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ON p-ADIC L-FUNCTIONS AND CYCLOTOMIC FIELDS. 1II
RALPH GREENBERG*

1. Introduction

Let » be a prime. If one adjoins to @ all p»-th roots of unity for
n=1,2,8, .-, then the resulting field will contain a unique subfield Q..
such that Q. is a Galois extension of @ with Gal (Q./Q) = Z,, the ad-
ditive group of p-adic integers. We will denote Gal(Q../Q) by I". Ina
previous paper [6], we discussed a conjecture relating p-adic L-functions
to certain arithmetically defined representation spaces for I'. Now by
using some results of Iwasawa, one can reformulate that conjecture in
terms of certain other representation spaces for /'. This new conjecture,
which we believe may be more susceptible to generalization, will be stated
below.

Let @, be the field of p-adic numbers and let 2, be an algebraic
closure of @,. Let y be an even primitive Dirichlet character which
takes its values in £, and which is of the first kind (this means that
the conductor of 4 is not divisible by p? if p is odd or by 8 if p = 2).
Let K be the cyclic extension of @ associated to + by class field theory
and let K., = KQ.., the cyclotomic Z, -extension of K. Let M., denote the
maximal abelian pro-p-extension of K. in which only primes of K,
dividing p are ramified. (We also allow the infinite primes to be ramified,
although this could happen only if p = 2). Now I can be identified in
a natural way with Gal (K. /K) and, by means of this identification, we
can consider Gal(M./K.) as a I'-module. One can then define quite
simply a certain representation space W, for I' over 2, (see Section 2).

In [11], Leopoldt and Kubota have constructed a p-adic L-function
L,(s,y) for every primitive even Dirichlet character . This function
is defined for all se Z, (except for s =1 if + is the principal character
V) and takes its values in 2,. Now it follows easily from a result of

Received September 10, 1976.
* This research was supported in part by National Science Foundation Grant
MCS75-09446 A01.

139



140 RALPH GREENBERG

Iwasawa that there exists a power series G¥(T) whose coefficients are
integers in the field @,(¥) generated by the values of y and which has

the property that
_ G — 1

Lyl —s,9) = SHE S0

b

where &, is a certain p-adic unit defined in [6] and 6 = 1 or 0 according
to whether + is principal or non-principal. We use the notation G#(T)
since this power series can be constructed quite simply from the power
series denoted by G,(T) in [6]. Let g¥(T) denote the monic polynomial
whose roots (counting multiplicity) are precisely the (finitely-many) roots
of the power series G¥(T) in £,. Let y, be a fixed topological generator
for I' (corresponding to the choice of x,) and let %,(T) denote the char-
acteristic polynomial of 7, — 1 acting on W,. We now state the con-
jecture referred to above.

CONJECTURE. h(T) = g3¥(T) .

At the end of Section 2, we will discuss several results supporting this
conjecture (mostly translations of analogous results proved in [6]).

In Section 3, we will consider a slightly more general question. Let
S be any finite set of primes of K containing all primes dividing p.
Let M_(S) denote the maximal abelian pro-p-extension of K_ in which only
primes of K., dividing primes in S are ramified. Then Gal (M.(S)/K.)
can be considered as a I'-module and one can therefore construct a
representation space W,(S) for I'. Denote by h, (T) the characteristic
polynomial of y, — 1 acting on W,(S). On the other hand, consider the
(usually) non-primitive Dirichlet character s defined by (@) = V(a) if
@ is not divisible by any prime in S and s(a) = 0 otherwise. One can
then eagsily define a p-adic L-function L,(s,vs) for the non-primitive
character g and, just as above, one can define a corresponding power
series G¥(T) and a polynomial g§,(T). As a consequence of the conjecture
stated above, we will show that h, o(T) = g¥(T). In the particular case
when S contains only the primes dividing p, the function L,(s, ) is the
same as L,(s, V) and therefore g} «(T) = g¥(T). Of course, hy s(T) = k(T
also. The above result is closely related to Proposition 3.4 in Coates’
and Lichtenbaum’s paper [3].

In Section 4, we will discuss the structure of the torsion subgroup
of Gal(M./K.) as a I'-module and its relationship to p-adic L-functions.
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In this connection, the prime p = 2 seems especially interesting. It is
known that every coefficient of the power series G§(T) is divisible by 2.
Correspondingly, the p-invariant of the /'-module Gal (M../K.)) is non-zero
for p = 2. In our previous paper [6] and in most of this paper we have
tended to ignore (mainly for simplicity) the torsion subgroup of various
I'-modules by tensoring with £, and thus forming representation spaces
for I'. This allows us to avoid difficulties that occur when p divides
[K:Q]. (In [3], the I'-modules themselves are studied but often with
the assumption that p does not divide [K: @].) This section is therefore
meant to complement the previous sections.

In the concluding section of this paper, we will show that the con-
jecture stated above (together with the analogous conjecture for the
torsion subgroup of Gal (M./K.) described at the end of Section 4) leads
to a solution of a question recently raised by G. Gras in [5]. Let K be
a totally real abelian extension of @ and let » be an odd prime not
dividing [K:@Q]. It is a well-known result that the class number of K
is essentially (except for the contribution of primes dividing [K: Q] and
the prime 2) equal to the index of the so-called cyclotomic units Cp of
K in the full unit group Ex of K. Now, although the p-primary sub-
groups of the ideal class group of K and of the group Ex/Cx can have
quite different structures as groups, they seem to have a close relationship
as Galois modules for Gal (K/Q). This is the question we will study in
Section 5.

2. Egquivalence of two conjectures

In this section, we will prove that the conjecture stated in the in-
troduction to this paper is equivalent to the one stated in the introduction
of [6]. Although this result follows immediately from results of [10],
we will try to give a fairly self-contained account. The basis of the
argument is Kummer theory.

Let K be a totally real abelian extension of @ of the first kind (but
not necessarily cyclic for now). Thus K N Q. = @ and K, = KQ., is a
Galois extension of @ with G = Gal (K.,/Q) isomorphic (by restriction) to
4 x I', where 4 = Gal (K/Q). Let M. be defined as in the introduction.
Let Y=Y, =Gal(M.,/K.). Then G acts on Y as follows: If geG
and yeY, we define g(y) = gyg~!, where § denotes any extension of g
to an automorphism of M.. Now it will be apparent later that ¥ = Z2
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X T as a Z,module, where d is an integer and T is a torsion group
of bounded exponent (see Theorem 3 of [7]). Thus, letting Wy =Y
Ry, 2, we see that Wy is a finite dimensional representation space for
G. If + is any £,-valued character of the group 4, we define

W, = {weWgl|o(w) = ¥(@)w for all se 4} .

Thus for each such + we obtain the representation space W, for I
Now if 4 is any even £,-valued Dirichlet character of the first kind,
then, by class field theory, 4 can also be considered as a character of
4 for some choice of K, and hence cone can associate to + a representa-
tion space for I which we also denote by W,. (It can be easily seen
that a different choice of K will provide an equivalent representation
space for I'.)

Now let K = K(,) (or K@) if p = 2), where {, is a primitive p-th
root of unity. To simplify the notation in the following, we assume
that K has been chosen so that [K: K] = 2, i.e. K is the maximal real
subfield of K. The field K., = KQ., will contain all roots of unity of
order a power of p. Let M. denote the maximal p-ramified abelian pro-
p-extension of K,. We will study this extension from the point of view
of Kummer theory.

Let > 1 and let P, = {a e KX|?"y/ & € M,}. Since the primes of K
dividing p are totally ramified in K., it is clear that a ¢ P, if and only
if (a) = a?", where a is a fractional ideal in K, for some m, (where
K, denotes the unique subfield of K, of degree p™ over K). Let
Y =Gal(M,/K.). If aeP, and yeY, we define (¢, %) = y(*"V@)/*"Va,
which is a p-th root of unity. If ge Gal (K./Q), then g acts on Y (just
as defined before for Y) and one can easily see that

(9@, 9() = ga, )

for all ac P, and ye Y. In particular, if J is the non-trivial element
of Gal(K./K,) (i.e. complex conjugation), then

J(@), J@) = (@, )" .

Now let M: denote the maximal subfield of M, which is abelian
over K_.. Note that M_K, = M: (for p = 2, M., = MZ). It is clear that
Gal (M.,/Mz) is (1 — J)Y, the commutator subgroup of Gal (M,/K.). Let
R, ={aeP,|?/a e M:}. One can describe R, more simply as follows.
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If aeP,, then ac R, if and only if (a,(1 — J)y) =1, or equivalently
(@J(@),y) =1, for all ye Y. This would imply that aJ(e) € (KX)?". Thus
R, ={aecP,|at(@) e (KX)P"}. If welet Y, = Gal(M:/K.), then by Kummer
theory it follows that Y,/ Y?" and R,/(KX)*" are dual to each other.
Now let 4, denote the p-primary subgroup of the ideal class group

of K, and let A = lim A,, where the direct limit is taken with respect
—>

to the maps 4, — 4,, induced by the inclusion K, — K,, for m > n > 0.
There is a natural homomorphism ¢,: P, — 4. defined by ¢,(a) = Cl(a)
if ae P, and o?" = (a). Here a is an ideal in K,, for some m and Cl (a)
is the image of the ideal class of a in the direct limit A_. It is clear
that ¢, is a Gal (K../Q)-homomorphism and that their kernel of ¢, contains
(K. If welet Az = {ce 4. |cJ(c) = 1}, then ¢, gives a homomorphism
from R, to Az.

Assume now that p is odd. We will show that ¢, induces an iso-
morphism of R,/(KX)*" onto the subgroup of A of elements of order
dividing p*. Let ae R, N Ker (p,). Then a = b?*-u, where be K: and
% is a unit in the ring of integers of K.. Also uJ(u) e (KX)?". Since p
is odd, it is not hard to see that b and « can be chosen so that uJ(u)
=1. However, it follows from this that « is a root of unity and hence
a p~th power in KZ. Thus R, N Ker (p,) = (KX)?". Now let ce 43,
¢’ = 1. Since p is odd, one can find an ideal of the form a = b/J(b)
in ¢, where b?" = (b) is principal. Thus, a** = (a), where a = b/J(b).
Then a e R, and ¢,(a) = c.

The above remarks allow us to define a pairing of AZ and Y, into
the group of p-power roots of unity. If c¢e Az, choose n large enough
so that ¢?" = 1 and choose a ¢ R, so that ¢,(@) = ¢. Then if yeY,, we
define {c¢,y)> = (a,y). This is a well-defined perfect pairing (considering
A- with the discrete topology). Also, if g e Gal (K../Q), then

<9(e), 9> = 9(e, ¥»)

for all ce A7 and yeY,.
Now there is a natural homomorphism r from Gal (K./Q) to the
group of p-adic units defined by

9(Cpm) = C57

for all ». The pairing defined in the previous paragraph therefore has
the property that
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9(0), y> = e, (@9~ (W)

for all ce Az, yeY,, and geGal (K./Q). We will let X denote the
Pontrjagin dual of A.. If geGal(K./Q) and zec X, we define g(x) by

g(@)(e) = z(g(e)

for all ceA,. If X~ ={xeX|xJ(x) =1}, then X~ is clearly the dual
of Az, Thus X~ and Y, are isomorphic as topological groups. Now
consider X~, a topological group identical to X~ but with a new action
of Gal(K./Q) defined by gox = x(¢9)g”'(x). Then X~ and Y, are iso-
morphic as Gal (K../Q)-modules. However, Jox = 2 for xe¢ X~ and so

X~ and Y, can be considered as Gal (K./Q)-modules. Also, Y, is iso-
morphic to Y as a Gal (K. /Q)-module and therefore we have the following

proposition :

PROPOSITION 1. Let p be an odd prime. Then X~ and Y are iso-
morphic as Gal (K../Q)-modules.

We will now consider p = 2. Since we are allowing the infinite
primes to be ramified in M,/K., it is clear that M. contains N,
= K./ uw|ueckE.,), where E_. is the group of units from the ring of
integers of K.. Let Y,= Gal(M./N.) so that Y/Y, = Gal (N,/K.,) is
isomorphic to the dual of E./E% (with a twisted Gal (K./Q) action).
Thus it is obvious that the /'-module Y has non-zero g-invariant. We
will describe E./E? more precisely in Section 4. On the other hand,
Y, is closely related to A; and X-. In fact, Y, and X~ are pseudo-
isomorphic as G-modules (i.e. there is a G-homomorphism between them
with finite kernel and cokernel). To see this, we must use the fact that
A, and X have p-invariant equal to zero and hence X is finitely generated
as a Z,-module. (This has been proved by B. Ferrero in [4] when K/Q
is abelian and p = 2 or 3.) It follows from this that (4A2)? is of finite
index in A: and therefore the union of the images ¢,(R,) is also of finite
index in A;. Also, one can verify easily that R, N Ker (¢,) contains
(E )" (KX)* as a subgroup of finite index. In addition, X~ is pseudo-
isomorphic to the dual of Az and the dual of E_/E> is pseudo-isomorphic
to the twisted version of itself referred to above. (This last fact will
be more evident later.) Combining all of these remarks, we obtain the

following proposition.
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PROPOSITION 2. Let p = 2. The Gal(K./Q)-module Y contains a
submodule Y, pseudo-isomorphic to X~ such that Y/Y, is pseudo-iso-
morphic to the dual of E. /L~

We can now relate the structure of the representation space W,
(defined above) and another representation space V, for I'. Let 4
= Gal (K/Q) so that Gal (K../Q = 4 X I'. If Vz=X®, 2, and if y is
an 0Q,-valued character of 4, we define

V, = {veVz|6®) = y(®v for all ¢4} .

The representation space for I' defined in [6] and also denoted by V, is.
equivalent to the one just defined here. (In [6], we use the inverse limit
X’ = lim 4, with respect to the norm maps instead of X. But X is the

adjoir? of X’ and so X and X’ are pseudo-isomorphic as Gal (K./Q)-
modules. Letting Vz ={veVz|JW) = —v} =2, V,» We see that Vi
= X~ ®z, 2, Let v denote the restriction of x to 4. (This of course
corresponds to the Dirichlet character » defined in [6].) If we define Vz
and Vx in the same way as X-, then Propositions 1 and 2 show that
Vz and W, are isomorphic as representation spaces for Gal (K../Q) and
in this isomorphism Vx is mapped to W, where y and + are related by
the equation y» = o (considering ++ as a character of 4 with (J) = +1).
In the terminology of [6], the primitive Dirichlet characters correspond-
ing to y and 4 would be dual.
We therefore have proved the following proposition.

PROPOSITION 3. If yyr = w, then VZ and W, are isomorphic as rep-
resentation spaces for I.

We can now easily relate the conjecture stated in the introduction
with the conjecture stated in [6]. Let y and + be as in Proposition 3.
If 7, is a fixed topological generator of I" and if «, = x(7,), then clearly
an element g of £, will be an eigenvalue of y, — 1 acting on V, if and
only if (1 + p)™' — 1 is an eigenvalue of 7, — 1 acting on W, (and with
the same multiplicity). Thus if f,(T) denotes the characteristic polynomial
of y, — 1 acting on V, (as in [6]), then the roots of f,(7) determine in
this way the roots of h,(T). On the other hand, the roots of ¢g}(7T) and
the polynomial g,(T) defined in [6] are related in exactly the same way
because the transformation s — 1 — s corresponds to the transformation
T — k(1 4+ T)* — 1. Thus the conjecture that h,(T) = ¢g¥(T) is equivalent.
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to the conjecture stated in [6] that f,(T) = g, (7). All of the results
proved in [6] can be translated to similar results about W, and h.,(T).
Thus Theorem 1 of [6] gives us the following proposition.

PROPOSITION 4. Let « be an even character of the first kind. Then
¥ — 1) annihilates W,.

Proposition 4 immediately implies several results. For example,
every root of h,(T) must also be a root of g#(7T). Then, using the fact
that L,(1 — n,v¥) = 0 for n > 2, we see that A,k — 1) =0 for n > 2.
On the other hand, it follows from the definition of p-adic L-functions
that L,(0,+) is zero precisely when y(p) = 1. The condition y(p) =1 also
determines exactly when h,(x, — 1) = 0 and so x, — 1 is a root of ¢3(T)
if and only if it is a root of A, (T). It is also interesting to consider
the case n = 0. The non-vanishing of the p-adic regulator of the abelian
extension K of Q (a result proved by Brumer in [1]) implies that #,(0)
# 0. But Brumer’s result together with Leopoldt’s evaluation of L, (1, )
(see [9]) also implies that L,(1,v) = 0 and therefore ¢}(0) = 0.

We will close this section by describing some results concerning the
degrees of the above polynomials. It is clear from Proposition 3 that
f(T) and h,(T) have the same degree when yy = w. It is also clear
that ¢,(7) and ¢g#(T) have the same degree. By using our assumptions
that [K: K] = 2, Theorem 2 of [6] implies immediately that

qul deg (hy(T)) = 2, deg (93(T))

where + varies over all characters belonging to K. However, by making
use of a recent result of J. Coates (Theorem 1.13 of [2]) together with
Leopoldt’s residue formula for the p-adic zeta function of totally real
abelian number fields, one obtains the following improvement. We assume
that p is odd.

PROPOSITION 5. Let K be any abelian totally real number field of
the first kind. Then, as « varies over all characters belonging to K,

§ deg (h,(T)) = § deg (g3(T)) .

The proof of this result is completely analogous to the proof of
Theorem 2 in [6]. Also, by considering various K’s, one obtains the
same conclusion if + varies over a set of characters conjugate over Q.
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Finally, just as in [6], if the character » has the property that [Q(y): Q]
= [Q,(4): Q,], then one can conclude that 7,(T) and g}(T) have the same
degree.

3. p-adic L-functions for non-primitive characters

Let ¢ be a primitive even £,-valued Dirichlet character. Then, as
explained in Section 4 of [6], one can eagily define an element L{1 — n, )
of 2, for every n > 1 which can be considered as a p-adic analogue of
the corresponding values of a complex Dirichlet L-function. If S is a
finite set of primes containing p, we let 45 be as defined in Section 1.
Thus, if S contains some primes which do not divide the conductor of
¥, then g is a non-primitive character and it is natural to define the
following analogues of the values of a complex non-primitive Dirichlet
L-geries:

Ll =, s) = LA — m,9) [T (L= (0.

If S = {p}, then LA — n,4s) = L*(1 — n,y) in the notation of [6] and
the p-adic L-function L,(s,v) of Leopoldt and Kubota is completely de-
termined by the property

L,(1 — n,y) = L*(1 — n,+)

for all # =0 (modp — 1) (or mod2 if p =2). Now if ¢ is a prime
different from p, we write ¢, as usual, in the form 7 = w(4)<¢>, where
{6>=1 (modp) (or 4 if p=2). Then 1 — ()" =1 — Yo ()L™
for »n =0 (modp — 1 or mod2). We thus define a function L,(s, ) by

L(8,95) = Lys, \lf)zel! A = Yo (™) .

Here we are letting S, = S — {p}. This function, which is defined and
continuous for all se Z, (except perhaps s = 1) has the property

L,(1 — n,v9s) = L1 — n,g)

for all n =0 (modp — 1 or mod2). Note that if S = {p}, then L,(s, s)
is identical to L,(s, ¢).

By multiplying the power series G3(T) by certain other power series
corresponding to the primes ¢ in S, =S — {p}, one can form a power
series G} (T) with the property that
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st(l_fg - 1) R

Lp(l - S, ‘Ps) = (ICS — 1)5

The power series Gj, is associated with a polynomial ¢} (7) which is
divisible by ¢¥(T). It is not hard to describe the roots of g} .(T)/g#(T)
corresponding to each Ze S, If one writes (/> = «§¢, where a, is a p-adic
integer, then these roots are precisely the roots of the power series

1 — Yo ' (A + Ty .

If Yo !(4) is not a p-power root of unity, this power series is invertible
and no new roots occur. If Yo '(¢) is a p-power root of unity, then the
new roots are those of the polynomial

A + D — Kwp (@) ",

where a, = p*-u, with %, a p-adic unit. We must now relate these roots
to the eigenvalues of 7, — 1 acting on a certain representation space for
I'. Now Gal (M.(S)/K.) ®,, 2, is a representation space for Gal (K../Q)
= 4 X I' whose +-component we denote by W,S). We will soon see
that W,(S) is finite dimensional. Since M, < M_(S), it is clear that the
-component of Gal (M.(S)/M.) ®,, 2,, which we will denote by U,(S),
is contained in W,(S) and that the corresponding quotient space
W,(S)/ULS,) is isomorphic to W, (as a representation space for I).
The characteristic polynomial of y, — 1 on U,(S,) is obviously %, (7)/h,(T).
We will show that the characteristic polynomial is also g} (T)/g#(T) and
thus that

ey (1) Ry (T) = 935 (T)/ 93(T) .

Therefore, the conjecture stated in the introduction is equivalent to the
statement that A, (T) = g% (D).

To study the structure of U,(S,), we will examine M _(S) from the
point of view of Kummer theory. We still assume that [K: K] = 2. Let
B denote the subgroup of KX consisting of all S,-units b such that bJ(b)
=1. Now, for each ¢S, there are only finitely many primes of K.
lying over ¢, and therefore B (modulo all roots of unity in K.) is a
finitely generated group. Let Lg, = K.({*"vb |be B, n > 0}). The field
Lg, is clearly contained in M.(S)K.. In fact, for odd p, M.(SK.
= LgM.. To see this, we observe that K.(*"/a) C M_.(S)K., if and only
if aJ(a) e (KX)*" and (a) can be written as bc?*, where b is an ideal (in
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some K,) divisible only by primes dividing those in S. There is an
integer ¢ such that b’ is principal. Then, if p is odd, one finds that o’
can be expressed in the form o’ = be, where be B and (¢) is a p**"-th
power of an ideal in K, where p” is the highest power of p dividing ¢.
It follows that

K. a) = K.(""Va) C K.("""vV D)K.(*"+'v ¢) C Ls, M., .

Therefore, M. .(S)K,, = Lg M... Now, it is easy to see that [Ls, N (M. K.): K1
< oco. We conclude that U,(S,) is isomorphic to the +-component of
Gal (Ls,/K.) ®4, 2,. We also see (although we won’t need this result)
that

W\p(S) = Uq,(So) X W¢

as representation spaces for I'. For p = 2, the above argument can be
modified and one finds that [M.(S)K.:LgM.] is finite (although not
necessarily 1). We still obtain the same conclusion about U,(S,).

Now it is not difficult to describe the action of the Galois group
Gal(K./Q =4 x I on B®,2, and hence, by Kummer theory, the
structure of U,(S,). For each Z¢S, we let B, denote the subgroup of
B consisting of /-units. The above Galois group acts on the primes of
K, dividing ¢ transitively. The kernel of this action is the decomposi-
tion group D(4) of any prime dividing ¢ and is generated by the inertia
group (which is contained in 4 since ¢ # p) and by a (Frobenius) auto-
morphism ¢(¢4) which we write in the form ¢(4) = d(4)y(£), where §(4) € 4
and y(¥)eI'. Note that y(4) = y¥*, where a, has been defined earlier in
this section. The representation of Gal(K./Q) on B,®;%, is obtained
(in an obvious way) from that part of the regular representation of
Gal (K./Q)/D(¢) on which J acts as multiplication by —1. If Je D(4),
then of course B, consists only of the roots of unity in K. and so B,
®z 2, is trivial.

Now let y be the character of 4 determined by yy = 0. We must
find the eigenvalues of y, on the y-components of B,®;#,. This x-
component will be trivial if ¢ divides the conductor of y, or equivalently
. Taking into account our description of the kernel of the action of
Gal(K./Q) on B, it is clear that y(4) must act on the y-component as
multiplication by x(6(4))™ = x(¢)' (identifying y with the corresponding
primitive Dirichlet character). Thus the corresponding eigenvalues of 7,
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satisfy the equation x?* = y(¢)~¢>., Note that unless y(¢) is a p-power
root of unity, the y-component is trivial. In this case, each of the roots
of the above equation is actually an eigenvalue of y, and with multiplicity
one. Thus, by Kummer theory, the prime ¢ contributes the following
eigenvalues of ¢, acting on U,S): the roots of the equation (x,/x)?*
= x(£)~ @7V, or P = (kL)% = Kwy~Y(£)**. Comparing this with
our previous description of the roots of g% (7) coming from the Euler
factor for ¢4, we find that we have proved the following result.

PROPOSITION 6. The polynomials h,(T)/h(T) and ¢gi(T)/g(T) are
equal.

4. The torsion subgroup of Gal (M. /K.)

In previous sections, we have discussed the structure of certain re-
presentation spaces for I' constructed from Y = Gal (M, /K.). For odd
primes p, it seems quite likely that the p-invariant of the I"-module Y
is zero. (By Proposition 1, the I"-modules X~ and Y have the same p-
invariant.) The following proposition (which is due to Iwasawa, although
our proof is new) would then show that the torsion subgroup of Y is

trivial and hence that not much is lost by considering Y ®,, 2, instead
of Y itself.

PROPOSITION 7. If p is odd, Y contains no non-trivial finite I'-sub-
module.

Proof. By Proposition 1, it is enough to show that A: contains no
I'-invariant subgroup of finite index >1. We will actually prove this
for A.. (For odd p, 4z is a direct summand of A..) Let C be such a
subgroup. There exists an integer n, such that y2" acts trivially on A./C
for all n >mn, If acA., but aeC, then for a large enough value of
7, there will exist an ideal class @ € 4, such that @ — a under the map-
ping A4, — A.. Since the primes dividing p are totally ramified in K,/ K,
for m > n, one can show that the norm map N,, , from K, to K, induces
a surjective map from A4, to 4,. We may choose n > n, and it then
follows that @ mod C is a p™ "-th power in A./C. This is of course
impossible if m is large enough and we conclude that C = A.. This
proves the above proposition.

If p = 2, Proposition 7 remains valid, but we plan to discuss this
in a more general context in a subsequent paper. In addition, it is
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definitely true, as we pointed out previously, that the g-invariant of Y
is non-zero. More precisely, we have the following proposition.

PROPOSITION 8. If p =2, the torsion subgroup of Y is pseudo-
isomorphic to 4/(2) [4], where 4 = Gal (K/Q). Thus, the p-invariant of
Y is [K: Q).

Remark. In the above proposition, 4 denotes the power series ring
Z,[[T]], where T = y, — 1. Thus 4/(2) is the group ring for I" over Z/(2)
as defined in the theory of profinite groups. Thus 4/(2) [4] is actually
the group ring for Gal (K.,/Q) = 4 x I" over Z/(2).

Proof. It is known that the p-invariant of X- is zero for p =2
(see [4]). Thus by Proposition 2, the torsion subgroup of Y is pseudo-
isomorphic to the dual of E,/E% as a A[4]-module.

Now let n > 0 and let ¢;, ¢ =1, ---,[K,: Q], be the distinct embed-
dings of K, into R. Let E, denote the unit group of K,. We claim
that the mapping

[&y: Q]
E.— |[] R*/(R®?
i=1

induced from the ¢,’s has the index of its image bounded as n — co.
This will follow if we show that the strict ideal class group of K, has
a bounded number of elements of order 2. If this were not so, K, would
have an extension of type (Z/(2))¢~ where only infinite primes are ramified
and where d, — oo as n— co. However, translating such extensions to
K, would give unramified extensions of the above type, which would
contradict the fact that A. has p-invariant zero (see [4]).

It follows that there is a homomorphism from F,/E2 to
Z/(2)[Gal (K,/@)] with bounded kernel and cokernel. In addition, one can
show that the mappings from E,/E? to (E.,/E%)"~, where I', = Gal (K.,/K,)
have bounded kernel and cokernel. Combining these facts, one deduces
the above proposition.

We will end this section by speculating about the relation between
p-adic L-functions and the structure of the torsion subgroup of Y. Let
v be an even Dirichlet character of the first kind and let 2~ be a uni-
formizing parameter for @,(y). Let m, denote the largest integer such
that =™+ divides all of the coefficients of the power series G¥(T) (or
equivalently G,(7)). Note that for odd p, m, is exactly as defined in
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Section 4 of [6] and is probably equal to zero (see Theorem 2 of [6]).
On the other hand, for p = 2, m, is different than in [6]. It is positive
and is such that z™¥/2 is a unit in Q,(y). It is not hard to make a
reasonable guess about the relationship between the integers m, and the
structure of the torsion subgroup of Yx,, where K, is the cyclic extension
of @ corresponding to +» by class field theory. If « has order prime to
p, then Conjecture 2.3 of [3] would include a description of this rela-
tionship. In general, write « = y;\,, Where +, has order prime to p
and +, has p-power order. It is easy to show that if 4 is any conjugate
of + over @,, then m, = m,.. Let ¥ be the sum of all the @,-conjugates
of ¥, ¥, and ¥, the sums of the @,-conjugates of v, and +, Then ¥
=U¥, Let e, be the idempotent corresponding to ¥, in the group ring
Z,[Gal (K,/K,)]. Let Y, = e, Yg,. If ¢ has order prime to p, then
the invariant g = u(Y,,) should be related to m, by the equation

P* = No, e, (m)™ -1 ,

where u is a unit in Z,.

However, if the order of + is divisible by p and if ¢ denotes an
element of order p in Gal (K,/Q), then the above equation should hold
for p = p((e — 1)Y,). From Proposition 8, one can see that these state-
ments are valid for p = 2. If the conjecture that p(Y) =0 for odd p
is valid, then the above statements are again (trivially) valid.

5. A conjecture of G. Gras

In this section, we will assume that K is a totally real abelian ex-
tension of @ and that p is an odd prime not dividing [K:Q]. Let Ej
be the group of units of K, and let Cr be the subgroup of cyclotomic
units of K. Let Ax be the p-primary subgroup of the ideal class group
of K. Let By denote the p-primary subgroup of F/Cx. In this section,
we will discuss the following conjecture of G. Gras (see [5]).

CONJECTURE. Ay and By have isomorphic Jordan-Holder series as
Z,[Gal (K/@)]-modules.

Our assumptions on p allow us to take a simplified definition of Cy.
For a more precise definition, see Hasse [8] or Leopoldt [12]. Our
definition is as follows: Let F/Q be cyclic with conductor f so that
F C Q;), where {, is any primitive f-th root of unity. Then as
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= Ny — 1 is an element of F (although not necessarily a unit).
Let H; be the subgroup of K* generated by «; and its conjugates for
all cyclic subfields F' of K. We then define

CKZHKOEK.

We remark that it is known that A, and By have the same order
(since p is odd and does not divide [K:@Q].) In this section, we will
show that the conjecture stated in the introduction (together with the
conjecture stated at the end of Section 4) actually implies Gras’ conjec-
ture. We begin by outlining our approach.

Let 4 = Gal (K/Q). The simple modules over R = Z,[4] are easily
described. They must have exponent »p and so correspond precisely to
the irreducible representations of 4 over Z/(p). Let ¥ be any irreducible
character of 4 over @, and let e; be the corresponding idempotent (which
is contained in R since p4|4|). It is not hard to see that ¥ = ¥ modp
is an irreducible character for 4 over Z/(p) and that all irreducible
characters are obtained in this way. The corresponding simple R-module
is eyR/p(eyR). If D is any finite R-module, then e,D will have order
(p¥®)" where the exponent » will be the number of times the simple
module attached to ¥ occurs in a Jordan-Holder series for D. Thus, to
prove Gras’ conjecture, we must show that

leyAx| = |eyBx]

for all . If ¥ =¥, (the trivial character of 4), then one can easily
show that both sides are equal to 1. We will therefore assume from
now on that ¥ =+ ¥,

Now consider Uiz = [[, U,, where p runs over all primes of K divid-
ing p. Here we are letting U, denote the group of units in the p-adic
completion of K. Both E; and Cx can be embedded in Uy in a natural
way and we denote their closures in U by Ex and Cx. Then, if ¥ = ¥,
it is known that e,(Uy/C%) is finite. (This is Brumer’s theorem [1].
Here U and C% denote the subgroups of U, and Cx whose components
are principal units. Thus U and C% are Z,-modules and hence E-modules
so that e, (U /C}) makes sense.) Let M, be the maximal abelian p-ramified
pro-p-extension of K and let L be the maximal abelian unramified p-
extension of K, so that K C L € M,. Then by class field theory one
sees that
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Gal (L/K) = Ay
and
Gal (M,/L) = (Ux/E%)
canonically. On the other hand,
(Ex|CY) = Bx -

Thus, in order to prove Gras’ conjecture, one must show that e,(Uy/Cy)
and ey Gal (M,/K) have the same order for ¥ = ¥, (the latter group is
finite because M,/K. is a finite extension, by Brumer’s theorem again).
By assuming the conjectural relationship between p-adic L-functions and
the structure of Y, we can calculate the order of e, Gal (M,/K) in terms
of the values of p-adic L-functions at s = 1. On the other hand, by a
rather interesting calculation, we can also express the order of e, (Uy/C%)
in terms of the values of p-adic L-functions at s = 1. The equality of
the orders of these groups will then be obvious (conjecturally).

To compute the order of e, Gal (M,/K), we observe that M, is the
maximal abelian extension of K contained in M. and so Gal (M,/K.)
= Y./TYy, where T =y, — 1. Thus, if we let Y, = ¢,Y, then, for
¥ + ¥, we must find the order of Y,/TY,. To do this, we consider an
arbitrary noetherian and torsion A-module #. It is known that # is
pseudo-isomorphic to a direct sum %’ = > . #,, where each %, is a /-
module of the form %, = A/(f(T)) with f,(T) either a power of p or a
monic polynomial whose non-leading terms are divisible by p (a so-called
distinguished polynomial). If f;(T) = p*, then it is not hard to see that
|%,;|T% ;| = p. If f(T) is a polynomial of degree ¢, (and of the above
type), then #, is a free Z,-module of rank ¢, and f(T) is the charac-
teristic polynomial of 7' acting on #,. It follows that |%,/T%,| is just
the power of p dividing the determinant f;(0) of T acting on #,. Now
the p-invariant of the 4-module ¢ is defined as u(%) = 3 e;, where the
sum is over those i’s for which f,(T) is a power of p. The product
J(T) = ] f(T) of the remaining polynomials can be described as the
characteristic polynomial of T acting on the vector space ¥ ®,, 2,. Now
if we make the additional assumption that % contains no non-trivial
finite A-submodule (so that # is isomorphic to a submodule of %’ of finite
index), then it is not hard to prove that #/T% and #’'/T%’ have the
same order (see Section 6 of [3]). Thus |#/T%| is equal to the power
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of p dividing p“f(0), where p = p(%). These observations apply to the
A-module # = Y, by Proposition 7. In this case, # ®,, 2, is isomorphic
to >, W, and so f(T) = [, hy(T), where + varies over the one dimen-
sional constituents of ¥. Now conjecturally 2,(T) = g¥(T) and p*/[], z™
is a unit of ¢,. Since L,(1,+) is equal to z™¥g¥(0) up to a unit of 0,
it follows that conjecturally the order of e, Gal (M,/K) is equal to the
power of p dividing

TJ L,,) ,

where «» varies over the constituents of ¥. We should mention that,
although we have assumed that ¥ # ¥, our last statement is valid also
for ¥ = ¥, since both quantities are infinite.

We now consider the group e,(Ux/Cy) = e;Ux/e,Cy. It will be useful
to compare the structure of Uy as an R-module with Dy = 0, ®,Z,,
where 0y denotes the ring of integers of the number field K. Of course,
Dy is just the direct sum of the completions of 0 at the primes dividing
p and Uy is the group of units in D;. Let Dg(1) be the direct sum of
the maximal ideals in these completions so that Dx(1) is an ideal of D,
and let Dy(n) = D) for n > 1. Wealso let Ux(n) = 1 + Dx(n). Then
Uy = Ux(1). By a simple (and familiar) argument, one can show that
Ux(n)/Ugx(n + 1) is isomorphic to Dx(n)/Dg(n + 1) as an R-module for
all n >1. For n > 2, much more is true. The p-adic logarithm allows
one to define an R-homomorphism

log,: Uy — Dg
(the image is in fact contained in Dx(1) since the ramification index of
each prime dividing p is <p — 1) and this induces an R-isomorphism
log,: Ug(n) —=> Dg(n)

for all » > 2. For »n =1, this may have a non-trivial kernel. However,
C is torsion-free and so is mapped injectively by log,. In addition, if
U + ¥, then e,Cyx contains e,Ux(n) for sufficiently large n. One can
see that

e,Cy|exUx(n) = ey log, (Ck)/exDy(n) .

But since e,U%k/eyUx(n) and e,Dx(1)/e;Dx(n) have the same order, it is
obvious that
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|ewU;r/eurC’;{| = |eyDx(1) /ey logp (6;{)! .

Thus, we must now calculate the index of e, log, (Ck) in e,Dx(1).

Let F be the cyclic extension of @ corresponding to ¥ (or any of
its constituents). The element «r defined earlier is not necessarily a
unit of F but one can form a unit a%/a, where (¢,p) = 1 and e is some
rational integer. Let ar = (a%/a)?, where d is chosen so that (d,p) =1
and oy = 1 (mod p) for all primes p of K dividing p. Then, considering
o as an element of U, it is not hard to show that (a7 generates
¢,C% as an R-module (we are mixing additive and multiplicative notation).
Thus e, log (Ck) is generated as an R-module by ¢, log, («). We can also
find a generator for e¢,D;(1). Let f be the conductor of F and let zn
= Trqq,,7(Cs), Where {; is a primitive f-th root of 1. Then, using the
fact that p is at most tamely ramified in the field Q(,), one can show
that e,r» generates e,Dy as an R-module. (Here we are identifying zp
with 7 ®1 in Dy = 0x®,Z,) Now we must distinguish two cases.
If pff, then e,Dx(1) will be generated by e,pcr. If p|f, then one can
easily show that ¥ does not “occur” in Dg/D;(1) because the action of
the inertia group for p in 4 must be trivial. It follows that e,z in fact
generates e;Dx(1).

To simplify the rest of this calculation, we make the following obser-
vation. Let v be a one dimensional character of 4 contained in ¥ and
let 0, denote the ring of integers in the field @,(y) generated by values
of . Let A be any finite R-module. We form A ®, @,, which can be
considered as a module over @,[4]. Let e, be the idempotent correspond-
ing to 4. Then it is not hard to see that e,A has the same order as
(A ®gz, 0,).

We can apply this observation to the module e,Dy(1)/e, log, (Cf).
Calculating within the ¢,-algebra ﬁK = Dg ®y, 0, instead of Dy, we must
compute the index of the @,-module generated by e, log, (¢}) in the 0,-
module generated by e,prr of pff or by e, if p|f. The character +
corresponds to a primitive Dirichlet character of conductor f (which we
also denote by ) and it is clear that

eyrr = = 3 40 = Loty
d n=1 ! d ’

where d =|4| and <(++') is of course a Gaussian sum. Similarly,
e, log, (a7) is equal (up to a p-adic unit) to >/, v~'(n)log, (€% — 1).



P-ADIC L-FUNCTIONS 157

(Here we are using the “extended” p-adic logarithm defined in [9],
Chapter 4.) The ratio of this sum to pr(yY) if ptff or to z(y7Y) if p|f
is an element of ¢, whose norm from ¢, to Z, is the index that we wish
to compute. Now we recall that the value of the p-adic L-function
L,(s,y) at s =1 is given by (see [9], Chapter 5):

Ly, v = —(1 - L;@)E(—}”)— 3y log, (€ — 1)

By taking into account the fact that z(y)r(v") = +f and that y(p) = 0
if and only if p|f, we see that up to a unit in @, the factor in front
of the sum is either 1/pz(y") if ptf or 1/z(y"Y) if p|f. Thus, it should
now be clear that the order of e¢,Uj/e,C% is the power of p dividing

NQp(‘!’)/Qp(Lp(l’ \I’)) = 1;[ Lp(19 1!/'/) ’

where ' varies over all @,-conjugates of \». Comparing this with the
(conjectural) order of e, Gal (M,/K), we obtain the following result.

PROPOSITION 9. Assume that the conjectures stated in the introduc-

tion and at the end of Section 4 are walid for all characters + attached
to K. Then Gras’ conjecture is also valid for K.

REFERENCES

[1] A. Brumer, On the units of algebraic number fields, Mathematika, 14 (1967),
121-124,

[2] J. Coates, p-adic L-functions and Iwasawa theory, to appear in Proceedings of
symposium on algebraic number theory held in Durham, England, 1975.

{81 J. Coates, S. Lichtenbaum, On ¢-adic zeta functions, Ann. of Math., 98 (1973),
498-550.

[ 41 B. Ferrero, Iwasawa invariants of abelian number fields, to appear.

[ 5] G. Gras, Classes d’ideaux des corps abeliens et nombres de Bernoulli generalises,
Ann. Inst. Fourier, 27 (1977), 1-66.

[ 61 R. Greenberg, On p-adic L-functions and cyclotomic fields, Nagoya Math. Jour.,
56 (1975), 61-717.

[7] ——, On the Iwasawa invariants of totally real number fields, Amer. Jour. of
Math., 98 (1976), 263-284.

[ 81 H. Hasse, Uber die Klassenzahl abelscher Zahlkorper, Akademie Verlag, Berlin,
1952.

[ 9] K. Iwasawa, Lectures on p-adic L-functions, Ann. Math. Studies 74, Princeton
University Press, 1972.

, On Z-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-

326.
[11] T. Kubota, H. Leopoldt, Eine p-adische Theorie der Zetawerte (Teil I), J. Reine
Angew. Math., 213 (1964), 328-339.



158 RALPH GREENBERG

[12] H. Leopoldt, Uber Einheitengruppe und Klassenzahl reeller abelscher Zahlkorper,
Abh. Deutsche Akad. Wiss. Berlin Math. 2. (1954).

Brandeis University





