
CHERN CLASSES OF PROJECTIVE MODULES

HIDEKI OZEKI1'

Introduction. In topology, one can define in several ways the Chern class

of a vector bundle over a certain topological space (Chern [2], Hirzebruch [7],

Milnor [9], Steenrod [15]). In algebraic geometry, Grothendieck has defined

the Chern class of a vector bundle over a non-singular variety. Furthermore,

in the case of differentiable vector bundles, one knows that the set of differ-

entiable cross-sections to a bundle forms a finitely generated projective module

over the ring of differentiable functions on the base manifold. This gives a

one to one correspondence between the set of vector bundles and the set of

f.g.-projective modules (Milnor [10]). Applying Grauert's theorems (Grauert

[5]), one can prove that the same statement holds for holomorphic vector

bundles over a Stein manifold.2>

The purpose of the present paper is to give the Chern class of a f.g. pro-

jective module as an element of the de Rham cohomology of the ring. Thus

we establish a completely algebraic treatment of the above cases. Our method

of defining the Chern class is the same as that used in differential geometry

thus we obtain a differential geometric approach to the study of projective

modules.

In Section 1, we introduce the notion of the trace and its symmetrized

form on a finitely generated projective module. For each finitely generated

projective module v with constant rank, we construct an exact sequence:

where D(R) is the set of derivations of the ring R and N(v) is the set of

differential operators. This sequence will play a fundamental role in this paper

in achieving a differential-geometric approach to the study of projective
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modules. Section 3, Section 4 and Section 5 are devoted to a study of the de

Rham cohomology of certain types of Lie d-algebras (Palais [13]). Since we

deal with projective modules over an arbitrary commutative ring, special types

of multiplications on alternating forms are needed to avoid the use of divistion.

We have omitted the details of several proofs. In general the calculations are

similar to those found in differential geometry.

Section 5 contains the basic notion of connections in projective modules.

In Section β we define the Chern class using the curvature form of a connection,

and prove the product formula, which is the characteristic property of Chern

classes. In our definition, the Chern class depends on a connection, but the

independence of such a connection is proved in Section 7, thereby reducing the

problem to the case where the module is free.

We would like to remark here: if the ring contains rational numbers, then

the independence of characteristic classes on connections can be proved in a

way analogous to the differential geometric proof given by Weil (Chern [2],

Kobayashi and Nomizu [8]).

The author gratefully acknowledges that the present work was motivated

by the suggestion of the late Professor A. Shapiro.

Section 1. Projective modules and endomorphisms

Let R be a commutative ring with a unit. An /^-module v is called projective

if every diagram

υ
4

w—>u—>0

of /^-modules, in which the row is exact, can be imbedded in a commutative

diagram

v
/ i

w —> u —> 0.

It is well known that an i?-module v is a finitely generated projective module

if and only if it is a direct summand of a finitely generated i?-free module (cf.

Cartan-Eilenberg [1]).

From this we see,
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LEMMA 1. Let υ, Vιt and v2 be f.g.-projective modules over R. Then Horn

(t/, R), Λnυ, V1 + V2, Vι®v2 and Horn (vu v2) are f.g.-projective.

An /̂ -module M together with an i?-homomorphism M<g>M x®y->Lx,ylεM

is called a Lie algebra over R if it satisfies i) lx, x\ = 0, ii) ίίx, yl, z\ + ZLy,

2], xi + Liz, xl, y} = 0 for any x, y, z<= M. ii) is called Jacobi's ideutity.

For any i?-module v, set

L(v) is a Lie algebra over R by [/, gl = f g-g f for / , gεL(v).

Let v be a f.g.-projective module over R. We shall define the trace for any

element / in L{v). Let v' be another f.g.-projective module such that v + vf is

free with a base eh . . . , en> Denote by π the projection of v + vf onto v. For

f^L(v), we have f π^L{v + v'). f π will be expressed in a matrix form

(ay) by

We set

T r ( / ) = T r ( / : υ) = Σ ^ .

The following is clear: 1) Tr(/) does not depend on the choice of a base eh

. . . , ί?n in v + v\ 2) Tr(/) does not depend on the choice of such vf. Thus

we have an i?-homomorphism of L(v) into R.

LEMMA 2. 7Y satisfies

i) Tr(l : i?) = 1. where the first 1 denotes the identity mapping of R.

ii) Tr([/, gl: υ) = 0 for auy f, g^L(v).

iii) Given an exact sequence 0-»z;i->z>->#2-»0 of f.g.-projective modules over

Randf^Lίvi), f ^ L(v), f2^ L(v2) such that

Vι—>v—>v2

I* U
Vι >V >

commutes, then

Tr(/ : v) =Tr(/ x : if,)

The properties ii) and iii) can be reduced to the case where every module

is free. Then they can be seen easily. On the other hand, it can be shown
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that the three properties in Lemma 2 characterize the trace completely.

LEMMA 3. Let vu and v2 be f.g.-projective modules over R. For f e L(vi)

and g&L(v2), we have

Tr(f®g; v1®v2) = Tr(f : υi) Tr(g : v2).

The problem can be reduced to the case where Vi and v2 are free. Then it is

well known.

We shall define a symmetric fi-form Pn on L(v) for any f.g.-projective

module v over R. For/ i , . . . , fn in L(v)> consider the mapping

Σσ/σ(l) ®- " * * ®fo{n)

where a runs through all permutations of ^-letters. One can see that this

induces an iMiomomorphism of Λnv into Anv.

By definition,

Pnifi, . . ,fn '. v) = trace of Σ/σ(i>® * ' ®/σ(«) on Λnv.

Obviously Pn(fu . . . ,/« v) is symmetric with respect to /i, . . . , / „ .

LEMMA 4. Let vi and v% be f.g.-projective modules. For fi in L(vι) (/ = 1,

2, . . . , k) and gi in L(v2) ( ι = 1, . . . , /) we have

, . . . >fk> gu . . ,gιl vι + v2) = Pkifu . . . ,fk'> Vi) Pι(gu . . . ,gr, v).

This follows from the fact that Λn(vι~\- v2) is isomorphic with ΣΛ'(#i) ®Λn~ι{υ2)

and from iii) of Lemma 2.

LBMMA 5. Let v be a f.g.-projective module over R. For any g in L{v) and

for any fi in L{v) (/= 1, 2, . . . , n)} we have

Zg.fΛ . . . ,/») = 0.

Now suppose v is free with a base eu . . . , en. Then L(v) is also free

with the base (Eij) where Eij ek-

LEMMA 6. Pk has the following expression on a free module:

Pkifu . . . ,fk) = Σ 'Σs ignf \ )a)xjx - β,\yfc
1—(i< </^n ^ 1 \ x y 7
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Lemma 6 can be verified directly from definitions.

Lemma 5 can be reduced to the case where v is free. Then it will be

checked for each base Eij.

Remark 1. Lemma 5 is a classical fact when υ is a vector space over the

field of reals or complexes. Since Pn and the bracket operation are defined

over Z, one sees Lemma 5 holds on any Z-free module. Then it is easy to see

that it is true for any ring.

Remark 2, On the free module v, we have the notion of the characteristic

polynomial *Σaktk for / e L ( Λ One has

A(/, . . . , / ) = *! ΛΛX(-D*.

For a free module, the cardinality of a base is called its rank. We know

that every f.g.-projective module over a local ring (not necessarily Noetherian)

is free (cf. Northcott [12]). A f.g.-projective module over R is said to have a

constant rank if the rank of a localized module {v)p = v®Rp does not depend

on the prime ideal p of R.

Remark 3. If vy vι and υ2 are f.g.-projective modules with constant ranks,

then Horn (υ, R), Λnv, v1-\-v2i #i®z>2 and Horn (vi, v2) have constant ranks.

LEMMA 7. If v is a f.g.-projective module with constant rank, then the map

j : R-*L(Ό)

defined by j(r)p -r p for r^R, p^v, is injectiυe unless v = 0.

Proof. Let / be the kernel of j . One can see that the ideal / satisfies:

I®Rp = 0 for any prime ideal p of R. Thus we have / = 0 (see Northcott [12]).

Hereafter we shall identify R with the image of j in L(v) if υ has a constant

rank.

Let k and R be commutative rings. R is called a k-algebra if a ring

homomorphism of k into R is given which maps the unit in k to the unit in R.

Thus any ring is a Z-algebra.

Let R be a ^-algebra. A β-endomorphism X of R as a ^-module is called

a k-deriυation of R if

X(r s) = X(r) s + r X(s) for any r, s in R.
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The set of all ^-derivations of R will be denoted by Dk(R), or simply D. Dk(R)

forms a Lie algebra over k by IX, Yl = XΎ- Y-X for X, Γ G Dk(R). Dk(R)

forms also an /^-module by

(sX)(r)=s-X(r)

for 5, r<=R, X(=Dk(R).

For any /̂ -module v, End^(t ) forms a Lie algebra over k by [>, βl = a β

-β cc. Set

Nk{v) = {a in Endfc(z ): For any fG/?, there is some s e R

such that [_at r ] = s}

where r and s denote the mappings of υ.

Consider the case where v = R. By the definition, we see Dk(R)(^Nk(R).

For any a^Nk(R), set

X=a-cc(l)9

where a(l) stands for the mapping of R multiplying the element α(l) in R.

One can check easily XtΞDk(R). Thus we see Nk(R) = R + Dk(R).

Example 1. Let v be a f.g.-free module with a base eίf . . . , en. For each

, consider the endomorphism X of # defined by

We have X<=Nk(v), and for any re/?,

DC, r] =

Suppose that t; is a f.g.-projective module with constant rank. By Lemma

6, the map R-*L(v) is injective. For any a^.Nk(v)f consider the ^-endomorphism

θ(a) of R defined by

θ(a)(r) =[α, r\ r^R

where the right hand side is considered an element in R.

LEMMA 8. Let v be a f.g.-projective module over R with constant rank, and

R be a k-algebγa. We have

i) DVfc(tf), Nk(v)~]c.Nk(v), thus Nk(v) is a Lie algebra over h.

ii) ZNk(v), L(v)l<^L(v), thus L(v) is an ideal of Nk(v).
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iii) The mapping β maps Nk(v) into Dk(R) and gives a homomorphism of

k Lie algebras.

iv) Cm, βl = rίa, βl + (θ{a)r)β, for reΞR, a, βtΞ Nk(v).

They can be verified from definitions.

PROPOSITION 1. Let v be a f.g.-projective module over R with constant rank,

and R be a k-algebra. We have an exact sequence

of R-moduleSy and of k-Lie algebras.

Proof It is clear that they are homomorphisms of ^-modules and, at the

same time, of £-Lie algebras. We see that

is exact from definitions. We shall show the exactness of N{v) -*D->0. Take

another f.g.-projective module vr such that v + v! is free. Let π be the projection

of v + v1 onto v. As we have shown in Example 1, Nk(v + vf) -> D is onto. Let

X be any element in Dk(R). We have a β in Nk(v + υ1) such that ίβf r\ = X(r)

for any r e R. Consider the endomorphism a of v defined by

a = π β.

Let rGi?. We have

[α:, r] = π β r — r π β

= τrC/3, r]

= τr -Y(r)

since [TΓ, r] = 0. This shows [α, r] = X{r) on i;. Thus N(v) -> D is onto. Q.E.D.

Section 2. Multiplications of alternating forms

Let M and L be arbitrary i?-modules. We denote by Aw(Af, L) the set of

all alternating w-forms on M with values in L. An(M, L) forms an /^-module

in the usual way. One sees also that An(M, L) is nothing but Hom(ΛnMy L)

where Λn is taken over the ring R. Set

A(M, L)=ΣAn(M, L).

We shall define several types of multiplications on the graded module A(M, L)
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in the case where L is just R or where L is a Lie algebra over R.

Let Q be a finite set. We denote the group of all permutations of Q by

G(Q), or simply by G(n) if the number of elements in Q is n. The multiplica-

tion in the group will be viewed as composition of mappings. Let (Q))i=ly

. . . , /; j = 1, 2, . . . , m. By definition,

H(Q\, . . . ,<&; Ql, . . . , β i , ; . . .)

is the subgroup of G(Q) consisting of those elements which, for each i map

Q) onto some (?&. For example

H((l); (2); . . . (n)) = the identity

1, 2, . . . ,τ i))=tf(( l) , (2), . . . ,(n))=G(n).

Let Λf be an /^-module. To each element p in G = G(l, 2, . . . , n)t we

associate a mapping, denoted by the same letter p : (Λf, . . . , M) -> (Λf, . . . ,

Λf) by

LEMMA 1. Z,ef A ί>̂  an n-linear mapping of M into another R-module.

Suppose thaty for a certain subgroup H of G(w), we have

sign(p) A p = A

for any p in H. Then, the map [A], defined by

CA](tfi, . . . , an) =Σsign(/>) A(£Ui, . . . , an))

where p runs through the right cosets of G mod. H> is skew-symmetric.

Proof. First note that the value sign(/>) A(p{au . . . , # « ) ) does not

depend on the choice of representative p of a coset because of the assumption.

Let q be in G(n). We have

an))

q(au . . . , an))

where p runs through the cosets, p q runs through the cosets. Thus [A] is

skew-symmetric.

a) Interior product. Let Λf and L be arbitrary i?-modules. For each a in

Λf, we define a map
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ia : An(M, L)-»An-\M, L)

by

(a.I) (iaA){bι, . . . , bn-ι) = A(a, bu . . . , £Λ-i)

and

iaA = 0 if w = 0.

Remark. For A in An{M, L), we have

ι'ΛA = 0 for all a in M if and only if A = 0.

b) Exterior product A. Let M be an arbitrary i?-module. Consider A(M,

R) = ΣAM(M, #) . We define, for A in A*(Λf, Λ) and B in AZ(M, /?), a (* + /)-

form AΛJ5 by

(b.l)

where j£> runs through the cosets of G(l, . . . , k + l) modulo #((1, . . . , k)

(* + l, A + Z)).

From Lemma 1, we see ANBd Ak~ι(M, R). Clearly (A, B)-»AΛ£ is

/^-bilinear. Moreover, from the definition, we have

(b.2)

We have, for any A, B, C,

(b.3) (A/\B)ΛC = AMB/\C).

To show this, we shall show first

(b.4) ((AΛβ)Λθ(βi, . - . ,Λ»)

where ^ runs through the cosets of G(n) //((I, . . . , k) (ft + 1, . . . ,

( , . . . ,n)) and where n = deg. A + deg. 5 + deg. C, and / stands for a.

Proof.

where ^ runs through the cosets of Gin) modulo #((1, . . . , k + I) ( , . . . ,

n)). We have
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(Af\B)(p{l)> . . . ,

q-p(k))B(q p(k+ϊ))9 . . . , qpin))

where q runs through the cosets of G(p(l), . . . ,/>(* + /)) modulo H((p{l),

. . . ,p(k)) ( , . . . , p(n))). One sees that if g' runs through (&-f 1, . . . ,

& + /); ( , . . . , w)), then q = pq'p~1 runs through the required cosets. Now it

is easy to see the rest of the proof.

Now we can see that the same formula holds for A/\(Bf\C), and the

results are the same. Thus we have (b.3).

Remark. The same formulas as (b. 4) can be seen for Ai An. Now by

(b.3), we see that A(M, R) = ΣAW(M, R) forms a graded ring over R by the

multiplication Λ.

(b.5) For any a in M, and for A in An{M, R), B in Ak(M, R), we have

ia(A AB) = ia(A) AB + ( - l)nA A ίfl(

i.e. ίβ is a derivation of order — 1.

The proof is just a direct verification from definitions.

c) n-th power An. Let M be an i?-module, and A be in Aι(M, R). When

deg. A = / is even and positive we can define an n-th power of A for any n.

By definition, An is an ^/-forrn defined by

(c.l) An(au . . . ,anι)

. . ) • A( aPVni))

where ^ runs through the cosets of G(l, . . . , w/) modulo fl"((l, . . . , A), (/+1,

. . . , 2 / ) ( , . . . ,*/)).

By Lemma 1, we see easily that An is skew-symmetric.

Suppose A and B are in AZ(M, R) where / is positive and even. We have :

(c.2) n\ An = A/\ A A (w-times)

(c.3) (A + B)Λ = ΣA*ΛS Λ "*

(c.4) ϊα(AM) = 2α(A)AAM-1 for any βei l ί .

They can be verified easily.

d) [ , ]. Let M be an i?-module, and L be a Lie algebra over i?. For A

in A*(M, L), B in A'ίilf, L), we define a (ft + /)-form CA, B] in AkH{My L) by



CHERN CLASSES OF PROJECTIVE MODULES 131

(d.l) [A, Bliau . . . ,

)), B(

where p r u n s through the cosets of G ( l , . . . , & + /) modulo £Γ((1, . . . , k)

(* + l , . . . , * + /)) .

We h a v e :

(d.2) [A, Bl=(-l)nlB, A]

(d.3) IA, tB, CH = HA, Bl C] + ( - DTIB, [A, C]].

where w = deg. A x deg. J5.

(d.4) t'JίA, Bl = IliαΛ B] + ( - DfeCA

for any ύiεM, where k is deg. A,

(d.2) and (d.4) follows from definitions, (d.3) is a consequence of Jacobi's

identity in L.

e) Ά. Let M be an i?-module and I be a Lie algebra over R. For A in

An(M, L) with odd degree w, we define a 2 w-form A in A2n(M, L) by

( e . l ) ! ( t f i , . . . tθ2n)

= *Σsign(p)lA(aP{1), . . . , aP(n))y A(aP(n+ih » ̂ ( 2 M ) ) ]

where p runs through the cosets of G ( l , . . . , 2 w ) modulo H ( ( l , . . . , « ) ,

For example, if A is a 1-form in Λ^M, D , then

Ά(a, b)=ZA(a\ A(b)l

Later we shall need Ά just for 1-form A.

Let A be in An(M, L) with odd degree.

We have:

(e.2)

(e.3)

(e.4)

(e.5)

2 A=[A,

iaλ = UaA

IΆ,A1 = <

LA LA 1

A]

I, Al for any a in M.

0

}]] = HA, Bl.

(e.2) and (e.3) follow from definitions, (e.4) and (e.5) are consequences

of Jacobi's identity in L.

Remark. If A is an element in An(M, L) with a positive even degree,
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then we have always ZA, A~\ = 0.

/) Let M and L be arbitrary R-modules, To any w-linear mapping P of

L® - ®L into R, we associate a mapping of A(M, L) ® ®A(M, L) into

A(M, /?). Let A be in A**(Λf, L) and m be Σ f e . Define an n-ίorm P{AU

. . . f An) in Am(M, R) by

(f.l) P(Aly . . . ,An)(au . . . .β«)

= Σ s i g n ( £ ) P ( A ( ^ d ) , . . . ) , A 2 { , . . . ) , . . . , " )

where p runs through the cosets of G(l, . . . , m) modulo //((!, . . . , k\) l

Now suppose that P is symmetric. We define a new form P(AW) in Ank(M,

R) for A in Ak(M, L) with even k, which is corresponding to An in c). Set

(f.2) P(An)(au . . . ) - Έ$Ίgn(p)P(A(aPa), . . . ) , . . . )

where p runs through the cosets of G(l, . . . , w.̂ ) modulo H((l, . . . , #),

( A + l , . . . , 2 k ) , . . . ) .

Since P is symmetric and A is of even degree, P(An) is well defined by

Lemma 1.

Taking (f.l) and (f.2) together, we can define P(Aι\ . . . , AV) where

Σw, = w and deg. A% is even if m > 2. The element ^ of the permutation group

runs through the cosets of GCΣlim) modulo H({1, . . . ,/i), (/i + l, . . . ,2h),

We have

(f.3)

(f.4)

Remark. We have defined ΛM(M, P) to be the set of all alternating w-forms

on M. Set M* = Hom(M, R). We have a canonical mapping J of ΛnM* into

AΛ(M, i?) defined by

J(fu . ,fn)(au . . . , β») =detί/ί(βy)).

J is well defined and gives and gives an P-homomorphism. It is known that

if M is a f.g.-projective module with constant rank, then / is an isomorphism.

One can see that the multiplicationΛ in A(M, R) is compatible with that in

Thus if M is a f.g.-projective module with constant rank, then our
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graded ring A(M, R) is nothing but AM*.

Section 3. De Rham cohomology

Let k be a commutative ring and R a. commutative ^-algebra (see Section

1) throughout this section.

Definition. A k-hie algebra M together with an ivNmodule structure com-

patible with the ^-module structure and with a mapping β of M into Dk(R) is

called a Lie d-άlgebrα if

i) θ is a homomorphism of &-Lie algebras and a homomorphism of R-

modules,

ii) Irα, 6] = θ(b)(r) α + r ία, b\ for any r<=R, α, b^M (cf. Palais [13]).

Example I. For any f.g.-projective i?-module v with constant rank, Nk(v)

is a Lie d-algebra over R with θ Nk{v)->D, defined by θ(a)r = ta, r] (see

Lemma 8 and Proposition 1 in Section 1).

Example 2. For any fc-algebra R, the set Dk(R) of derivations is itself a

Lie J-algebra over R with θ = identity map on Dk(R).

Definition. Let M be a Lie J-algebra over R iwht 0 : M->Dk(R), and let

# be an i?-module. A mapping t : M->Nk(v) is called a representation of Λf

on # if

i) Ms a homomorphism of #-Lie algebras and a homomorphism of /^-modules,

ii) Lt(a), r~] = θ(a) r in End^(z ), for any a in M, r in R.

Leter, we shall consider a representation of M only on f.g.-projective

modules with constant rank.

Example 3. Let υ be a f.g.-projective /^-module with constant rank, and

Λf = Nk(v). We shall give a representation t oί Nk(v) on L(v). For # in Nk(v)9

consider a mapping of L(v) into itself defined by

Ha) : /->Cflf / ] .

As [«, / ] is in L(v) (see Lemma 8, Section 1), t{a) is in Nk(L(v)). In

fact,

One can see easily that t gives a representation of Nk(v) on L(v),
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Example 4. Let M be Dk(R) itself. Each X in Dk(R) gives a mapping

X - R-^R, which belongs to Nk(R) Setting d = id., the identity mapping of

Dk(R) gives a representation of Dk(R) on R.

Example 5. Suppose that an R-module v is free with a base eu . . . , en.

Then, for each X in Dk(R), consider the &-endomorphism X1 of v, defined by

The mapping X-+X1 gives a representation of Dk(R) on z; with 0 = id.

Let M be a Lie d-algebra over R with map θ : M-*Dk(R) Suppose a

representation t of Λf on v is given. We shall derive the cohomology group

of the graded module A(M, v) -ΣA*(M, V).

Lie derivative da. For any a in M, we define the mapping da : An(M,

v)->An(M, v) as follows: for A^An(M, v) and bu . . . ,bneM,

bu . . . ,bn)= t(a)(A(bu . . . , bn)) -

One can verify easily that (daA)(bχ, . . . , 6M) is skew-symmetric with respect

to bu . . , ̂ n and that 3aA is i?-linear on each bi. The latter follows from

the property Γt(a), rl = θ(a)r (see the complete proof in Palais [13]). da is

called the Lie derivative of A with respect to a.

We have:

LEMMA 1. i) [8fl, 3&]=3o,£],

i i) C3α, /&] = 2[a,δ]

β, b in M.

The proofs are not so hard and can be found in Palais [13], Nijenhuis-

Froelicher [4].

Coboundary operator d. Let A be an w-form in An(Mf v). We define

(dA)(au . . . , an+i) = Σ ( ~ 1 ) / + 1 / U )(Λ(ΛI, . . . , « / , . . . , βΛ+1))

+ Σ ( - 1 ) I + ^ ( [ Λ / , ajl, au . . . , au .. . , aj, . . . , βΛ+i)

for Λi, . . . , an+i in M

One sees that dA(ah . . . , ΛΛ +I) is skew-symmetric with respect to ah . . . ,

αΛ+i and that JA is i?-linear on each ai (see Palais [13]). d is called the

coboundary operator on Λ(M, v).
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LEMMA 2. For any a in Mf we have

da^ta'd+d'ia-

LEMMA 3. For any a in My we have

daed = d da

LEMMA 4. d2 ~ 0.

Lemma 2 follows from the definition of d using Lemma 1.

Proof of Lemma 3. By induction on degree of forms. Suppose A is in

A\M, v) = v. We have

(ddaA){b) ~

CdadA)(b) = t(a)(dA{b)) - dAda, b})

= t(a)(t(b)(A)) - t(£a, bl)(A) = t{b)(t(a)(A))>

since t is a representation.

Suppose it is true on forms with less degree than n. It suffies to show

that on An(Mj v) we have ibdda = ibdad for any b in Af, where deg. A~n. We

have, on An(M, v),

and since fcA is an w-l-form for A<= An(M, v) this is equal to, by our assump-

tion of induction,

da'db —ddatb- ~ Ka.b^d-j- \jda> dbl + db'da—ddatb

= 3fα,δJ ~ ka,b]d + db'da ~ C?[3σ, iδ] — dtbda

= d i[a,b) + (3a - fife) 3Λ — di[a,b] = iyd da, Q.E.D.

o/ Lemma 4. Again by induction on degrees. On A0(My v), it is

easy. Suppose d2 = 0 on An~1(M, v). It suffies to show

/αJ2 = 0

on A"{M, υ).

tad2 = iadd = da d— diad

Since α ε A ^ l A f , v), for A G / ( M , V), we have d2iaA = 0, Q.E.D.

Thus we can derive the cohomology group of the representation of M on

v, which will be denoted by
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H(M, rf=Σi?"(M, v).

For any Lie J-algebra M over R, we have the canonical representation of

Mon /?, by β : M-* Dk(R) ^ Nk(R).

Definition. For a ^-algebra /?, the cohomology group H(Dk(R), R) of Dk(R)

with respect to the canonical representation on R will be called the de Rham

cohomology of the ring R.

Example 6. If k is the field of complex numbers, and R is the ring of

complex-valued differentiable functions on a paracompact finitedimensional

manifold, then the de Rham cohomology of R is nothing but the topological

cohomology group of the manifold with coefficients in complexes (see Weil

[16], de Rham [14]).

Let M be a Lie d-algebra over R with θ : M-+DkiR). We consider A(Mt

R) with respect to the canonical representation of M on R by θ. As we have

defined in Section 2, A(M, R) has a multiplicative structure A.

LEMMA 5. For any A, B in A (M, R), we have

where n = deg. A.

We have defined An for A in Am(M, R) with positive even degree m in

Section 2. We have

LEMMA 6. da(An) =da(A) ί\An~\ d(An) = d(A)l\An~\

Lemma 5 can be proved as follows: the formula for Ba can be proved by

the induction of deg. A + deg. B in the same way as Lemma 3. Then using

da- dia + iad and (b. 5), one has the formula for d.

To prove Lemma 6, one must first show the formula for 9Λ, which follows

from the definitions. Then, using da = dia-\-iad and (c.4), we get the formula

for d.

Section 4. Invariant forms

Throughout this section, Mis a Lie d-algebra over R with map 0 : M-> Dk(R\

L is a Lie algebra over R and Ms a representation of M on L (see Example

3 in Section 3). d and da are defined on Λ(Λf, L)^An(M} L), In Section-2,
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we have defined a form [A, Bl for A, B in A(M, L), and Ά for A in A(M, L)

with odd degree.

LEMMA 1. For A, B in A(M, L), we have

dalA, Bl = idaA, Bl + LA, BaBl,

a\.A, Bl = id A, 23] + ( - DnlA, dBl

where n = deg. A.

LEMMA 2. For A iw A(M, L) with odd degree, we have

daΆ = ΐdaA, A\ dΆldA, Al

In both cases, the formulae for da can be verified from definitions. Then

using da = dia + iad and formulae for ia of (d. 3) and (e. 3) in Section 2, one has

the formulae for d.

We say an /^-linear form P : L ® (g)L->iΫ?is L-inariant if

Σ « H / i , . . . Ji-u tg, / a . . . ,fn) = o

for any fu . . . ,/„ and g in L.

As we have shown in Section 1, the symmetric form Pn defined in Section

1 is Z,(#)-invariant.

LEMMA 3. Suppose P is an L-inariant symmetric n-form on L. Then, for

any 1-form B in Ax(My L) we have

ΈiP(AΊ\ . . . , At7, LAi, Bl, A*-\ . . . , Alk) =0

where Σ fit = n, and deg. At is even.

LEMMA 4. Suppose P is an L-inariant symmetric n-form on L. Then, for

any 1-form B in A1(Mf L) and for any 2-form A in A2(M, L), we have

P(A\ IA,B1, (B)ι)=0

where k + / + 1 = n. In particular, we have

P((B)n)=0, P(An'\ LA, J3])=0.

Lemma 4 is a direct consequence of Lemma 3 together with the fact the

[5, Bl =• 0 in Section 2.

Proof of Lemma 3. We shall give here a proof of

P(IA, B\ A n - 1 )=0
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for 2'ίorm A. The geueral case can be proved in the same way. P(lA, Bl,

A""1) is a 2w4-l-form in A(M, L). Take aQ, . . . , a*n+i in Af. We use i

instead of β, . P(LA, J5], An~ι) has a form:

PiίA, Bl i^)(0,

We shall show that for each k, the sum of terms contianing B(k) is zero

Suppose k = 0. The terms containing B(0) is given by

where i> runs through the cosets of G(l, 2, . . . , 2n) modulo /ί((l, 2) (3, 4),

. . , (2w-l , 2 Λ ) ) This shows that the above is the sum of the following

terms

ΣiP({ίB(0), Aiju-u j2i)X A(ju Jt), . . . 9Aυ'u^juh . . ) ,

which is zero since P is symmetric and L-invariant.

Definition, An i?-linear map P : L ® (g>L->/?is called M-inariant with

respect to the representation ί if

for any aεM> and for any /i, . . . , / « in I,.

Let be a f.g.-projective module with constant rank. Then Nkiv) has a

canonical representation on L{v) (see Example 3 in Section 3).

PROPOSITION 1. The symmetric form Pn on L{v) defined in Section 1 is

N(v)-inariant.

Proof. First assume that υ is free with a base elt . . . , en We have

Nk(υ) ~ L(v) + Df

where Df consists of those elements Xf such that

Xf(Σnei) = Σ(Xn)ei

for X in D. (see Example 5 in Section 3 and Proposition 1 in Section 1.)

Suppose a is in L(v). Then θ{ά)R = 0, and t(a)f = la, f\ for / in L{v). Thus

in this case, we have

ΣiPnifu , Γβ,//], . . ,/»)=0
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by Lemma 5 in Section 1. Now for the element Xf in Df

t(X')(f) = DP, /] = Σ(XΠJ)Eij

where f~ΣnjEij. Thus t(Xf) operates on L(v) by taking the derivative of

each coefficient. Since X is a derivation, we see

θ(X') Pn(fl, . . . ,fn)=ΣiPn{fu , t{X')fi, . . , fn)

by Lemma 6 in Section 1.

Now for an arbitrary v, take another v' such that v + vf is free and finite.

Denote by π the projection of v+v1 onto v. By Lemma 5, for any a in Nk(v)

we can find ft in Nk(v + vf) such that

a = π b π and θ(a) = θ(b).

We have

θ(b)*Pn(gi, . . . ,gnl υ + v') = ΣiPn{gι, . . . ,t(b)gu . . . , # , ; ϋ + v')

For any /i, . . . , / « in L(#), consider

^ is in L(v + v'). We have

θ(a)Pn(fu . . . ,/«; υ)=0(b)-Pn(gu . . . ,gnl v + v').

Since [6, #•] = τr[β, / , ] , we have also

Pn(fu . . . , la, //I . . ,Λ; v)=Pn(gu . . . ,lb, gβ, . . . ,gn; v + v') Q.E.D.

LEMMA 5. For tfwjy Λ ίw Nk(v)f there exists b in Nk(v + vf) such that

a = π b-π, β(a) =0(6)

where π denotes the projection of v~t-υf to v.

Proof. Let c be an element in N(υ + υ') such that θ(c) =θ{d). Set

bf = π c π-h (l-π) c (l-π).

We see easily b'eN(v + υ') and θ(b') = 0(c). Set, α' = τr6fτr - a. It is just a direct

verification to see a'εL(v). Set

£ = ft' - πa'π

b satisfies the required properties.

Suppose that P is an M-invariant symmetric #-form on L with respect to t.
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LEMMA 6. Let Au . . . , Ak be in A(Mt L) with even degree and n = Σm,

where ni>2. We have

BaPUi1 , Aϊ*) = ΣiP(A?\ . . . , BaAi, A?"1, . . . , An

k

k), dP(Aΐ\ . . . , An

k

k)

= ΣiP(Aΐ\ . . . , dAu Anr\ . . . , Alk)

The proofs are similar to those of Lemma 2.

Section 5. Connections in projective modules

Let R be a ^-algebra, υ a f.g.-projective module over R with constant rank.

By Proposition 1 in Section 1, we have the exact sequence

0

Definition. A connection in υ is a mapping Δ of Dk(R) into Nk(v) such

that

i) A is a homomorphism of iv?-modules.

ii) 6 Δ is the identity mapping on Dk(R).

Defining the connection in this way originates with Nomizu [11] in dif-

ferential geometry for tangent bundles.

Set

ω = 1 — ΔΌ

on Nk(v), where 1 stands for the identity mapping on Nk(v). ω has the following

properties."

i) ω is an /?-homomorphism of Nk(v) into L(v)y

ii) ω(f) = f for any / in L(υ).

ω is called the connection form of Δ.

Conversely, suppose that such an ω satisfying i) and ii) is given. We see

that the kernel of ω is isomorphic with DkiR) by the map 0. For any X in

Dk(R), we have a unique a in Nk(v) such that θ(a) — X, and ω{a) =0. Defining

Δ{X) -a, we get a connection, whose connection form is just ω. Thus giving

such an ω is equivalent to defining a connection.

The existence of a connection. First let υ be a free module with a base

ei, . . . , en. Define a mapping Δ of Dk(R) into Nk(v) by

This gives a connection in, which will be called the trivial connection in υ with
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respect to the base βu . - > £«•

Now let υ be an arbitrary f.g.-projective module with constant rank, and vf

another module such that υ + v' is free with a base eh . . . , en. Denote by π

the projection of υ + υ1 onto υ. We have the connection A in υ + υ1 with respect

to the base eh . . . , en, where A : Dk{R)-*Nk(v-}-vf). Set

for Z in £>*(#). We have

[J'(X), r] = τr [J(X), r] =τr QGr).

Thus J'(Z) is in AW#) and ^J'(Z) = X, i.e. A' gives a connection in v.

Suppose a connection J is given in a f.g.-projective module v with constant

rank. The element in the kernel of ω, i.e. the element in the image of A is

called horizontal, using the terminology in differential geometry. We set

h is an Z?-homomorphism of Nk(v) into itself. We define a mapping h' :

Aw(iVA:O), «;)-> An(ΛΓjfe(z;), w) for any jR-module w, by

(ΛΆ)(ΛI, . . . , an) = A(/itfi, . . . , han)

for «j, . . . , an in Nk(v).

We define a form A in An(Nk(v)y w) to be basic if A satisfies:

A(au . . . , tfrt) =0 whenever some «/ is in L(v).

Because of the exactness of 0->L(υ)-*Nk(v)->Dk(R)->0, one sees that a basic

form in An(Nkiv), w) comes from a certain form in An(Dk(R), w).

LEMMA 1. A form A in An(Nk(v), w) is basic if and only if h'A = A.

Proof It is obvious that if h'A = A, then A is basic, since h(L(υ)) = 0.

Suppose A is basic. Then

i, . . . , Λ«) - A(αi, . . . , α«) = AUtfi, . . . , ftfln) - A(tfi, . . . , an)

= ΣA(ai, . . . , ai-u

Since ha —a is in L(e ) for any aεNk(v), we have the result.

As we have shown in Section 3, Nk(v) is a Lie J-algebra over Ry and has

the canonical representation on L(v) (See Example 3, Section 3) and the



142 HIDEKI OZEKI

canonical representation on R (see Examples 1 and 4, Section 3). Thus we

have the coboundary operator d on A(Nk(v), L(υ)) = ΣAn(Nk(v), L{v)), and

on A(Nk(v), R) =2An(Nk(v), R).

Definition. For any form A in An(Nk(v), L(v)) (or An{Nk(v), R))9 we

define the covariant derivative DA with respect to a given connection by DA

= h'dA, i.e.

(DA)(ai, . . . , an+i) = (dA)(hau . . . , han+i)

for βi, . . . , tfn+i in iVΆ(t ).

Definition. For a given connection J, the curvature form K of J is defined

by

K = Dω

where ω is the connection form of Δ.

Since ω belongs to A\Nk(v), L(v)), K is a 2-form in A2(iVjfe(z;), £(«;)).

LEMMA 2. For tfwy X, Y in Dk(R)t we have

K(ΔX, ΔY) = J(ίX, Yl) - ZJX, ΔΫ\

Proof.

K(ΔXy ΔY) = (Dω)(ΔX, ΔY) = (dω)(hΔXf hΔY) = Wω)(JI, JF)

, ω(AX)l-ω(ZΔX, AYl) = - ωiZAX, AYl)

z, jy]) = j([χ, y ] ) - [ J i , AYΊ,

where we have used the fact that θ is a homomorphism of Lie algebras and

d A = id.

Note that Lemma 2 explains the role of the curvature form, i.e. K measures

the depature from being a homomorphism of Lie algebras.

When the curvature form K is zero, the connection is called locally trivial.

Since hf h' = hf

t the covariant derivative of any form is basic by Lemma 2.

Thus K is zero if K(AX, ΔY) =0 for any X, Y in Dk(R).

Example. When υ is free the trivial connection with respect to a certain

base gives K=0.

If the structure group of a differentiate vector bundle is reduced to a

discrete subgroup, then it has a locally trivial connection in the sense of dif-
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ferential geometry.

LEMMA 3. For the curature form K, we have

i) K = dω — ω,

ii) DK = 0.

LEMMA 4. For any basic form A in An(Nk{v)i L(v)), we have

i) DA = dA-lω, A],

ii) D2A = - IK, A].

Proof of i) in Lemma 3. Suppose a, b in Nk{v) are horizontal.

K(a, b) = (dω(ha, hb) = (dω)(a, b)y

ω(a, b) = [ω(β), ω(ft)] = 0.

Thus we have i) for horizontal a, b. Next suppose a is horizontal and b

is in L{v).

K(a, b) = (rfω(feβ, hb)=O, ω(a, b) = [ω(β),ω(ό)3 = 0,

(dω)(α, ft) = Cβ, ω(ft)] - [ft, ω(β)] - ω{ίa9 ft]) = [β, ft] - [α, ft] = 0,

since LNk(v), L(v)2^L(v). Suppose a and ft are in L{υ). We have

, ft) = 0, ω(a, ft) = lω(a), ω(ft)] = [«, ft],

(dω)(a, ft) = Cβ, <»(β)] -ω([β, ft]) = Cα, ft].

Since Nk(v) is generated by L(z ) and horizontal elements, we have i) for any

a> ft.

Proof of i) in Lemma 4. Let au - - , tfn+i be horizontal in Nk(v). Wehave

. . , an+i) =

Cω, A](αi, . . . , β Λ + i ) = 0 .

Suppose tfi is in L(z ) and «z2, . . . , βw+3 are arbitrary in Nk(v). We have

, . . . , Λ Λ + I ) = i : ( - l ) f + 1 C β / , A ( a u . . . , a i 9 . . . ,

- l)t+JA(ai, ajX ah . . . , « / , . . . , «y, . . . , an+i)
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since [_au cij~] is in L{v) and A is basic. This proves i).

Proof of it) in Lemma 3. Since K is basic, we can apply i) of Lemma 4

We have

DK = dK — [_ω, Kl = d(dω — ω) — [ω, dω — ωl = — dω + [ω, ω] — Eω, dω] .

Since [55, ω] = 0 by (e. 4) of Section 4, and dω = Wω, ω] = - [αι, Λo] by Lemma

2 in Section 4. We have DK = Q.

Proof of ii) in Lemma 4. Since DA is again basic we can apply i). We

have

D(DA) = d(DA) ~ tω, DAI = rf(Al - [ω, A]) - [ω, JA - [ω, A])

= - tf([α>, A]) - [ω, JA] + [ω, [ω, A]] = - Idω, A] + U, A] = - C/Γ, A]

where we used Lemma 1 of Section 4 and (e. 4) of Section 2.

Reduction. Let ^ be a f.g.-projective module over R with constant rank.

We have the exact sequence 0->L(v)->Nk(v) -*Z)-*0. Suppose that the following

commutative diagram is given for an iv?-Lie algebra L and for a Lie-d-algebra

iV over R:

0—> L —> N —>D—>0

I i [id
0—>L{v)—>Nk(υ)—*D—>0

We say that the pair (L, N) gives a reduction of υ if the vertical mappings

are injective homomorphisms of i?-modules and homomorphisms of Lie algebras

and if L is an ϋNprojective module with constant rank.

In differential geometry, the notion of reductions is very much related with

the curvature forms.

Section 6. Chern classes and the product formula

Let v be a f.g.-projective module over R with constant rank, and R a k-

algebra. We have the exact sequence 0 -+L(v) -*Nk(v) -* Dk(R)-*0. Hereafter

we shall omit the symbol k. N(v) is a Lie J-algebra over R and has represen-

tations on L(υ) and on R, thus we have the cochain groups A(N(v), L\υ)) and

A(N(v)f R).

On the other hand, by the canonical representation of D(R) on R, we have

the cochain group A(D(R), R), which defines the de Rham cohomology H*(R)
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of the ring R. By what we have proved at the end of Section 3, the ring

structure cf A(D(R), R) is carried over to the cohomology of A(D(R), R)y

thus H*(R) is a ring.

We shall start by giving a few relations among those cochain groups.

We denote by Bn(N(v), L(v)){Bn{N(v)y R)) the set of all basic forms in

An(N(v), L(v)) (An(N(v), R) respectively).

LEMMA 1. The mapping: R->L(v) (see Lemma 7 in Section 1) gives an

injective homomorphism: An(N{v), R)-> An(N(v)> L(v)). This is compatible

with d, and if a connection is given then it is compatible with D.

For any element a in R, the representations of a in N(v) on L(v) and on

R coincide. The rest is just a direct verification.

LEMMA 2. The mapping θ : N(v)-+D(R) induces the mapping θ : An(D{R),

R)->An(N(v), R) by

(ΘΆ)(ah . . .)=A(θah . . . ) .

θf is compatible with d, i.e. dθ1 = θ'd.

This follows from the fact that θ is a homomorphism of #-Lie algebras and

a homomorphism of ivNmodules.

LEMMA 3. θ' gives an isomorphism of An{D(R), R) onto Bn(N(v), R). The

inverse mapping ψ is also compatible with d.

The first statement follows from the exactness of 0-*L(v)-+N(v)-+D(R)

->0. Let AεBn(N(v)y R)aBn(N(v), L(v)). We have

DA = dA - Cω, Al

where ω is the connection form. Since the values of A lie on R, which is in

the center of the Lie algebra L(v), we have [ω, Al = 0. Hence dA is basic.

Now the second statement of Lemma 3 follows from Lemma 2.

LEMMA 4. For any A in Bn(N(v), R)} we have

DA = dA.

This is clear from the above argument.

Definition of Chern classes. Let A be a connection in v, and K its curvature

form. Let P be an invariant symmetric n-ίorm on L(v) with respect to N{v),
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We have the form P{Kn) in A2rliN(v), R) (see section 2). Since K is basic,

P(Kn) is also basic. We have

d(P(Kn)) = DiPiKn)) = K D ζ JT"1) = 0,

be Lemma 6, Section 4, and by Lemma 3, Section 5. This shows, by Lemma 3,

that the form <p(P(Kn)) in A2n(D(R), R) is a cocycle. The class determined

by ψ{P(Kn)) is called the characteristic class of v corresponding to the invariant

form P.

Now let Pn be the invariant symmetric form defined in Section 1. The

characteristic class of v corresponding to Pn is called the n-th Chern class of

vy and denoted by cniv), or by cn{υ : Δ) when we need to emphasize Δ. cniv)

is in H2n{R). We define Coiv) = 1, where 1 denotes the class determined by 1

in A\D(R), R) ~ R, which is a cocycle. Set

civ) = ΣCn(v)

where the sum is just a formal sum. civ) will be called the Chern class of v.

Remark. If DiR) is finitely generated over R, then one sees that HniR)

= 0 for every sufficiently large n since ΛnDiR) - 0 if n is greater than the

number of generators of DiR). Hence in this case civ) can be defined to be

an element in H*iR).

Later we shall prove that the Chern class civ) does not depend on the

choice of connections.

The product formula: Let Vi and v2 be f.g.-projective R-modules with con-

stant rank. We have

civi + v2) = civi) A civ2)

i.e.

t\Cn-kiv2).

In this section, we shall prove the product formula for a suitable connection

in Vi + v2, which will be determined by connections in vi and in v2. Using this

result, we shall prove in the next section, that the Chern class does not depend

on the choice of connection. It will complete the proof of the product formula.

Proof. Let Δi be any connection in Vi, ω; the connection form and ϋΓ, the

curvature form it = 1,2), We define a connection Δ in V\ + v% as follows. For
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any X in D(R), consider the mapping Δ(X) of Vi + Vz into itself, defined by

Δ2(X)-π2

where π/ denotes the projection of Vι + υ2 onto Vi. Δ(X) is in N(vι + v2). In

fact, for any rεR, we have

U(X), rl = lMX)-πu rl + U*(X)'n, rl
* = X(r).

This shows Δ(X)εN(vι+v2), and [J(Z), r] = Z(r). Thus 0 J = t h e identity

mapping on D(R). Hence Δ defines a connection in Vι-\-v2. Let K be the

curvature form of Δ. By the definition of J, and by a lemma in Section 5, we

have

K{ΔXy ΔY)=KΛΔiX, Δ1Y)-hK2(Δ2Xf ΔtY)

for any X, Y in D(R), where we consider L(vi) and L(v2) to be submodulesof

-V2) in the natural way. Consider the forms A, Au A2 in A2n(D(R)y

vr

2)) defined by

A(X, Y)=K(ΔX, ΔY)y Ai(X, Y) = Ki(ΔiX, ΔiY).

The cocycle defining cn(vi+v2) in A2n(D(R), R) is given by Pn(An). We have

hence

Pn(An)=ΣPn(AΪ, An

2~
k).

We denote by P i Pu the ^-th invariant symmetric forms on L(vi), L{υ2)

respectively. The cocycles denning Ck(vι) and Ck(v2) are given by P'k(AΪ) and

Pk(A%) respectively. Thus it suffices to show

Using Lemma 4 in Section 1, we have

u Ά), . . , AάΆk), A2(X2k+1) )

for any Xl9 . . . , X2n in D(R). This together with definitions in Section 2

completes the proof.
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Section 7. Invariance of Chern classes

We shall prove in this section that Chern classes of projective modules are

independent of the choice of connections. The problem will be reduced step

by step.

A) It suffices to show the independence in the case where the projective

module is free.

Proof. Suppose that the Chern class of a finitely generated free module is

independent of the choice of connections. Since the free module has a trivial

connection, our assumption is the same as saying that the Chern class of a

free module is 1 in H*iR). Let v be any f.g.projective iv?-module with constant

rank and vf another /^-module such that v-\-vf is free. Take arbitrary connec-

tions Δι and Δ2 in v% and Δf in v'. By the product formula in Section 6, we

have

c(vt A) f\c{v\ J') = l,

c(v, Δ2)Nc(υ\ Δ') = l

since c(v + vf) = 1. We have

, Δι) = CQ(V, Δ2) = 1,

Δι)Ncχ(υ\ J')+Cι(v, Ji)Λco(V, Δ') =

In the same way

Δ2) =0.

Thus

Δι) = Ci(#, Δ2).

Repeating this, we get cn(υ, Δι) =cn(v, Δ2). Q.E.D.

Hereafter we assume that υ is a free module with a fixed base eh . . . , en.

L(v) is also free with the base {Eij} where Eijβk = djkei. We have a represen-

tation t of the Lie d-algebra D(R) defined by

t(X)(ΣnjEij) =

Let A be a n-ίorm in An(D(R), L(v)) (or An(N(v), L(v))). We can write

A^ΣAijEij

where An belongs to An(D(R), R) (or An(N(v), R)). One can see easily that-
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with respect to the representation t the above expression is compatible with

the coboundary operator d, i.e., we have

B) It suffiees to show that for any 1-forrn A in A^DiR), L(v)), the form

Pn{(dA)k, (A)n'k) in A2n(D(R), R) is cohomologous to zero.

Proof. Let A be the trivial connection in υ with respect to the base eίf

. . . , en and A' an arbitrary connection in υ. A is defined by

Let ω, ωf be the connection forms of J, A1 and Ky K
f their curvature forms.

Since A is trivial we have if = 0. We shall denote by D the covariant derivative

with respect to the trivial connection A. Set

B = ω' - ω.

We have

K' = dω' - ω' = d(ω + B) - (ί+1? )

= dω + dB - ω - B - Zω, Bl = ̂ B - [ω, B] - S = ZλB - S,

where we used the fact that the form B is basic since B(f) = ω'{f)-ω{f)

= / " " / = 0 for any fεL(v). We have

Pn((K')n) =Σ(- l)nkPn((DB)\ (B)n~k).

Consider the form A in A'(D(R), L(υ)), defined by

A(X)=B(JX).

A is basic, and we have Θ'A=^B, ψB = A (see Lemmas 2 and 3 in Section 6).

It can be easily shown that

ψ(DB)=dAy φ(B) = Ά.

Thus we have

*, (B)n'k)=Pn((dA)\ (Ά)n~k).

Hence, if this form is cohomologous to zero, any connection in a free module

has the trivial Chern class. Q.E.D.

We shall show •

C) For any 1-form A in AHD(R), R), the form Pn{{dA)\ (Ά)n~k) is
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cohomologous to zero.

First note :

i) For * = 0, we have Pn((Ά)n) = 0 by Lemma 4, Section 4,

ii) ΛPΛ((A4)*f (Λ)*-*))=0.

In fact, by the last lemma in Section 4, we have

d{Pn((dA)\ (A)n'k)) = PniddA, (dA)k'\ (1)*"*) + Pn((dA)k, dλy

By Lemma 2, Section 4, dA = ίdA, A]. Thus the last term is zero by Lemma

4, Section 4.

iii) For A = ΣAikEtk, we have

This follows from a direct verification.

LEMMA 1. Let A^^AijEij, B = ̂ BijEij be 2-forms in A2(D(R), L(v)).

We have

Pn{(A)\ (B)n~k) = Σ Σsignί^ ' ' f>)

A x/xΛ ΛΛ,i f cΛft,Hi,hΛ Λ5 / ί / ; ,

Proof. We have, by Lemma 6 in Section 1,

pn{EiιJV . . . , Einjn) = s i g n ( ^ |

In particular,

Pn(EiJιt . . . ,βMyΛ) = 0

whenever some Eikjlc = Eiιjι for Λ= /̂. Thus one sees Pn((AijEijY\ . . . ) = 0

whenever />2. One can get the result expanding PM(A^, JB "̂̂ ). (For instance,

PΛ((Aι + Aa)
2, Bn-2)^PAA2u Bn-2) + PJAl, Bn'2) + Pn(Au A2, Bn'2).)

Using Lemma 1 and iii), we see that P((dA)k, (A)n~k) is a linear combina-

tion over integers of the following type of forms:

dAi^N ' /\dAikjk/\ArlSιh * NAreSe

where l = 2n-2k. Also one can verify that in the above forms, the forms of

the following type are not contained

ij Λ Λ Aij Λ * .
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Note that we have always Aij/\Aij = 0, dAij AJAy = 0. Note the statement C)

follows from the following Lemma 2.

For given non-negative integers ky I and n with k + l<n, we denote by

S(kf I, n) the set of ordered subsets (aίt . . . , akl ^ fc) of {1, . . . , « }

such that ai< - ' <aky bι< <bι and {au . . . , (ik) Π {bi, . . . , bι) = φ.

LEMMA 2. Let k, I and n be non-negatie integers such that k-\-l<n and

/ > 1 . Suppose that for each (ah . . . , aj; bh . . . , b{) in S(k, /, ̂ ) , «w integer

fiau . . . , 06 bι, . . . , bι) is given with the following property:

For any ring R, and for any 1-forms Aly . * . , An in A1(D(R), R), Σf(aiy

. . . , au\ bu . . . , bι)Aaχt\ t\Aakt\dAbxί\ * l\dAbι is a cocycle.

Then, there exists a function g on S(&-f 1, / - I , n) with values integer

satisfying:

For any ring R, and for any 1-forms Aly . . . , An

d(Σg(au . . . , ak+i I bL, . . . tbι-i)Aai/\ Λ Aak+ι A dAbx A ί\dAbι.x)

= 2/(01, . . . ,06 ^i, . . . ,bi)Aax/\ ' ' ' t\Aakί\dAbx^ ' I\dAbk.

Proof. We may assume k-\-l — n. We omit 0/s in / , # since they are

determined uniquely by &/s. The assumption implies

(X) 2( - lΫ/ibu . . . , * / , . . . , 6#+i) = 0

for any 1 < £1 < <£/+i < w. Set

^(δi, . . . ,ft/-i)=/(l, ^1, . . . ,6/-i) if 6 i > l

= 0 if bι = 1.

We have, for any l < ^ ι < <bι<n,

{X, X) Σ{ - l)i+1g(bu . . . , bif . . . , bι) = / ( ^ , . . . , ft/).

In fact, if fti = 1, then it follows from definition. If 61 > 1 , then it follows from

(X). (X, X) gives the required result.

The condition (X) follows from the following example: R=kLxu . , Xn>

^1, . . . >ynX the polynomial ring over a field, Ai = Xidyi. Q.E.D.
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