CHERN CLASSES OF PROJECTIVE MODULES
HIDEKI OZEKI"

Introduction. In topology, one can define in several ways the Chern class
of a vector bundle over a certain topological space (Chern [2], Hirzebruch [7],
Milnor [9], Steenrod [15]). In algebraic geometry, Grothendieck has defined
the Chern class of a vector bundle over a non-singular variety. Furthermore,
in the case of differentiable vector bundles, one knows that the set of differ-
entiable cross-sections to a bundle forms a finitely generated projective module
over the ring of differentiable functions on the base manifold. This gives a
one to one correspondence between the set of vector bundles and the set of
f.g.-projective modules (Milnor [10]). Applying Grauert’s theorems (Grauert
[51), one can prove that the same statement holds for holomorphic vector
bundles over a Stein manifold.”

The purpose of the present paper is to give the Chern class of a f.g.- pro-
jective module as an element of the de Rham cohomology of the ring. Thus
we establish a completely algebraic treatment of the above cases. Our method
of defining the Chern class is the same as that used in differential geometry;
thus we obtain a differential geometric approach to the study of projective
modules.

In Section 1, we introduce the notion of the trace and its symmetrized
form on a finitely generated projective module. For each finitely generated

projective module » with constant rank, we construct an exact sequence :
0-End (v) > N(v) > D(R) >0

where D(R) is the set of derivations of the ring R and N(v) is the set of
differential operators. This sequence will play a fundamental role in this paper

in achieving a differential-geometric approach to the study of projective
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modules. Section 3, Section 4 and Section 5 are devoted to a study of the de
Rham cohomology of certain types of Lie d-algebras (Palais [13]). Since we
deal with projective modules over an arbitrary commutative ring, special types
of multiplications on alternating forms are needed to avoid the use of divistion.
We have omitted the details of several proofs. In general the calculations are
similar to those found in differential geometry.

Section 5 contains the basic notion of connections in projective modules.
In Section 6 we define the Chern class using the curvature form of a connection,
and prove the product formula, which is the characteristic property of Chern
classes. In our definition, the Chern class depends on a connection, but the
independence of such a connection is proved in Section 7, thereby reducing the
problem to the case where the module is free.

We would like to remark here: if the ring contains rational numbers, then
the independence of characteristic classes on connections can be proved in a
way analogous to the differential geometric proof given by Weil (Chern [2],
Kobayashi and Nomizu [8]).

The author gratefully acknowledges that the present work was motivated

by the suggestion of the late Professor A. Shapiro.

Section 1. Projective modules and endomorphisms

Let R be a commutative ring with a unit. An R-module v is called projective
if every diagram
v
{
w—>u—0
of R-modules, in which the row is exact, can be imbedded in a commutative

diagram

v
v

w—> u—>0.

It is well known that an R-module v is a finitely generated projective module
if and only if it is a direct summand of a finitely generated R-free module (cf.
Cartan-Eilenberg [1]).

From this we see,
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Lemma 1. Let v, v1, and v2 be f.g-projective modules over R. Then Hom

(v, R), A", v1+ 05, 1: @ v, and Hom (v, v2) are f.g.-projective.

An R-module M together with an R-homomorphism; MQM xQy - [x, yleM
is called a Lie algebra over R if it satisfies 1) [x, ¥1=0, ii) [[x, y], 21+ [Ly,
2], x1+[[z %], y1=0 for any %, ¥, 2 M. ii) is called Jacobi’s ideutity.

For any R-module v, set

L(v) = Endg(v).

L(v) is a Lie algebra over R by [f, gl= f-g—g-f for f, geL(v).

Let v be a f.g.-projective module over R. We shall define the trace for any
element f in L(v). Let v’ be another f.g.-projective module such that »+¢' is
free with a base e, . .., e.. Denote by = the projection of » + ' onto v. For
f € L(v), we have fere L(v+9'). fer will be expressed in a matrix form
(aij) by

(fem)(e) = 2aijej.
We set
Tr(f) =Tr(f : v) = Nai.

The following is clear: 1) Tr(f) does not depend on the choice of a base e,
.,enin v+, 2) Tr(f) does not depend on the choice of such . Thus

we have an Rhomomorphism of L(v) into R.

LemMma 2. Tr satisfies

1) Tr(1 : R) =1. where the first 1 denotes the identity mapping of R.

ii) Tr(Lf, g1: 9) =0 for auy f, g L(v).

iii) Given an exact sequence 0— vi— v->v2~0 of f.g.-projective modules over

R and fi€ L(v)), f € L(v), fo€ L(vs) such that

V0>V,

nlr e

1}1_‘52)_)1)2

commutes, then
Tr(f : v) =Tr(f; : 2/1)+Tr(fz D).

The properties ii) and iii) can be reduced to the case where every module
is free. Then they can be seen easily. On the other hand, it can be shown
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that the three properties in Lemma 2 characterize the trace completely.

Lemma 3. Let vy, and v, be f.g.-projective modules over R. For f < L(v)
and g< L(v;), we have

Tr(f®g; 11®@v) =Tr(f : v)Tr(g : v).

The problem can be reduced to the case where »; and v, are free. Then it is

well known.

We shall define a symmetric #-form P, on L(v) for any f.g.-projective

module v over R. For fi, ..., fs in L(v), consider the mapping

chc(l) R ®fa(n)

where ¢ runs through all permutations of #-letters. One can see that this

induces an R-homomorphism of A" into A™v.

By definition,
Pu(fi, ..., fn:v)=trace of 2foy® * * * Qfoim on A'w.

Obviously P,(fi1, . . ., /s - v) is symmetric with respect to f, . . . ,/a.

LemMmaA 4. Let v, and v, be f.g-projective modules. For f; in L(v)) (i=1,

2 ...,k and giin L(vy) (i=1,...,1) we have

Poiilfi, e o o s fry &1 v -« » &5 Ui+ 0) =Pulift, - o f2s v P&y, - .., &5 v).

This follows from the fact that 4*(v; + v») is isomorphic with 334 (v;) @ A" ()

and from iii) of Lemma 2.

LemMma 5. Let v be a f.g.-projective module over R. For any g in L(v) and

for any fi in L(v) (i=1,2,...,n), we have
EiPn(fl, c e ey [g,fil PR ,fn)=0.

Now suppose v is free with a base e, ...,es. Then L(») is also free

with the base (E;;) where Ejj*er = djrei.
LemMma 6. Pp has the following expression on a free module:

Pelfu oo fe) = 2 -ESign(;)a},h' " @

=< <ig=n ( 1')
7

for fi = 2ajEjr.
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Lemma 6 can be verified directly from definitions.
Lemma 5 can be reduced to the case where v is free. Then it will be
checked for each base E;;.

Remark 1. Lemma 5 is a classical fact when » is a vector space over the
field of reals or complexes. Since P, and the bracket operation are defined
over Z, one sees Lemma 5 holds on any Z-free module. Then it is easy to see

that it is true for any ring.

Remark 2. On the free module v, we have the notion of the characteristic
polynomial Slaxt* for f € L(»). One has

Pf, ..., f)=k ax(-1)"

For a free module, the cardinality of a base is called its rank. We know
that every f.g.-projective module over a local ring (not necessarily Noetherian)
is free (cf. Northcott [12]). A f.g.-projective module over R is said to have a
constant rank if the rank of a localized module (v)p =v® R» does not depend

on the prime ideal p of R.

Remark 3. If v, v, and v, are f.g.-projective modules with constant ranks,

then Hom (v, R), A", v1+vs, v:® v, and Hom (v, »:) have constant ranks.

LemMma 7. [If v is a f.g-projective module with constant rank, then the map

j: R->L(v)
defined by j(r)p=rp for rE R, p< v, is injective unless v =0.

Proof. Let I be the kernel of j. One can see that the ideal I satisfies:
I®Q Ry =0 for any prime ideal p of R. Thus we have I'=0 (see Northcott [12]).

Hereafter we shall identify R with the image of j in L(v) if » has a constant
rank.

Let £ and R be commutative rings. R is called a k-algebra if a ring
homomorphism of % into R is given which maps the unit in %2 to the unit in R.
Thus any ring is a Z-algebra.

Let R be a k-algebra. A k-endomorphism X of R as a k-module is called

a k-derivation of R if

X(res) = X(r)+*s+ 7+ X(s) for any 7, s in R.
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The set of all k-derivations of R will be denoted by Dr(R), or simply D. Dr(R)
forms a Lie algebra over ¢ by [X, Y1=X-Y—-Y-X for X, Y= Dr(R). Di(R)
forms also an R-module by

(sX)(r) =sX(r)

for s, r€ R, X< Dr(R).
For any R-module », Endi(v) forms a Lie algebra over 2 by [a, fl1=a*B
— Bra. Set

Ni(v) ={a in Endr(v): For any r € R, there is some s€ R
such that [a, 71=s}

where 7 and s denote the mappings of v.
Consider the case where v =R. By the definition, we see Di(R)C Ni(R).
For any a € Ni(R), set

X=a—a(l),

where a(1) stands for the mapping of R multiplying the element «(1) in R.
One can check easily X< Dr(R). Thus we see Ni(R) = R+ Di(R).

Example 1. Let v be a f.g.-free module with a base e;, . . ., es. For each
X e Di(R), consider the endomorphism X of » defined by

X(Xrie)) =2 (Xri)-e;.
We have X< Ni(v), and for any rE R,

Suppose that » is a f.g.-projective module with constant rank. By Lemma
6, the map R— L(v) is injective. For any a < Ni(v), consider the k-endomorphism
0(a) of R defined by

0(a)(7) =[a, 7] rER

where the right hand side is considered an element in R.

LeMMA 8. Let v be a f.g-projective module over R with constant rank, and
R be a k-algebya. We have

i) [Ne(v), Ne(v)1< Np(v), thus Ni(v) is a Lie algebra over k.

ii) [Nk(v), L(v)]1< L(v), thus L(v) is an ideal of Np(v).
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iii) The mapping 6 maps Ni(v) into Di(R) and gives a homomorphism of
k-Lie algebras.
iv) [ra, fl=rla, 1+ (6(a)r)B, for rER, a, B Ni(v).

They can be verified from definitions.

ProrosiTiON 1. Let v be a f.g.-projective module over R with constant rank,

and R be a k-algebra. We have an exact sequence

[/
0—>L(»)—>Ni(v)—> Dp(R)—0
of R-modules, and of k-Lie algebras.

Proof. 1t is clear that they are homomorphisms of R-modules and, at the

same time, of k-Lie algebras. We see that
0->L(v)> N(v)->D

is exact from definitions. We shall show the exactness of N(v») > D-0. Take
another f.g.-projective module »' such that v+ ¢' is free. Let 7 be the projection
of v+ ' onto ». As we have shown in Example 1, Nx(v + 2') » D is onto. Let
X be any element in Dr(R). We have a B in Ni(v+ ') such that [8, 7] = X(7)
for any r= R. Consider the endomorphism « of v defined by

a=m"f.
Let r= R. We have
[a, 71=nBer—renB
=B, 7]
=7X(r)

since [n, r1=0. This shows [a, 1= X(7) onv. Thus N(v)—> D is onto. Q.E.D.

Section 2. Multiplications of alternating forms

Let M and L be arbitrary R-modules. We denote by A”(M, L) the set of
all alternating »n-forms on M with values in L. A"™(M, L) forms an R-module
in the usual way. One sees also that A”(M, L) is nothing but Hom(A"M, L)

where A" is taken over the ring R. Set
AM, L) =3 A"(M, L).

We shall define several types of multiplications on the graded module A(M, L)
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in the case where L is just R or where L is a Lie algebra over R.

Let @ be a finite set. We denote the group of all permutations of @ by
G(Q), or simply by G(») if the number of elements in @ is #. The multiplica-
tion in the group will be viewed as composition of mappings. Let (Qj)i=1,
..., 1; 7=1,2,...,ni. By definition,

H@Q,...,Qu; Q,...,Qn; ...)

is the subgroup of G(Q) consisting of those elements which, for each 7 map

Q' onto some Q% For example
J

H((1); (2); ... ; (n))=the identity
H(1,2,...,n)=H1), 2),...,(n)=Gn).

Let M be an R-module. To each element p in G=G(1,2, ...,n), we
associate a mapping, denoted by the same letter p : (M, ..., M)> (M, ...,
M) by

p(a;, e, @n) = (ap(l), ey apm)).

Lemma 1. Let A be an n-linear mapping of M into another R-module.

Suppose that, for a certain subgroup H of G(n), we have
sign(p)-Ap=A
for any p in H. Then, the map [A], defined by
(Al ay, . . ., an) =) sign(p)-Aplay, . . ., an))
where p runs through the right cosets of G mod. H, is skew-symmetric.

Proof. First note that the value sign(p)-A(p(ay, ..., ax)) does not

depend on the choice of representative p of a coset because of the assumption.
Let g be in G(n#). We have

[Ag(ay, . .., an)
=>sign(p)+A(p+qg(ay, . . ., an))
= sign (g)+>)sign (p+q)-A(p-qlay, . . . , an))
where p runs through the cosets, p+g runs through the cosets. Thus [A]is

skew-symmetric.

a) Interior product. Let M and L be arbitrary R-modules. For each ¢ in

M, we define a map
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ia : A"(M, L)>A""(M, L)

(a]-) (iaA)(bl, e e ey bn—l) =A(a, b;, e ey bn-l)
and
12A=0 if n=0.

Remark. For A in A™(M, L), we have
icA =0 for all @ in M if and only if A=0.

b) Exterior product A. Let M be an arbitrary R-module. Consider A(M,
R)=3JA"(M, R). We define, for A in A*(M, R) and Bin A'(M, R),a (k+1)-
form AAB by

(b.1) (AANB)(ay, . .., ak)
=>sign (p)* Algpy, - « -, Gpiky) *Bl@pirny, - - « 5 Bpikesy)

where p runs through the cosets of G(1, ..., k+1!) modulo H(1,...,%);
(B+1, ..., E+D).

From Lemma 1, we see AANBe A¥"'(M, R). Clearly (A, B)>AAB is

R-bilinear. Moreover, from the definition, we have
(b.2) ANB=(-D"BAA.
We have, for any A, B, C,
(b.3) (AANBYAC=AN(BAOC).
To show this, we shall show first
(b.4)  ((AAB)AC)ay . .., an)
=>sign (P)A(pQ1), ..., pE))B(p(k+1),...,)C(,...,p(n)

where p runs through the cosets of G(n) H((1,...,k); (B+1,...,k+1);
(,...,n)) and where n=deg. A-+deg. B+deg. C, and ¢ stands for ai.
Proof.
((AANBYANO, ... ,n)
=Dsign (P)(AAB)(p(1), ..., p(k+DC(p(E+1+1),...,p(n)),

where p runs through the cosets of G(%) modulo H((1,...,k+0D; (,..
7)), We have

2
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(AANB)(p(1), ... ,P(E+1))
=>sign(g)*Algp(1), ... ,qp(k))Blgp(E+1)), ..., qp(n))

where ¢ runs through the cosets of G(p(1), ..., p(k+1)) modulo H((p(1),

Lpk)); (,...,p(n)). One sees that if ¢’ runs through (B+1, ...,
E+1); (,...,n)), then g=pg'p™" runs through the required cosets. Now it
is easy to see the rest of the proof.

Now we can see that the same formula holds for AA(BAC), and the
results are the same. Thus we have (b.3).

Remark. The same formulas as (b.4) can be seen for A, - -+ A,. Now by
(b.3), we see that A(M, R) = > A"(M, R) forms a graded ring over R by the

multiplication 4.

(b.5) For any a in M, and for A in A™(M, R), B in A¥(M, R), we have
i(ANB) =i,(A)ANB+( —1)"ANi(B).,

ie. iz is a derivation of order — 1.

The proof is just a direct verification from definitions.

¢) n-th power A™. Let M be an R-module, and A be in A (M, R). When
deg. A=1is even and positive we can define an #-th power of A for any .

By definition, A” is an #l-form defined by

(c.1) A™ay, ..., an)
= Esign (j))'A(ap(]), « e oy ap(l))A(ap(zﬂ), v e e ) M 'A( b ‘ap(nl))
where p runs through the cosets of G(1, . .., nl) modulo H((1, ..., k&), (I+1,

e 2D, 000, (e, m)).
By Lemma 1, we see easily that A" is skew-symmetric.

Suppose A and B are in A (M, R) where [ is positive and even. We have:

(c.2) n! A"=AN -+ ANA (ntimes)
(c.3) (A+B)"=A*AB"*
(c.q) i(A") = i,(A) N A" for any a€ M.

They can be verified easily.

d) [,]. Let M be an R-module, and L be a Lie algebra over R. For A
in A*(M, L), B in A"(M, L), we define a (k+1)-form [A4, B] in A*"'(M, L) by



CHERN CLASSES OF PROJECTIVE MODULES 131

(d.]-) [A) B](ah e o oy ak+l)
=Esign (p)[A(ap(l), o« o0y ap(k)), B( 9 o 0 oy ap(k+l))]

where p runs through the cosets of G(1, ..., k+1) modulo H((1, ... ,k);
(B+1,...,EB+D).
We have:
(d.2) [4, B1=(—-1)"[B, Al
(d.3) [A,[B, c11=I[[4, B], C1+(—-1)"B, [A, CIl

where 7 =deg. A xdeg. B.
(d.4) i[A, B1="[i.A, Bl+ (—1)*[A, i.B]

for any a € M, where % is deg. A.
(d.2) and (d.4) follows from definitions. (d.3) is a consequence of Jacobi’s

identity in L.

e) A. Let M be an R-module and L be a Lie algebra over R. For A in
A™(M, L) with odd degree n, we define a 2 n-form A in A*"(M, L) by
(e.1) Alay, . . ., asp)

= > sign (P)[A(arwy, - - -, Gpimy)s Al@pinstys - « - » Gpamy)]

where p runs through the cosets of G(1,...,2#%n) modulo H((1,...,n),
(n+1,...,2n)).

For example, if A is a 1-form in A(M, L), then

A(a, b) =[A(a), A(B)].

Later we shall need A just for 1-form A.

Let A be in A"(M, L) with odd degree.

We have:

(e.2) 2:A=[A, Al

(e.3) iaA =[i,A, A] for any a in M.
(e.4) [4, Al=0

(e.5) [4, [A, B11=[A, Bl.

(e.2) and (e.38) follow from definitions. (e.4) and (e.5) are consequences

of Jacobi’s identity in L.

Remark. If A is an element in A™(M, L) with a positive even degree,



132 HIDEKI OZEKI

then we have always [4, A1=0.

f) Let M and L be arbitrary R-modules, To any n-linear mapping P of
L® - -+ QL into R, we associate a mapping of A(M, L)® + - -  A(M, L) into
A(M, R). Let A; be in A*%(M, L) and m be 3} ki. Define an n-form P(A,,
..., As) in A™(M, R) by

(f.l) ) P(Al, e e ey An)(ab PO ,am)
=Esign(P)P(A1(apm, e, Az( 5 e e ), e ey)

where p runs through the cosets of G(1,...,m) modulo H((1, ..., &);
(k1+1, PR ,k1+kz); .. .).
Now suppose that P is symmetric. We define a new form P(A") in A™(M,

R) for A in A*¥(M, L) with even &, which is corresponding to A” in c¢). Set

(£.2) P(AM (ay, . . .)=>1sign(p)P(Alapay o+ ), + . .)
where p runs through the cosets of G(1, ..., nk) modulo H((1, ..., k),
(B+1,...,2R), ...).

Since P is symmetric and A is of even degree, P(A") is well defined by
Lemma 1.

Taking (f.1) and (f.2) together, we can define P(A7, ..., A%) where

Sini=mn and deg. A; is even if #;>2. The element p of the permutation group
runs through the cosets of G(>)5»;) modulo H((1, ..., 4), (4+1, ...,210),

e s ml) s (ml+1, .. mli L), o (e bl L L),
We have

(f.3) P((A+ B)") = P(A*, B*™)

(f.4) i P(AT, ..., AR =SGPAT ..., 4, AP ..., ARF).

Remark. We have defined A"(M, R) to be the set of all alternating n-forms
on M. Set M*=Hom (M, R). We have a canonical mapping J of A”M™ into
A"(M, R) defined by

](fh e ,fn)(a1, (PRI an) =det.(ﬁ(aj)).

J is well defined and gives and gives an R-homomorphism. It is known that
if M is a f.g.-projective module with constant rank, then J is an isomorphism.
One can see that the multiplication Ain A(M, R) is compatible with that in
AM®*, Thus if M is a f.g.-projective module with constant rank, then our



CHERN CLASSES OF PROJECTIVE MODULES 133
graded ring A(M, R) is nothing but AM™.

Section 3. De Rham cohomology

Let 2 be a commutative ring and R a commutative k-algebra (see Section

1) throughout this section.

Definition. A k-Lie algebra M together with an R-module structure com-
patible with the 2-module structure and with a mapping 6 of M into Dr(R) is
called a Lie d-algebra if

i) 6 is a homomorphism of k-Lie algebras and a homomorphism of R-

modules,

ii) [ra, 81=06(b)(r)-a+ r*[a, b] for any r= R, a, b= M (cf. Palais [13]).

Example 1. For any f.g.-projective R-module v with constant rank, Ni(v)
is a Lie d-algebra over R with 6 : Nx(v) - D, defined by 6(a)r =[a, ] (see
Lemma 8 and Proposition 1 in Section 1).

Example 2. For any k-algebra R, the set Dr(R) of derivations is itself a
Lie d-algebra over R with 8 = identity map on Dr(R).

Definition. Let M be a Lie d-algebra over R iwht 8 : M- Dr(R), and let
v be an R-module. A mapping t : M- Ni(v) is called a representation of M
on v if

i) t is a homomorphism of k-Lie algebras and a homomorphism of R-modules,

ii) [t(a), r1=6(a)+r in Endr(v), for any @ in M, 7 in R.

Leter, we shall consider a representation of M only on f.g.-projective

modules with constant rank.

Example 3. Let v be a f.g.-projective R-module with constant rank, and
M= Ni(v). We shall give a representation ¢ of Ni(») on L(v). For a in Np(v),
consider a mapping of L(») into itself defined by

tla) : f-La, 11

As [a, f] is in L(v) (see Lemma 8, Section 1), t(a) is in Ny(L(v)). In
fact,
[t(a), r1(f) =ta)r(f) —r-t(a)(f)
=[a, v f1-7rla, f1=la, r1-f

One can see easily that ¢ gives a representation of Ni(v) on L(v),
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Example 4. Let M be Dip(R) itself. Each X in Di(R) gives a mapping
X : R- R, which belongs to Ni(R). Setting 6 =id., the identity mapping of
Dr(R) gives a representation of Dy(R) on R.

Example 5. Suppose that an R-module » is free with a base e, ..., én.
Then, for each X in Dp(R), consider the k-endomorphism X' of v, defined by

X'(Slrie)) = > (Xri)ei.
The mapping X- X' gives a representation of Dr(R) on v with 0 = id.
Let M be a Lie d-algebra over R with map 6 : M- Dr(R). Suppose a

representation £ of M on v is given. We shall derive the cohomology group
of the graded module A(M, v) = 2)A"(M, v).

Lie derivative 2,. For any a in M, we define the mapping 9. : A"(M,
v) > A"(M, v) as follows: for A A" (M, v) and by, . .., b,E M,

(02A)(by, .« o, bn) =t (@) (A, . . . ,02)) =2 Ay, ..., [a, 8], ..., b

One can verify easily that (8.A)(d, . .., bs) is skew-symmetric with respect
to by, ..., by and that 0,4 is R-linear on each b;. The latter follows from
the property [#(a), »1=0(a)r (see the complete proof in Palais [13]). o, is
called the Lie derivative of A with respect to a.

We have:

Lemma 1. i) [8q, 98] = Orq, 61,
11) I:aa, ib] = i(a,b]

for any a, b in M.

The proofs are not so hard and can be found in Palais [13], Nijenhuis-
Froelicher [41.

Coboundary operator d. Let A be an n-form in A™(M, v). We define

(dA) ay, . . ., anr1) =2(—1)i+1t(0;)(A(a1, e @iy ey Bnrl))
+ 3=V AWai, @) G o ey e e @y e ey Gntt)

i<j
for a1, . . ., @ns1 in M.

One sees that dA(ay, . .., an+1) is skew-symmetric with respecttoa,, . . . ,

an+; and that dA is Rlinear on each a; (see Palais [13]). d is called th
coboundary operator on A(M, v).
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LEMMA 2. For any a in M, we have
Oa=ta*d+ d*1a.
LemMmA 3. For any a in M, we have
Oa*d = d*0a.
Lemma 4. d*=0.
Lemma 2 follows from the definition of d using Lemma 1.

Proof of Lemma 3. By induction on degree of forms. Suppose A is in
A'(M, v) =v. We have

(d2.A) (b) = t(b)(9:4) =t(b) (t(a)(A)),
(02dA) (D) =t(a)(dA(D)) — dA([a, b])
=1(a)(£(1)(A)) — t([a, b1 (A) =t(d)(t(a)(A)),

since ¢ is a representation.

Suppose it is true on forms with less degree than z#. It suffies to show
that on A"(M, v) we have 43dd; = i0.d for any b in M, where deg. A=n. We
have, on A"(M, v),

1639ad = b, Dald + Dativd = — iia,5)d + Da* b ~ Dadis,

and since #A is an n-1-form for A A™(M, ») this is equal to, by our assump-
tion of induction,

= = {(a,6)d + 0a*0p — dOaip = — i(a,5}d + [Da, Ob]+ 0s*0a — ddats
= Oa, b] — i(a,51d + 05*3a — d[Da, is] — ditdq
= d*ia,5)+ (Op — dis) *Oz ~ dita, b) = 55* d* O, Q.ED.

Proof of Lemma 4. Again by induction on degrees. On A% M, v), it is
easy. Suppose d*=0 on A" (M, v). It suffies to show

iad®=0
on A™(M, v).
l.ad2 = ladd'——— aa'd_ diad
= daa - daa + ddia = ddl.a
Since i;A € A" (M, v), for Ae A™(M, v), we have d%.,A =0, Q.E.D.

Thus we can derive the cohomology group of the representation of M on
v, which will be denoted by
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H(M, v) =2 H"(M, v).

For any Lie d-algebra M over R, we have the canonical representation of
M on R, by 0 : M- Dr(R)C Ni(R).

Definition. For a k-algebra R, the cohomology group H(D:(R), R) of Dr(R)
with respect to the canonical representation on R will be called the de Rham

cohomology of the ring R.

Example 6. If k is the field of complex numbers, and R is the ring of
complex-valued differentiable functions on a paracompact finitedimensional
manifold, then the de Rham cohomology of R is nothing but the topological
cohomology group of the manifold with coefficients in complexes (see Weil
[16], de Rham [141).

Let M be a Lie d-algebra over R with 8 : M- Dr(R). We consider A(M,
R) with respect to the canonical representation of A on R by 6. As we have
defined in Section 2, A(M, R) has a multiplicative structure 4.

LemMma 5. For any A, B in A (M, R), we have
22(AB) =3, ANB+ AN3:B, d(AB)=dANB=dANB+(—-1)"ANdB
where n = deg. A.

We have defined A” for A in A™(M, R) with positive even degree m in
Section 2. We have

LEMMA 6. 9.(A") =0,(A) N A", d(A") =d(AYN A"

Lemma 5 can be proved as follows: the formula for o, can be proved by
the induction of deg. A+ deg. B in the same way as Lemma 3. Then using
Qa = dia+ tad and (b.5), one has the formula for d.

To prove Lemma 6, one must first show the formula for 9,, which follows

from the definitions. Then, using 9, = di.+ i.d and (c.4), we get the formula
for d.

Section 4. Invariant forms

Throughout this section, M is a Lie d-algebra over R with map 0 : M- Dr(R),
L is a Lie algebra over R and ¢ is a representation of M on L (see Example

3 in Section 3). d and 9, are defined on A(M, L)>JA®(M, L). In Section-2,
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we have defined a form [A4, B] for A, B in A(M, L), and A for A in A(M, L)
with odd degree.

LemMa 1. For A, B in A(M, L), we have

aa[A, B] = [aaA; B] + [A, aaB],
dlA, B]=[dA, Bl+ (—1)"[A4, dB]

where n=deg. A.
Lemma 2. For A in A(M, L) with odd degree, we have
2:A =044, A], dALdA, Al

In both cases, the formulae for 9, can be verified from definitions. Then
using 3¢ = diz+ i.d and formulae for 7, of (d.3) and (e.3) in Section 2, one has
the formulae for d.

We say an R-linear form P: LQ - @ L- R is L-inariant if

ZiP(ﬁa LY rﬁ—l’ [g; j’t]; o .. ,fn)=0
for any fi, .. .,fs and g in L.

As we have shown in Section 1, the symmetric form P, defined in Section

1 is L(v)-invariant.

LemMma 3. Suppose P is an L-inariant symmetric n-form on L. Then, for
any 1-form B in AN(M, L) we have

SNP(AY, ... AT LA, Bl AP L L AR =0
where >n; =n, and deg. A; is even.

LemMA 4. Suppose P is an L-inariant symmetric n-form on L. Then, for
any 1-form B in A"(M, L) and for any 2-form A in A*(M, L), we have

P(A% L4, B], (B)) =0
where k+ 1+ 1=mn. In particular, we have
P((B)") =0, P(A"Y, [A, B]) =0.

Lemma 4 is a direct consequence of Lemma 3 together with the fact the
[B, B]1=0 in Section 2.

Proof of Lemma 3. We shall give here a proof of
P([4, B], A" =0



138 HIDEKI OZEKI

for 2-form A. The geueral case can be proved in the same way. P[4, B],
A" is a 2n41-form in A(M, L). Take @, ..., ans: in M. We use £
instead of @;. P([A4, B], A**") has a form:

P[4, Bl, A"M(,...,2n+1)
=332 P(LAG, &), Blk)], Alds, 1), .. )

We shall show that for each %, the sum of terms contianing B(k) is zero

Suppose k=0. The terms containing B(0) is given by
~ 2isign (p) P(LB(0), A(p(1), p(2))] A(p(3), p(4)), .. .)

where p runs through the cosets of G(1,2, ... ,22n) module H((1, 2); (3, 4),
..+,(@n~-1,2n)). This shows that the above is the sum of the following
terms

21P( ([B(O), A(jZI'—lp jZi)], A(jl’ j2)x LRI N A(jzi—hjzi): .. ‘)’
which is zero since P is symmetric and L-invariant.

Definition. An R-linear map P: L® - - @ L-> R is called M-inariant with
respect to the representation ¢ if

0(“)(})(/’1) ... ;fn)) ':“;‘X.P(flr DR (t(a)ﬁ), “ e ,fﬂ)

for any @eM, and for any fi, ..., f, in L.
Let be a f.g.-projective module with constant rank. Then Ni(») has a

canonical representation on L(») (see Example 3 in Section 3).

Prorosition 1. The symmetric form P, on L(v) defined in Section 1 is
N(v)-inariant.
Proof. First assume that v is free with a base e, . .., e,. We have
Ny(v) = L(v) + D
where D' consists of those elements X' such that
X Zriei) = 3(Xrie:
for X in D. (see Example 5 in Section 3 and Proposition 1 in Section 1.)

Suppose a is in L(»). Then 6(a)R=0,and t(a)f =[a, f1for f in L(»). Thus

in this case, we have

Zipn(fl, c e ey [0, fi], . . ,fn) =0
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by Lemma 5 in Section 1. Now for the element X' in D’
HXY() =[X", f1=3(Xry;) Ejj

where f =J3r;E;. Thus #(X') operates on L(v) by taking the derivative of

each coefficient. Since X is a derivation, we see
0(X) e Pulfiy oo o s S) =ZiPu(fr, o o o \EH XD fi oo o S0)

by Lemma 6 in Section 1.
Now for an arbitrary », take another o' such that »+ ¢’ is free and finite.
Denote by 7 the projection of »+4 ' onto ». By Lemma 5, for any ¢ in N(v)

we can find b in Np(v+9') such that
a=rbr and 6(a) =0(b).
We have
0B Pulgy o+« 8n5 0+ 0)=ZiPu(gy, ...,t0)g ..., 8 v+0)
For any f1. ..., f» in L(»), consider
gi=mnfi'm.
& is in L(v+¢'). We have
0(a)Pu(f1, o oo s fns 0)=00)Pulgy ..., 8 v+0').
Since [b, gi1=rla, fi], we have also
Pf, ... la fid oo fus )=Pulg, ..., (b, 8], ...,82; v+0') QED.
LemMma 5. For any a in Ni(v), there exists b in Ny(v-+v') such that
a=mn'brw, 0(a) =0(b)
where n denotes the projection of v+ v' to v.
Proof. Let ¢ be an element in N(v+¢') such that 6(c) =6(d). Set
b=ngcor+(1—m)c(l—m).
We see easily #'eN(v+v') and 0(8') = 0(c). Set, @' =nb'n —~a. Itis justa direct
verification to see a'eL(v). Set
b=0 —ran
b satisfies the required properties.
Suppose that P is an M-invariant symmetric »-form on L with respect to ¢.
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LemMma 6. Let Ay, ..., Ar be in A(M, L) with even degree and n = 3n;,
where n;>2. We have
aﬂP(A:‘l’ LS Agk) =21'P(A;h’ LR aaAi, ?i_l’ LY Azk)y dP(-AI“) ° o - 7-Azk)
=iP(AT, ..., dA;, AT, ..., AFF)

The proofs are similar to those of Lemma 2.

Section 5. Connections in projective modules

Let R be a k-algebra, v a f.g.-projective module over R with constant rank.

By Proposition 1 in Section 1, we have the exact sequence

0—>L(0)—> Ni(0)—> De( R)—>0.

Definition. A connection in v is a mapping 4 of Dp(R) into Ni(») such
that

i) 4is a homomorphism of R-modules.

ii) -4 is the identity mapping on D(R).

Defining the connection in this way originates with Nomizu [11] in dif-
ferential geometry for tangent bundles.

Set

w=1—4-6

on Ni(v), where 1 stands for the identity mapping on Nk(v). o has the following
properties :

i) w is an R-homomorphism of N:(v) into L(v),

ii) w(f) =y for any f in L(v).

o is called the connection form of 4.

Conversely, suppose that such an w satisfying i) and ii) is given. We see
that the kernel of o is isomorphic with Dr(R) by the map 6. For any X in
Dir(R), we have a unique ¢ in Ni(v) such that 6(a) = X, and w(a) =0. Defining
4(X) = a, we get a connection, whose connection form is just . Thus giving
such an o is equivalent to defining a connection.

The existence of a connection. First let » be a free module with a base

e, . ..,e, Define a mapping 4 of D,(R) into Ni(v) by
A(X)(3riei) = Z(Xri) ei

This gives a connection in, which will be called the trivial connection in v with
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respect to the base e, . . ., en.

Now let v be an arbitrary f.g.-projective module with constant rank, and o'
another module such that v+ o' is free with a base e;, ..., es. Denote by =«
the projection of v+ ' onto v. We have the connection 4 in » + ¢’ with respect
to the base e, . .., en, where 4 : Dr(R) > Nr(v+¢'). Set

A(X) =nd4(X)
for X in Dr(R). We have
[4(X), r]l=n[4(X), r]=n(X7).

Thus 4'(X) is in Ne(») and 64'(X) = X, i.e. 4' gives a connection in v.
Suppose a connection 4 is given in a f.g.-projective module v with constant
rank. The element in the kernel of w, i.e. the element in the image of 4 is

called horizontal, using the terminology in differential geometry. We set
h=40=1—-w.

h is an R-homomorphism of Ni(v) into itself. We define a mapping h':
A" (N (v), w) - A"(Ne(v), w) for any R-module w, by

(WA) ay, . ..,an) =A(hay, ..., hay)

for as, . . ., an in Np(v).
We define a form A in A"(IVk(v), w) to be basic if A satisfies:

Alay, . ..,an) =0 whenever some a; is in L(v).

Because of the exactness of 0- L(v)— Ni(v) > Dp(R) -0, one sees that a basic

form in A"(Np(v), w) comes from a certain form in A™(Dr(R), w).

Lemma 1. A form A in A®(Ni(v), w) is basic if and only if WA = A.

Proof. 1t is obvious that if #’A = A, then A is basic, since h(L(v))=0.
Suppose A is basic. Then

(WA (ay, . ..,an) — Alay, . .. ,an) =A(hay, . .., has) —Alay, . .. ,an)

=J3A(ay, . .., ai-1, ha;— ai, hai+1, . . . , han)

Since ha—a is in L(») for any as:Ni(v), we have the result.

As we have shown in Section 3, NVi(v) is a Lie d-algebra over R, and has
the canonical representation on L(7) (See Example 3, Section 3) and the
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canonical representation on R (see Examples 1 and 4, Section 3). Thus we
have the coboundary operator d on A(Ni(v), L(v)) = ZA®(Np(v), L(v)), and
on A(Ni(v), R) = ZA"(Ne(v), R).

Definition. For any form A in A™(Ni(v), L()) (or A™(Nk(v), R)), we
define the covariant derivative DA with respect to a given connection by DA
=h'dA, i.e.

(DA)(al, e o ey an+1) = (dA)(hm, c . ey han+1)
for ay, . .., @u+1 in Ne().

Definition. For a given connection 4, the curvature form K of 4 is defined
by
K= Do

where o is the connection form of 4.

Since w belongs to A'(Nk(v), L(»)), K is a 2-form in A*(Nk(v), L(v)).
LemMa 2. For any X, Y in Dr(R), we have

K(4X, 4Y) = A([X, Y1) —[4X, 4Y]
Proof.

K(4X, 4Y) = (D0)(4X, 4Y) = (do)(hdX, hdY) = (do)(4X, 4Y)
—[4X, o(4Y)]1=[4Y, 0(4X)]— o([4X, 4Y]) = — o([4X, 4Y])
= —[4X, 41+ 404X, 4Y]) = A[X, Y]) - [4X, 4Y],

where we have used the fact that # is a homomorphism of Lie algebras and
0+4=1d.

Note that Lemma 2 explains the role of the curvature form, i.e. K measures
the depature from being a homomorphism of Lie algebras.

When the curvature form K is zero, the connection is called locally trivial.
Since W'+’ =h!, the covariant derivative of any form is basic by Lemma 2.
Thus K is zero if K(4X, 4Y) =0 for any X, Y in Dp(R).

Example. When v is free the trivial connection with respect to a tertain
base gives K= 0.
If the structure group of a differentiable vector bundle is reduced to a

discrete subgroup, then it has a locally trivial connection in the sense of dif-
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ferential geometry.
LEmMma 3. For the curature form K, we have
i) K=do— @,
ii) DK =0.
LemMaA 4. For any basic form A in A®(Ni(v), L(v)), we have

i) DA=dA-[ow, A],
ii) D’A= —-[K, Al

Proof of i) in Lemma 3. Suppose a, b in Ni(v) are horizontal.

K(a, b) = (dw(ha, hbd) = (dw)(a, b),
@(a, b) =[w(a), 0(d)]1=0.

Thus we have i) for horizontal a, 5. Next suppose a is horizontal and b

is in L(v).

K(a, b) = (dw(ha, hb) =0, &(a, b) =[w(a),0(d)]1=0,
(dw)(a, b) =[a, w(b)]-[b, w(a)]l-w(la, b1) =La, b1—La, b]1=0,

since [NVk(v), L(v)J< L(v). Suppose a and & are in L(v). We have

K(a, b) =0, &(a, b) =[w(a), w()]=1[a, b],
(dw)(a, b) =[a, w(a)]—o(la, b]) =[a, b].

Since Ni(v) is generated by L(v) and horizontal elements, we have i) for any
a, b.

Proof of i) in Lemma 4. Leta, ..., @+ be horizontal in Nx(v). Wehave

(DA)(GI, ooy an+1) = (dA)(ab ey anﬂ),
Lo, Al(ay, . .., an1) =0.

Suppose a; is in L(v) and as, . . . , as+1 are arbitrary in Np(v). We have

(DA)(ay, . . ., @n+1) =0,

Lo, Alay .. ., an1) =3(= 1" "Tola), Aan . .. @i, ..., 6n1)]
=lw(a), Alas, . . ., Ans)],

(dA)(ay, ..., ane) =3(=1""[ai, Alay, - - . , @iy -« ., @nid)]
+ 3(—-1)" A(a;, G, @1y e iy ey iy e e ey Brt1)

=[a, Alas, ..., an+1)]
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since [ai, ¢;] is in L(v) and A is basic. This proves i).

Proof of i) in Lemma 3. Since K is basic, we can apply i) of Lemma 4.
We have

DK =dK —[w, K1=d(dw—) — [0, do—31= —do+ [, 31— [, do].

Since [@, w1=0 by (e.4) of Section 4, and d# = [dw, vl = — [w, do] by Lemma
2 in Section 4. We have DK =0.

Proof of ii) in Lemma 4. Since DA is again basic we can apply i). We

have

D(DA) =d(DA) —[w, DA]=d(dA — [w, A]) —[w, dA —[w, A])
= —d([w, A]) —~ [0, dA]+[w, Lo, AJl1= —[dv, Al+[w, Al= —[K, Al

where we used Lemma 1 of Section 4 and (e.4) of Section 2.

Reduction. Let v be a f.g.-projective module over R with constant rank.
We have the exact sequence 0 - L(v) - Np(v) » D—0. Suppose that the following
commutative diagram is given for an R-Lie algebra L and for a Lie-d-algebra
N over R:

0— L — N —D—0
RNRC
0—>L(v)—> Ne(v)—>D—>0
We say that the pair (L, N) gives a reduction of » if the vertical mappings
are injective homomorphisms of R-modules and homomorphisms of Lie algebras
and if L is an R-projective module with constant rank.
In differential geometry, the notion of reductions is very much related with

the curvature forms.

Section 6. Chern classes and the product formula

Let v be a f.g.-projective module over R with constant rank, and R a k-
algebra. We have the exact sequence 0 - L(v) > Nx(v) > De(R) - 0. Hereafter
we shall omit the symbol 2. N(v) is a Lie d-algebra over R and has represen-
tations on L(v) and on R, thus we have the cochain groups A(N(v), L(»)) and
A(N(v), R).

On the other hand, by the canonical representation of D(R) on R, we have
the cochain group A(D(R), R), which defines the de Rham cohomology H*(R)
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of the ring R. By what we have proved at the end of Section 3, the ring
structure cf A(D(R), R) is carried over to the cohomology of A(D(R), R),
thus H*(R) is a ring.

We shall start by giving a few relations among those cochain groups.

We denote by B*(N(v), L(»))(B"(N(v), R)) the set of all basic forms in
A*(N(v), L(v)) (A*(N(v), R) respectively).

Lemma 1. The mapping: R— L(v) (see Lemma 7 in Section 1) gives an
injective homomorphism: A"(N(v), R)—» A" (N(v), L(v)). This is compatible

with d, and if a connection is given then it is compatible with D.

For any element a in R, the representations of @ in N(») on L(v) and on

R coincide. The rest is just a direct verification.

LemMma 2. The mapping 0 : N(v) > D(R) induces the mapping 6 : A"(D(R),
R) > A™N(®), R) by

(0'A)(ay, . ..)=A(bay, .. .).
0' is compatible with d, i.e. di’' = 0'd.

This follows from the fact that 6 is a homomorphism of k-Lie algebras and

a homomorphism of R-modules.

LeMMma 3. 6 gives an isomorphism of A”(D(R), R) onto B*(N(v), R). The

inverse mapping ¢ is also compatible with d.

The first statement follows from the exactness of 0- L(2)-> N(v) - D(R)
->0. Let AeB®(N(v), R)c B*(N(v), L(v)). We have

DA =dA ~[w, Al

where o is the connection form. Since the values of A lie on R, which is in
the center of the Lie algebra L(v), we have [w, A1J=0. Hence dA is basic.

Now the second statement of Lemma 3 follows from Lemma 2.
LemMa 4. For any A in B"(N(v), R), we have
DA =dA.
This is clear from the above argument.

Definition of Chern classes. Let 4 be a connection in v, and K its curvature

form. Let P be an invariant symmetric #-form on L(») with respect to N(v),
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We have the form P(K") in A?"(N(v), R) (see section 2). Since K is basic,
P(K"™) is also basic. We have

d(P(K™) = D(P(K™)) = P(DK, K"™) =0,

be Lemma 6, Section 4, and by Lemma 3, Section 5. This shows, by Lemma 3,
that the form ¢(P(K™)) in A**(D(R), R) is a cocycle. The class determined
by ¢(P(K™)) is called the characteristic class of v corresponding to the invariant
form P.

Now let P, be the invariant symmetric form defined in Section 1. The
characteristic class of » corresponding to P, is called the n-th Chern class of
v, and denoted by c.(v), or by c,(v : 4) when we need to emphasize 4. ¢a(v)
is in H*"(R). We define ci(v) =1, where 1 denotes the class determined by 1
in A"(D(R), R) = R, which is a cocycle. Set

c(v) = Zcn(v)
where the sum is just a formal sum. c(») will be called the Chern class of v.

Remark. If D(R) is finitely generated over R, then one sees that H"(R)
=0 for every sufficiently large » since A"D(R) =0 if n is greater than the
number of generators of D(R). Hence in this case c(v) can be defined to be
an element in H*(R).

Later we shall prove that the Chern class ¢(#) does not depend on the
choice of connections.

The product formula: Let v, and v, be f.g.-projective R-modules with con-

stant rank. We have

c(vi+ ) =c(v) A c(v2)
ie.

en(vr+ v2) = 23ck(01) A ca-r(v2).

In this section, we shall prove the product formula for a suitable connection
in v;+ vs, which will be determined by connections in v, and in »,. Using this
result, we shall prove in the next section, that the Chern class does not depend

on the choice of connection. It will complete the proof of the product formula.

Proof. Let 4; be any connection in v;, w; the connection form and K; the
curvature form (¢=1,2). We define a connection 4 in v, + v, as follows. For
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any X in D(R), consider the mapping 4(X) of v, + v, into itself, defined by
4(X) = Al(X)'n'1+ 4o(X) oy

where 7; denotes the projection of ;4 v, onto v;.  4(X) is in N(v;+2.). In

fact, for any 7eR, we have

[A(X), r] pd [AI(X)'KI) 1’]+[42(X)‘7r2) 7’]
=[4(X), r1omi+ [4(X), r]m = X(r) mi+ X(7) ome = X(7).

This shows 4(X)eN(v;+ v:), and [4(X), »r1=X(r). Thus 6+ 4= the identity
mapping on D(R). Hence 4 defines a connection in v+ v.. Let K be the
curvature form of 4. By the definition of 4, and by a lemma in Section 5, we

have
K(4X, 4Y) = Ki(4,.X, 41Y) + Ko 4:X, 4,Y)

for any X, Y in D(R), where we consider L(»;) and L(v.) to be submodules of
L(v;+ v2) in the natural way. Consider the forms A4, A;, 4, in A*"(D(R),
L(v:+ v3)) defined by

A(X, Y)=K(4X, 4Y), Ai(X, V) = Ki(4:X, 4Y).
The cocycle defining cn(vl.—l- v2) in A*”(D(R), R) is given by P,(A”). We have

A=A+ A,
hence

Pa(A™) = SP.(AF, A77F).

We denote by P}, P{ the k-th invariant symmetric forms on L(v:), L(v.)
respectively. The cocycles defining cx(v:) and cx(2,) are given by PL(A¥) and
PY(A¥) respectively. Thus it suffices to show

P,(Af, A7%) = PL(AT) PI_w(AT7%).
Using Lemma 4 in Section 1, we have

Pn(Al(le Xz), c ey AI(XZk)) A?.(sz+1), . )
=PLA(X, X2, .. ) Puop(As(Xops1, )y o .)

for any X3, ..., Xon in D(R). This together with definitions in Section 2
completes the proof.
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Section 7. Invariance of Chern classes

We shall prove in this section that Chern classes of projective modules are
independent of the choice of connections. The problem will be reduced step

by step.

A) It suffices to show the independence in the case where the projective

module is free.

Proof. Suppose that the Chern class of a finitely generated free module is
independent of the choice of connections. Since the free module has a trivial
connection, our assumption is the same as saying that the Chern class of a
free module is 1 in H*(R). Let v be any f.g.projective R-module with constant
rank and 2’ another R-module such that v+ ¢’ is free. Take arbitrary connec-
tions 4; and 4, in », and 4' in ¢'. By the product formula in Section 6, we
have

c(v, 4)) Ne(o', &) =1,
clv, d)Ne(o', 4) =1

since c(v+¢') =1. We have

co(v, 41) = Co('U, 42) =1, .
CQ(Z), 41) /\cl(v', A’) + 61(’1), Al) N Co(i)’, A') = cl(v', A’) + 01(2), Al) = 0

In the same way

(v, 4") +ei(v, 4) =0.

Thus
C]_(Z), Al) =Cl(v, AZ).
Repeating this, we get ca(v, 4;) =cn(v, 45). Q.E.D.
Hereafter we assume that » is a free module with a fixed base ey, . . . , ex.

L(v) is also free with the base {E;;} where Ejjer=djre;. We have a represen-
tation ¢ of the Lie d-algebra D(R) defined by

HX)(Zrij Eij) = 3(Xri5) Ejj.
Let A be a n-form in A" (D(R), L(»)) (or A*(N(v), L(»))). We can write
A=A Ej;

where A;; belongs to A”(D(R), R) (or A”(N(v), R)). One can see easily that-
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with respect to the representation ¢ the above expression is compatible with

the coboundary operator d, i.e., we have
dA =3d(Aij) Ei;.

B) It suffiees to show that for any 1-form A in A'(D(R), L(v)), the form
Py((dA)*, (A" in A*™(D(R), R) is cohomologous to zero.

Proof. Let 4 be the trivial connection in » with respect to the base e,

., e, and 4' an arbitrary connection in ». 4 is defined by
A(X)(Iriei) = 3(Xri) ei.

Let w, o' be the connection forms of 4, 4' and K, K' their curvature forms.
Since 4 is trivial we have K =0. We shall denote by D the covariant derivative

with respect to the trivial connection 4. Set

B=00-o.

We have
K=do'— o' =d(o+B) — (o1 B)
=do+dB—&~B—[w, Bl=dB—-[w, B1-B=DB-B,

where we used the fact that the form B is basic since B(f) = w'(f) — w(f)
=f— f =0 for any feL(v). We have

Pa((K)™) = 2(~ D™ P.((DBY, (B)"™").
Consider the form A in A'(D(R), L(v)), defined by
A(X) = B(4X).

A is basic, and we have /A =B, ¢B=A (see Lemmas 2 and 3 in Section 6).

It can be easily shown that
¢(DB) =dA, ¢(B) = A.
Thus we have
¢P,((DB), (B)*™*) = P,((dA)*, (A)"5).

Hence, if this form is cohomologous to zero, any connection in a free module
has the trivial Chern class. Q.E.D.
We shall show:

C) For any 1l-form A in A (D(R), R), the form P.((dA)*, (A)"") is
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cohomologous to zero.

First note :

i) For £=0, we have P,((A)") =0 by Lemma 4, Section 4,
i) d(Ps((dA)*, (A)"F)) =0.

In fact, by the last lemma in Section 4, we have

d(Pa((dA, (A)"F) = Pu(ddA, (dAYFY, (A" F) + P,((dA)*, dA, (A)" k),

By Lemma 2, Section 4, dA =[dA, A]. Thus the last term is zero by Lemma
4, Section 4.

iii) For A = 3A;:E;,, we have
A=3;(Aii \Aj) Ei.
This follows from a direct verification.

LemMa 1. Let A=A E;, B=>\BijEi;; be 2-forms in A*(D(R), L(v)).
We have

Pi((AF (B H = 3 Esign(i}r . z)

1={<-v e <ip=<m Jty o o & 1jn
Aii N s NAigio N Biggen N+ 0 0 N Bigje

Proof. We have, by Lemma 6 in Section 1,

Pu(Eijy o v« Einiy) = Sign(z.“ ot l")-

Tt o o5 dn
In particular,
Pu(Eijy ...y Eij)=0
whenever some E;,;, = FEjj, for k=1 Thus one sees P,((A;E;)’, ...)=0

whenever />2. One can get the result expanding P,(A*, B**¥). (For instance,
Pa((At+ A2, B"™) = Pu(Al, B"™) 4 Pul A}, B"™) + Po(A1, As, B*™).)

Using Lemma 1 and iii), we see that P((dA)%, (A)"*"*) is a linear combina-

tion over integers of the following type of forms:
dAi i, N\ - NdAi, ;. N Ar,sl/\ st N Arese

where [=2n—2k. Also one can verify that in the above forms, the forms of
the following type are not contained

Ce NdAGN - NAGA
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Note that we have always Aij A A;j=0, dAi; NdA;j=0. Note the statement C)
follows from the following Lemma 2.

For given non-negative integers &, [ and » with 2+!<#%, we denote by
S(k, 1, n) the set of ordered subsets (@i, ..., ar; by, ...,08) of {1,...,n}

such that @; < -+« <ap, Bhi<---<band{ay, ..., aet N{by, ..., b} =¢.

Lemma 2. Let k, I and n be non-negatie integers such that E+1<n and
I1>1. Suppose that for each (ai, . ..,a;j; by, ...,b) in S(k, I, n), an integer
flay, ..., ar; by, ... .bi) is given with the following property:

For any ring R, and for any 1-forms A,, ..., An in A(D(R), R), Zf(a;,

cak; by oo 0D AN s s NAg, NdAs, N\ - - - NdAs, is a cocycle.

Then, there exists a function g on S(k+1, 1—1, n) with values integer
satisfying:

For any ring R, and for any l-forms A, . .., An

d(Zg(al, e e ey Qk+1s b1, P ,b[—I)Aalf\ e /\Aakﬂ/\dAb,/\ LR /\dAbl-,)
= Sfay oo ar; by e B)AGA - AAg AdAb A - - - AdAs,.

Proof. We may assume k+I=n We omit a/s in f, g since they are

determined uniquely by b/s. The assumption implies
(X) =1 f(by ooy biy vy ber)) =0
for any 1 <5, <+« <b1<m. Set

g(bl, « e ,bl—]) :f-(l, b1, P ,bl—l) lf b1>1
=0 lf b1=1.
We have, for any 1<, <+ - <b <,
(x, X) (=1 by o bl e b)) =By .., D).

In fact, if b: =1, then it follows from definition. If #;>1, then it follows from
(X). (X, X) gives the required result.

The condition (X) follows from the following example: R=k[x;, . . ., %n,
Y1 « .« »Yal, the polynomial ring over a field, A; = x:dy;. Q.E.D.
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