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Introduction. Let S be the integral closure of a discrete rank one valua-

tion ring R in a finite Galois extension of the quotient field of R, and denote

the Galois group of the quotient field extension by G. It has been proved by

Auslander and Rim in [4] that the trivial crossed product J(l, S, G) is an

hereditary order for tamely ramified extensions S of R> and that J(l, S, G) is

a maximal order if and only if S is an unramified extension of R. The purpose

of this paper is to study the crossed product J(/, S, G) where [/] is any

element of H2(G, U(S)) and S is a tamely ramified extension of R with

multiplicative group of units ZJ{S).

The main theorem of Section 1 states that for an extension S of R the

following three properties are equivalent •

(1) S is a tamely ramified extension of R

(2) the crossed product J(f, S, G) is an hereditary order for each [/] in

H\G, U(S))

(3) the trivial crossed product J(l, S, G) is an hereditary order.

We then give an example to show that not every hereditary order is equivalent

to a crossed product over a tamely ramified extension.

In Section 2 we study the number of maximal two-sided ideals in the cros-

sed product J(f,S,G). It has been proved by Harada in [6] that the number

of maximal two-sided ideals in an hereditary order A over a discrete rank one

valuation ring R in a central simple algebra Σ over the quotient field of R is

equal to the length of a saturated chain of orders over R in Σ containing A.

This is the main motivation for our study. Given a crossed product J(/, S,

G) over a tamely ramified extension S of R we define the conductor group H/

of Δ(f, S, G) to be a certain subgroup of the inertia group of a maximal ideal

of S. Then we show that the number of maximal two-sided ideals in Δ(f, S,

G) is equal to the order of the conductor group Hf. In particular, the number
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of maximal two-sided ideals in the trivial crossed product is equal to the

ramification index.

In Section 3 we motivate the naming of the conductor group of the crossed

product Δ = Δ{ft S, G) by proving that if Γ denotes any maximal order con-

taining Ay and CAΔ) is the conductor of Γ in J, then the length of S/CAΔ) Π S

is equal to g(h — l) where g is the number of maximal ideals of S and h is

the order of the conductor group Hf of Δ(f, S, G).

The following notation shall be in constant use throughout the paper. If

R is a local ring, then R shall denote its residue class field. The multiplicative

group of units of a ring R shall be denoted by U(R). Unless otherwise stated,

R shall always denote a discrete rank one valuation ring, S the integral closure

of R in a finite Galois extension of the quotient field of Rf and G the Galois

group of the quotient field extension.

Let G be a finite group, R a commutative ring with identity element, and

A a G-ring over R. Then each element / in Z2(G> U{A)) gives rise to the

crossed product Δ(f, A, G)f namely the i?-algebra which is the free (left) A-

module with free generators u^ indexed by the elements of G and with multipli-

cation defined by (auΊ)(buτ) = ab'yf{σ, τ)uaχ for a and b in A. The crossed

product Δ(f, A, G) depends up to isomorphism only on the cohomology class

[/]. Furthermore, given [/] in H2(G, U(A)) we can always choose the 2-

cocycle / such that /(r, 1) ==/(!, r) for each element τ in G. Thus we shall

always assume that the cocycle / is normalized so that Uι is the identity

element of Δ(f, Ay G).

Let R be a domain with quotient field kf and let Σ be a central simple k-

algebra. Then a subring A of Σ is said to be an order over R if A is a finitely

generated i?-module which spans Σ over k. An order is said to be an hereditary

order if it is hereditary as a ring.

Let an extension S of a local ring R be an integral extension of integrally

closed domains, such that the quotient field extension is finite and Galois with

Galois group G. If / is an element of Z2(G, U(S))9 then Δ(f, S, G) is an

order over R. The ring S is said to be a tamely ramified extension of R if

there exists a maximal ideal P in S such that SP is separably algebraic over

R and the order of the inertia group of P is relatively prime to the field chara-

cteristic of R, Since all the maximal ideals are conjugates, it follows that-if
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One maximal ideal of S has the above property, so does each maximal ideal.

The author expresses her appreciation of the direction given to her by

Dr. Dock Sang Rim for the preparation of this paper, and also for the intro-

duction to the study of hereditary orders given to her by Dr. Maurice Auslander.

1. The crossed product Δ(f, S, G)

The main purpose of this section is to prove that every crossed product

over a tamely ramified extension S of a discrete rank one valuation ring R is

an hereditary order. The method of proof will be to reduce the problem to

the inertial case by considering the inertia ring U of S over R.

The first theorem is a generalization of Maschke's Theorem on the semi-

simplicity of the group ring, and will be useful in proving the assertion in the

inertial case.

THEOREM 1.1. Let G be a finite group of order n, and let k be a field of

characteristic p such that p is relatively prime to n. If G operates trivially on

k, then every crossed product Δ — Δif, k, G) is k-separable.

Proof. Consider the exact sequence

0—>J—-> Δ ® kΔ°—> Δ—>0

of left Δ® J°-modules where Δ° denotes the opposite ring of Δ and ψ is defined

by φ(δi®δ2) = δiδ2. This sequence splits if and only if there exists an element

jo in / such that jjQ = j for all j in /.

Since p is relatively prime to n, we have that 1/n is in k. Now define

/o = — Σ ( l ® l — γ ( — — i γ u σ ® u a - ι ) ' Since / is generated as a left ideal in

Δ®Δ° by elements of the form 1 ® uτ ~ uτ ® 1 where τ runs through all the

elements of G, it suffices to show that il®ux - uτ® l)yΌ = l®uτ - ux® 1 for

any element τ in G and this is true provided that

Consider UτP®uP-ι for some element p in G> and let ω in G satisfy ω= τp. By

repeated application of the associativity relation satisfied by the cocycle /, we

can observe that /(αΓ1, r)/(p, (o" 1)=/(r, p)f{ω, ω"1), so that
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Therefore ( l ® # τ - # τ ® l ) Σ - 7 7 rrrUa®«o-i = 0, since the terms cancel

in pairs. Hence the sequence splits, and we know that A is A® J°-projective,

i.e. that Δ is ^-separable.

We proceed to prove the assertion in the inertial case. Throughout the

rest of this section we shall make use of the following fact which has been

proved by Auslander and Goldman (see p. 5 of [3]).

LEMMA. Let R be a discrete rank one valuation ring. If A is an R-algebra

which is a finitely generated torsion free R-module such that the radical of A is

left A'projectiυe, then A is both left and right hereditary.

PROPOSITION 1.2. Let the extension S of R be a tamely ramified inertial

extension of discrete rank one valuation rings such that the quotient field exten-

sion is finite and Galois with Galois group G. Then the radical of the crossed

product J = Δ(f, S, G) is ΪTΔ, where IT denotes the prime element of S. Hence

Δ is an hereditary order.

Proof. Define J to be the crossed product A(f, S, G) where the action of

G on S is given by the natural homomorphism G-*Aut(S/R), and / is the

image of / under the natural map Z2(G, U(S))-* Z2(G, U(S)). We observe that

Z is semi-simple. For, since S is an inertial extension of J?, we know that

S = R, so that G acts trivially on S. From the assumption that S is tamely

ramified over R, it follows that the field characteristic of S is relatively prime

to the order of G. Hence by Theorem 1.1 we have that J is S-separable and

hence semi-simple.

By the preceding lemma it remains to show that rad Δ = ΠΔ. Since A is a

finitely generated S-module, and ΠA is a two-sided ideal in Δ, we know that

HΔ is contained in rad Δ. It is easily seen that ~Δ = Δ/ΠΔ. Therefore Δ/ΠΔ

is semi-simple and so rad A = ΠA. Using the fact that UA is a free J-module,

it follows from the lemma that A is an hereditary order.

PROPOSITION 1.3. Let the extension S of R be a tamely ramified extension

of discrete rank one valuation rings such that the quotient field extension is

finite and Galois with Galois group G. Then the radical of the crossed product
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Δ = Δ(f, S, G) is ΠΔ where IT is the prime element of S. Hence Δ is an

hereditary order.

Proof. Let U be the inertial ring of S over R. By virtue of Proposition

1.2, we may as well suppose that U properly contains R. Since S is tamely

ramified over R, we know that S = U since U is the separable closure of R in

S. Therefore the extension S of U is a tamely ramified inertial extension of

discrete rank one valuation rings. The Galois group of S over U is Gi> the

inertia group of S. We now define Δi = Δifi, S, Gi) where/? is the restriction

of / to GiXGi. By Proposition 1.2 we know that rad Δi -ΠΔi.

Let 2 = Δ/ITΔ and 2/ = Δι/ITΔι and note that there is a natural injection of

Δi into Δ. We observe that (rad2)Π2z = 0. For (rad2) Π2z is a nilpotent

two-sided ideal in Δi. Therefore it is contained in rad 2/, and hence (rad 2)

n Δi = o.

We prove finally that rad 2 = 0. Note that 2 = Δ(f, U, G) where / i s

induced by /. Let G = U Gi gi be a right coset decomposition of G with respect
i

t(δ)

to Gi. Then each element δ in can be written as δ = Σ & where ί/= Σ C A ) « A ^

with h in G/ and c/ί* in U. Let 5 be an element in rad Δ, and write δ = Ύ) δi.

We claim that 5 = 0. The proof is by induction on t(δ). If t(δ) = 1, then 5 is

in (rad2)ΠJ/, and so 5=0. Let t(δ)—t, and assume that r = 0 for each

element γ in rad2 such that t(γ)<t. Since S is a Galois extension of R we

can write S = R(θ) for some element β in S. Now consider the element a = θδ
ί-l _

~" δgt1(0) = Σ ( 0 — gigϊ1(θ))δi. Since α: is in radJ, and £(α)<f, we conclude

from the induction hypothesis that a = 0. Since θ -gigtι(d) =̂ 0 for ί # ί , it

follows that 5/ = 0 for a#ί, so that δ = δt Then flw*ri is in (rad2)Π2z and

hence δugtΓ^ = 0 and finally 5 = 0. This concludes the proof.

Finally we delete the requirement that S be a discrete rank one valuation

ring, and prove the following theorem.

PROPOSITION 1.4. Let S be a tamely ramified extensiθ7i of a discrete rank

one valuation ring R, such that the quotient field extension is finite and Galois

with Galois group G. Then each crossed product Δ= Δ(f, S, G) is an hereditary

order.

Proof. Let R be the completion of R, and consider Δ = Δ0RR. Since R

is iv?-flat it is clear that Δ is an hereditary order over R if and only if Δ is an
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hereditary order over R (see p. 7 of [3]). Note that Δ = SΔ = Δ(f, S, G)

whsre S ~S®RR =- Siθ θSg, and S, denotes the completion of the localiza-

tion of S at the maximal ideal Pi of S. If we let eι be the identity element of

Si then G acts as a transitive permutation group on the set (eu » eg)> We

shall denote by Gf the decomposition group of P, in the extension S of R.

Denote ejΔ ei by J, , and let [/,] be the image of [/] under the natural

map Ή\G, U(S))->H2(Giy U(Si)). Then Δi = J(/}, S, , G, ) and since the quotient

field extension of the extension Si of i? has Galois group G/, we know by

Proposition 1.3 that Δi is an hereditary order and that radJ, = PίJz .

Next we observe that Δi Π radz/ is contained in rad J;. For suppose that

δ is in J/ΠradJ, and let & be any element of J, . Then U(l + δiδ) =1 for

some element ί, in Δi. Hence βitiβiiei + δiδ) = βi in Δi, and so 5 is in radJz .

We show finally that raάΔ = (rad S)Δ . Suppose that δ is in Δ. Then

we can write δ = Σ ^ ί. Let <? be any element of G and suppose that <;(£*) = βk.

If 5 is in rad Δ , then by the above remark, a δun e% is in rad Δi. Now suppose

that δ is in radJ, and write δ = ΣstWτ where sτ is in S and τ is in G. Let

a; and μ be defined by r = </~1ω and p = a~\a. Then τ(βk) = e% if and only if

στ{ek) = ̂ , from which it follows that eiδu^ei - Σ^^po-i/ίp^"1, tf)wP for elements

p in G/. This equality together with the fact that eiδuσei is in radJ* implies

that e/Sp,-i = £, sτ is in PZ J/ for each r in G. Hence rad J is contained in (rad

S)2. Since (rad S) Δ is a two-sided ideal in J , we conclude that rad 2 =

(rad S ) J . If Pi = Z7S/ then radS is the principal ideal (Πu . . . , ITg). Since

(rad S ) i is a free-J module, we conclude from the lemma to Proposition 1.1

that Δ is an hereditary order over R. Hence Δ is an hereditary order over R.

We shall make use of the following proposition which is due to Auslander

and Rim (see [4]).

PROPOSITION 1.5. Given an extension S of R, the trivial crossed product

Δ{1, S, G) is hereditary if and only if S is a tamely ramified extension of R.

Thus we have established the following theorem.

THEOREM 1.6. Let R be a discrete rank one valuation ring, and S the

integral closure of R in a finite Galois extension of the quotient field of R with

Galois group G. Then the following statements are equivalent:

(1) S is a tamely ramified extension of R
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(2) the crossed product J(f, S, G) is an hereditary order for each [/] in

H\G, U(S))

(3) the trivial crossed product J(l, S, G) is an hereditary order.

An equivalence relation on the set of hereditary orders H'{R) over a discrete

rank one valuation ring R is introduced in [2]. Namely, if Λu and A2 are in

H*{R), then Λ\ is said to be equivalent to Λ2 if there exist finitely generated

free i?-modules Ex and Ez such that

Λi® RRomR(Eu £ I ) = A ® B KomR(E2, E2).

It is established in [2] that each separable order is equivalent to a crossed

product over a Galois extension of R.

Remark. An hereditary order need not be equivalent to a crossed product

over a tamely ramified extension. We show that this is true by an example.

For let R be the ring of 2-adic integers. Denote the quotient field of R by

k, and let K=k(y/2). Then the integral closure S of R in K is R [V~2~l It

is easily seen that S is a local domain with maximal ideal (V 2 ), and the Galois

group G of K over k is cyclic of order two, G = (1, σ). Let J = J(l, S, G).

Then radJ=(V2~, l + «σ). We define Γ by adjoining the element (l + wσ)/2

to J. Then Γ is an order, and rad Γ=V2 Γ. Since the radical of Γ is a free

Γ-module, it follows that Γ is an hereditary order. Suppose that Γ is equivalent

to a crossed product J(/, T, i7) where T is an extension of R. Then there

exist finitely generated free i?-modules Eι and E2 such that

Γ®RΉ.omR(Eu Eι)τzΔ(f, T, H) 0R HomB(£2, &).

If radT= (α), then the above isomorphism must map si 2 into «M where u is

a unit in J(/, T, H)®R Hom^ίS, £"2), so that α2 = 2v for some unit v in T.

Hence the ramification index of T over R must be two, and so T can not be

a tamely ramified extension of R.

2. The conductor group of J(f, S, G)

The purpose of this section is to give a criterion for determining 'the

number of maximal two-sided ideals in the crossed product J(f, S, G) when

S is a tamely ramified extension of a discrete rank one valuation ring. We

first restrict the problem to the case when S is also a discrete rank one



HO SUSAN WILLIAMSON

valuation ring, and then reduce the general problem to this case by taking

completion with respect to the prime ideal of R.

Let the extension S of R be an integral extension of discrete rank one

valuation rings such that their quotient field extension is finite and Galois.

Then if we denote by G the Galois group of the quotient field extension, we

have the exact sequence

where Gi is the inertia group of S.

PROPOSITION 2.1. Let the extension S of R be a tamely ramified extension

of discrete rank one valuation rings such that the quotient field extension is

finite and Galois with Galois group G. Then

a) the inertia group Gi is cyclic and its order e is not divisible by the field

characteristic of R. Furthermore, S contains all the eth roots of unity.

b) for each element τ in G, we have that r(C) = Cw(τ) for each eth root of

unity C in S where n(τ) is an integer defined modulo e by the relation τaτ"1 =

σn{τ) and a is a generator of G/.

Proof, a) Replacing R by the inertia ring, we may assume that S is a

tamely ramified inertial extension of 7?, so that S=R. Let 77 be the prime

element of S. For each element τ in G, we can write r(77) =sxΠ where sτ is a

unit in S. The map ψ : G-> U(R) defined by ψ(τ) = r(77)/77 mod (77) is a group

homomorphism. Since S is tamely ramified over R, it follows from Hubert's

ramification theory that the higher ramification lgroups vanish (see Theorem

25, p. 295 of [8]). The kernel of ψ is the second ramification group. Therefore

ψ is a monomorphism and G is cyclic.

Let ί b e a generator of G. Then 1 = ψ{a)e and so ψ(a) must be a primitive

etH root of unity, since ψ is a monomorphism.

Let C be the primitive eth root of unity in S defined by C = <;( 77)/77 mod (77)

where a is a generator of the inertia group Gi, and observe that C does not

depend on the choice of the prime element 77. Then r(C) = τστ'^ilD/τiΠ)

moά(Π)=σn(τ)(Π)/Π mod(77) = Crt(τ).

Now let S and R be as above and consider a crossed product Δ(ft S, G)

where [/] is in H2(Gt U(S)). The number of maximal two-sided ideals in
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J(/, S, G) is the same as the number of simple components in Δ{f, S, G)

where [/] is the image of If] under the canonical map H2(G} £/(S))-»#2(G,

U(S)). Thus the problem reduces to the following:

Given 1) a finite Galois field extension K of k and a finite group G together

with an exact sequence

such that Gi is a cyclic group whose order e is not divisible by the field

characteristic of k\

2) that K contaius all the eth roots of unity and if τ is any element of G,

then r(C) = an{x) for all the etH roots of unity C where n(τ) is an integer defined

modulo e by the relation τστ'1 = on{τ) and a is a generator of Gι

3) the cohomology class [/] in H\Gy U(K))

Problem Determine the number of simple components in Δ(f, K, G).

In order to do this we define for each cohomology class [/] two subgroups

of Gi associated with [/].

Definition The group Γf is defined to be the maximal subgroup of GL such

that the image of Γf under the restriction map H2(G, U(K))->H2(Γf, U(K))

is trivial. The group Hf is defined to be the maximal subgroup of Gi such

that [/] is in the image of the inflation map H2(G/Hf> U(K))->H2(G, U(K)).

We shall call Hf conductor group of zf(/, K, G); its meaning will be

justified in the main theorem of this section. The group Γf is of technical

nature.

The group Hf is contained in //, since the composition map H2(G/Hf,

U(K))-*H2(G, U(K))-*H2(Hfy U{K)) is trivial. If G = GIy then it will follow

from Proposition 2.3 that Hf = Γf.

Remark. The conductor group Hf need not equal Γf.

For let R be the ring of 3-adic integers, k its quotient field, and K = k(iy

V 3). Then the integral closure S of R in K is R&, V1Π and the inertia ring

U is RU\. The inertia group Gi = (1, a) is the cyclic group of order two," and

the Galois group G of K over k is the Klein four group G = (1, σ, τ, aτ).

Define / : GxG-»U(S) by / U *)=/(r, r) =/(r, σ) = f{στ, σ) = f(τ, aτ) =-- 1,

and f(ΰy τ) = /(</, ΠJ) - f(στ, τ) =/(</r, err) = — 1. Then it can be verified by
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computation that / is in Z2(G, U(S))> that # / = (1), and Γ/ = Gi.

We observe that, given [/] in H2{G, U(K))f we may assume that the

restriction of / to Γf x // is trivial. For, it follows from the definition of Γ/

that there exists a map φ: Γf-*U(K) such that f(σy τ) =φ(σ)φ°(τ)/φ(στ) for

all σ and τ in Γf. Extend the map φ: Γ/-> £/(#) to φ: G-> Z7(if) by defining

ψ(p) =φ(p) if p is in Γ/ and φ(p) = 1 if p is not in Γf. Set / 'U, τ) =f(σ, τ)

φ(στ)/φ(σ)φn(τ). Then C/G = [/] and f'(σ, τ) = 1 when both <; and r are in Γ/.

From now on we shall always assume that each cocycle / is properly normalized,

i.e. that f{σ} τ) = 1 for all a and r in Γf.

Given a 2-cocycle / we have the following chain of crossed products:

A(f, K, G ) 3 J ( / / f K, G/)3J(/Γ > ϋΓ, Γ/)^J(/Ht K, Hf)

where /Γ denotes the restriction of / to TxT. We have

PROPOSITION 2.2. 77*£ number of simple components of Jifi, K> d) is

equal to the number of simple components of A(fy, K, Γ/) and the primitive

orthogonal idempotents are given by

for i = 1, . . . , m where γ is a generator of Γf, m is the order of Γ/ and ζu

C2, . . . , Cm are the distinct mth roots of unity.

Proof. Since GL is cyclic, we have a canonical isomorphism H2(Gi, UiK))

= U(K)lmκY where e is the order of Gι. Let [/] correspond to a mod U{K)e

under the above identification. Then m is the maximal divisor of e such that

aeίm is in U(K)e, i.e. elm is the order of a in U(K)/U(K)e. Let c be an element

of U(K) satisfying a = cm. Then Δ{fly K, Gi) = KlXll(Xe- a), and so the

number of simple components of J(/z, K, Gι) is equal to the number of

irreducible factors of Xe - a = Π (Xe/m - C. c) in K D Q Since ϋC contains all
* = 1

the βίΛ roots of unity, it follows that each Xe/m - dc is irreducible over K.

For let ψ(X) be an irreducible factor of X?lrn-dc in ϋCCZ], and let a be a

root of ψ(X). Then Nκ(Λ)/κ(cc) = a:**)? where ^ is an mth root of unity and tf = deg

^(Z) = ̂ /m. Since ady and 7? are in K, we have that ad is in ϋΓ. Now ad = cmίί

= (C,c)mί/ = α ( c / m ) m ί / =(α: t i ) e , so that ad is in mϋί)β. Hence d = 0 moά(e/m).

Since d<eim, we must have d-elm. Therefore deg ψ(X) = elm and
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consequently Xelm - dc is irreducible. Therefore the number of simple com-

ponents of Jifiy K, Gi) is equal to w = the order of Γ/.

On the other hand, assuming that / is properly normalized, we have an

isomorphism Kl_X~M(Xm- 1) = A(fr, K, Γf) defined by X->ur where γ is a

generator of Γf. Consequently the number of simple components of J(/r, K,

Γf) is equal to m = the order of Γ/, since K contains all the mth roots of unity.

Since J(/r, K, Γ/)θ.J(fi, K, Gi) is an inclusion of commutative algebras, we

conclude that the idempotent elements of Δ(flt K, Gt) are present in Δ(fΓ, K,

Γf). In order to compute the primitive idempotents, we next observe that

KlXl/(Xm-l) is the algebra direct sum of the ideals generated by ^hr~-
A —ζ;

m ~Sζm 1

However, the fact that mXm~1 = Σ —v—τ~ implies that the primitive idem-
i=i A —ς/

potents of J(/ z, K, Gi) are of the form y}i= ^ ί (bur)
m + (dur)771'1 + +

PROPOSITION 2.3. Let f be a properly normalized 2-cocycle, and μ an element

of Γf. Then the cyclic group (μ) generated by p is contained in Hf if and only

if / ( r , p) = f(pn(τ\ τ) for each element τ in G.

Proof. If p is in Hf, then by the definition of Hf there exists a map φ

G-* U(K) together with a 2-cocycle g such that /(τ, c;) =^(r, a)φ(τa)/φ(τ)ψτ(σ)

for r and <ί in G, and ^(r, c;) = 1 if r or <; is in Hf. Then /(r, p) =φ(τp)/

φ{τ)φτ(p) and /(/oM(τ), r) = φ(τp)/φ(pn{τ))φ(τ). Since / and # are both trivial

on HfXHfy it follows that φ(p) =τ? for some f'A root of unity y where t = the

order of #/ . Using condition 2), we have that φτ(p) = r(τ?) =o?w(τ) = ίφ(p)T{x\

and so we conclude that /(r, p) = f(pn{τ\ r) for each r in G.

Conversely, assume that p is in Γf, and that /(r, |θ)=/(pM ( τ ), r) for each

r in G. If p1 is any element of (p), we can observe that /(r, p%) = f(pmτ\ τ)

for each r in G. For by repeated application of the associativity relation for

2-cocycles together with the fact that / is trivial on Γf x Γf we have the

equalities:

/ ( T , P') = Π / ( T P * , P) and f(pintτ>, τ) = Π/(p" ( τ ) , rp*)
7c = 0 fc=0

It now follows from the assumption on / and p that /(r, p*) =f(ptn{x\ τ) for

each element τ in G,
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In order to show that (p) is contained in Hf we shall show that / is

cohomologous to a 2-cocycle g with the property that g(τ, σ) = 1 if τ or a is in

(p). Let G- U (p)ry be a right coset decomposition of G with respect to (p),
3

and define φ : G-* U(K) by 0(pVy) = l//(ρ\ τj). Now define # by g(τy a) = /(r,

σ)ψ(τσ)/ψτ(σ)φ(τ) for r and <; in G. Let r be any element of G and <; any

element of (p). Using the above coset decomposition of G, write τ = ωτj where

ω is in (p). Then from the definition of g together with the associativity

relation and the assumption satisfied by /, it follows that g(τy σ) = g(ωry, a)

= f(ωσn{τ)

y ry)/(ω, on[x))l f{ωan{x)

y τj) = 1 and that g(ay τ) = f(aω, τj)f(σ9 ω)/

f(σωy τj) = 1. T h u s g h a s t h e d e s i r e d p r o p e r t y a n d w e c o n c l u d e t h a t (p) i s i n

PROPOSITION 2.4. The number of simple components of Δ(fy K, G) is equal

to the order of the conductor group Hf.

Proof. The number cf simple components of Δ(fy K, G) is equal to the

number of primitive orthogonal idempotents required to generate the center of

Δ(fy K, G). Since Gi is the kernel of the map G-*G(K/k)-*(l), it follows

that the center of Δ(fy Ky G) is contained in Δ(fιy Ky Gi). For let δ = *ΣkxUτ

be an element in the center of Δ(f, Ky G)y with ft-v=*0. Let K=k(θ). Then

δθ = *Στ(θ)kτUτ, so that θδ = δθ if and only if τ(θ) =θy i.e. if and only if τ is

in G/. Hence the center of ΔifyKyG) is in Δ(fiy Ky Gi). Since we are

assuming that / is properly normalized, we conclude that the idempotent

elements in the center of Δ(f, Ky G) are precisely those partial sums P of

elements TH such that P is in the center of Δ(fy Ky G) where the ΎJI are defined

as in Proposition 2.2.
P

So let P = Σ w be any partial sum of -ηi with a suitable reordering of the

Ύji. Since the elements of Gi act trivially on Ky it follows that P is in the

center of Δ(f, Ky G) if and only if uτP=Pux for each τ in G. But

u,p= Σ Σ-ir(c?^^^-ε^—^(τ)-

From condition 2) we have that τ(cf) =C/W(τ), so that u^P=Puτ if and only if

/ ( Γ > rk)=f(r

kn{x\ τ ) for each r in G and each integer A such that Σr(C?) is
t = l

non-zero. It now follows that P is in the center of J(/, i£, G) if and only it
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P is in J(/β, K, Hf)y by an application of Proposition 2.3. Therefore J(/, K,

G) has precisely as many simple components as J(/e, K, Hf), and this number

is equal to the order of Hf since fπ is trivial.

Throughout the rest of this section, S shall denote the integral closure of

a discrete rank one valuation ring R in a finite Galois extension of the quotient

field of R, and G the Galois group of the quotient field extension. Let [/] be

an element of H2(G, ί/(S)). We shall compute the number of maximal two-

sided ideals in Δ = Δ(fy S,G) by considering the crossed product Δ = Δ®RR

= Δ(f, S, G) which is formed by taking the completion of Δ. As in the

preceding section, R denotes the completion of R, and S = Si Θ Θ Sg where

S; is the completion of the localization of S at the maximal ideal P, of S. Now

Δ contains the crossed product 4L = J(/i, Si, Gi) where G\ is the decomposition

group of Pi and [/J in H2(GU U(Si)) is defined by /i(r, a) =£i/(r, a) where

ex is the identity element of Si. If the extension S of R is tamely ramified,

then we know from Section 1, that //rad Δ = Δ(fy ΘS, , G) and Ji/rad Δι =

Δ(fu Si, Gi), where / and /i are induced by / in the obvious way. Hence the

inclusion of crossed products / => Δι gives rise to the inclusion Δ(f, θ S, , G) 3

J(7i, Si, Gi).

If [/] is an element of H2(G, U(S)), then we define the conductor group

Hf of Δ(f, S, G) to be the conductor group of the crossed product Δ(fu Si, d ) .

Thus the conductor group of Δ(f, S, G) is determined up to conjugation in G.

THEOREM 2.5. Let S be a tamely ramified extension of a discrete rank one

valuation ring R, and [/] an element of H2(G, U(S)). Then the number of

maximal two-sided ideals in the crossed product Δ(f, S, G) is equal to the order

of the conductor group of Δ(f, S, G).

Proof. For convenience of notation, let Δ-Δ(f,S,G). Since J/rad Δ

= //rad Δ, it follows that the number of maximal two-sided ideals in Δ is

equal to the number of simple components of //rad Δ = Δ(f, ®Si, G). To

prove the theorem, we shall establish a one-to-one correspondence between the

primitive orthogonal idempotents of Δ(f, (BSit G) and Δ(fu "Si, Gi). Since S

is a tamely ramified extension of R it will then follow by applying Proposition

2.4 to the crossed product Δ(fi, SΊ, Gi) that the number of maximal two-sided

ideals in Δ is precisely the order of Hf. For since the extension S of R is
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tamely ramified, the field extension Si of R and the exact sequence

satisfy the hypothesis of Proposition 2.4, where Gι denotes the inertia group

of A.

So, if 7? is an idempotent in the center of Δ(fu ~Su Gi), we define

x = Σ(wτj)~S?(#τJ) where G= U Giry is a left coset decomposition of G with

respect to Gi. The element # is clearly an idempotent, and we next show that

x is in the center of Δ(f, Θ"S». G). It is easily seen that x commutes with

the elements of ΘS", , and to prove that (ux)~\x)uτ - x for each τ in G, we

shall show that the effect of conjugating x by uτ is the permutation of the

terms (uχj)~1(x)uτj in the expression of x. So let τ be any element of G, and

let GiTk be the coset containing ryr, so that τjτ-pτk for some element p in Gi.

Then

Γ^ip, τk)

since by the associativity property of / we have the relations

f(τ~\ τ) = " *"*/ I*iv7 τjfc-ip-i/
- i x j \ <•& * <-n>j v μ > ^ y v't;'» r )

T^X"1/ - 1 _ \

«•) - &^\

Therefore («τ)
 1(Λ:)WT = Λ:, and it follows that each idempotent in the center of

Δ(fu Si, Gi) defines an idempotent in the center of Δ{f, ΘS", , G) in the

above way.

On the other hand, if x is an idempotent in the center of Δ(f> θS/, G)

then #= Σ*y* where ej is the identity element of Sy, and ^Λ: is an idempotent

in the center of Δ(JU Su Gi). Let r be an element of G such that r " 1 ^ ) = eu.

Then (Mτ)"^^!^)^ = βkX, so that ^ =

Thus if x is an idempotent in the center of Δ(f9 ΘS/, G), then Λ; is of

the form x= Σ C ^ )" 1^^^ where ^ is an idempotent in the center of J(/i, S\,

Gi). Since Λ: is primitive if and only if y is primitive, it follows that Δ(f, ΘS/,
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G) and Δ(fu Su Gi) have the same number of simple components, and this

concludes the proof.

COROLLARY 2.6. Let S be a tamely ramified extension of a discrete rank

one valuation ring R. Then the number of maximal two-sided ideals in the

trivial crossed product A(l, S, G) is equal to the order of the inertia group of

any maximal of S in the extension S of R.

Proof. If [/] is trivial in H2(G, U{S)), then [/J is trivial in H\GU U(Si)).

By the definition of the group Hf it follows that Hf is the inertia group

whenever [/J is trivial.

3. The length of the conductor

Let S be a tamely ramified extension of a discrete rank one valuation ring

R, and 7" a maximal order over R containing the hereditary order A = Δ(ff S,

G). The conductor CΓ(Δ) of Γ in Δ is denned to be the set of all elements δ

in A such that δΓ is contained in A. We may also consider the ideal Cl(Δ)

defined by C'Γ(Δ) = CΓ(Δ) ΓiS. Then C'Γ(A) is the set of all elements 5 in S

such that sΓ is contained in A. The purpose of this section is to motivate the

naming of the conductor group Hf of Δ(f, S, G) by proving that the length of

S/C'Γ(Δ) is equal to g(h-l) where g is the number of maximal ideals of S,

and h is the order of Hf.

As in the preceding sections we shall consider the completion A - Δ(f, S,

G) of A. Letting Γ; for i -1, . . . , h denote the maximal orders containing A,

then the maximal orders containing A are given by n = Γi®RR. For con-

venience of notation we shall denote the conductor of Γ, in / by d. From

Theorem 3. 3 of [6] we know that the conductors d are the minimal two-sided

idempotent ideals of A . In order to compute the conductors C, , we shall make

use of the following well-known facts.

PROPOSITION 3.1. Let the extension S of R be a tamely ramified extension

of complete discrete rank one valuation rings, and let U denote the inertia ring

of S over R. Then U contains a primitive ntn root of unity C, where n is the

order of the inertia group. If σ is a generator of the inertia group, then σ(U)

= CTI for a proper choice of the prime element Π of S.

Proof. From section 2 we know that S = Ό contains a primitive nth root
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of unity. Since U is a complete local ring, it follows from HenseΓs lemma

that U contains a primitive nth root of unity. Let P denote any prime element

of S. Since S is totally ramified over U we know that Pn = πu for some unit

u in S, where π denotes the prime element of R. It follows from the fact that

S" = U that there exists an element v in U such that u~v mod (P). Hence

U/VΞ=1 mod(P), and we consider the polynomial f(X)—Xn — ιιlυ in SDX"].

Then the polynomial f(X) - Xn-1 in ULXl is separable since the field chara-

cteristic of U is relatively prime to n. Since / ( l ) = 0 , it now follows from

HenseΓs lemma, that f(X) has a root, say α, in S. Then an~ulv and (P/a)n

- πv = 0, so we choose Ή ~ Pja.

We proceed to define the elements of Δ which generate the ideals C, .

Let Pi be a maximal ideal in the tamely ramified extension S, and denote by

Gu Gi, and U the decomposition group, inertia group, and inertia ring of Pi

respectively. If [/] is any element of H2(G, U(S)), let fx and ft be the elements

of Z\GU U(Sι)) and Z2(GIy (Si)) induced by / in the usual way. We may

assume that // is normalized in the sense of cyclic groups. If // corresponds

to the element a of U(U) under the canonical identification H2(GIy U(Si))

= ϋ(U)/N(U(S!))t where N(U(St)) denotes the norm of U(St) in U(U), then

it follows by an applicaticn of HenseΓs lemma to the polynomial Xe - a, that

a = bm for some element b in U where e is the order of Gi and m is the order

of Γjx. Denoting the order of H/ by h, we define c = bm/H, so that ch = a.

We now define elements λi in / for i = 1, . . . , h by

where the C, are the distinct /iίΛ roots of unity in U and t; is a generator of

/?>. By a computation similar to that of Proposition 2.2 it follows that the λi

form a system of mutually orthogonal idempotents in J .

PROPOSITION 3.2. Z,£ί S be a tamely ramified extension of a discrete rank

one valuation ring R, and [/] an element of H2{G, U(S)). Then

1) the two-sided ideals (λi) are the minimal two-sided idempotent ideals of

S = A(fy S, G), and therefore C, = (λi).

2) the elements λi satisfy the relation ΊJ^λiΠ1 = λi+t for a proper choice of

the prime element IT of Si.
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Proof. To prove 1), it suffices to show that the λi generate the simple

components of JVrad Δ. Recall that JVrad Δ = (/, ΘSί, G) where / is the

image of / under the natural map Z\Gy U{S))-+Z\G, U(®~S»)). We observe

next that / is cohomologous to a cocycle g in Z2(G, U( ΘSΊ )) such that gi is

a properly normalized element of Z2(GU Z7(SΊ)). For we know from Section 2

that /i is cohomologous by some map <pi- Gi-*U(Si) to a cocycle gι in

Z2(Glt UCSi)) such that gx is properly normalized. Extend 0i to a map φ:

G->U(Θ~Si) by defining 0 ( r ) = l if τ is in G - Gu and Φ(τ) = 0x(r) + Σe* if r

is in Gi. By setting g<r, a) = f(τ, σ) φ(τ)φτ(σ)/φ(τσ) we define a cocycle #

with the desired property. We know from section 2 that the elements τ?, =

-τ-ΣίCt«σ)* generate the simple components of Δ(g, ®~Si, G). Under the

canonical isomorphism Δ(g, ΘS"/, G) = Δ(f, Θ~Si, G), the elements ΎH are map-

ped onto the λi. It now follows that the λi generate the simple components of

Δ(f, Θ~Si, G). Therefore by Lemma 3.2 of [6] the λi generate the minimal

two-sided idempotent ideals of Δ(f, S, G). By Theorem 3.3 of [6] we conclude

that C, = (λi).

It follows from Proposition 3.1 that TI^λiTI* = λi+t.

Let G = U GίTj be a right coset decomposition of G with respect to the
3

decomposition group Gi. Define 77/ in S by Πj-τjι(Π) where Π is a prime

element of Si satisfying the statement of Proposition 3.1. Then N- ®Z7) is a

generator of the radical of S. From the above proposition it follows that d

= Qί) = (yd where y% is the element of Δ defined by jy, = Σίwτj)"1^^-. The

^, are related by N'^iN1 = yi+i.

We know by Theorem 3.3 of [6] that each order containing J(/, S, G) is

a union of minimal orders containing Δ(f, S, G).

PROPOSITION 3.3. Let S be a tamely ramified extension of a discrete rank

one valuation ring R. Then the minimal orders containing Δ(ft S, G) are given

by Ai = Δ[_yiNe~ιlπ} for i=ly . . . , h where h is the order of the conductor

group Hfy e is the order of the inertia group, and the brackets denote ring

adjunction.

Proof. The maximal two-sided idempotent ideals of Δ{f, S, G) are the two-

sided ideals Di generated by the elements yu . . , y<t, . . , yn where yf means

to omit yi. Since the yj are in the center of Δ(f, ®~Si, G), the Di are generated
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as left ideals in A by elements of the form yjN* where t = 0, . . . , h — 1 and

j±?i when * = 0. By Proposition 1.7 of [6], the fact that Di is a maximal two-

sided idempotent ideal implies that End (A) is a minimal order containing A

where End (A) denotes the left endomorphism ring of the A -module A . We

next observe that the element yiN6'1^ is in End (A). For (yjN^iyiN^/π)

= 0 or yjNt+e~1/π with ί ^ l , and in either case is in / . By the minimality of

End (A), we conclude that End (A) =J[jyιiVβ"1/7rl

PROPOZITION 3.4. Let S be a tamely ramified extension of a discrete rank

one valuation ring R, and [/] an element of H2(G, U(S)). If Γ is a maximal

order containing the crossed product A(f> S, G), then the length of S/C'r(4) is

equal to g(h-l) where g is the number of maximal ideals of S and h is the

order of the conductor group Hf of A(f9 S, G).

Proof. From Proposition 3. 3 together with Theorem 3.3 of [6] we know

that

f = Aίy,Ne-ιlπy (yiN^/π)^ . . . ,yhN
€'ιlπ1

for some i = 1, . . . , h where ( )* indicates omission. The order Γ is generated

as a right /-module by elements of the form yi-kN
{e~1Hh~k)/π{h~k) for * = 1,

. . . , h -1. Consider the element yi-ιN{e~mh~l)/π{n'1]. The least positive

integer x for which JV^ -iiV^""^"15/^*"11 is in / must satisfy x+ (e-U(h-l)

= e(h-l) so that x=h-l. It follows that C'Γ(A) = (rad S)*"1; therefore

S/Cr(A) has length g(h-l).
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