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SOME APPLICATIONS OF SYNGE'S FORMULA

TO THE THEORY OF SEVERAL

COMPLEX VARIABLES

TAKESHI SASAKI AND OSAMU SUZUKI*

§ 1. Introduction

In [10] and [11], the second author proved the following theorem by
using Synge's formula:

THEOREM I. Let M be a kdhler manifold with positive holomorphίc
bi-sectίonal curvature. Then every pseudoconvex domain in M is a Stein
manifold.

This seems, as far as we know, to be the first application of Synge's
formula in the theory of several complex variables. As for Synge's
formula, see § 2.

In the present paper we shall give further applications of Synge's
formula and show that essential parts of the well known theorems con-
cerning curvature and pseudoconvexity can be proved systematically by
using Synge's formula. First we prove the following theorem of R. E.
Greene and H. Wu [7] by using Theorem I and the result of J. Cheeger
and D. Gromoll [2, Proposition 1.3. p. 416]:

THEOREM II. Let M be a non-compact complete kdhler manifold
with positive sectional curvature. Then M is a Stein manifold.

Secondly we shall be concerned with complete kahler manifolds with
non-positive sectional curvature. We prove the following three theorems,
the first of which is well known as the theorem of H. Wu [13]:

THEOREM III. Let M be a simply connected complete kdhler manifold
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with non-positive sectional curvature. Then M is a Stein manifold.

THEOREM IV. Let M be a simply connected complete kdhler mani-

fold with non-positive (resp. negative) sectional curvature. For a point

p0 we set φ(p) = d(p, pQ), where d(p} p0) denotes the distance between p

and p0. Then φ{p) is a complete pseudoconvex (resp. s-pseudoconvex)

function on M — {p0}.

THEOREM V. Let M be a complete kάhler manifold with non-positive

{resp. negative) sectional curvature. Then for any point p there exist

a neighborhood U of p and a system of pseudoconvex (resp. s-pseudo-

convex) functions φ19 φ2, , φr on U such that

φ(q) = min φό(q) for qeU .

At the end of §3, we give an example of a not simply connected

complete kahler manifold with negative curvature which is not a Stein

manifold.

In §4 we shall give examples of kahler manifolds which show diffi-

culties of differential geometric characterization of Stein manifolds.

The authors would like to express their hearty thanks to Professors

A. Morimoto and K. Aomoto and Mr. S. Takeuchi for their valuable dis-

cussions during the preparation of the present paper.

§2. Synge's formula and normal coordinates of kahler manifolds

First we consider a Riemannian manifold R of class C°° with a metric

g. Let °U = {£/} be a local coordinate covering of R and x\x\ • • , # m

denote local coordinates on U. The connection induced from g is denoted

by

9 _ v Γk **
°'*dχi ^ Jdxk

Let P and N be two submanifolds in R and let p and q be two points

on P and N, respectively. Moreover, suppose that a geodesic σ joining

p with q is given, whose length is denoted by L A C°°-mapping ψ(ξ, £)

from a rectangle [—ε, ε] x [Q, £] to R is called a variation of σ if ψ(ξ,t)

defines a curve Ĉ  with ψ(f, 0) e P and ψ(f, £) eN for a fixed f and es-

pecially, when ξ = 0, ψ(0, ί) gives a parametrization of <τ. By ψ(f, £) we

denote the tangent vector of Cζ at t. Then the length of Cζ is given
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as follows:

Jo

where ||ψ(f, ί) | | denotes the length of ψ(ξ, t). We define a vector field X

(resp. Y) along the map ψ by

ψΛD^) = X for Dx = — and ψΛ(Z)2) = Y for D2 = — .
9ί ' 9f

Letting Y = Σ Yj—:oψ with (—:o <ψ )(f, t) = ( — ) , we set

and

<2.2)
" 9? 9xfc ' ~ ^ ' 3 f a χ f c

Then Synge's formula can be stated as follows:

LEMMA 2.3. (The second variation of arc lengths). Suppose that

]|ψ(0, ί)| | = 1 for every t. Then we have

Ϋ, VDxΫ) - g(R(Y, X)X, Γ)}(0, t)dt + g(FD2Y, Z)(0, t )"

where Ϋ = Y — ^(Y, X)Z and i2(Y, X) denotes the Rίemannian curvature

transformation.

For the proof of this Lemma, see [1, Corollary 1, p. 219].

Let S be a submanifold in R. For each point p e S, we define a

bilinear symmetric mapping # p : TP(S) x T^S) —> Tp(Sy by

αp(X0, Yo) = the normal component of (FXY)P,

where TP(S), TP(S)L denote the tangent space of S at p and its orthogonal

complement of TP(S) respectively and X, Y are local vector fields in a

neighborhood of p such that Xp = Z o and Yp = Yo. αp is called the

second fundamental form of S at p.

In the rest of this paper we confine ourselves to a study of kahler

manifolds. Let M be a kahler manifold of dimension n with a kahler
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metric of class C°°

ds2 = 2Σi9i3dzi d& .

The complex structure of M is denoted by /.

The following proposition is well known (cf. [12]):

PROPOSITION 2.4. For any point p and for any geodesic starting

at p, there exists a local coordinate neighborhood U of p and a system

of local coordinates on U with the following properties:

(1) 2gi} = δi3 + Σ Kim(0)zkzl + 0(r3) on U, where r2 = Σ5-il*Ί2-

(2) Let ψ be a parametrization of a by its arc length. Then ψ(0) = —
dxι

at p, where xι = Re z1.

Proof. We sketch the outline of the proof given in [12]. Choose a

system of local coordinates w\ w2, ->wn at p. The metric tensor in

terms of these coordinates is denoted by {gi3}. Let (λkl) be a matrix of

numbers satisfying

Define u\ u2, , un by

Taking an arbitrary unitary matrix (cfy and setting

z* = Σ αjw^ + Σ Σ ^u,^,...,^1*1^2 ' ' ^ %

(i = 1,2, , %) ,

we determine {α ,̂̂ ,...,̂ } so that the metric tensor with respect to these

coordinates satisfies the condition (1) (see [12, Lemma 1]).

Now we take a geodesic σ through p. By using a suitable unitary

matrix (a{), we can find a system of local coordinates z1, z2, , zn satis-

fying the conditions (1) and (2).

Letting Γ\5 be connection coefficients with respect to real coordinates

x\ y\ , xn, yn, where zί = xί + ^f^Λy1 (i — 1,2, , n)y we have the

following

COROLLARY 2.5. Γ)k{ϋ) = 0 (ί, y, fe = 1,2,..., 2n).
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§ 3 . Proofs of Theorem II, III, IV and V

Proof of Theorem II. By [2, Proposition 1.3] we have the follow-

ing

PROPOSITION 3.1. Let R be a non-compact complete Rίemannian

manifold with non-negative sectional curvature. Then there exists a

family of compact domains {Ct}t>0 such that

(1) B = U^oC t,

(2) for every t Ct is totally convex,

(3) if tλ < t2, then Ctl Q CH and Ctl = {p e Ct2: d(p, dCt2) >t2 — tx] and

dCtl = {p e Ct%: d(p, 3Ct2) = i2 - t j .

Here a domain Ct is called totally convex if for any pair of two

points p and q in Ct and for any geodesic σ joining p with q, a is con-

tained completely in Ct.

Now we consider our complete kahler manifold M with positive

sectional curvature. Then for a family of domains {Ct} satisfying the

conditions in Proposition 3.1, we can prove the following

PROPOSITION 3.2. Ct is a pseudoconvex domain for every t.

Proof. Let V be a positive constant with V > t. Let ψ(p) = —d(p, dCt>)

for peCv. Then by using (2) in Proposition 3.1 and Theorem 1.10

in [2], for any geodesic σ(s) in Cv which is parametrized by its arc

length s, we have

ψ o σ(as1 + βs2) < aψo σisj + βψ o σ(s2) ,

where a > 0, β > 0 and a + β — 1. This implies that ψ is a geodesically

convex function on Ct, in the sense of [7, p. 641]. Then by Theorem 3

in [7, p. 652], we see that ψ is a pseudoconvex function in the interior

of Cv. By (3) in Proposition 3.1, we find that

Ct = {ψ < t - t'} ,

which proves the assertion.

Then by Theorem I, we see that Ct is a Stein manifold. So M is

also a Stein manifold.

Remark 1. From the manner given in the proof, we can also prove

that if M is a complete kahlar manifold with positive holomorphic bi-

^ectional curvature and nonnegative sectional curvature, then M is a
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Stein manifold.

Proof of Theorem III. Let TP(M) be the tangent space at p. Sup-

pose a submanifold S is given. For a point p e S, we set

HP(S) = {XQ e TP(S): JX0 e TP(S)} .

Fix a point pQ in M and consider the exponential mapping exp: TPoM

->M. Then by the theorem of J. Hadamard and E. Cartan, exp give&

a diίϊeomorphism for every p0. So we see that

(3.3) M ^ R2n .

Set φ(p) = d(p,p0). Then we see that φ(p) is a function of C~-class on

M — {Po}. Now we prove that Mc — {φ< c} is a Stein manifold for every

c. For this we show that S = dMc satisfies the condition of Levi-Krzoska

at every point in S. First we prove the following

P R O P O S I T I O N 3 .4 . For any point peS and for any YQe TP(S), we

have

g(a(Y0, Yo), Z o ) < 0 ,

where Xo denotes the outer normal vector of S at p.

Proof. Let p eS. Because M is simply connected, there exists a

unique geodesic σ joining pQ with p. σ is assumed to be parametrized

by its arc length. Take YQ e TP(S). Then there exists a variation ψ of

σ with the properties: (1) ψ($, 0) = pQ and ψ(ξ, c) e S, (2) X(0, t) is the

tangent vector of σ, (3) Γ(0, c) = Γo and (4) Ϋ=Y, where X, Γ and Ϋ

are defined as in § 2. For the existence of such a variation, see [I*

p. 217, Remark]. Then by Lemma 2.3 we have

Jo
, VDιY) - g(R(Y, X)X, D}(0, ί)dί + g(ΓDJ, Z)(0, ί)

By construction, g(FD2Y, X)(0,0) = 0. On the other hand, since £(ξ) i&

maximal at ξ = 0, ^/7(0) < 0. Hence in view of g{VDJ, Z)(0, c) = g(Pγ0YQ, Xo)>

and Z(0, c) = Xo, we have

Y0, Xo) < - Γ
Jo

Since we easily find that F ^ ^ Φ 0, we complete the proof of Proposition
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3.4.

By R. Hermann [9], we see that

4ddφ(W09 Wo) = -{g(a(Y0, Yo),Xo) + g(a(JY0,JYJ9XJ}

for any tangent vector WQ to S of type (1.0), where Yo = Wo+Woe HP(S).

This shows that Mc is a s-pseudoconvex domain in M. To complete the

proof of Theorem III, it is sufficient to prove the following

PROPOSITION 3.5. For every c, Mc admits no exceptional analytic

sets in the sense of H. Grauert [4].

Proof. Suppose that Mc admits an exceptional set E. Then there

exists a constant c such that E c Mc and E (£ Mc, for & < c. Choose a

point p e E Π 3MC. Then there exists a neighborhood U of p and a s-

pseudoconvex function u on U such that U Π Mc = {u < 0}. Restricting

u to i? Π U, we obtain a s-pseudoconvex function M'on ff ίl £7. Then

by the maximum principle, we see that v! — 0. Hence E c dMc holds in

£7, which contradicts the Levi-Krzoska condition at p.

Proof of Theorem IV. We consider φ(p) as in the proof of Theorem

III. Let p e M and let σ be a unique geodesic between p0 and p. We

choose a local coordinate system z\ z2, , zn at p satisfying the prop-

erties (1) - (3) in Proposition 2.4. Take Yo e TP(M) and set Zo = JY0.

Let L be a complex line which is spanned by Yo and Zo, which is para-

metrized as follows:

(3.6) z1 = <M , 22 = a2λ, , zn = anλ ,

where |αx |
2 + |α2 |

2 + . . . + |α n | 2 = 1.

Take a point reL with a parameter Λ = ξ + Λf^Λη. Then there

exists a unique geodesic joining p0 with r which attains its distance. We

denote it by ψ(ξ,η,t). By this we can construct a C°°-class variation

ψ(ξ,η,t) of σ such that ψ * ( — V θ , 0, c) = Yo and ψ * ( — W 0, c) = ZQ.
\ dξ I \ dη I

We set ψ ^ A ) = -3Γ for Dλ = — and ^^(A) = Y for D2 = — and

ψ*(D3) = Z for A - - I -

Now set
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φ(ζ,v)= \e\\i(ξ,v,t)\\dt.
Jo

Then, by Lemma 2.3 we obtain

ξ±{0,0) = Γ {g(FDιΫ, rDιΫ) - g(R(Y, X)X, Y)}(0,0, t)dt
dξ2 Jo

+ g(PDJ,X)(0,0,t)\ .
0

First we compute the last term. In view of pQ = ψ(ζ,η,O), (F#2Y)(0, 0, 0)

= 0 (see, (2.2)). Thus we have fl^Y,-30(0, 0,0) = 0. By (2) in Prop-

osition 2.4,

dt

Moreover, by (1) in Proposition 2.4 and Corollary 2.5,

) = 0 a n d

Thus we see that g(PD2Y,X)(0,0,c) = ^ ° ^fo °> c » b y ( 2 # 2 ) . Then by
dξ2

using x1 o ψ(ξ, 0, c) = Re aλξ, we see that

= 0 .),0,t)

Hence we obtain

(3.7) |- | (0,0) = Γ {ί7(FBlf, f
7,,,?) - flr(β(rf Z)Z, Γ)}(0, 0, t)dt .

dξ2 Jo

So if the sectional curvature is non-positive (resp. negative), this is non-

negative (resp. positive). In the same manner we have —?-(0,0) > 0
dη2

(resp. > 0). Therefore

), 0) > 0 (resp. > 0) .S + ?dξ2 dη2

This proves the assertion.

Remark 2. We can give another proof of Theorem III as follows:

We consider Mc and S as in the proof of Theorem III. Take Yo e HP(S)

and consider a complex line L as in the proof of Theorem IV. Then
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we have (PDlY)(0,0,c) Φ 0. So by (3.7) - ^ ( 0 , 0 ) > 0 . Also we have
dξ2

-^(0,0) > 0. Thus Δ(p) > 0, which implies that Mc satisfies the condi-
dη2

tion of Levi-Krzoska.

Remark 3. By (3.7) we obtain

- Γ{g(R(Y,X)X,Y) + g(R(ZfX)X,Z)}dd,0,f)dt.
Jo

Unfortunately we do not know that Z = JY. Therefore we cannot as-

sert a similar result to Theorem III under the assumption of non-positive

holomorphic bisectional curvature. Also see §4.

Proof of Theorem V. Fix a point pQ and consider φ(p) = d(p, p0).

For any point p, there exists a finite number of geodesies {σj which

attain the distance between p0 and p. Also for each pair i and j (ί Φ j)

the homotopy class of σϊιoσι is different from the one of σ]ιoσι. These

follow from the fact that any negatively curved Riemannian manifold

admits no conjugate points (see [1]). Consider σt. Let zx

9z
2

9---9z
n be

a system of local coordinates at p which is chosen for σt in Proposition

2.4. Let L be a complex line through p which is parametrized as in

(3.6). Now we construct a variation ψt of at as in the proof of Theorem

IV. The length of the curve σt is denoted by φi(ξ,ή). Then we obtain

> 0 )
dξ2 dη2

~ Γ {9(R(γ> χ)χ> y ) + 9{R{Z, X)X, Z)}(0, 0, t)dt ,

X, Y, Z denoting the vector fields along a curve σt. It is easily shown

that on a small neighborhood of p, φ(p) can be expressed as

φ(p) = min
ί = l ,2, . ,r

This proves Theorem V.

Remark 4. φ(p) is not always a function of C°°-class. Moreover,

φ(p) is not always a pseudoconvex function. For example, if I is a

compact kahler manifold with non-positive sectional curvature, then φ(p)

can never be a pseudoconvex function.

Remark 5. A non-compact complete kahler manifold with negative
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sectional curvature is not always a Stein manifold. We give the follow-
ing example communicated to the authors by K. Aomoto.

EXAMPLE. Let D = {(z19z2) eC 2 : \z,\2 + \z2\
2 < 1} and let Γ be an

arithmetic discontinuous group on D such that DjΓ is a non-compact
complex manifold. Then the Bergmann metric on D induces a complete
kahler metric with negative sectional curvature on M — D/Γ. On the
other hand, it is well known that for some Γ, M has a compactification
M such that Mis a compact analytic space and M — M is a finite num-
ber of points. So M can never be a Stein manifold.

§ 4. Some examples of kahler manifolds concerning differential geometric char-
acterization of Stein manifolds

By giving examples of kahler manifolds, we shall show that differ-
ential geometric characterization of Stein manifolds is not easy.

First, we give an example which shows that a Stein manifold does
not always admit a complete kahler metric of non-positive (resp. positive)
curvature. For this we remark on the following: Let I be a non-
compact simply connected kahler manifold with non-positive (resp. posi-
tive) curvature. Then by (3.3) (resp. R. Gromoll and W. Meyer [8]), we
see that

(4.1) H\M9 Z) = 0 for < = 1,2, , 2n .

EXAMPLE 1 (S. Takeuchi). Let G be a subgroup of SL(2, C) defined
by

}•

Then by the theorem of M. Rosenlicht and C. Chevalley, we see that
M == SL(2,C)/G is an affine algebraic manifold. So M is a Stein mani-
fold. The homotopy type of M is identical with the one of the real 2-
dimensional sphere. Hence M is simply connected and H2(M, Z) = Z.
Therefore by (4.1) M does not admit any complete kahler metric with
non-positive (resp. positive) curvature.

In view of the example given at the end of § 3, we see that the
condition of non-positive curvature is not sufficient condition for a kahler
manifold to be Stein if it is not simply connected.

As for a necessary condition, we know the following proposition which
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is due to S.I. Goldberg and S. Kobayashi [3] :

PROPOSITION 4.2. Let M be a Stein manifold. Then M admits a

complete kahler metric with non-positive holomorphic bisectional curva-

ture.

But the condition of non-positivity of holomorphic bisectional cur-

vature is not a sufficient condition for a not simply connected kahlar

manifold to be Stein. In fact, we have the following

EXAMPLE 2 (H. Grauert [5]). Let C be a compact non-singular alge-

braic curve of genus g (g > 2) and let F be a topologically trivial holo-

morphic line bundle on C. With a fine covering {Vλ} of C, F may be

expressed as

F = {fλμ], where \fλμ\ = 1 .

The fibre coordinate on Vλ is denoted by ζλ. Set

(4.3) h = \ζ,\2 and Vε = {h < ε} .

h is a COD-function on F and Vε is a system of tubular neighborhoods

of the zero section. We denote by Θ(M) the algebra of holomorphic

functions on a complex manifold M and by D the unit disc. Then, by

H. Grauert [5] we have the following

PROPOSITION 4.4. (I) // Fk is analytically trivial for some k

(k ψ 0), then Θ(Vε) = Θ(D), where Fk is the k-th tensor product of F.

(I) If Fk is not analytically trivial for any k (k Φ 0), then Θ(V) = C.

Now we show that Vε admits a complete kahler metric ds2 with non-

positive sectional curvature. In view of the definition of holomorphic

bisectional curvature, this means that Vε admits a complete kahler met-

ric with non-positive holomorphic bisectional curvature. Let ds2 be the

Poincare distance on C. By

ds2 = T Γ W ) + (1 - hlεY2dζλdζ?.

gives a desired metric, where π denotes the natural projection π: F-> C.

We finish our study with the following problem:

PROBLEM. IS a simply connected kahler manifold M a Stein mani-

fold if and only if M admits a complete kahler metric with non-positive

holomorphic bisectional curvature?



*64 TAKESHI SASAKI AND OSAMU SUZUKI

REFERENCES

11 ] Bishop, R. L. and Crittenden, R. J., Geometry of Manifolds, Academic Press, New
York, 1964.

£ 2 ] Cheeger, R. I. and Gromoll, R., On the structure of complete manifolds of non-
negative curvature, Ann. of Math. 96 (1974), 414-443.

[ 3 ] Goldberg, S. I. and Kobayashi, S.: On holomorphic bisectional curvature, J. Diίf.
Geometry 1 (1967), 225-233.

[ 4 ] Grauert, H., ϋber Modiίikationen und die exzeptionelle analytische Mengen, Math.
Ann. 146 (1962), 331-368.

£ 5 ] , Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Zeit. 81 (1964),
377-391.

[ 6 ] Greene, R. E. and Wu, H., On the subharmonicity and plurisubharmonicity of
geodesically convex functions, Indiana Univ. Math. J. 22 (1973), 641-653.

,[ 7 ] , Approximation theorems, C°°-convex exhaustions and manifolds of positive
curvature, Bull. Amer. Math. Soc. 81 (1975), 101-104.

[ 8 ] Gromoll, R. and Meyer, W., On complete open manifolds of positive curvature,
Ann. of Math. 90 (1969), 75-90.

[ 9 ] Hermann, R., Convexity and pseudoconvexity for complex manifolds, J. Math.
Mech. 13 (1964), 667-672.

[10] Suzuki, O., Pseudoconvex domains on a kahler manifold with positive holomorphic
bisectional curvature, to appear in Publ. Res. Inst. Math. Sci., 12.

[11] Suzuki, O., Supplement to "Pseudoconvex domains on a kahler manifold with
positive holomorphic bisectional curvature", to appear in Publ. Res. Inst. Math.
Sci., 12.

[12] Takeuchi, A., Domains pseudoconvexes sur les varietes kahleriennes, J. Math.
Kyoto Univ. 6-3 (1967), 323-357.

[13] Wu, H., Negatively curved kahler manifolds, Notices Amer. Math. Soc. 14 (1967),
515.

Nagoya University
and

Nihon University




