Masatoshi Yamauchi Nagoya Math. J. Vol. 42 (1971), 109-113

SOME IDENTITIES ON THE CHARACTER SUM CONTAINING $x(x-1)(x-\lambda)$

MASATOSHI YAMAUCHI

Let F_p be the prime field of characteristic p (p: an odd prime), and put $F'_p = F_p - \{0,1\}$. Then for $\lambda \in F'_p$ we define

$$a_{p}(\lambda) = -\sum_{x \in F_{p}} \left(\frac{x(x-1)(x-\lambda)}{p} \right)$$
 ,

where $\left(\frac{*}{p}\right)$ denotes the Legendre symbol, and consider the sum

$$S_m(\lambda) = \sum_{\lambda \in F'_n} a_p(\lambda)^m$$
.

The purpose of this note is to prove the following:

THEOREM.

$$\begin{split} S_2(p) &= p^2 - 2p - 3,\\ S_4(p) &= 2p^3 - 4p^2 - 9p - 3 - b_p,\\ S_6(p) &= 5p^4 - 10p^3 - 27p^2 - 15p - 3 - 5pb_p - 2c_p, \end{split}$$

where b_p and c_p are obtained from

$$\begin{split} q \prod_{n=1}^{\infty} (1 - q^{2n})^{12} &= \sum_{n=1}^{\infty} b_n q^n, \\ q \prod_{n=1}^{\infty} (1 - q^n)^8 (1 - q^{2n})^8 &= \sum_{n=1}^{\infty} c_n q^n. \end{split}$$

The sum $S_m(p)$ is analogous to the sum considered by Birch [1]. We note that b_p and c_p are the eigen-values of Hecke operators acting on the space of cusp forms of weight 6 or 8 respectively, with respect to the elliptic modular group $\Gamma_0(4)$ (or $\Gamma(2)$), and the meaning of the above theorem is that the eigen-value of Hecke operators of higher weight appears in the

Received August 10, 1970.

congruence zeta function of a certain variety which have been found by Sato firstly.

1. The proof of the theorem

1.1. For $\lambda \in F_p'$, let E_{λ} be an elliptic curve defined by the affine coordinate as follows with identity element (∞, ∞) as an additive group.

$$E_{\lambda}: y^2 = x(x-1)(x-\lambda),$$

then it is well known that the order $N_p(\lambda)$ of the group of F_p -rational points is $N_p(\lambda) = 1 + p - a_p(\lambda)$ and since (0,0), (1,0), $(\lambda,0)$ and (∞,∞) are all points of order 2 on E_{λ} , which are rational over F_p .

$$N_p(\lambda) \equiv 0 \pmod{4}$$
 or $a_p(\lambda) \equiv 1 + p \pmod{4}$.

For a moment, take $\lambda' \in \overline{F}_p$: the algebraic closure of F_p , and define $S = \{\lambda' \in F_p | E_{\lambda'} \text{ is a super-singular elliptic curve}\} = \{\lambda' \in F_p | \sum_{i=0}^{\frac{p-1}{2}} {\frac{p-1}{2} \choose i}^2 \lambda'^i = 0 \}.$

1.2. For $\lambda \in F_p' - S$, the endomorphism ring $\mathcal{N}(E_\lambda) = \mathcal{O}_\lambda$ is an order in the imaginary quadratic field $K = \mathbb{Q}(\sqrt{a_p(\lambda)^2 - 4p})$, and contains an order of discriminant $a_p(\lambda)^2 - 4p$, since $a_p(\lambda)$ is the trace of the p-th power endomorphism π_λ which satisfies the equation $X^2 - a_p(\lambda)X + p = 0$.

LEMMA. Assume the discriminant of \mathcal{O}_{λ} is $(a_p(\lambda)^2 - 4p)f^{-2}$ then $f \equiv \text{mod } 2$. Conversely, for an order \mathcal{O} of discriminant $(s^2 - 4p)f^{-2}$ with $s \equiv 1 + p \mod 4$ and $f \equiv 0 \mod 2$, there exists $\lambda \in F'_p - S$ such that $\mathcal{A}(E_{\lambda}) = \mathcal{O}$.

Proof. Let $\lambda(z)$ be a modular function for the principal congruence subgroup $\Gamma(2)$ of level 2 defined by $\lambda(z) = (e_1 + 2e_3) (e_3 - e_1)^{-1}$ where $e_1 = \mathscr{I}(\frac{1}{2}; z, 1)$, $e_3 = \mathscr{I}(\frac{z}{2}; z, 1)$, and let τ be an element of imaginary quadratic field $K = Q(\sqrt{s^2 - 4p})$ with $s \equiv p + 1 \mod 4$, and denote the discriminant $D(\tau)$ of τ by $D(\tau) = (s^2 - 4p)f^{-2}$, then $K(\lambda(\tau))$ generates a ring class field over K. There exists $\pi \in K$ such that $p = \pi \cdot \pi'$ (π' : the conjugate of π), and we see π decomposes completely in $K(\lambda(\tau))$ if and only if $f \equiv 0 \pmod 2$, because the corresponding ideal group H for $K(\lambda(\tau))$ is $H = \{\alpha \in \mathscr{O}_0 \mid \alpha = 1 + 2a + 2m\beta, a \in \mathbb{Z}, \beta \in \mathscr{O}_0\}$, where \mathscr{O}_0 is the maximal order in K and $s^2 - 4p = f^2m^2d(d)$: the discriminant of \mathscr{O}_0 , and we see easily that $\pi \in H$ if and only if $f \equiv 0 \mod 2$. Let $E_{\lambda(\tau)}$ be an elliptic curve defined by $y^2 = x(x-1)(x-\lambda(\tau))$,

111

if $f \equiv 0 \mod 2$, then, for a prime ideal $\mathfrak{P}|\pi$ in $K(\lambda(\tau))$, whose absolute norm is p, the reduction mod \mathfrak{P} of $E_{\lambda(\tau)}$ defines an elliptic curve $E_{\lambda}(\lambda \in \mathbf{F}'_p - S)$, by the isomorphism $\mathcal{O}_0/\mathfrak{P} \cong \mathbf{F}_p$ and $\mathcal{N}(E_{\lambda(\tau)}) = \mathcal{N}(E_{\lambda})$, hence the discriminant of $\mathcal{N}(E_{\lambda})$ is $(s^2 - 4p)f^{-2}$. If f is odd, the reduction mod \mathfrak{P} of $E_{\lambda(\tau)}$ does not define an elliptic curve $E_{\lambda}(\lambda \in \mathbf{F}'_p - S)$, since the degree of \mathfrak{P} is greater than 1 hence $\mathcal{O}_0/\mathfrak{P} \not\simeq \mathbf{F}_p$. This completes the proof of the lemma.

- 1.3. For an order \mathcal{O} as the lemma in 1.2, there are $6 \cdot \frac{h((s^2-4p)f^{-2})}{w((s^2-4p)f^{-2})}$ distinct $\lambda \in F_p' S$ such that $\mathcal{A}(E_\lambda) = \mathcal{O}$, For $\lambda^{\pm 1}$, $(1-\lambda)^{\pm 1}$, $(\lambda^{-1}(\lambda-1))^{\pm 1}$ give the same absolute invariant $j = 2^8(\lambda^2 \lambda + 1)^3/\lambda^2(1-\lambda)^2$, and for a fixed $j \in F_p$ there exist precisely $h((s^2-4p)f^{-2})$ elliptic curves with the same endomorphism ring \mathcal{O} , where h(D) and w(D) denote the class number of an order \mathcal{O} of discriminant D and a half of the number of units in \mathcal{O} , respectively.
 - 1.4. We see that

$$6 \cdot \frac{h(D)}{w(D)} = \begin{cases} 3h(4D) & \text{, if } D \equiv 0 \pmod{4} \\ 2h(4D) & \text{, if } D \equiv 5 \pmod{8} \\ 3h(4D) + 3h(D), & \text{if } D \equiv 1 \pmod{8}, \end{cases}$$

hence we obtain

$$6 \cdot \sum_{1} \frac{h((s^{2} - 4p)f^{-2})}{w((s^{2} - 4p)f^{-2})} = \sum_{2} \frac{\delta((s^{2} - 4p)f^{-2})}{2} \left(1 + \left[\frac{(s^{2} - 4p)f^{-2}}{2}\right]\right) \times \left\{\frac{(s^{2} - 4p)f^{-2}}{2}\right\} h((s^{2} - 4p)f^{-2}),$$

where Σ_1 runs over all s, f with $s \equiv p+1 \mod 4$ $|s| < 2\sqrt{p}$ and with $f \equiv 0 \mod 2$ f > 0, Σ_2 runs over all s, f with $|s| < 2\sqrt{p}$ and with $(s^2-4p)^{-2} \equiv 0,1 \mod 4$ f > 0, $\delta(D) = 2$ or 3 according as $D/4 \equiv 5 \mod 8$ or not, and $\left\{\frac{D}{2}\right\} = 1$ or $\left(\frac{D}{2}\right)$ according as $D/4 \equiv 0,1 \mod 4$ or not.

1.5. Now we shall prove the theorem. First

$$\begin{split} S_2(p) &= \sum_{x,\,y,\,\lambda \in F_p} \left(\frac{x(x-1)\,(x-\lambda)}{p} \right) \left(\frac{y(y-1)\,(y-\lambda)}{p} \right) - 2 \\ &= \sum_{x,\,y \in F_p} \left(\frac{x(x-1)y(y-1)}{p} \right) \cdot \sum_{\lambda \in F_p} \left(\frac{(\lambda-x)(\lambda-y)}{p} \right) - 2. \end{split}$$

By decomposing the above sum into two parts with x = y and $x \neq y$, we see easily $S_2(p) = p^2 - 2p - 3$. As for the sum $S_4(p)$,

$$\begin{split} S_4(p) &= \sum_{\lambda \in F_p'} a_p(\lambda)^4 = \frac{1}{2} \sum_{|s| < 2\sqrt{p}} s^4 \cdot \sum_{\mathscr{L}(E_\lambda) = Q(\sqrt{s^2 - 4p})} \\ &= \frac{1}{2} \sum_{|s| < 2\sqrt{p}} s^4 \cdot \sum_2 \frac{\delta(D)}{2} \cdot \left(1 + \left\{\frac{D}{2}\right\}\right) \left\{\frac{D}{2}\right\} h(D) \end{split}$$

where the sum \sum' denotes the number of elliptic curves E_{λ} for which the discriminant of $\mathcal{A}(E_{\lambda})$ is $(s^2-4p)f^{-2}$, and other notations are the same as in 1.4 with $D = (s^2 - 4p)f^{-2}$. By the trace formula of Hecke operators for $\Gamma_0(4)$ obtained in [3], we see

$$b_p = -\frac{1}{2} \sum_2 \frac{\delta(D)}{2} \left(1 + \left(\frac{D}{2}\right)\right) \left(\frac{D}{2}\right) h(D) \cdot \frac{\rho^5 - \rho'^5}{\rho - \rho'} - 3,$$

where
$$\rho$$
, ρ' are the roots of $x^2 - sx + p = 0$.
Hence $\frac{\rho^5 - {\rho'}^5}{\rho - \rho} = s^4 - 3ps^2 + p^2$.

Therefore

$$\begin{split} S_4(p) &= -b_p - 3 + 3pS_2(p) - p^2(p-2) \\ &= 2p^3 - 4p^2 - 9p - 3 - b_p. \end{split}$$

For the sum $S_6(p)$, this can be proved similarly so we may omit it. Hence this completes our proof of the theorem.

2. Some corollaries

2.1 For the set S defined in 1.1, $\#S = \frac{p-1}{2}$, (# denotes the cardinality of the set) and we know $S \cap \mathbf{F}_p = \{\lambda \in \mathbf{F}_p' | a_p(\lambda) = 0\}$.

COROLLARY 1.

$$\#(S \cap \mathbf{F}_p) = \begin{cases} 0, & \text{if } p \equiv 1 \mod 4 \\ 3h(-p), & \text{if } p \equiv 3 \mod 4, \end{cases}$$

where h(-p) denotes the class number of $Q(\sqrt{-p})$.

Proof. By 1.3 and 1.4, we obtain

$$\sharp (\mathbf{F}_p' - S) = \frac{1}{2} \sum_{s \neq 0} \frac{\delta(D)}{2} \left(1 + \left\{ \frac{D}{2} \right\} \right) \left\{ \frac{D}{2} \right\} h(D),$$

hence $p-2 = \# \mathbf{F}'_p = \frac{1}{2} \sum_{n=0}^{\infty} \frac{\delta(D)}{2} \left(1 + \left\{\frac{D}{2}\right\}\right) \left\{\frac{D}{2}\right\} h(D) + \# (S \cap \mathbf{F}_p)$ and by

the trace formula of Hecke operators for $\Gamma_0(4)$ with weight 2, we have

$$p-2=\frac{1}{2}\sum_{\substack{s\neq 0}}\frac{\delta(D)}{2}\Big(1+\Big\{\frac{D}{2}\Big\}\Big)\Big\{\frac{D}{2}\Big\}h(D)+h',$$

where

$$h' = \begin{cases} 0 & \text{,} & \text{if } p \equiv 1 \mod 4 \\ \frac{3}{2} h(-4p) + \frac{3}{2} h(-p) = 3h(-p), & \text{if } p \equiv 7 \mod 8 \\ h(-4p) = 3h(-p) & \text{,} & \text{if } p \equiv 3 \mod 8. \end{cases}$$

This completes the proof.

2.2 By 1.1, $a_p(\lambda) \equiv 1 + p \mod 4$, hence $a_p(\lambda)^4 \equiv (1 + p)^4 \mod 2^8$ therefore $S_4(p) \equiv (p-2)(p+1)^4 \mod 2^8$. According to our theorem for $S_4(p)$, b_p satisfies the following congruence property;

COROLLARY 2.

$$-b_p \equiv p^5 + 1 + 2p(p^3 + 1) - 4p^2(p+1) \mod 2^8$$

or in other words,

$$b_p \equiv p^5 + 1 \mod 2^8.$$

REFERENCES

- [1] B.J. Birch, How the number of points of elliptic curves over a fixed prime field varies, J. London Math. Soc., 43 (1968), 57-60.
- [2] ——, Weber's class invariants, Mathematika, 16 (1969), 283-294.
- [3] M. Yamauchi, On the trace of Hecke operators for certain modular groups, to appear.

Mathematical Institute Nagoya University