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ON p-ADIC L-FUNCTIONS AND CYCLOTOMIC FIELDS. II

RALPH GREENBERG*

1. Introduction

Let p be a prime. If one adjoins to Q all p^-th roots of unity for
n — 1,2,3, , then the resulting field will contain a unique subfield Q^
such that Qro is a Galois extension of Q with Gal {Q^IQ) = Zp, the ad-
ditive group of p-adic integers. We will denote Gal (Qoo/Q) by Γ. In a
previous paper [6], we discussed a conjecture relating p-adic L-functions
to certain arithmetically defined representation spaces for Γ. Now by
using some results of Iwasawa, one can reformulate that conjecture in
terms of certain other representation spaces for Γ. This new conjecture,
which we believe may be more susceptible to generalization, will be stated
below.

Let Qp be the field of p-adic numbers and let Ωp be an algebraic
closure of Qp. Let ψ be an even primitive Dirichlet character which
takes its values in Ωp and which is of the first kind (this means that
the conductor of ψ is not divisible by p2 if p is odd or by 8 if p = 2).
Let K be the cyclic extension of Q associated to ψ by class field theory
and let K^ = KQ^, the cyclotomic Zp-extension of K. Let M^ denote the
maximal abelian pro-p-extension of K^ in which only primes of K^
dividing p are ramified. (We also allow the infinite primes to be ramified,
although this could happen only if p = 2). Now Γ can be identified in
a natural way with Gal (K^/K) and, by means of this identification, we
can consider Gal (Λf*,//£«,) as a Γ-module. One can then define quite
simply a certain representation space W+ for Γ over Ωp (see Section 2).

In [11], Leopoldt and Kubota have constructed a p-adic L-function
Lp(s, ψ) for every primitive even Dirichlet character ψ. This function
is defined for all s e Zp (except for s = 1 if ψ is the principal character
ψ0) and takes its values in Ωp. Now it follows easily from a result of
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Iwasawa that there exists a power series G|(Γ) whose coefficients are

integers in the field Qp(ψ) generated by the values of ψ and which has

the property that

L (1 _ s, ψ) = —*(<ci ~~ ̂  ,

where Λ:0 is a certain p-adic unit defined in [61 and δ = 1 or 0 according

to whether ψ is principal or non-principal. We use the notation G|(Γ)

since this power series can be constructed quite simply from the power

series denoted by G>(T) in [6]. Let g$(T) denote the monic polynomial

whose roots (counting multiplicity) are precisely the (finitely-many) roots

of the power series G$(T) in Ωp. Let γ0 be a fixed topological generator

for Γ (corresponding to the choice of A:0) and let hΨ(T) denote the char-

acteristic polynomial of γ0 — 1 acting on WΨ. We now state the con-

jecture referred to above.

CONJECTURE. hΨ(T) = g$(T) .

At the end of Section 2, we will discuss several results supporting this

conjecture (mostly translations of analogous results proved in [6]).

In Section 3, we will consider a slightly more general question. Let

JS be any finite set of primes of K containing all primes dividing p.

Let MTO(S) denote the maximal abelian pro-p-extension of K^ in which only

primes of K^ dividing primes in S are ramified. Then Gal (M^OS)//£«,)

can be considered as a Γ'-module and one can therefore construct a

representation space WΨ(S) for Γ. Denote by hψ,s(T) the characteristic

polynomial of γ0 — 1 acting on WΨ(S). On the other hand, consider the

(usually) non-primitive Dirichlet character ψs defined by ψs(a) = ψ(α) if

a is not divisible by any prime in S and ψs(β) — 0 otherwise. One can

then easily define a p-adic L-function Lp(s, ψs) for the non-primitive

character ψs and, just as above, one can define a corresponding power

series G$S(T) and a polynomial g$s(T). As a consequence of the conjecture

stated above, we will show that hΨjS(T) — g$s(T). In the particular case

when S contains only the primes dividing p, the function Lp(s, ψs) is the

same as Lp(s, ψ) and therefore g$tS(T) = g$(T). Of course, h+iS(T) = hψ(T)

also. The above result is closely related to Proposition 3.4 in Coates'

and Lichtenbaum's paper [3].

In Section 4, we will discuss the structure of the torsion subgroup

of Gal (M^/KJ as a Γ-module and its relationship to p-adic L-f unctions.
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In this connection, the prime p = 2 seems especially interesting. It is
known that every coefficient of the power series G$(T) is divisible by 2.
Correspondingly, the //-invariant of the Γ-module Gal (M^/KJ) is non-zero
for p = 2. In our previous paper [6] and in most of this paper we have
tended to ignore (mainly for simplicity) the torsion subgroup of various
Γ-modules by tensoring with Ωp and thus forming representation spaces
for Γ. This allows us to avoid difficulties that occur when p divides
[K:Q]. (In [3], the Γ-modules themselves are studied but often with
the assumption that p does not divide [K: Q].) This section is therefore
meant to complement the previous sections.

In the concluding section of this paper, we will show that the con-
jecture stated above (together with the analogous conjecture for the
torsion subgroup of Gal (M^jKJ) described at the end of Section 4) leads
to a solution of a question recently raised by G. Gras in [5]. Let K be
a totally real abelian extension of Q and let p be an odd prime not
dividing [K: Q]. It is a well-known result that the class number of K
is essentially (except for the contribution of primes dividing [K: Q] and
the prime 2) equal to the index of the so-called cyclotomic units Cκ of
K in the full unit group Eκ of K. Now, although the p-primary sub-
groups of the ideal class group of K and of the group Eκ/Cκ can have
quite different structures as groups, they seem to have a close relationship
as Galois modules for Gal (K/Q). This is the question we will study in
Section 5.

2. Equivalence of two conjectures

In this section, we will prove that the conjecture stated in the in-
troduction to this paper is equivalent to the one stated in the introduction
of [6]. Although this result follows immediately from results of [10],
we will try to give a fairly self-contained account. The basis of the
argument is Kummer theory.

Let K be a totally real abelian extension of Q of the first kind (but
not necessarily cyclic for now). Thus K Π Q^ — Q and ίM = KQ^ is a
Galois extension of Q with G = Gal (K^/Q) isomorphic (by restriction) to
Δ x Γ, where Δ = Gal (K/Q). Let Mm be defined as in the introduction.
Let Y = Yκ = GSL\(MJKJ. Then G acts on Y as follows: If g e G
and yeY, we define g(y) = gyg~\ where g denotes any extension of g
to an automorphism of M^. Now it will be apparent later that Y = Z%



142 RALPH GREENBERG

X T as a Zp-module, where d is an integer and T is a torsion group
of bounded exponent (see Theorem 3 of [7]). Thus, letting Wκ = Y
®zp &p> w e s e e that Wκ is a finite dimensional representation space for
G. If ψ is any βp-valued character of the group Δ, we define

ψ f = {^e? z |5(w) = ψ(β)w for all ^ e J } .

Thus for each such ψ we obtain the representation space WΨ for Γ.
Now if ψ is any even βp-valued Dirichlet character of the first kind,,
then, by class field theory, ψ can also be considered as a character of
Δ for some choice of K, and hence one can associate to ψ a representa-
tion space for Γ which we also denote by WΨ. (It can be easily seen
that a different choice of K will provide an equivalent representation
space for Γ.)

Now let K — K(ζp) (or K(ί) if p = 2), where ζp is a primitive p-th
root of unity. To simplify the notation in the following, we assume
that K has been chosen so that [K: K] — 2, i.e. K is the maximal real
subfield of K. The field K^ — KQ^ will contain all roots of unity of
order a power of p. Let M^ denote the maximal p-ramified abelian pro-
p-extension of iϊΌo. We will study this extension from the point of view
of Kummer theory.

Let n > 1 and let Pn = {aeRZ\p*</~a eMJ\. Since the primes of K
dividing p are totally ramified in K^, it is clear that aePn if and only
if (a) = αpW, where α is a fractional ideal in Km for some m, (where
Km denotes the unique subfield of K^ of degree pm over K). Let
F = Gal (M^/KJ. If a e Pn and p Γ , we define (α,») = y(pW~a)/pW~a,
which is a pw-th root of unity. If g e Gal (K^jQ), then # acts on F (just
as defined before for Y) and one can easily see that

(g(ά), g(y)) = g((a, y))

for all a e Pn and y e Y. In particular, if / is the non-trivial element
of Gal (K^/KJ (i.e. complex conjugation), then

Now let Mt denote the maximal subfield of ΛL which is abelian
over K^ Note that M^K^ = Mt (for p = 2, ilί^ = J?:). It is clear that
Gal (Mn/Mz) is (1 - /)F, the commutator subgroup of Gal (M^/KJ. Let
jξn = {aePn\

pn^/~a eMt). One can describe Rn more simply as follows.
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If a e Pn, then aeRn if and only if {a, (1 — J)y) = 1, or equivalently

(α«7(α), y) = 1, for all p F . This would imply that aJ(a) e (Z*)*\ Thus

Rn = {aePn\ aJ(a) e (Kt)pn). K we let Ϋ+ = Gal (MZ/EJ, then by Kummer

theory it follows that F + / F f and Rn/(K*)pn are dual to each other.

Now let Άn denote the p-primary subgroup of the ideal class group

of Kn and let Ά^ = lim Άn, where the direct limit is taken with respect

to the maps An —> Άm induced by the inclusion Kn -» Km for m > n > 0.

There is a natural homomorphism ^>n: Pn —> A^ defined by φn(a) = Cl (α)

if ae Pn and αpW = (α). Here α is an ideal in Km for some m and Cl (α)

is the image of the ideal class of α in the direct limit Ά^. It is clear

that φn is a Gal (X:

00/Q)-homomorphism and that their kernel of φn contains

(E*yn. If we let Az = {c e Ά^ \ cJ(c) = 1}, then φn gives a homomorphism

from Rn to Az.

Assume now that p is odd. We will show that φn induces an iso-

morphism of Rn/(K*)pn onto the subgroup of Z~ of elements of order

dividing pn. Let aeRn Π Ker (φn). Then a — bpn-u, where b e K* and

u is a unit in the ring of integers of K^. Also uJ(u) e (K*)pn. Since p

is odd, it is not hard to see that b and u can be chosen so that uJ(u)

= 1. However, it follows from this that u is a root of unity and hence

a pn-th power in ΪΓ2. Thus # n Π Ker fy>n) = (K*)p\ Now let c e Z~,

cpn •= 1. Since p is odd, one can find an ideal of the form α = B//(B)

in c, where Bpra = (δ) is principal. Thus, apn — (α), where a = b/J(b).

Then aeRn and pn(α) = c.

The above remarks allow us to define a pairing of Az and Y+ into

the group of p-power roots of unity. If ceAz, choose n large enough

so that cpn = 1 and choose aeRn so that φn(a) = c. Then if ye¥+, we

define <c,#> = (α,?/). This is a well-defined perfect pairing (considering

Άz with the discrete topology). Also, if g e Gal (E^/Q), then

for all ceAz and i/e F + .

Now there is a natural homomorphism K from Gal (K^/Q) to the

group of p-adic units defined by

for all w. The pairing defined in the previous paragraph therefore has

the property that
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(g(c), y} = <c, /c(g)g-ι(y)>

for all ceΆz, yeY+, and g e Gal (KJQ). We will let X denote the

Pontrjagin dual of ATO. If g e Gal (K^/Q) and # e X , we define g(x) by

</(#)(c) = x{g(c))

for all c e i . If X~ = {# e X | #«/(#) = 1}, then Z~ is clearly the dual

of A~. Thus Z~ and Y+ are isomorphic as topological groups. Now

consider X~, a topological group identical to X~ but with a new action

of Gal (!?«,/Q) defined by g°x = κ{g)g-\x). Then X~ and F + are iso-

morphic as Gal (if00/Q)-modules. However, Joχ — χ for x e l " and so

X~ and F + can be considered as Gal (J?00/Q)-modules. Also, Y+ is iso-

morphic to Y as a Gal (K00/Q)-module and therefore we have the following

proposition:

PROPOSITION 1. Let p be an odd prime. Then X~ and Y are iso-

morphic as Gal (K

We will now consider p = 2. Since we are allowing the infinite

primes to be ramified in M^/K^, it is clear that Mw contains N^

= K00Q*Jli\ueE00), where E^ is the group of units from the ring of

integers of K^ Let Yo = Gal (MJNJ so that Y/Yo = Gal (N^/KJ is

isomorphic to the dual of E^/El, (with a twisted GalCK^/Q) action).

Thus it is obvious that the Γ-module Y has non-zero //-invariant. We

will describe E^/Ei more precisely in Section 4. On the other hand,

Yo is closely related to A~ and X~. In fact, Yo and X~ are pseudo-

isomorphic as G-modules (i.e. there is a G-homomorphism between them

with finite kernel and cokernel). To see this, we must use the fact that

Ά^ and X have /^-invariant equal to zero and hence X is finitely generated

as a Zp-module. (This has been proved by B. Ferrero in [4] when K/Q

is abelian and p = 2 or 3.) It follows from this that (A~)2 is of finite

index in A~ and therefore the union of the images φn{Rn) is also of finite

index in 3~. Also, one can verify easily that Rn Π Ker (φn) contains

(Eco)
2n~1'(K^yn as a subgroup of finite index. In addition, X~ is pseudo-

isomorphic to the dual of Άz and the dual of E^/Ei is pseudo-isomorphic

to the twisted version of itself referred to above. (This last fact will

be more evident later.) Combining all of these remarks, we obtain the

following proposition.



p-ADIC L-FUNCTIONS 145

PROPOSITION 2. Let p = 2. Γfce Gal (K^/Q)-module Y contains a

siώmodule Yo pseudo-isomorphic to X~ such that Y/YQ is pseudo-iso-

morphic to the dual of £r

oo/£rL.

We can now relate the structure of the representation space Wr

(defined above) and another representation space V τ for Γ. Let Δ

= Gal (K/Q) so that Gal (ΪL/Q) ^ Δ X Γ. If VΈ = X ®Zp Ωp and if χ is<

an βp-valued character of J, we define

Vχ = {veVΈ\δ(v) = χ(δ)v for all δeΔ) .

The representation space for Γ defined in [6] and also denoted by Vχ is

equivalent to the one just defined here. (In [6], we use the inverse limit

Xf = lim An with respect to the norm maps instead of X. But X is the

adjoint of Xr and so X and X' are pseudo-isomorphic as Gal (K^/Q)-

modules. Letting Vi = {v e Vχ\J(v) = —v} — 2]oddχ Vχ, we see that Vi

= X~ <£)Zp Ωp. Let ω denote the restriction of K to Δ. (This of course

corresponds to the Dirichlet character ω defined in [6].) If we define Vi

and Vχ in the same way as X~, then Propositions 1 and 2 show that

Vi and Wκ are isomorphic as representation spaces for Gal (!£«,/Q) and

in this isomorphism Vχ is mapped to WΨ where χ and ψ are related by

the equation χψ = ω (considering ψ as a character of Δ with ψ(J) = +1).

In the terminology of [6], the primitive Dirichlet characters correspond-

ing to χ and ψ would be dual.

We therefore have proved the following proposition.

PROPOSITION 3. // χψ = ω, then Vχ and WΨ are isomorphic as rep-

resentation spaces for Γ.

We can now easily relate the conjecture stated in the introduction

with the conjecture stated in [6]. Let χ and ψ be as in Proposition 3.

If γ0 is a fixed topological generator of Γ and if κ0 — κ(γQ), then clearly

an element β of Ωp will be an eigenvalue of γ0 — 1 acting on Vχ if and

only if ιcQ(l + β)'1 — 1 is an eigenvalue of γQ — 1 acting on WΨ (and with

the same multiplicity). Thus if fχ(T) denotes the characteristic polynomial

of γ0 — 1 acting on Vχ (as in [6]), then the roots of fχ(T) determine in

this way the roots of h+(T). On the other hand, the roots of g${T) and

the polynomial gf(T) defined in [6] are related in exactly the same way

because the transformation s —> 1 — s corresponds to the transformation

T -> κo(l + TYι - 1. Thus the conjecture that hΨ(T) = g*(T) is equivalent
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to the conjecture stated in [6] that fχ(T) = g+(T). All of the results

proved in [6] can be translated to similar results about WΨ and h+(T).

Thus Theorem 1 of [6] gives us the following proposition.

PROPOSITION 4. Let ψ be an even character of the first kind. Then

.9*(γo — 1) annihilates WΨ.

Proposition 4 immediately implies several results. For example,

every root of h+(T) must also be a root of #$(T). Then, using the fact

that Lp(l — n, ψ) Φ 0 for n > 2, we see that h^jft — 1) Φ 0 for n > 2.

On the other hand, it follows from the definition of p-adic L-functions

that Lp(0, ψ) is zero precisely when χ(p) — 1. The condition χ(p) — 1 also

determines exactly when hΨ(/c0 — 1) = 0 and so κQ — 1 is a root of g${T)

if and only if it is a root of h+(T). It is also interesting to consider

the case n — 0. The non-vanishing of the p-adic regulator of the abelian

extension K of Q (a result proved by Brumer in [1]) implies that /^(0)

Φ 0. But Brumer's result together with Leopoldt's evaluation of Lp(l, f)

(see [9]) also implies that Lp(l, ψ) Φ 0 and therefore g$(0) Φ 0.

We will close this section by describing some results concerning the

degrees of the above polynomials. It is clear from Proposition 3 that

/χ(Γ) and hf(T) have the same degree when χψ = ω. It is also clear

that gΨ(T) and g$(T) have the same degree. By using our assumptions

that [K: K] = 2, Theorem 2 of [6] implies immediately that

Σ deg (hΨ(T)) = Σ deg (gftT))

where ψ> varies over all characters belonging to K. However, by making

use of a recent result of J. Coates (Theorem 1.13 of [2]) together with

Leopoldt's residue formula for the p-adic zeta function of totally real

abelian number fields, one obtains the following improvement. We assume

that p is odd.

PROPOSITION 5. Let K be any abelian totally real number field of

the first kind. Then, as ψ varies over all characters belonging to K,

Σ deg (hΨ(T)) = Σ deg (gf(T)) .

The proof of this result is completely analogous to the proof of

Theorem 2 in [6]. Also, by considering various K's, one obtains the

.same conclusion if ψ varies over a set of characters conjugate over Q.
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Finally, just as in [6], if the character ψ has the property that [Q(ψ): Q]

— [QpW Qp]> then one can conclude that hΨ(T) and g*(T) have the same

degree.

3. p-adic L-functions for non-primitive characters

Let ψ be a primitive even βp-valued Dirichlet character. Then, as

explained in Section 4 of [6], one can easily define an element L(l — n, ψ)

of Ωv for every n > 1 which can be considered as a p-adic analogue of

the corresponding values of a complex Dirichlet L-function. If S is a

finite set of primes containing p, we let ψ# be as defined in Section 1.

Thus, if S contains some primes which do not divide the conductor of

ψ, then ψs is a non-primitive character and it is natural to define the

following analogues of the values of a complex non-primitive Dirichlet

L-series:

L(l - w, ψ5) - L(l - n, ψ) Π (1 - ΨC^"" 1 ) .

If S = {p}, then L(l — n, ψ-5) = L*(l — n, ψ) in the notation of [6] and

the p-adic L-function Lp(s,ψ) of Leopoldt and Kubota is completely de-

termined by the property

for all n = 0 (modp — 1) (or mod 2 if p = 2). Now if £ is a prime

different from p, we write £, as usual, in the form £ = ω(£)(£}, where

<T> = 1 (mod p) (or 4 if p = 2). Then 1 - ψ ( ^ « - χ - 1 - ψ ω - 1 ^ ) ^ ) " " 1

for n = 0 (mod 2? — 1 or mod 2). We thus define a function Lp(s,ψs) by

£p(β, Ψs) - Lp(s, ψ ) Π ( l - ψω- 1 ^)^)" ' ) .

Here we are letting So = S — {p}. This function, which is defined and

continuous for all s e Zp (except perhaps s — 1) has the property

LP(X - n, ψs) = ^(1 - n, ψs)

for all n Ξ 0 (modp — 1 or mod 2). Note that if S = {p}, then Lp(s,ψs)

is identical to Lp(s, ψ).

By multiplying the power series G£(T) by certain other power series

corresponding to the primes £ in So = S — {p}, one can form a power

series G£S(T) with the property that
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} — k^C/Co — 1)

The power series G$s is associated with a polynomial g$8(T) which is

divisible by g$(T). It is not hard to describe the roots of g$s(T)/g$(T)

corresponding to each ί e So. If one writes (£y — *#*, where aί is a p-adic

integer, then these roots are precisely the roots of the power series

1 - ψω-\£χ£}-ιa + T)a* .

If ψω~\£) is not a p-power root of unity, this power series is invertible

and no new roots occur. If ψω~\S) is a p-power root of unity, then the

new roots are those of the polynomial

where aβ = pee ue with ue a p-adic unit. We must now relate these roots

to the eigenvalues of γ0 — 1 acting on a certain representation space for

Γ. Now Gal(MT O(S)/ZJ®Z pi2p is a representation space forGal(ίL/Q)

= J X Γ whose ψ-component we denote by WΨ(S). We will soon see

that WΨ(S) is finite dimensional. Since I ω c M^iS), it is clear that the

ψ-component of Gal (M^^/MJ ®Zp Ωp, which we will denote by UΨ(S0),

is contained in WΨ(S) and that the corresponding quotient space

WΨ(S)/Uf(S0) is isomorphic to WΨ (as a representation space for Γ).

The characteristic polynomial of γ0 — 1 on UΨ(SQ) is obviously h+s(T)/h+(T).

We will show that the characteristic polynomial is also g*s(T)/g$(T) and

thus that

hΨs(T)/hf(T) = g*8(T)/gm

Therefore, the conjecture stated in the introduction is equivalent to the

statement that hΨs(T) = g$s(T).

To study the structure of UΨ(S0), we will examine M^iS) from the

point of view of Kummer theory. We still assume that [K: K] = 2. Let

B denote the subgroup of K% consisting of all SΌ-units b such that bJib)

= 1. Now, for each i e >S0, there are only finitely many primes of K^

lying over £, and therefore B (modulo all roots of unity in KJ) is a

finitely generated group. Let LSo = !?„({*V~δ~ | 6 eB,n> 0}). The field

LSo is clearly contained in M00(S)K00. In fact, for odd p, M00(S)KCO

= LsJMn. To see this, we observe that K00(
pn^~a) c: MOO(S)KOO if and only

if aJ(a) e (K*)pn and (a) can be written as bcpn, where b is an ideal (in



p-ADIC L-FUNCTIONS 149

some Km) divisible only by primes dividing those in S. There is an

integer t such that ¥ is principal. Then, if p is odd, one finds that a*

can be expressed in the form a1 — be, where b e B and (c) is a pn+r-th

power of an ideal in K^, where pr is the highest power of p dividing t.

It follows that

Therefore, MO0(S)Km = LSoM^ Now, it is easy to see that [LSo Π ( M X ) : KJ

< oo. We conclude that UΨ(S0) is isomorphic to the ψ-component of

Gal (LSJKJ) ®Zp Ωp. We also see (although we won't need this result)

that

WΨ(S) gz Uf(S0) x WΨ

as representation spaces for Γ. For p = 2, the above argument can be

modified and one finds that [M00(S)K00: LSoM^] is finite (although not

necessarily 1). We still obtain the same conclusion about UΨ(S0).

Now it is not difficult to describe the action of the Galois group

Gal (Roo/Q) = Δ x Γ on B®ZΩP and hence, by Kummer theory, the

structure of UΨ(SQ). For each £ e So, we let B# denote the subgroup of

B consisting of ^-units. The above Galois group acts on the primes of

K^ dividing i transitively. The kernel of this action is the decomposi-

tion group D(S) of any prime dividing £ and is generated by the inertia

group (which is contained in Δ since ί Φ p) and by a (Frobenius) auto-

morphism σ(£) which we write in the form σ(S) = δ(£)γ(£), where δ{£) e Δ

and γ(S) e Γ. Note that γ(£) = y%^ where a£ has been defined earlier in

this section. The representation of GalCfiΓ^/Q) on B£®ZΩP is obtained

(in an obvious way) from that part of the regular representation of

Gal (KΰO/Q)/D(£) on which / acts as multiplication by - 1 . If JeD(£),

then of course B& consists only of the roots of unity in R^ and so Be

®ZΩP is trivial.

Now let χ be the character of Δ determined by χψ = ω. We must

find the eigenvalues of γ0 on the χ-components of B£®ZΩP. This χ-

component will be trivial if i divides the conductor of χ, or equivalently

ψ. Taking into account our description of the kernel of the action of

GaliRoo/Q) on B£, it is clear that γ(£) must act on the χ-component as

multiplication by χ^(^))"1 = χW'1 (identifying χ with the corresponding

primitive Dirichlet character). Thus the corresponding eigenvalues of γ^
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satisfy the equation xpβ£ = χ{ί)~{ujl\ Note that unless χ(£) is a p-power
root of unity, the χ-component is trivial. In this case, each of the roots
of the above equation is actually an eigenvalue of γ0 and with multiplicity
one. Thus, by Kummer theory, the prime £ contributes the following
eigenvalues of γ0 acting on UΨ(SQ): the roots of the equation (κo/x)pβ'
= χ(£y(u^\ or xpe* = (Cχ(^))^1 = «^>ψ-1(^))^~1. Comparing this with
our previous description of the roots of g$s(T) coming from the Euler
factor for £, we find that we have proved the following result.

PROPOSITION 6. The polynomials hΨs(T)/hf{T) and g%s(T)lg$(T) are
equal.

4. The torsion subgroup of Gal (M^/iΓJ

In previous sections, we have discussed the structure of certain re-
presentation spaces for Γ constructed from Y = Gal (M^/KJ. For odd
primes p, it seems quite likely that the /^-invariant of the Γ-module Y
is zero. (By Proposition 1, the Γ-modules X~ and Y have the same μ-
invariant.) The following proposition (which is due to Iwasawa, although
our proof is new) would then show that the torsion subgroup of Y is
trivial and hence that not much is lost by considering Y ®Zp Ωp instead
of Y itself.

PROPOSITION 7. // p is odd, Y contains no non-trivial finite Γ-sub-
module.

Proof. By Proposition 1, it is enough to show that Az contains no
jΓ-invariant subgroup of finite index >1. We will actually prove this
for 5L. (For odd p,Az is a direct summand of i . ) Let C be such a
subgroup. There exists an integer nQ such that γf acts trivially on A^/C
for all n > n0. If a e 3M, but a e C, then for a large enough value of
•n, there will exist an ideal class aeAn such that a -»a under the map-
ping Άn —> 3 r o. Since the primes dividing p are totally ramified in KmjKn

for m >n, one can show that the norm map Nm>n from Km to Kn induces
a surjective map from Άm to Άn. We may choose n >n0 and it then
follows that a modC is a pm"w-th power in ATO/C. This is of course
impossible if m is large enough and we conclude that C — A^. This
proves the above proposition.

If p = 2, Proposition 7 remains valid, but we plan to discuss this
in a more general context in a subsequent paper. In addition, it is
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definitely true, as we pointed out previously, that the ^-invariant of Y
is non-zero. More precisely, we have the following proposition.

PROPOSITION 8. If p — 2, the torsion subgroup of Y is pseudo-
isomorphic to Λ/(2) [A], where Δ = Gal (K/Q). Thus, the μ-invarίant of
Y is [K:Q].

Remark. In the above proposition, A denotes the power series ring
ZP[[T]], where T = γ0 - 1. Thus Λ/(2) is the group ring for Γ over Z/(2)
as defined in the theory of profinite groups. Thus A/(2) [Δ] is actually
the group ring for Gal (K^/Q) = Δ x Γ over Z/(2).

Proof. It is known that the //-invariant of X~ is zero for p = 2
(see [4]). Thus by Proposition 2, the torsion subgroup of Y is pseudo-
isomorphic to the dual of E^/El as a Λ[zf]-module.

Now let n > 0 and let φu i = 1, , [ίΓn: Q], be the distinct embed-
dings of Kn into i?. Let En denote the unit group of Kn. We claim
that the mapping

induced from the φ^s has the index of its image bounded as n-*oo.
This will follow if we show that the strict ideal class group of Kn has
a bounded number of elements of order 2. If this were not so, Kn would
have an extension of type (Z/(2))dn where only infinite primes are ramified
and where dn —> oo as n—> oo. However, translating such extensions to
Kn would give unramified extensions of the above type, which would
contradict the fact that 4M has //-invariant zero (see [4]).

It follows that there is a homomorphism from En/E2

n to
Z/(2)[Gal (Kn/Q)] with bounded kernel and cokernel. In addition, one can
show that the mappings from En\E\ to (EJEl)Γ*, where Γn = Gal {K^IKn)
have bounded kernel and cokernel. Combining these facts, one deduces
the above proposition.

We will end this section by speculating about the relation between
p-adic L-functions and the structure of the torsion subgroup of Y. Let
-ψ be an even Dirichlet character of the first kind and let π be a uni-
formizing parameter for Qp(ψ). Let mΨ denote the largest integer such
that πm* divides all of the coefficients of the power series G$(T) (or
equivalents Gf(T)). Note that for odd p, m+ is exactly as defined in
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Section 4 of [6] and is probably equal to zero (see Theorem 2 of [6]).
On the other hand, for p = 2, mΨ is different than in [6]. It is positive
and is such that πm*/2 is a unit in Qp(ψ). It is not hard to make a
reasonable guess about the relationship between the integers mΨ and the
structure of the torsion subgroup of YKψ, where KΨ is the cyclic extension
of Q corresponding to ψ by class field theory. If ψ has order prime to
p, then Conjecture 2.3 of [3] would include a description of this rela-
tionship. In general, write ψ — fafa, where fa has order prime to p
and fa has p-power order. It is easy to show that if ψ' is any conjugate
of ψ over Qp, then mΨ — mr. Let Ψ be the sum of all the (^-conjugates
of ψyWΊ and ¥2 the sums of the (^-conjugates of fa and fa. Then Ψ
= ΨXΨ2. Let eTl be the idempotent corresponding to Ψι in the group ring
Zp[Gal(KΨ/Kψ2)]. Let YΨl = e¥ιYKr If ψ has order prime to p, then
the invariant μ = μ(YΨl) should be related to mf by the equation

where u is a unit in Zp.
However, if the order of ψ is divisible by p and if a denotes an

element of order p in Gal (KfjQ), then the above equation should hold
for μ = μ((σ — l)YΨl). From Proposition 8, one can see that these state-
ments are valid for p — 2. If the conjecture that μ(Y) = 0 for odd p
is valid, then the above statements are again (trivially) valid.

5. A conjecture of G. Gras

In this section, we will assume that K is a totally real abelian ex-
tension of Q and that p is an odd prime not dividing [K: Q]. Let Eκ

be the group of units of K, and let Cκ be the subgroup of cyclotomic
units of K. Let Aκ be the ^-primary subgroup of the ideal class group
of K. Let Bκ denote the p-primary subgroup of Eκ/Cκ. In this section,
we will discuss the following conjecture of G. Gras (see [5]).

CONJECTURE. AK and Bκ have isomorphic Jordan-Holder series as
Zp[Gal (Z/Q)]-modules.

Our assumptions on p allow us to take a simplified definition of Cκ.
For a more precise definition, see Hasse [8] or Leopoldt [12]. Our
definition is as follows: Let F/Q be cyclic with conductor / so that
F ci Q(ζf)> where ζf is any primitive /-th root of unity. Then aF
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— ^Q(ζP)/̂ (Cp -~ 1) i s a n element of F (although not necessarily a unit).

Let Hκ be the subgroup of Kx generated by aF and its conjugates for

all cyclic subfields F of K. We then define

cκ = iϊ^ n E^ .

We remark that it is known that Aκ and Bκ have the same order

(since p is odd and does not divide \K\Q\.) In this section, we will

show that the conjecture stated in the introduction (together with the

conjecture stated at the end of Section 4) actually implies Gras' conjec-

ture. We begin by outlining our approach.

Let Δ = GalCK/Q). The simple modules over R = ZP[Δ] are easily

described. They must have exponent p and so correspond precisely to

the irreducible representations of Δ over Z/(p). Let Ψ be any irreducible

character of Δ over Qp and let eψ be the corresponding idempotent (which

is contained in R since p^|J|). It is not hard to see that Ψ — Ψmoάp

is an irreducible character for Δ over Z/(p) and that all irreducible

characters are obtained in this way. The corresponding simple i?-module

is eψR\p(βψR). If D is any finite β-module, then eψD will have order

(pψ(1))r where the exponent r will be the number of times the simple

module attached to Ψ occurs in a Jordan-Holder series for D. Thus, to

prove Gras' conjecture, we must show that

\eψAκ\ = \eψBκ\

for all Ψ. If Ψ = Ψo (the trivial character of Δ), then one can easily

show that both sides are equal to 1. We will therefore assume from

now on that Ψ Φ WQ.

Now consider Uκ — Y[p C7P, where p runs over all primes of K divid-

ing p. Here we are letting Up denote the group of units in the :b-adic

completion of K. Both Eκ and Cκ can be embedded in Uκ in a natural

way and we denote their closures in Uκ by Eκ and Cκ. Then, if Ψ ψ WQ,

it is known that eψ(TJ'κICf

κ) is finite. (This is Brumer's theorem [1],

Here Ό'κ and Cr

κ denote the subgroups of Uκ and Cκ whose components

are principal units. Thus U'κ and Cr

κ are Zp-modules and hence ^-modules

so that eψ(UκlC'κ) makes sense.) Let Mo be the maximal abelian ^-ramified

pro-p-extension of K and let L be the maximal abelian unramified p-

extension of K, so that K c: L cz Mo. Then by class field theory one

sees that
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Gal (L/K) ^ Aκ

and

Gal (Mo/L) s (J7i/Si)

canonically. On the other hand,

Thus, in order to prove Gras' conjecture, one must show that eψ{U'κICf

κ}

and eψ Gal (Mo/K) have the same order for ¥ ψ ¥0 (the latter group is

finite because MQ/K^ is a finite extension, by Brumer's theorem again).

By assuming the conjectural relationship between p-adic L-functions and

the structure of Yκ, we can calculate the order of eψ Gal (Mo/K) in term&

of the values of p-adic L-f unctions at s = 1. On the other hand, by a

rather interesting calculation, we can also express the order of eψ(UκlC'κ}

in terms of the values of p-adic L-f unctions at s = 1. The equality of

the orders of these groups will then be obvious (conjecturally).

To compute the order of eψ Gal (Mo/K), we observe that Mo is the

maximal abelian extension of K contained in M^ and so Gal (MQ/KJ

^ YK/TYK, where T = γQ - 1. Thus, if we let Γ r = eΨYκ, then, for

?r φ ψQ9 w e must find the order of YΨ/TYW. To do this, we consider an

arbitrary noetherian and torsion yl-module ^ . It is known that <3ί i&

pseudo-isomorphic to a direct sum <&' — 2 =1 <3(i9 where each ^ is a yl-

module of the form <&t = A/if^T)) with /^Γ) either a power of p or a

monic polynomial whose non-leading terms are divisible by p (a so-called

distinguished polynomial). If/<(T) = pβ% then it is not hard to see that

I^ ./Γ^l = p*\ If f.(T) is a polynomial of degree ίt (and of the above

type), then (&i is a free Zp-module of rank ti and /<(Γ) is the charac-

teristic polynomial of T acting on ^ . It follows that | ^ / T ^ | is just

the power of p dividing the determinant / (̂O) of T acting on 3^. Now

the /^-invariant of the J-module <$f is defined as μ(β/) — Y^e^ where the

sum is over those ΐ ' s for which /4(Γ) is a power of p. The product

f(T) = Π ΛCΪ7) °f the remaining polynomials can be described as the

characteristic polynomial of T acting on the vector space <& ®Zp Ωp. Now

if we make the additional assumption that <& contains no non-trivial

finite Λ-submodule (so that <& is isomorphic to a submodule of (Wf of finite

index), then it is not hard to prove that ^ / Γ ^ and <&''/TW have the

same order (see Section 6 of [3]). Thus \W/T(¥\ is equal to the power
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of p dividing pμf(0), where μ — μ(&). These observations apply to the
Λ-module <& — YΨ by Proposition 7. In this case, <& ®Zp Ωp is isomorphic
to 2 ^ W+ and so f(T) = \\^hf{T)y where ψ varies over the one dimen-
sional constituents of ¥. Now conjecturally hψ(T) = g$(T) and pμ/Y\+πm+
is a unit of 0Ψ. Since Lp(l,ψ) is equal to πm*g$(ϋ) up to a unit of 0+,
it follows that conjecturally the order of βr Gal (MQ/K) is equal to the
power of p dividing

Π Lpd, Ψ) >

where ψ varies over the constituents of W. We should mention that,
although we have assumed that ¥ Φ !Γ0, our last statement is valid also
for ¥ = ¥Q since both quantities are infinite.

We now consider the group er(U'κ/C'κ) = eψU'κleψC'κ. It will be useful
to compare the structure of U'κ as an iϋ-module with Dκ = <DK®zzpr

where Θκ denotes the ring of integers of the number field K. Of course,
Dκ is just the direct sum of the completions of Θκ at the primes dividing
p and Uκ is the group of units in Dκ. Let Dκ(ΐ) be the direct sum of
the maximal ideals in these completions so that Dκ(l) is an ideal of Dκ

and let Dκ(n) = Dκ(l)n ίorn>l. We also let Uκ(n) = 1 + Dκ(n). Then
U'κ — Uκ(l). By a simple (and familiar) argument, one can show that
Uκ(ri)/Uκ(n + 1) is isomorphic to Dκ{n)/Dκ(n + 1) as an β-module for
all n >1. For n > 2, much more is true. The p-adic logarithm allows-
one to define an iί-homomorphism

logp:U'κ->Dκ

(the image is in fact contained in Dκ(l) since the ramification index of
each prime dividing p is <p — 1) and this induces an ^-isomorphism

logp: Uκ(ri) - ^ > Dκ(n)

for all n>2. For n = 1, this may have a non-trivial kernel. However,
Ci is torsion-free and so is mapped injectively by logp. In addition, if
¥ Φ ¥0, then eψC'κ contains eψUκ(ή) for sufficiently large n. One can
see that

eψσκ/eψUκ(n) ^ eΨlogp(C'κ)/eΨDκ(iι) .

But since eψU'κ/eψUκ(n) and eψDκ(l)/eψDκ(n) have the same order, it is

obvious that
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\erϋ'κ/e¥ϋ'κ\ = \erDKa)/erlogp(j0'K)\ .

Thus, we must now calculate the index of er\ogp(C'κ) in e¥Dκ(l).

Let F be the cyclic extension of Q corresponding to Ψ (or any of

its constituents). The element aF defined earlier is not necessarily a

unit of F but one can form a unit ae

F/a, where (e,p) — 1 and a is some

rational integer. Let aF — (ae

F/a)d, where d is chosen so that (d,p) — 1

and aF = 1 (mod p) for all primes p of K dividing p. Then, considering

aF as an element of TJ'κy it is not hard to show that (aF)
eψ generates

eψCκ as an β-module (we are mixing additive and multiplicative notation).

Thus eψ log (C'κ) is generated as an β-module by eψ \ogp (aF). We can also

find a generator for eψDκ(l). Let / be the conductor of F and let τF

— TrQ{ζf)/F(ζf), where ζf is a primitive f-th root of 1. Then, using the

fact that p is at most tamely ramified in the field Q(ζf), one can show

that eψτF generates eψDκ as an β-module. (Here we are identifying τF

with τF®l in Dκ — ΘK®ZZP.) Now we must distinguish two cases.

If p)(f, then eψDκ(ϊ) will be generated by eψpτF. If p\f, then one can

easily show that Ψ does not "occur" in Dκ/Dκ(l) because the action of

the inertia group for p in Δ must be trivial. It follows that eψτF in fact

generates eψDκ(l).

To simplify the rest of this calculation, we make the following obser-

vation. Let ψ be a one dimensional character of Δ contained in Ψ and

let ΘΨ denote the ring of integers in the field Qp(ψ) generated by values

of ψ. Let A be any finite ^-module. We form A ®Zp 0Ψ, which can be

considered as a module over ΘΨ[Δ\. Let eΨ be the idempotent correspond-

ing to ψ. Then it is not hard to see that eψA has the same order as

We can apply this observation to the module eψDκ(T)/ew \ogp (C'κ).

Calculating within the 0ψ,-algebra Dκ = Dκ ®Zp ΘΨ instead of Dκ, we must

compute the index of the dVmodule generated by eΨ logp (aF) in the (9f-

module generated by eΨpτF of p\f or by eΨτF if p\f. The character ψ

corresponds to a primitive Dirichlet character of conductor / (which we

also denote by ψ) and it is clear that

eΨτF = ~Σ f W Γ / = -KΨ"1) ,
a n=i a

where d = \Δ\ and r(ψ-1) is of course a Gaussian sum. Similarly,

£ψ logp (aF) is equal (up to a p-adic unit) to 2£=i Ψ~\n) logp (ζ} — 1).
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(Here we are using the "extended" p-adic logarithm defined in [9],

Chapter 4.) The ratio of this sum to pτ(ψ~ι) if p\f or to rCψ"1) if p\f

is an element of Θψ whose norm from ΘΨ to Zp is the index that we wish

to compute. Now we recall tha t the value of the p-adic L-function

Lp(s, ψ) a t s = 1 is given by (see [9], Chapter 5) :

Lp(l, Ψ) = -( l - lψ-)*ψ- ± r\n) log, (CJ - 1) .

By taking into account the fact that rίψjrίf1) = ±f and that ψ(P) = 0
if and only if p\f, we see that up to a unit in φ+ the factor in front
of the sum is either 1/pτiψ-1) if p\f or l/τ(ψ~ι) iίp\f. Thus, it should
now be clear that the order of eψϋ'κleψC'κ is the power of p dividing

NQpW/Qp(Lp(lf ψ)) = Π Lp(l, ψθ ,

where ψ/ varies over all Qp-conjugates of ψ. Comparing this with the
(conjectural) order of eψ Gal (MQ/K), we obtain the following result.

PROPOSITION 9. Assume that the conjectures stated in the introduc-
tion and at the end of Section 4 are valid for all characters ψ attached
to K. Then Gras' conjecture is also valid for K.
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