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To the memory of TADASI NAKAYAMA

Class field theory determines in a well-known way the higher dimensional

cohomology groups of the ideles and idele classes in finite Galois extensions

of number fields. At the Amsterdam Congress in 1954 I announced [7] the

corresponding result for the multiplicative group of the number field itself,

but the proof has never been published. Meanwhile, Nakayama showed that

results of this type have much broader implications than had been realized.

In particular, his theorem allows us to generalize our result from the multi-

plicative group to the case of an arbitrary torus which is split by the given

Galois extension. We also treat the case of "S-units" of the multiplicative

group or torus, for a suitably large set of places S. It is a pleasure for me to

publish this paper here, in recognition of Nakayama's important contributions

to our knowledge of the cohomological aspects of class field theory his work

both foreshadowed and generalized the theorem under discussion.

Notations, and the plan of the proof. Let L be an algebraic number

field of finite degree, or an algebraic function field of one variable over a finite

constant field, and let K/L be a finite Galois extension with group G. By a

place of K we mean an equivalence class of non-trivial absolute values, archi-

medean or non-archimedean. Let 5 be a set of places of K satisfying the

following conditions:

(51) S is stable under G.

(52) S contains all archimedean places.

(53) S contains all places ramified over L.

(54) 5 is large enough so that every ideal class of K contains an ideal

with support in S.
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Note that we do not assume that 5 is finite, and that the conditions aie

automatically satisfied if 5 is the set of all primes of K, a case which is

certainly of interest in what follows.

We wish to study the Galois cohomology of the following exact sequence

of G-modules

(A) 0—>E-^]-^C—>0,

in which *

E is the group of 5-units of K, that is, elements of K which are units at

all places P not in S.

/ is the group of S-ideles of K, that is, ideles whose P-component is a

unit for each place P not in 5.

C is the group of S-idele classes, which in view of condition (S4) is iso-

morphic to the group of all idele classes of K.

We will compare the cohomology of (A) with that of a simpler sequence,

which we denote by

(B) 0—>X—>Y—>Z—>0.

Here:

Z is the group of integers, G operating trivially.

Y is the free abelian group generated by the places P in S> an element

s e G operating by the rule

s( Σ nPP) = Σ nP(sP) = Σ n{S-^P.

X is the kernel of the map b which takes an element

y = Σ nPP into its coefficient sum, ΣnP.

Clearly X is a G-submodule of Y, and (B) is an exact sequence of left G-

modules. Perhaps we should make precise that we are letting G act on places

of K according to the convention |c | s p= |5~V|p, for c^K, where c*->\c\P is an

absolute value belonging to the place P; thus the rule s{tP) = (st)P holds for

S,tGΞG.

Our object is to show that the cohomology sequence derived from (A) is

isomorphic to that derived from (B), after a dimension shift of two; that is,



THE COHOMOLOGY GROUPS OF TORI 711

we want to construct a commutative diagram

->Hr(G,X) —>Hr(G,Y) —>Hr(G,Z)

(1) \al Jαί j«ί

in which the vertical arrows ar

if for i= 1, 2, 3 and - °o < r< °o, are isomor-

phisms. Here, and throughout this paper, Hr{G, M) denotes the modified co-

homology groups of the finite group G operating on the G-module M, which

are in general non-trivial in negative dimensions, and which are denoted by §f

in [2, Ch. 12] and in [5, Chs. 8 and 9], where their properties are discussed.

The homomorphisms ccri will be given by cup product with certain co-

homology classes

(2) a3<=H2(G, Hom(X, E)), a2^H2(G, Hom(Γ,/)), and ai<^H2{G, Hom(Z, C))

which we are soon going to define. Here and throughout this paper, "Horn"

denotes abelian group homomorphisms we use "Homo" to denote G-module

homomorphisms. If M and N are G-modules, then we make Hom(M, N) into

a G-module by putting (sf) (x) = s(/(s~V)) for SZΞG, f e Horn (Λf, N), and

ΛΓGM. Then the rule (sf)(sx) =s(f(x)) holds, so that the canonical pairing

(3) Hom(M, N) x M—>N

is a G-pairing and does lead to cup products

HS(G, Hom(M, N)) xiT(G, M)—±Hs+r(G, N).

Thus, any three cohomology classes oa as in (2) will lead to a d iagram ( l ) in

which ccri(ξ) = oci U ξ.

In order that the diagram (l) be commutative it suffices that the three

classes cu be the images of one single canonical class

(4) a e # 2(G, Hom((B), (A))),

under the three maps m in the following commutative diagram

0

Hom((B), (A)) — >Hom(Z, C)

5 Hom(F, /)—'-^UHOΠIC Y", C)

α,β') . . .

', -E) >Hom(X, /) >Hom(X, C)
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here Hom((B), (A)) is the group of triplets / = (/i, f2, fa) of homomorphisms

fi of abelian groups such that the following diagram is commutative

V b

0—>X—> Y—>Z—»0

α, α

0—>E—>/ —>C—-*0,

and the homomorphisms M, are defined by «,-(/) =// for /= 1, 2, 3. An arrow

in (5) marked (v, w) carries a homomorphism / into wofov. If α is any class

as in (4) and we put oα = Uj(α) then we have

(6) αrι(ξ) =α, U f - α U f , for / = 1, 2, and 3,

and the commutativity of the resulting diagram (l) results from the basic

functorial properties of the cup product; the point is that the single group

Hom((B), (A)) is paired compatibly with the whole sequence (B) into the

sequence (A).

The method by which we will construct α is as follows. From global

(resp. local) class field theory we get first a canonical class α\ (resp. <*2) as

in (2) such that the arrows α[ (resp. αr

2) in (l) are isomorphisms for all r.

Then, using the relationship between the local and global class field theories

we show that there exists a unique class oc as in (4) such that oα = Ui{α) for

ί = l, 2. Putting oca= uAαc) we finally obtain a commutative diagram (1) in

which, by the five lemma, all vertical arrows are isomorphisms.

Construction of α\. We let αi be the image under the canonical isomor-

phism C:rHom(Z, C) of the fundamental class in H2{G, C) cf. [1], [3]. It is

well known that the maps oc\: Hr{G, Z) -> Hr+2{G, C) produced by cupping with

ai are isomorphisms for all r\ cf. [4], [5], Cβ].

Construction of a2. Let us first recall some facts about the functors M

Hr{G, M) which we will use. Since these functors can be viewed as cohomo-

logy, they commute with direct products but since they can be viewed equally

well as homology, they commute with direct sums and injective limits as well.

Shapiro's lemma, which relates the cohomology of a group to that of a sub-

group, can be stated as follows: Let G be a finite group, Gι a subgroup and

G= {Jts=τtGι a partition of G into cosets of Gu Let M be a G-module, Mx a
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Gi-module, and

M^ztMi
i

a pair of Grhomomorphisms such that j° i is the identity on Mx and such that

M=Σtt=τtiM1, direct sum. Then the two maps

yores
Hr(G,M) ^±Hr(Gu Mi)

coroί

are mutually inverse isomorphisms, where res denotes restriction and cor de-

notes "corestriction" or "transfer". The fundamental relation between transfer

and cup products is

(7) α: U cor/3 = cor (res a: ϋβ),

which holds for any G-pairing and any subgroup d of G, where a is a G-

cohomology class in the first factor of the pairing and β a Gi-cohomology class

in the second. Finally we note that we are systematically using the same

letter to denote the induced homomorphism on cohomology as denotes the G-

homomorphism by which it is induced.

For each place P of K, let GP denote the corresponding decomposition

group, that is, the group of all s <Ξ G such that sP = P, and let Kp denote the

completion of K with respect to the place P. For each P in S1, let

Z-->Fand Kt-^J

denote the canonical injections, the first of which is defined by if

P(n) = nP, and

the second of which maps a non-zero element of KP onto the idele having that

element as P-component and having 1 as its component at all places other

than P. Then ΪP and iP are G^-homomorphisms and so also, for any G-module

My is the projection

j P : Hom(Y,M)-*M

defined, for P in 5, by > ( / ) =/(P).

Let 5^ denote the set of places of L which lie below the places in S, and

let h' S* -»S be a function which assigns to each place Q in S* a place P

lying over Q.
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LEMMA. For any G-module M there is a canonical isomorphism

Hr{Gy Hom(F, M)) ~_> Π Hr(Gh{Q), M)

which attaches to an element θ on the left the element of the direct product whose

Q-component is j^Q) ° res(0) for each ζ ) e S*.

Note that Y is the direct sum of the G-modules YQ = Σ φ Z P . Accordingly,

we have

Hom(Γ,M)~ΠHom(F g , M).
Q

Now recall that cohomology commutes with products, and apply Shapiro's

lemma to the situation

j
Hom(Fg, M)^±M,

where j{F) =f{h{Q)) and where (i(x))(ΣnPP) = nh{Q)x for * e M Shapiro's

lemma applies, because any two primes of K lying over the same prime of L

are in the same orbit under G.

In view of this lemma we can define α2 to be the unique element of

H\G, Hom(F, /)) such that, for each Q G S * we have

(8) jh(Q)(res a2) = ihwahM in H\GH(Q), J),

where for each place P of K we let aP denote the local fundamental class in

H\GPy KIT).

The class a2 defined by (8) is independent of the choice of the function

h indeed we have

(8') /P(res α2) = ipccp in H\GP, J)

for every place P in S. Let P=th(Q), with t<=G. The automorphism t acts

on the whole situation under consideration, which is derived functorially from

the field K. If we apply t to (8) we obtain

jP res(^α2) = ιV(f#α:*<ρ>)

where Uacz is the image of α2 by transport of structure under the automor-

phism (G, /) -» (G, /) defined by (5, x) (tst~\ tx) and where t*ccP is the image

Of aha) by transport of structure under the isomorphism (Gh(Q),KhiQ)) ~* (Gp, KV)
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defined similarly. But it is a well-known fact about the cohomology of groups

that t*oc% = a2, and we have t*ahiς» = ccP because the fundamental class of local

class field theory is canonical. Formula (80 results.

Proof that ocrι is an isomorphism. We shall prove more, namely that the

following diagram is commutative.

II IT (G* w , Z) ——>H r(G, Y)

Jζf(β)) - ^ Hr+\G, J).

The sign II denotes direct sum. The left hand vertical arrow is an isomor-

phism because for each place P of K the cup product with aP gives an iso-

morphism ar

P: H
r(Gp, Z)^+Hr+2{GP, K*)9 cf. [4], [5], [6]. The top horizontal

arrow if is induced by the maps

. cor of p
Hr(Gp, Z) —• Hr(G, Ϋ),

for P-h{Q)\ it is an isomorphism because Y is the direct sum of the YQ,

and Shapiro's lemma applies to the situation ip' Z -* YQ. The bottom hori-

zontal arrow i is induced by the maps

for P=h{Q), and is well known to be an isomorphism. For completeness we

sketch the proof. We have

/=lim/(SΌ)
So

where So runs over the family of finite subsets of S#, ordered under inclusion,

and where /(SO) is the group of ideles whose components are units at the

places P above SO that is,

J{So) = Π JQ x Π UQ

where

*, and UQ = Π

ί/p denoting the group of units in KP, Now use the commutativity of
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cohomology with products and injective limits, apply Shapiro's lemma to JQ

and UQ, and recall that Hr(GP, Up) = 0 for all r when KP/LQ is unramified,

which is the case for all but a finite number of places Q of L.

To prove the commutativity of (9) it suffices to show

α2 U (cor i'tξ) = cor iP(aP U ξ)

for each P = h(Q) and each ξ(ΞHr(GP,Z). By (7) the left side is equal to

cor (res oc2 U i'pξ), and we have

res a2 U iPξ - (jP res a2) U f = (zVαrp) U £ = ZVUP U 6).

The two extreme equalities come from the functorality of cup products and

the middle one from (80.

Construction of a. From the upper part of diagram (5) we obtain a

sequence

(10)

/ (M)\

0—>Hom((B), (A)) —> Hom(Z, C)xHom(F,/) —-* Hom(F, C) —^0

which is easily seen to be exact. On the left and in the middle the exactness

follows formally from the definition of Hom( (B), (A)) and the exactness of

(5). At the right the exactness results from the fact that Y is Z-free, so that

the homomorphism (1, a): Hom(F, /) ->Hom( Y, C) is surjective. Now con-

sider the exact cohomology sequence derived from (10). In order to show that

there is an a^H2{G, Hom((B), (A))) such that Uι(ac) = ocχ and u2(a) =ar2 we

have only to show that

(11) (ί, 1WI = (1, a)ecu in H\G, Hom(F, O).

Moreover such an a is unique if it exists, because by our lemma,

H\G, Hom(r, O ) - Π HHGHIQU C) = 0.

By the same lemma, to check (11) it suffices to check

( U P ) jPres(b,l)ai=jpres(l,a)(xu in H2{GPf C)

for each place P G S . This boils down to showing

(12) resaci = a(jPresa2), in H2(GP, C),
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which is a problem concerning the relation between local and global funda-

mental classes in the extension K/L' whose Galois group is GP. Let Q' denote

the place of L' below P. The local degree of K/L1 at Q' is equal to the global

degree, nf = [_K: L\ and P is the only place of K above Q'. Since restriction

carries fundamental class into fundamental class, the left side of (12) is the

global fundamental class for K/L', and has therefore the invariant 1/n1. On

the other hand, by the definition of α2, the class jP res a2 in H2(Gp, J) has

invariant l/nf at Q' and 0 at all other places of ZΛ The sum of these in-

variants, namely l/n\ is the invariant of the right side of (12); hence (12)

is true.

The generalization to tori. Let M be a torsion free G-module. Let

(A)<S>M (resp. (B)0M) denote the result of tensoring the exact sequence (A)

(resp. (B)) with Mf over Z. Since M is torsion free, these new sequences are

exact. We let G operate on them by the rule s(x®y) = sx®sy. Then the ob-

vious pairing

Hom((B),

is a G-pairing, and the cup product with the canonical class a just constructed

gives the vertical arrows in a commutative diagram

• —> Hr(G, X®M) —> Hr{G, Y®M) —> Hr(G, Z®M) —>

ω I 1 I
• - ^ i T + 2 ( G , E®M)—>Hr+2{G,J®M)—>iT+2(G, C®M)—>

analogous to (l) = (lz).
THEOREM. The vertical arrows in (1M) are isomorphisms.

By Nakayama's theorem [4], [5] we have only to check that they are iso-

morphisms when M = Z, but with G replaced by an arbitrary subgroup G1 of

G. This follows from what we have proved, together with

PROPOSITION. Let Gf be a subgroup of G. The canonical class

α:'e#2(G',Hom((B), (A))) is the restriction of a.

By the definition of a and a' via the exact sequence (10), it suffices to

prove the proposition with a replaced by ca and α2. For αi, this is just the

basic property of global fundamental classes to be carried into each other by
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restriction. To check the statement for 0:2, we let the symbols n denote the

restrictions indicated by the diagram below then for each

G
rt/\n

Gp\n u/G

place P in S we have

jpYxnoci = jpnr2oc2 = njPr2a2 = niPaP = iPnap.

This shows that <x[ = na2 as required, because nccp, the restriction of the local

fundamental class for GP} is the local fundamental class for Gp.

Let N be a Z-module of finite rank d> on which G operates, and put M =

Hom(iV, Z). Then for every G-module C we have a canonical isomorphism

M® C x. Hom(iV, Z) Θ Horn(Z, C) ^ Hom(ΛΓ, C).

Thus, we can reinterpret the G-modules in (1M) as modules of homomorphisms

rather than as tensor products in this case. In particular, we can interpret

Hom(iV, E) as a group of points on a certain group scheme. Let R be the

ring of elements of K which are integers at all places P not in 5, and let

i?o = i ? n i = i?G. Our conditions (S3) and (S4) on S amount to saying that R

is etale over RQ, and that R is a principal ideal ring. Let A = RLNl be the

group ring of N over R, and let AQ = AG, where G operates on A by the rule

s( Σ rxx) = Σ (srx) (sx) = Σ (sr$-i*)x

Since R is etale over RQ, the canonical homomorphisms

(13) Ao®R-*A, and

are isomorphisms. In virtue of the second of these, the homomorphism of R-

algebras A-+A®A^RLNxN'] which is induced by the diagonal homomor-

phism of groups N-*NxN induces a homomorphism of i?o-algebras

This homomorphism gives a law of composition on the i?o-scheme T= Spec (̂ 4o),

by virtue of which T becomes a commutative group scheme. We have, in
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view of the first of the isomorphisms (13),

where Gm,R denotes the multiplicative group scheme over R, because

as soon as we forget the operation of G. Thus, T is a "twisted torus of di-

mension d, defined over Ro, and split by the unramified extension R". The

group of points on T rational over R is

T(R) ^HomΛ.aiββbr«β (2?DV3, R) - Hom G r o α p s (TV, E),

because E is the group of invertible elements in R. Thus the theorem above

gives a description of the Galois cohomology groups of the torus T for the

extension R/RQ, in terms of the character module N of T\ from the point of

view of algebraic groups, Nakayama's theorem [4] gives a standard procedure

for generalizing theorems on the cohomology of Gm to arbitrary tori.
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