can be found in [22, Theorem 4.2].)
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Now the definition of < immediately shows that, if (A1, A2) is obtained
from (p1,p2) by the above procedure, then (A1, A3) < (p1, 45) as required.
0

COROLLARY 5.5. Let x,y € W, be such that x <yr y. Then we have
oy < o, with equality only if x ~rRr y.

Proof. Assume that x belongs to an RS-cell of shape (A1, \2) and y
belongs to an RS-cell of shape (11, pu2). Hence, by Example 3.11, we have

Qe =0y and Ay = o ).

The description of the generalized Robinson-Schensted correspondence in
[2] shows that ¢,(z) = |A2| = N3] and l(y) = |pu2| = |u5|. Now, by
Proposition 5.2, the condition = <,g vy implies that ¢;(y) < ¢;(x).

Case 1. Assume that [ := ¢;(z) = {;(y). Then we have
A <pp oand NS <D

by Proposition 5.4. Now note the following property of the dominance
order. For any partitions v and v’ of n, we have

VAV = V< = nv) <n(),

with equality only for v = v/'; see, for example, [14, Exercise 5.6]. Using the
above property, we conclude that

n(ur) +2n(pz) —n(pz) < n(A1) 4+ 2n(A3) — n(Xz),

with equality only if (u1,u2) = (A1, A2). Hence, the formula for a,, shows
that ay < oz, as required. Furthermore, if a; = «, then we necessarily
have (A1, A2) = (1, p2), and so & ~,g y by Theorem 5.3.

Case 2. Assume that ¢;(y) < ¢;(x). As in the proof of Proposition 5.4,
we can reduce to the case where x = yt > y.

In this case we have a; — ay = b+ a(2r' —m —r), where m, r, v’ are
integers determined by the conditions:

M =™ =1 A =l 1, N =i

Now note that we have 2r' —m —r+n—1 > 0, hence o, > oy as desired. []
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Proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4. Let us recall the
principal ingredients. By Example 3.6, we know that H, is integral and
normalized. Furthermore, by the discussion in Example 3.11, the characters
afforded by all left cells are irreducible. Finally, the assumption (&) in
Lemma 4.4 holds by Corollary 5.5. Thus, we can conclude that

a(w) = an, ) (W E T ay))

The identification of Ty, »,) in Example 3.11 and the formula for ay, »,)
in Example 3.6 now yield the explicit description of the a-function of W,
proving Theorem 1.2.

Now, once the a-function is determined, condition (&) in Lemma 4.4
yields the implication “x <;r y = a(y) < a(x)” for any z,y € W, that
is, (P4) holds. But then Corollary 5.5 also yields the fact that, if x <yg y
and a(x) = a(y), then x ~,r y, that is, (P11) holds. Now Lemma 4.6 and
Lemma 4.8 show that all the other properties mentioned in Theorem 1.3
hold. As far as (P12) is concerned, note that every parabolic subgroup of
W, is a direct product of a group of type By and possibly some factors of
type Ap,. Since (P1)-(P15) are known to hold for groups of type A,,,, we
conclude that (P3), (P4), (P8) hold for every parabolic subgroup of W,.
This formally implies that (P12) holds; see [20, 14.12].

Finally, as explained in [20, 18.3], the ring J can be constructed once
it is known that (P1)—-(P8) are known to hold. The structure of J is now
determined by Proposition 4.9 (and Remark 4.10).

Remark 5.6. Bonnafé has remarked at the end of [3, §4] that, once
the equality a(z) = a, (z € W,,) is established, the methods in his paper
[3] yield properties (P1), (P4), (P6), (P11), (P12) and the first assertion
of (P13). However, it does not seem to be possible to gain control over
the constants 7, , . in his approach, and this is where the leading matrix
coefficients of orthogonal representations naturally come into play.

EXAMPLE 5.7. Let us consider the case n = 2, where Wy = (¢, s1) is
the dihedral group of order 8. We set sop = ¢. The polynomials P/, and
the left cells have already been determined by an explicit computation in
[17, §6]. The left cells are

{1}, {51}, {80,5180}, {5081,818081}, {808180}, {wo}
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where wg = $1505150 is the unique element of maximal length. Using the
polynomials P, we compute:

A(l) =0, ny =1,
A(s1) = a, ns, =1,
A(so) = b, ns, =1,

A(s15081) = b, Nsisoss = 1s
A(sps180) = 2b — a, Nspsyso = — 1,
A(wy) = 2b + 2a, Ny = 1.

In particular, we see that the coefficients n, can be negative. Proposition 4.9
shows that
t2 = —lsys,50;  see also Lusztig [20, 18.7].

S08180

There is a unique irreducible character x, of degree 2; it is labelled by
A =1((1),(1)). A corresponding orthogonal representation and the leading
matrix coefficients are explicitly described in [10, Exp. 5.5]. We have oy = b
and the representation X is given by

T T s Vv 0 T 1 v—vl 14+ VZ2
AT s 0o v’ o V241 [1+V22 Vi —ovl)
Thus, we see that cgf)\ = ci’lls()sl y = 1 and Ci(;lsl = ci’éo)\ = —1. We

conclude that
$150S51 :ZIUA(l,l), S$150 ::1UA(1,2), S0S1 ::1UA(2,1), S0 ::lUA(Q,Q).

Hence, Proposition 4.9 yields a ring isomorphism Jy = My(Z) where
1 0 0 -1
Lsisosy — 0 ol lsyso M ERE

t |—>00 tr—>00
s0s1 -1 0" 50 0 1|

Note that one also obtains an isomorphism Jy = My(Z) by sending the
above four elements ¢, directly to the corresponding matrix units (omitting
the sign in the matrices), as in [20, 18.7]. The signs arise from the con-
struction in the proof of Proposition 4.9 and the choice of the orthogonal
representation. Note that the latter is not unique: for example, one can
conjugate X, by a diagonal matrix with +1 on the diagonal.
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Proof of Theorem 1.5. Let us recall some ingredients of the construc-
tion of the Dipper-James-Murphy basis. Let A = (A1, A2) be a bipartition
of n; let (s,t) be a pair of standard bitableaux of shape A. By [6, §4], we
have x4 = Tyx\T,y where d, d’ are certain elements in &,,; the element x)
is defined in [6, 4.1]. Since N* is a two-sided ideal, we conclude that

N*= > HpzHn.

HEAR; A
We must show that N* = M?*, where we set

w corresponds to an RS-cell of shape

AL !
M™ = <C“’ v = (v1,v2) where (A1, A2) < (vo,v])

>A < H.

One easily checks that (vq,v5) < (A5, A7) < (A, A2) < (vo,v]) (using
the analogous statement for the dominance order on partitions; see [14,
Exercise 5.6]). Hence, by Proposition 5.4, M? is a two-sided ideal of H,,.
We now show that N* € M?*. Let p = (p1, u2) be a bipartition of n
such that (A1, A\2) < (u1, p2). Let I := |uq]. The element z,, is defined as the
product of three factors u;", z,,,, Z,. The formula in Bonnafé [3, Prop. 2.5]
shows that, up to multiplying by a monomial in V and v, the factor ulJr
equals T, Cy, where oy is the longest element in &; = (s1,...,s5-1). Fur-
thermore, by Lusztig [20, Cor. 12.2], we have x, z,, = Ul(w“)C{Uu where w),
is the longest element in the Young subgroup of &; ,,_; given by p = (11, pi2).
Finally, by [3, Prop. 2.3], we have C;, C,, = Cq,,, . Hence, we obtain

x, =Ty, C’(’llwu (up to multiplying by a monomial in V' and v).

By relation (#) in the proof of Proposition 5.4, ajw, belongs to an RS-cell
of shape (u5, 111). Hence, since (A1, A2) < (1, 2) and since M? is an ideal,
we obtain that z, € M A As this holds for all 4 such that A < u, we
conclude that N* C M*.

In order to show equality, we note that M?* is free over A of rank
>\« @2, where d,, denotes the number of standard bitableaux of shape
v. By [6, 4.15], N* is free over A of the same rank. Consequently, we
have Ko @4 N* = Ko ®4 M?, where K is the field of fractions of A. So
there exists some 0 # f € A such that fM* C N» C M*. Now, since the
generators of N* can be extended to an A-basis of H,, (see [6, §4]), the
quotient H,,/N A is a free A-module. Hence, M* C N* and the conclusion
follows.
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