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TOPOLOGICAL STABILITY OF SOLENOIDAL
AUTOMORPHISMS

NOBUO AOKI

§0. Introduction

In [10] A. Morimoto proved that every topologically stable homeo-
morphism of a compact manifold M has the pseudo-orbit tracing property
in the case dim (M) > 2. Further, in studying relation between the topo-
logical stability and other stability of diffeomorphisms, he showed the
following

THEOREM A. Let R™ be the r-dimensional vector group and ¢ be a
group automorphism of R™. Then the following conditions are mutually
equivalent;

(i) ¢ is hyperbolic,

(ii) ¢ is expansive,

(iii) ¢ is structually stable,

(iv) ¢ has the pseudo-orbit tracing property,

(v) ¢ is topologically stable.

The statement further is true for toral automorphisms.

We know (cf. see § 1) that every toral automorphism is contained in
the class of solenoidal automorphisms. Thus it will be natural to ask
what kind of solenoidal automorphisms have the pseudo-orbit tracing
property. Our aim is to investigate this problem by using results in [2]
and A. Morimoto [9, 10, 11].

§1. A main result and preparatory lemmas

Let f: X <— be a homeomorphism of a compact metric space (X, d).
We denote by #(X) the group of all homeomorphisms of X. Then #(X)
becomes a complete topological group with the topology given by the
metric d(f, g) = max {d(f(x), g(x)), d(f~'(x), g7'(x)): x € X} (f, g € #(X)). We
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call f to be topologically stable iff for every ¢ > 0 there is § > 0 with the
property that for every ge s#(X) with d(f, g) < J there is a continuous
map h: X < such that

i) hog=foh, i) d(i(x), x) <e(xeX).

A sequence of points {X;}ice.n (—o0 < a < b < +o0)is called a d-pseudo-
orbit of f iff d(f(x), x,.,) < 8. Given ¢ > 0, a J-pseudo-orbit {x,} is called
to be e-traced by a point y e X iff d(fi(y), x,) < e for every ic(a, b). We
call f to have the pseudo-orbit tracing property (abbrev. P.O.T.P.) iff for
every ¢ > 0 there is § > 0 such that every dJ-pseudo-orbit of f can be -
traced by some point ye X. We denote by Orb’ (f) the set of all (finite
or infinite) §-pseudo-orbits of f and by Tr* ({x;}, /) = Tr* ({x;}) the set of all
ye X such that {x;} is etraced by y. We call (X, f) to have weak specifica-
tion iff for every ¢ > 0 there is M(e) > 0 such that for every 2> 1 and
k points x,, ---, x, € X and for every set of integers a, < b, <a, < b, ---
<a,<b,witha,,, — b, > M@E) (1 <i<k—1) thereis x e X with d(f*(x),
frx)) <ela, <n<b, 1<i<k).

We say that X is solenoidal iff X is a compact connected finite-dimen-
sional abelian group. Every finite-dimensional torus is clearly solenoidal.

Hereafter X will be an r-dimensional solenoidal group and ¢ will be
an automorphism of X. Our main result is the following

THEOREM 1. The following (A) and (B) are equivalent;

(A) (X, o) is topologically stable,

B) (X, o) has the P.O.T.P..

Further there exist solenoidal automorphisms with P.O.T.P. such that
one of the following conditions holds:

(C) (X, o) is not expansive,

(D) (X, @) is not densely periodic.

The second statement of Theorem 1 will follow from Remark 1 men-
tioned below.

Denote by (G, 7) the dual of (X, o) (("g)(x) = g(ox), g€ G and x e X).
Let G be a minimal divisible extension of G (p. 168, [7]). Since G is
torsion free, G is so and rank (G) = rank (G) = r < o (p. 34, [7]). It is
well known that 7 induces an automorphism 7 of G. We shall write 7 =
7 for the sake of simplicity.

Let Q[x, x '] be the ring of polynomials in x and x~! with coefficients
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in @ (the notation @ means the rational field). Since G is divisible and
torsion free, for every fe G and every natural number n there is a unique
ge G such that ng =f. So we consider g to be (1/n)f and Q[x, x-'] to
act on G by O, bx)g = >, b1’ (b,eQ and g€ G). Then G be-
comes a Q[x, x']-module. Since Q[x, x~'] is a principal ideal domain, it
follows (cf. p. 397, [6]) that there is in G a finite sequence {g, ---, g}
such that G splits into a direct sum G = G, ® --- ® G,, of T-invariant
subgroups G,, where G,, = {fe G: mfe gp {r'g,: je Z} for some m=+0} for
1 < i < s (the notation gp £ means the subgroup generated by a set E).
Since 7G,, = G,, for 1 < i < s, we can find a polynomial g¢,(x) € Z[x] with
minimal degree r, such that g.7)g, = 0 holds, so that & = {g,, ---, r"!g,
e, Gy v, I 'g} is linearly independent (the notation Z[x] means the
ring of polynomials with integer coefficients). Hence the factor group
G/gp © is a torsion group;i.e. gp® is full in G. Numbering the elements
of ®as O = {e, ---,e,}, every 0£g € G is expressed as ag = ae; + ---t+a,e,
for some a¢+#0 and some a,, - - -, a, with (a,. - -+, a,) = (0, - - -, 0). Since the
existence of (a,/a, -- -, a,/a) is unique, we can define an into isomorphism
0:G— Q by o(g) = (a/a, - - -, a,/a). To simplify the notations, we identify
g with (a)/a, - - -, a,/a) under ¢. Then O is the canonical basis of Z" (i.e.
e, =(1,0,---,0),---,e,=(0,---,0,1)), so that gp@=Z"cGc G=@qQ
C R". We extend 7 on R" by the natural way, and denote it by the same
symbol. For t = (¢, ---,t,) e R, define (t)g = t,a,/a + - - - + t.a,./a (addi-
tion mod 1) for all g = (a,/a, -- -, a,/Ja) e G. Then we get () ¢ X (p. 251,
[12]). In fact, +: R"— X is an into homomorphism. The adjoint map 7
of 7 is defined by ¥ (ft)g = ¥ ()7g = (o (¥))g te R, g G). Since # and 7
are isomorphic, we denote 7 by 7 again, and say (R", 7) to be the lifting
system of (X, o).

Lemma B ((P.2(1)), [2]). Under the above notations, (R") is dense in
X. If X is a torus then y(R") = X.

Lemma C ((P.2), [2]). Let F be the annihilator of gp® in X. Then
(1) F is totally disconnected and ¢ '{v(R) N F}=Z", (i) X=v{R") + F
and (iii) there is a small closed neighborhood U of 0 in R such that (U)
N F = {0} and the direct product U X F is homeomorphic to (U) + F.
And y(U) + F is a closed neighborhood of 0 in X (We write y(U) ® F such
a neighborhood (U) + F).

Lemma D. Under the above notations, the followings hold;
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(i) there exist a torus V, and a vector group V, such that  induces
a 1-1 homomorphism * from the direct product group V, ® V, onto 4(R"),

(i) (Z7) is a closed subgroup in Y (R"),

(iii)) +(Z") is dense in F.

Proof. Let K be the kernel of 4. Then K C Z" by Lemma C(), so
that there are a torus V, and a vector subgroup V, such that R"/K = V,
@® V,. Therefore 4 induces a 1-1, onto homomorphism *: V, ® V, — »(R")
in the natural way. (i) was proved. It is clear that v(Z') c F. By Lem-
ma C (i), ¥(Z") N (R < F N ¥ (R") = v(Z") and so ¥(Z") N W(R") = +(Z").
This shows (ii). Put B =(Z’). Then X/B = {(+(R") -+ B)/B} + {F/B}.
Since (R")/V(Z7) is a factor group of R"/Z", it is a torus and so (y(R") +
B)/B is also a torus since (y(R") + B)/B = y(R")/V¥(Z7). On the other hand,
X/B is connected, from which we have F = B.

LEmMma E. Let V,, V, and +* be as in Lemma D. For o, > 0 small
enough, let B(a,) be a closed neighborhood with the radius o, of 0 in V,®
V,. Then B(e,) is a closed neighborhood of R™ and ¥*(v) = ¥(v) for every
v € B(w,).

Proof. This is clear by the proof of Lemma D (i).

Lemma F((P. 8), [2]). If H = ann (X, gpJ>.. 7’0), then there exist
subgroups F- and F* of F satisfying the conditions;

(i) oH = H and the topological entropy of oy equals zero,

(ii) H contains a sequence H=H, D H, D> --- D (H, = {0} of sub-
groups such that for n > 0, ¢H, = H, and H/H, is finite,

(i) F-De¢'F-D ... D(\Wo "F = {0},

iv) F*DeF*D .- D(\o"F*={0},

(v) oF-|F- and F*[cF* are finite,

(vi) F=F-®F*®H.

By Lemmas C (iv) and F (vi), we have X = ¢(R") + {F- ® F* ® H}.
Since X is connected, it follows that X = y(R") 4 {F~ ® F*} when H is
finite.

Lemma G((P. 4), [2]). G) H={0} if G=gpUU~..7’0, (ii) H is finite
iff (G, 7) is finitely generated under 7; i.e. there is a finite set A in G such
that G = gp U~ 74

The space R splits into a direct sum R" = E* @ E*® E° of r-invariant
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subspaces E* E° and E° such that the eigenvalues of 7., 7z and 7z
have modulus > 1, <1 and 1 respectively. We call that (R", 7) is Ayper-
bolic iff E° = {0}. It is easily proved that there are norms ||, and ||,
of E* and E°, respectively and 2,¢ (0, 1) such that |[r"x|l, < 27 "|x|, (xe E*
and n < 0) and x|, < Qlx||(x e E* and n = 0). If Ec= {0}, by using
Jordan normal form in the real field for (E°, 7) we get a finite direct sum
Ec=E°® ... @ E®*of the subspaces E satisfying the following con-
ditions; for 0 < i < k, the dimension of E* is 1 or 2, and

where 7,: E° <> is an isometry under some norm |-||, of E* and each
I,: E* — E°-* is either a zero map or a map corresponding to the identity
matrix. We call that (R7, ) is central spin iff E° == {0} and each I, is a
zero map. If the characteristic polynomial p(x) of 7 is irreducible over
@ and p(x) has roots of modulus one, then (R, 7) is central spin. Define a
norm ||-||. of E° by ||lx|l, = max {|x/l.,: 0 < i<k} (x =%+ - - + x* € BEE").
Then we get easily that dy(x, y) = max {|x* — ¥"., |x* — ¥, l|x° — 3%} 1s
a metric of R” satisfying the following conditions; (i) d, is translation
invariant, (ii) there is 1,€ (0, 1) with

0),
0),
and (iii) if E° == {0} then each of 7, (under the above notations) is d,-
isometry. We see that there are «, > 0 such that for every « € (0, o], if
B(a) = {xeR":dyx,0) < «} then vBla) D F- @ F*® H is a closed nei-
ghborhood of X.

Let 2, be as above. Then the functions

do(T"x, 0) < { 0 O( ) (
>

A2d(x, 0) (xe E s

ZSL lf X — yeo.—nF- and x — yeo.—(nn)F_
d (x,y) = )

0 if x=y,

A if x —yeo"F* and x —ygo""'F*
d.(x,y) = .

0 if x=y

are metrics generating the original topology of F- and F* respectively.
For x =x,+ %, + %, + x,€ yBla) ® F~- ® F* @ H, put
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p(x) = min {a,, max {d,(y~"x,, 0), d_(x;, 0), d,(x,, 0), d(x;, 0)}} .
Then the metric of X defined by

plx—y) fx—yeyBla)®F - ®F* ®H
a, otherwise

d(x, y) = {

1s compatible with the original topology. It follows that for ¢e (0, a)),
B(e) = B*(e) ® B(e) @ B(e) where B%e) = B(e) N E* B() = B) N E* and
B(e) = B(e) N E°.

In proving our results, it is important that closed neighborhoods are
chosen to be proper subsets of X, so that we take and fix a number «,
such that

() 0 < a, < min {a, o} .

Here «, is the number chosen in Lemma E. For ¢¢ (0, «,], a closed neigh-
borhood W(e) = {x € X: d(x, 0) < ¢} is expressed as

() W) = W*e) @ W(e) ® Wee)

where We) = W() N {yB*) ® F-}, W) = W(e) N {y+B(e) ® F*} and
Wee) = W(e) N {yB%(e) ® H}. Let d be a metric of X defined as above.
For x = x* + x* + x° € W¥a,) ® W(ay) ® W¥(e,), we have

d(x, 0) = max {d(x*, 0), d(«x*, 0), d(x°, 0)} and
4"d(x, 0)  (xe Wa,), n < 0)
Ayd(x, 0) (xe Wiay),n>0).

) e, 0) < {

Lemma H. If (X, 0) is ergodic under the Haar measure, then (E°)
is dense in X.

Proof. There is in E¢ a 7-invariant subspace E® such that 7z, is di-
isometry. Hence E° is expressed as E° = E“* @ E* where E® is a sub-
space. Assume that (E°) is not dense in X, and put A = y(E%). Then
A is a g-invariant connected subgroup of X. Obviously, o, is d-isometry;
i.e. the topological entropy of ¢, is zero (ent (s,) = 0). As before let (G, 7)
be the dual of (X, ¢) and G, be the annihilator of A in G. Since G, C
G C R, we denote by V, the smallest vector subgroup of R" containing
G,. Then R"is expressed as R" = V,® V’ where V’is a subspace. We
see that R"/V,=V’ is the smallest subspace containing G, = G/G,. Since
G is finitely generated under 7, so is G,. Let p(x) be the characteristic
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polynomial of 7;,. Then the Kolmogorov entropy of o, equals A(c,) =
> s log 2] + log 4 where 2's are the eigenvalues of 7;, and 4 is the
smallest positive integer such that 4p(x) has the integer coefficients (see
[18]). Since ent (¢,) = h(s,) = 0, we have 4 = 1 (hence p(x) € Z[x]) and all
the roots of p(x) are modulus one. It follows from a result in the number
theory that they are the roots of unity since p(x) € Z[x]. On the other
hand, since (X, o) is ergodic, all the roots of the characteristic polynomial
of 7 are not the roots of unity. This is a contradiction.

Remark 1. Let M be a compact manifold and ¢ be a diffeomorphism
of M. It is proved in [10] that the set of all periodic points is dense in
the non-wandering set when (M, ¢) is topologically stable. In general
this is not true for homeomorphisms on compact metric spaces. For ex-
ample, let 7 be an automorphism of @". Consider to Q" be an abelian
group imposed with the discrete topology. If (R", 7) is hyperbolic, then
77— Q" = Q" for every j>0. From this we get that the dual (X, o) of
(Q", 7) has no periodic points except 0; i.e. (X, o) is not densely periodic.
By Theorem 2 in the next section, (X, ¢) has the P.O.T.P., and (X, o) is
topologically stable by the first statement of Theorem 1.

Since @ is not finitely generated under 7, (X, ¢) is not expansive
(by Theorem 1, [2]). Therefore it will follow that there is a solenoidal
automorphism which has the P.O.T.P., but is not expansive.

Remark 2. The set €(X) of all non-empty closed subsets of X is a

compact metric space by the Hausdorff metric d. Denote by Orb* (o) the
set of all A e ¥(X) for which there is {x,} € Orb* (¢) such that A = {x,:i ¢ Z}.
Let E(o) denote the set of all A e %¥(X) such that for every ¢ > 0 there
is A, e Orb: (s) with d(A, A) <e Then E(o) is closed in #(X). We define
O(s) = {O,(x): x€ X} € ¥(X) where O,(x) = {¢°(x):ie Z} for xe X. Obvi-
ously O(s) C E(s). We call ¢ to have the OE-property iff O(s¢) = E(0).
A. Morimoto asks in [11] whether the lifting system (R", 7) of (X, o) is
hyperbolic if ¢ has the OE-property. In [3] it is proved that for every
automorphism f of a compact metric group, § has the OE-property iff g
has the P.O.T.P.. From this result together with Theorem 2 in the next
section, we shall see that Morimoto’s problem is completely solved.
From Theorem 1 and Remark 2 we get the following

CororLLARY. The following (A), (BY and (C)Y are equivalent;
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(AY (X, o) is topologically stable,
BY (X, o) has the P.O.T.P.,
(CY (X, o) satisfies the OE-property.

Hereafter, the restriction and the factor of ¢ will be denoted by the
same symbol if there is no confusion.

§2. An auxiliary result

In this section we shall prove the following

TueEoREM 2. The lifting system (R", 1) of (X, o) is hyperbolic iff (X, o)
has the P.O.T.P..

For the proof we need the following lemmas.
Lemma 2.1. (X, o) has the P.O.T.P., then (X, o) is topologically mixing.

Proof. By (Theorem 2, [1]), X contains ¢-invariant subgroups X, and
X, such that (X, ¢) has zero entropy, (X, o) is ergodic and X splits into
asumX =X, + X,. Since X/X, is a factor group of X,, (X/X,, ¢) has zero
entropy. As we saw in the proof of Lemma H, X/X, is a torus and (X/X,,
o) is not hyperbolic. It is easy to see that (X/X,, ¢) has the P.O.T.P., so
that we must have X, = {0} by Theorem A. Therefore (X, ¢) is ergodic
and hence (X, ¢) is topologically mixing.

Lemma 2.2. If (X, o) has the P.O.T.P., then (X, o) satisfies weak speci-
fication.

Proof. By Lemma 2.1, (X, o) is topologically mixing. Let ¢ > 0 be
given. Choose § = d(¢) > 0 as in the definition of the P.O.T.P. Cover X
by a finite family # of §-balls. For any two U, U, e % there is M,; > 0
such that ¢"U, N U,; # ¢ for n > M,;. Put M = max {M,;:i,j} < oo. Let
%y, -+, X, be points in X and a, < b; < --- < a, < b, be integers with g,
— b, = Mfor 2<j<k For ze X we denote by U(2) some Ue # with
zeU. For 1<j<k there is a point y, e U(s®x;) such that ¢%+-tiy, e
U(o%+x;,,). Consider the s-pseudo-orbit {z;: a, < i < a,} defined by z; =
dg'x; for a; <i<b; and z; = o"""(y;) for b, <i<a,,,. Then there is a
point x e X which e-traces the orbit. From this we get d(¢'(x), o'(x;)) < ¢
for a, <igb, A<Kj<h).

Lemma 2.3. Let ¢ be an automorphism of a compact metric group Y
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and K be a completely o-invariant normal subgroup of Y(¢(K) = K). If
both (Y/K, o) and (K, o) have the P.O.T.P., then so is (Y, o).

Proof. By assumption, for every ¢ > 0 there is a § > 0 with § <e
such that for every d-pseudo-orbit in K, a point in K e/2-traces the orbit.
Choose 5 with 0 < » < §/3 such that the following conditions hold;

(a) d(a(x), o(y)) < 0/3 when d(x,y) < » and

(b) for an arbitrary p-pseudo-orbit {x;:a < i < b} of Y, Y/K contains
a point x + Ke Y/K with d(¢'(x + K), x, + K) < §/3(a < i < b) (here d is
a metric on X/K defined by d(x + K,y + K) = inf{d(x + k,y + k): k, k' €
K3).

By (b), for @ <i < b there is k; € K such that d(¢'(x) + &, x;) < 7.
By (a), d(e**!(x) + a(k,), o(x) < 6/3. We calculate that for a <i<b —1

d(a(ky), ki.r) = d(a* 7 (x) + a(ky), ' (%) + kyy)
< d(e* (%) + a(ky), o(x)) + do(xy), x.,) + d(x,,, 0" (%) + ki)
<9d,
from which there is a point ke K ¢/2-tracing the orbit {k;:a <i < b}.
Since
d(o'(x + &), x;) < d(o'(x + k), 0'(x) + k) + d(o'(x) + ki x) <,

the point x + k e-traces the orbit {x;:a <i<b} in Y and the proof is
completed.

LEmmA 2.4. Let Y and ¢ be as in Lemma 2.3. If Y contains a sequ-
ence Y=K, DK D ... DN K, ={e} of normal subgroups such that for
n>0, 6K, =K, and Y/K, is finite, then (Y, ) has the P.O.T.P.

Proof. For every ¢ > 0, there are n >0 and ¢ with 0 < <e¢ such
that
{xeY:d(x, 0 <dcCc K, C{xeY:dx 0 <e}.

Let {x;: @ <i < b} be an arbitrary d-pseudo-orbit in Y; i.e. d(ox,, x;,,) < 4,
a<i<b—1 (without loss of generality we may assume a + 1 < 0).
Then ox;, — x,,,€ K, (a <i < b —1). Hence ¢'x, — x,€ K, since 6K, = K,;
i.e. d(o'x,, x;) (@ <i < b). This shows that (Y, ¢ has the P.O.T.P.)

Proof of Theorem 2.
As we saw in Section 1, R" splits into a direct sum R" = E*® E* D E°

of the 7r-invariant subspaces.
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Proof of &): By Lemma 2.2, (X, o) obeys weak specification. Hence
(R, 1) is central spin by (Theorem 2, [2]); i.e. if E¢ == {0} then 7 on E° is
d,-isometry (the metric d, is defined as in Section 1). We shall now prove
that if E° # {0} then (X, o) has not the P.O.T.P.. To do this, assume that
(X, ¢) has the P.O.T.P.; i.e. for every ¢¢c (0, «,) there is d > 0 with § <e
such that every §-pseudo-orbit is ¢/2-traced by some point of X. Fix 0 =
v, € B¢ with d(v,, 0) < § and set 2z, = j¥(v,) for je Z. Then it follows that

d(r(z)), 2;.) = dy(j7*' (o), (G + DI (vy) = dy(0, v)) < 5,

and so {z,)eOrb’ (7). Put V,(v) = {ueR:dyv, u) <e} for veR. Then
there is 2 > 0 such that V.(kv)) N V.(0) = ¢. From the relation between
the metrics d, and d, we have

8 > dy(1(2), 2;.1) = dlov(z)), ¥(2;.1)

for je Z, and so {y(z,)} € Orb’(¢). By the assumption there is x € X such
that d(o’(x), ¥(z,)) < ¢/2 for je Z. Since (E°) is dense in X (by Lemma
H), we can find 0 = ye(E°) with max {d(c'(y), '(x)): 0 < i < k} < ¢/2.
Hence d(e'(y), ¥(z,)) < e for 0 < j < k, from which we have

d(y, W(2) = d(,0) = do(y"(¥),0) <& and
d(0*(3), W(2)) = do(T™"(¥), 2) = (T '(7), T"(kvy))
= do(¥ (), kvg) <.

Therefore -(y) e V.(0) N V.(kv,), which is a contradiction.

Proof of =). Since H is the annihilator of gp(J~,.7"@ in X (see
Lemma F), (gp U>..7"0, ) is the dual of (X/H, ¢) and G/gp .70 is a
torsion group. Hence the dimension of X = X/H is equal to that of X
since H is zero-dimensional. Since gp (J”., 7" is clearly finitely generated
under 7 and since the lifting system (R", 7) of (X, ¢) is hyperbolic, it fol-
lows that (X, ) is expansive (see Theorem 1, [2]). We see that X is ex-
pressed as X = ¢(R") + {F- ® F*} by Lemma G (ii). Let & >0 be an
expansive constant for (X, o). Then, for 0 < ¢ <&, we have a coordinate
neighborhood W(e) = W*(e) @ W) of 0in X where W*() =+ {0} and W(e)
#+ {0}. It is easily seen that there is § = d(e) > 0 such that if d(x,y) <
8 (x,yeX) then {W*(e) + x} N {W*e) + y} consists only of one point.
Therefore (X, ¢) has the P.O.T.P. using (xxx) (for the proof, see p. 74, R.
Bowen [4]). From this fact together with Lemmas 2.3 and 2.4 and Lemma
F (i1), we get the conclusion.
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§3. Proof of Theorem 1

To see the statement (A) = (B), we shall prepare the following three
lemmas.

Lemma 3.1. If (X, o) is topologically stable, then X\Fix (¢) is dense
in X where Fix (0) = {x e X: o(x) = x}.

Proof. Notice that Fix (o) is a subgroup of X. Assume that X\Fix (o)
is not dense in X. Then Fix (¢) is open in X. Since X is connected, we
get X = Fix(0);i.e. ¢ =1d. Take ¢ > 0 with 2 < diameter (X) and let
d > 0 be as in the definition of topological stability. Now we can find
ae X with d(a,0) < such that {na:ne Z} is dense in X (see [5]). Let
f.: X<— be a homeomorphism defined by f.(x) = x 4+ a(xc X), then
d(f(x), x) = d(f.(x), o(x)) < 8. Hence there is a continuous map h: X «—
with hof, = oo h and d(h(x), x) < e (xe X). Since h(an) = h(f*(0)) = ¢"h(0)
= h(0) for all n, we get h(x) = h(0) for all xe X, and so ¢ > d(h(0), x) for
xe€X. On the other hand, since ¢ < diameter (X)/2, there is y ¢ X with
d(h(0), y) > ¢, which is a contradiction.

Lemma 3.2 ([10]). Let ¢ be a homeomorphism of a connected metric
space Y. Assume that ¢ is uniformly continuous and Y\Fix () is dense
in Y. Take and fix a constant 6, > 0 and an integer k> 0. Then for
every {x;} € Orb™ (p) and ¢, > 0, there is {x)} € Orb* (¢) such that i) d(x;, x7)
<Legfor 0<ig<kandil) Y, = {p(x)), x/..} 0O< i<k — 1) are disjoint.

We shall describe here a proof given in [10] for completeness. We
can assume ¢ < §,. For this ¢, there is & > 0 with ¢, > ¢ such that
d(x, y) < ¢ implies d(p(x), o(¥)) <e. First we can find x,e Y (0 < i < k)
such that x} % x} (@ %)) and d(x, x}) <e (0 <i< k). Next we shall
show by induction that Y,, ---, Y,_, are disjoint by taking x; suitably.
Assume that Y; = {o(x)), x,,} (0 <i < k — 2) are disjoint. We shall show
that, by changing x,_, and x; if necessary, Y, N Y, =46 (0<i #j <k — 1).
Consider the point ¢(x;_,) and assume ¢(x;_,) € ¥} Y,. Then there is a
unique i < k£ — 1 such that ¢(x;_,) = x] since x;_, + x; (j < k — 2) implies
o(xp_y) # o(x}). If i <k — 2, we can find %}/, near x;_, such that o(x;_,
+x,. If i=%k—1 (p(x;_) = x;-,), then we can find %, near x;_, such
that o(x;_,) # xi_,, since Y\Fix (¢) is dense and open in Y. We denote
x/ , by x,_, again. Then we can assume that x; ¢ iz} Y,, since iz} Y,
is a finite set. Thus we have proved that Y,, Y, ---, Y., are disjoint.
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For i < 0 (resp. i > k) we define x; = ¢~ (xp) (resp. x; = ¢*~*(x;)). Then
we see that {x;} € Orb*: (p) since

d(ﬁl’(xg), Xi1) < d(¢(x§), So(xz)) + d(SD(xi)’ Xiw) + d(Xy0q, X710)
<€1+51+5{<351

for 0 < i< k— 1. This completes the proof of Lemma 3.2.

Lemma 3.3 ([8]). Let M be a differentiable manifold of dim (M) > 2
with a metric d. Let M, = {p,, q;} 1 < i < k) be a subset of M consisting
of at most two points p, and q, with d(p,, q,) <o6. Assume that M, N
M; = ¢ (i #+Jj). Then thereis an onto homeomorphism 7: M <— such that
d(y(x), x) < 2z6 for x e M, and that 7(p) = q, 1 < i < k).

Proof of the statement (A) = (B). The proof will be done along the
following two cases.

Case (1). For the case dim (X) = 1, we get that (R', 7) is hyperbolic
by applying Lemma 3.1. Therefore (X, ¢) has the P.O.T.P. by Theorem 2.

Case (2). We can use Lemma 3.3 when dim (X) > 2. For every ¢ >
0, choose § > 0 (6 < ¢) as in the definition of topological stability. Since
W(R") = X by Lemma B, for every {x,} ¢ Orb”"**(¢) there is {x/} C (R") such
that d(x,, x) < §/24r, d(o(x;), o(x))){5/24x and o(x)) — x;,, € W(5/6r) (ic Z)
where W(5/6x) is a closed neighborhood with the radius §/6z of 0 in X.
Since (X, o) is topologically stable and (R") is connected, we have that
V(R )\(WAR") N Fix (0)) is dense in y(R") (by using Lemma 3.1).

Take and fix an integer 2 > 0. Notice that ¢ and ¢! are uniformly
continuous on (R"). By Lemma 3.2 there is a sequence {x;} € Orb”**(s)
such that d(x}, x/) <d/2r (0 < i< k) and {o(x), 2}, } O <i<k—1) are
mutually disjoint. Choose two closed balls B’ and B of 0in V,® V, such
that {x/}F U {ox{}f' < +*(B) © +*(B). Since *(B) is a differentiable
manifold, as in Lemma 3.3 there is an onto homeomorphism 7,: *(B) «—
such that d(y(x), x) <4 (xe¥*(B)), plx) = x for xey*B\y*(B) and
no(x)) = x/,, (1 < i< k—1). Choose a small open subgroup F’ of F such
that *(B + B) N F’ = {0} and *(B) + F’ is a closed neighborhood of X.
Define a map 7i: v*(B) + F' <—= by 7i(x + y) = n(x) + y (xe¢*(B) and
yeF’). Then it is clear that 7| is 1-1 and onto. Let » be a map from
X onto itself defined by

nx)  if xey¥(B) + F’
7(x) = {

if xey*B) + F .
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It is easily checked that »: X <—= is an onto homeomorphism having the
properties; d(y(x), x) < é for xe X, »(x) = x on *(B) + F and 7no(x}) =
2, 1<i<k—1). Put ¢ =5o0. Since d(p(x), o(x)) < for xe X, we
have {¢‘(x)} € Orb’ (¢). By the property for 4 > 0, there is a continuous
map h: X <«—such that hop =0g0oh and d(h(x), x) <e for xe X. If x =
h(xy), then for 0 < i<k

d(o'(x), x,) = d(o*(h(x7)), x,) = d(h(e'(x7), %)
< d(h(xy), ) + d(x/, %) + d(x}, x,) < 2¢,

which shows x e Tr*({x,}f, 0). Since % is arbitrary, (X, ¢) has the P.O.T.P.
It remains to prove the statement (B) = (A). First we shall prepare
the following two lemmas.

LemMA 3.4. Let o, be as in (x). For every fe #(X) with max {d(o, f),
d(e ™, ) < ay/2, there exist y,e€ F and f,e #(X) with f(y(R")) = (R")
such that f(x) = y, + f(x) for xe X.

Proof. Put g(x) = f(x) — y; (x e X) where y; = f(0). Since d(f(0), a(0))
= d(y, 0) < /2, we get d(g(x),f(x)) < @/2 (xe X). Notice that {xe X:
d(x, 0) < ay} C v B(a,) @ F (see (xx)). Put r(x) = g(x) — a(x) (x € X). Since
d(x(x), 0) < d(g(x), f(x)) + d(f(x), o(x)) < a, for all xe X, we have x(x)e
vB(a) @ F for xe X and so x(R") C ¥B(a,) ® F. Since (R") contains
the identity 0 and £(yR") is connected, we have x(yR") C ¥B(a,), from
which g(yR") C ¥(R"). In the same way, it follows that g-'(vR") C «(R"),
so that g(yR") = ¥(R"). Since y;e X = y(R") + F, y; splits into the sum
Yo = () + ¥ with ¥(v) € y(R") and y,e F. Put fi(x) = ¥(v) + g(x) (x € X).
Then fy(x) satisfies all the conditions of the lemma.

Lemma 3.5 ([10]). Let Y be a metric space such that every bounded
set is relatively compact. Let f: Y < be a homeomorphism with the
P.O.T.P.. If (Y,f) is expansive, then (Y, f) is topologically stable.

We shall give here a proof due to A. Morimoto [10]. The proof will
be used in proving the statement (B) = (A). For every ¢ > 0, there is
6 >0 such that {x;}eOrb’(f) implies Tr:({x},f) = ¢. We can assume
e < &4, where ¢ is an expansive constant of f. Take a ge #(Y) with
d(g,f) < 8. We shall prove that there exists a continuous map h: Y «—=
having the property in the definition of topological stability. Take a
point xe Y. It is easy to see that {gi(x)} € Orb’(f). Hence there is y¢
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Tre ({g'(x)}, f); i.e. d(f{(y), (%)) < efor ieZ. If y e Tr ({g(x)}, f), then we
have

d(f (), F1() < d(f(y), &) + d(g'(x), f(¥)) < 2: <,

which implies ¥y = 3. Thus by putting A(x) =y, we get a well-defined
map h: Y <«<— with the property

@ d(f'(Mx), g'(x)) <e forieZ.
Putting i = 0 in (1) we get

2) d(i(x),x) <e for xeY.

Next we have, again by (1) for x and g(x),

d(f(f(r(2))), F(Mg(x))) < d(f(f(Mx)), &'(g(x)))
+ d(f'(n(g(x)), g'(g(x))) < 2 < &

for every ie¢ Z, which implies f(h(x)) = h(g(x)). Finally we shall prove
the continuity of A. Assume that A is not continuous at x,€ Y. Then,
there is a sequence x, — x, (v — o0) such that y, = h(x,) does not tend
Yo = h(x,) as v — oo. Since {x,} is bounded and d(h(x,), x,) < ¢ for v > 0, the
set {A(x,)} is also bounded. Hence we can assume, by taking a subsequ-
ence if necessary, that y, — ¥, # ¥, (v — o). Since [ is expansive, there
is ke Z such that d(f*(y;), f¥(y,)) > &. Fixing k, we can find v, > 0 such
that for v > v,

(6)) d(f“(y.), (v < eol4,
since f* is continuous and y, — ¥, (v — ). We can assume
“@) d(g*(x.), 8% (xp)) <e (v =),

since g* is continuous and x, — x, (v — ). Now we have, using (2) and
),
d(f*(x.), F(y0) = a(f*(h(x.)), h(g*(x0))
= d(h(g*(x.)), h(g*(x,)))
< d(h(gH(x.)), 84(x.)) + d(g*(x.), 8*(x))
+ d(g"(x0), Mg (xy)) < 3e

and hence by (3) we obtain

& < d(f*(y0)s FA(¥0)) < A(f*(¥0), F(3.)) + a(F¥(3.), F(3o))
<50/4+3E<50,
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which is a contradiction. This completes the proof of Lemma 3.5.

Proof of the statement (B) = (A). Remark that *(V,® V,) = (R")
(by Lemma D (i)). By Theorem 2, (R", 7) is hyperbolic. Hence (R, 7), and
so (V,® V,, 1), is expansive and has the P.O.T.P. (see Theorem A). Using
Lemma 3.5, we get that (V,® V,, 1) is topologically stable; i.e. take ¢ ¢
0, a,/2) such that 7B(3¢) c Bla,) and 7~'B{8¢) — B(a,) and let 6§ > 0 (6 < &)
be the number with the property of topological stability.

Take fe #(X) with d(f, 6) < d (Then we may assume that the number
J is chosen such that d(f-!, ¢7") < @,/2). By Lemma 3.4 there are y,e F
and f, e #(X) such that f(v(R")) = ¢(R") and f(x) = f(x) + y, for xe X.
Since ¥(Z") = F by Lemma D (iii), we can choose in (Z") a sequence
{¥a}as: such that y, — ¥y, as n— oco. Put f,(x) =y, + fu(x). Then d(f,, o)
< 6 for n large enough. Fix such an integer n and define f,(v) = *-!
fol*@) (ve V,® V,). Then we claim that f,: V,® V,«—= is uniformly
continuous. Indeed, we denote by F(¢) a closed neighborhood with the
radius e of 0 in F. Since f,: X < is uniformly continuous, for every 1¢e
0, @] there is @« > 0 with « < 2 such that for every ve V,® V,

fa(y*B(e) @ F(a) + ¥*(v)) < ¥*B2) @ F(2) + fuyr*©),
from which
fa(¥*Ble) + ¥*(v)) € ¥*BQ) + fur*() .

Hence, f,(B() + v)  BQ) + f.(v); i.e. our requirement was obtained.
Let d, be a metric of V,® V, defined as in Section 1. Since 7 =
'ogoq, we have

§ > dev* (), f¥*(©) = do(r* oy ¥ (), v* () = T (w), £, ()

so that {f,,(v)} e Orb’ (7) for ve V,® V,. Hence there is we V,® V, with
dy(fi), ' w)) < ¢ (j € Z) since (V,® V,, 7) has the P.O.T.P.. Putw = A (V).
Since (V,® V,, 1) is expansive, from the proof of Lemma 3.5 it follows

yr

that A,: V,® V,<«— is a continuous map such that A,of, = ach, and
dy(h,,id) <e. Put h, = y*oh,oy*'. Obviously, h,of, = coh, on W(R")
and d(h,(x), x) < e for x e J(R").

We now prove that A, is uniformly continuous. Since d(fi(v), 77A.(v))
<eforjeZ and ve V,® V,, we have

P IH(U) — TR, (v) = Fiv) — 1R, (v) € BE) ,
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so that for all ve V,® V, and all je Z

(®) fi*(v) — o’hf*(v) € y*B(e) .

Since (R7,7) is expansive, it is easily checked that for every 1> 0
(2 < ¢) there is N > 1 such that d(h,(x), h.(y)) < 2 when ¢’h(x) — ¢’h.(y)
e ¢*B(3¢) for j with |j| < N. Take « > 0 such that if d(x, y) < « for «x,
ye(R) then max {d(fi(x),fi(y): —N<j< N}< A Then for j with
[JI< N,

d(o’h.(x), 6’h. () < d(o’h,(x), fix) + d(fi(x), fi(y)
+ d(fi(), R (9)) < 2 + 2 < 3,

which shows that d(h,(x), 2,(y)) < 2. Indeed, fix y € v(R") and put #,(x)
= fi(x) — fi(y). Then r(W(a) + y) C ¥v*B(2) @ F(2) where W(a)=1*B(x)
@ F(a). Since £, (y(R")) = (R") and ¥(R") = U £(W(a) + y), we have
k(%) € £, (W(a) + y) C v*B(2) and hence ¢'h,(x) — o'h(y) € v*B(3¢).

Therefore h, is uniformly extended to a continuous map from X into
itself. We shall denote it by the same symbol. By using (5) we have
for m and n large enough and for all xe X

0'{h, (%) — hou(0)} + {fil(%) — fi(x)} € v*B(2e) .

Since for fixed j
lim, ... d(f], fi) = 0,

there is N(j) > 0 such that fi(x) — fi(x) e +*B(e) for n, m > N(j) and x
€ X. Hence for n, m > N(j) and xe X

(6) h(x) — h,(x) € 677y *B(3e) .

As before we have B(3e¢) = B(3¢)* @ B(3¢)* where B(3:)* = B(3¢) N E* and
B(3¢)* = B(3:) N E*. Hence *B(3:) = *B(3¢)* @ +*B(3¢)*. Since 7B(3¢) C
B(a,) and 7-'B(3¢) C B(w,), obviously oy*B(3¢) C ¥*B(a,) and o~ '4*B(3e)
C ¥*B(a,). It follows easily that oy *B(3e)* C *B(ay)* and ¢ '4*B(3¢)°
C ¥*Blay)’. Hence (M7 o'v*B(3e) = N ¢’ ¥*B(3e)* @ (M= o' *B(3¢)° =
{0}. From (6) we have for n, m > max {N(j): —i<j<i} and xe X

h(x) — h,(x) e Mio_, o/*B(3e) .

For any open neighborhood U of 0 there is i > 0 such that ("i__, ¢/4+*B(3¢)
c U. This implies that lim, ,_.. d(h,, h,) = 0; i.e. {h,} converges uni-
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formly to some continuous map A of X. Since h,of, =och, on X and
d(h,,id) < ¢ for an arbitrary large n, it follows that Aof = goh on X and
d(h,id) < e. Therefore (X, o) is topologically stable. The proof of The-
orem 1 is completed.
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