ON TANGENTIAL PRINCIPAL CLUSTER SETS OF NORMAL MEROMORPHIC FUNGTIONS

THEODORE A. VESSEY*

1. Introduction

Let $w=f(z)$ be a normal meromorphic function defined in the upper half plane $U=\{\operatorname{Im}(z)>0\}$. We recall that a meromorphic function $f(z)$ is normal in U if the family $\{f(S(z))\}$, where $z^{\prime}=S(z)$ is an arbitrary one-one conformal mapping of U onto U, is normal in the sense of Montel. It is the purpose of this paper to state some results on the behavior of $f(z)$ on curves which approach a point x_{0} on the real axis R with a fixed (finite) order of contact q at x_{0}.

We use as a definition of order of contact the following: A set $A \subset U$ will have order of contact $q>0$ at $x_{0} \in R$ if $\bar{A} \cap R=\left\{x_{0}\right\}$ (the bar denoting closure), and if there exists a positive number ρ such that

$$
\lim _{\substack{z=x+i y \rightarrow x_{0} \\ z \in A}} \frac{\left|x-x_{0}\right|^{q+1}}{y}=\rho .
$$

We remark that this definition agrees with the usual definition of order of contact of a subset B of $|z|<1$ at a point $e^{i \theta_{0}}$ of $\{|z|=1\}$ (see [5, p. 168]) in the sense that if Φ is a Möbius transformation of $|z|<1$ onto U, then $\Phi(B)$ will have order of contact q in the above sense at $x_{0}=\Phi\left(e^{2 \theta}\right)$, if and only if B has order of contact q at $e^{2 \theta} 0^{\text {. Soth the geometry and }}$ calculations are simplified by considering U as the domain of definition of $f(z)$. For example, the hyperbolic metric in U has the form

$$
\rho\left(z, z^{\prime}\right)=1 / 2 \log \frac{1+\chi\left(z, z^{\prime}\right)}{1-\chi\left(z, z^{\prime}\right)} z, z^{\prime} \in U,
$$

where $\chi\left(z, z^{\prime}\right)=\left|z-z^{\prime}\right| /\left|z-\bar{z}^{\prime}\right|$. We note that if $\left\{z_{n}\right\}$ and $\left\{z_{n}^{\prime}\right\}$ are sequences of points of U, then $\rho\left(z_{n}, z_{n}^{\prime}\right) \rightarrow 0$ if and only if $\chi\left(z_{n}, z_{n}^{\prime}\right) \rightarrow 0$.

Received July 17, 1969.

* Research supported by National Science Foundation Grant G.P. 8762.

2. Definitions And Notation

We shall say that an arc $\Lambda \subseteq U$ is an admissible q-arc at x_{0} if $\Lambda \cap R=\left\{x_{0}\right\}$ and there exists a number ρ_{Λ} such that the limit

$$
\lim _{\substack{z=x+i y \rightarrow x_{0} \\ z \in A}} \frac{\left|x-x_{0}\right|^{q+1}}{y}
$$

exists and equals ρ_{A}.
For any triple (α, β, δ) satisfying $0<\alpha<\beta, 0<\delta<1$, we difine the right q-angle $\nabla^{+}(\alpha, \beta, \delta, q)\left(x_{0}\right)$ as the open region of U lying between the curves $\left\{y=\alpha\left(x-x_{0}\right)^{q+1}, x>x_{0}\right\}$, and $\left\{y=\beta\left(x-x_{0}\right)^{q+1}, x>x_{0}\right\}$, and below the line $y=\delta$. The left q-angle, $\nabla^{-}(\alpha, \beta, \delta, q)\left(x_{0}\right)$ is the reflection of $\nabla^{+}(\alpha, \beta, \delta, q)\left(x_{0}\right)$ in the line $x=x_{0}$.

When we do not care to specify either a q-angle is a right q-angle or a left q-angle we simply write $\nabla(\alpha, \beta, \delta, q)\left(x_{0}\right)$.

We remark that a curve Λ is admissible if and only if there is a collapsing sequence of right or left q-angles $\left\{\nabla\left(\alpha_{n}, \beta_{n}, \delta_{n}, q\right)\left(x_{0}\right)\right\}$ having the property that $\alpha_{n} \nearrow \rho_{\Lambda}, \beta_{n} \searrow \rho_{\Lambda}$ and a terminal portion of Λ lies in each such q-angle.

We define the cluster sets of $f(z)$ at a point x_{0} on the sets $\Lambda, \nabla^{+}(\alpha, \beta, \delta, q)\left(x_{0}\right)$ and $\nabla^{-}(\alpha, \beta, \delta, q)\left(x_{0}\right)$ in the usual manner and denote them by $C_{\Lambda}\left(f, x_{0}\right)$, $C_{\nabla^{+}(\alpha, \beta, q)}\left(f, x_{0}\right)$ and $C_{\nabla^{-}(\alpha, \beta, \delta)}\left(f, x_{0}\right)$.

We let

$$
C_{\mathscr{A}_{0}}\left(f, x_{0}\right)=\bigcup_{0<\alpha<\beta<\infty} C_{\Gamma(\alpha, \beta, q)}\left(f, x_{0}\right),
$$

the set of all cluster values on sequences of order of contact q, and

$$
\Pi_{T_{q}}\left(f, x_{0}\right)=\bigcap_{A} C_{A}\left(f, x_{0}\right),
$$

the intersection taken over all admissible q-arcs at x_{0}. We let $L_{q}(f)=$ $\left\{x \mid C_{\nabla_{(\alpha, \beta, q)}}(f, x)=\underset{0 \leqslant p \leqslant q}{\cup} C_{\mathscr{A}_{p}}(f, x)\right.$, for any q-angle $\nabla(\alpha, \beta, \delta, q)(x)$ at $\left.x\right\}$.

Finally, let $K_{q}(f)=\left\{x \mid C_{r_{(\alpha, \beta, q)}}(f, x)=C_{\Gamma\left(\alpha^{\prime}, \beta^{\prime}, q\right)}(f, x)\right.$ for any two (right or left) q-angles at $x\}$.

We say that nearly every point of R belongs to a set A if A is a residual subset of R, i.e. if A^{c} is a set of Baire category I.

3. Results And Proofs

We have shown [7, Theorem 2] for $w=f(z)$ an arbitrary complex valued function in U the following property of the set $L_{q}(f)$.

Theorem 1. Let $w=f(z)$ be arbitrary in U. Then the complement of $L_{q}(f)$ is a set of measure 0 and Baire category I.

Since $L_{q}(f) \subseteq K_{q}(f)$ for arbitrary $f(z)$ we have:
Corollary 1. Let $w=f(z)$ be arbitrary in U. Then almost every and nearly every point of R belongs to $K_{q}(f)$.

By Theorem 1, at a.e. and n.e. $x \in R$, all cluster values of $f(z)$ on sequences of order of contact $\leq q$ are obtained in any q-angle at x. By imposing the condition that $f(z)$ be meromorphic and normal in U we show that all such cluster values are obtained on any admissible q-arc at a.e. and n.e. $x \in R$.

Theorem 2. Let $w=f(z)$ be a normal meromorphic function in U. Then for every $x_{0} \in L_{q}(f)$ we have

$$
\Pi_{T_{q}}\left(f, x_{0}\right)=\underset{0 \leq p \leq q}{ } \bigcup_{\mathscr{A}_{p}}\left(f, x_{0}\right) .
$$

Proof. The inclusion $\Pi_{T_{q}}(f, x) \subseteq \bigcup_{0 \leq p \leq q} C \mathscr{A}_{p}\left(f, x_{0}\right)$ is trivial.
To show that $\underset{0 \leq p \leq q}{ } C \mathscr{A}_{p}\left(f, x_{0}\right) \subseteq \Pi_{r_{q}}\left(f, x_{0}\right)$ we let ω be a point of $\cup_{0 \leq p \leq q} C \mathscr{A}_{p}\left(f, x_{0}\right)$ and Λ an admissible q-arc at x_{0}. Since Λ is an admissible q-arc at x_{0}, there exists a positive constant ρ_{A} so that for any sequence $\left\{z_{n}^{*}\right\}$ of points of Λ which tends to x_{0}, we have, with $z_{n}^{*}=x_{n}^{*}+i y_{n}^{*}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|x_{n}^{*}-x_{0}\right|^{q+1}}{y_{n}^{*}}=\rho_{A} . \tag{1}
\end{equation*}
$$

By Theorem 1, we have for any q-angle $\nabla(\alpha, \beta, \delta, q)\left(x_{0}\right)$,

$$
\omega \in C_{r_{(\alpha, \beta, q)}}\left(f, x_{0}\right) .
$$

Thus, we can select a sequence of points $\left\{z_{n}\right\}$ of U satisfying

1. $z_{n} \rightarrow x_{0}$
2. $z_{n} \in \nabla\left(\rho_{A}-\frac{1}{n}, \rho_{A}+\frac{1}{n}, \frac{1}{n}, q\right)\left(x_{0}\right)$
3. $f\left(z_{n}\right) \rightarrow \omega$.

For this sequence $\left\{z_{n}\right\}$ as well, we have with $z_{n}=x_{n}+i y_{n}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|x_{n}-x_{0}\right|^{q+1}}{y_{n}}=\rho_{A} . \tag{2}
\end{equation*}
$$

It remains for us to pick a sequence $\left\{z_{n}^{*}\right\}$ of points of Λ on which $f\left(z_{n}^{*}\right) \rightarrow \omega$. To this end, let

$$
z_{n}^{*}=\Lambda \cap\left\{x=x_{n}\right\},
$$

the last intersection being taken if there is more than one.
Now $\quad \chi\left(z_{n}, z_{n}^{*}\right)=\frac{\left|z_{n}-z_{n}^{*}\right|}{\left|z_{n}-z_{n}^{*}\right|}=\frac{\left|y_{n}-y_{n}^{*}\right|}{y_{n}+y_{n}^{*}}$
From (1) and (2) it follows that

$$
\lim _{n \rightarrow \infty} \chi\left(z_{n}, z_{n}^{*}\right)=0
$$

so that $\rho\left(z_{n}, z_{n}^{*}\right) \rightarrow 0$. It follows from [4, Lemma 1, p. 10] that $f\left(z_{n}^{*}\right) \rightarrow \omega$ so that $\omega \in C_{\Lambda}\left(f, x_{0}\right)$ and our proof is complete.

There exist functions normal and holomorphic in U for which $K_{q}(f)-L_{q}(f) \neq \emptyset . \quad$ Such a function is $w=f(z)=e^{-i / z}$. For this function $0 \in K_{q}(f)-L_{q}(f)$ for $q>1$. For such $q, \Pi_{T_{q}}(f, 0)=\{|w|=1\}$ and $\underset{0 \leq p \leq q}{\cup} C_{\mathscr{A}_{p}}(f, 0)=$ $\{|w| \leq \mid\}$, so that Theorem 2 does not hold at $x_{0}=0$. However, by essentially the same methods used in Theorem 2 we can prove

Theorem 3. Let $w=f(z)$ be a normal meromorphic function in U. Then for every $x \in K_{q}(f)$ we have

$$
\Pi_{r_{q}}(f, x)=C_{\mathscr{A} q}(f, x)
$$

The following theorem is an extension of a theorem of Bagemihl [3, Theorem 9, p. 17], who proved it for the case $q=1$. Here Ω denotes the extended w-plane.

Theorem 4. Let $w=f(z)$ be a nonconstant, normal meromorphic function in U, and assume that the set $A(f)$ of asymptotic values of $f(z)$ has harmonic measure zero. Then, at almost every and nearly every point x of R,

$$
\Pi_{T_{q}}(f, x)=\Omega .
$$

Proof. By Tsuji's extension of Privaloff's Theorem [6, p. 72], the set of Fatou points has measure zero. Thus, by Plessner's Theorem, almost
every point of R is a Plessner point of $f(z)$. By Theorem 1, and the Bagemihl approximation theorem [1], almost every and nearly every point x of R is both a Plessner point and a point of $L_{q}(f)$, so that by Theorem 2 ,

$$
\Pi_{T_{q}}(f, x) \supseteq C_{\mathscr{A}}(f, x)=\Omega \text {, a.e. and n.e. }
$$

In conclusion, we remark that the condition of normality cannot be removed in Theorem 2 or Theorem 3. F. Bagemihl [3, p. 12] has constructed a holomorphic function $w=f(z)$ for which

$$
\Pi_{T_{1}}(f, x) \subset C_{\mathscr{A} 0}(f, x) \text { a.e. and n.e. }
$$

This function clearly fails to satisfy the conclusion of Theorem 2. Since, by Theorem 1, for arbitrary $f(z)$ we have $C_{\mathscr{\mathscr { O }}}(f, x) \subseteq C_{\mathscr{A} 1}(f, x)$ a.e. and n.e., we also have

$$
\Pi_{T_{1}}(f, x) \subset C_{\mathscr{A}}(f, x) \text { a.e. and n.e., }
$$

so that the conclusion of Theorem 3 is violated as well.

Bibliography

[1] Bagemihl, F., Some approximation theorems for normal functions, Ann. Acad. Sci. Fenn. A.I. 335(1963), 1-5.
[2] Bagemihl, F., Horocyclic boundary properties of meromorphic functions, Ann. Acad, Sci. Fenn. A.I. 385(1966), 1-18.
[3] Bagemihl, F., The chordal and horocyclic principal cluster sets of a certain holomorphic function. Yokohama Math. Jr. 16(1968), 11-14.
[4] Bagemihl, F., and Seidel, W., Sequential and continuous limits of meromorphic functions. Ann. Acad. Sci. Fenn. A.I. 280(1960), 1-17.
[5] Doob, J.L., The boundary values of analytic functions. Trans. Amer. Math. Soc. 34 (1932), 153-170.
[6] Noshiro, K., Cluster sets, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1960.
[7] Vessey, T., Tangential boundary behavior of arbitrary functions. Math. Zeit. 113 (1970), 113-118.

University of Wisconsin-Milwaukee

Milwaukee, Wisconsin, U.S.A.

