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TENSOR PRODUCTS OF POSITIVE DEFINITE

QUADRATIC FORMS IV

YOSHIYUKI KITAOKA

Let L, M, N be positive definite quadratic lattices over Z. We treated

the following problem in [5], [6]:

If L®M is isometric to L®N, then is M isometric to NΊ

We gave a condition (**) in [6] such that the answer is affirmative

for an indecomposable lattice L satisfying (**), and we gave some ex-

amples. In this paper we introduce a certain apparently weaker con-

dition (A) than the condition (**), and we show that the condition (A)

implies the condition (**) and more on integral orthogonal groups than

a result in [6].

By a positive lattice we mean a lattice of a positive definite quad-

ratic space over the rational number field Q. Terminology and notations

are generally those from [8].

Let L be an indecomposable positive lattice. We consider the fol-

lowing two conditions (A), (B).

(A) For any given positive lattices M, N and for any isometry σ from

L (x) M on L(g)N which satisfies that σ(L ®m) =L®n (meM,neN)
implies m — 0, n — 0, there is a basis {vl9 , vn} of L (depending on M,

N, σ) such that

( i ) [M: Σ?=iMi\<oo,[N: £?=i2VJ < oo whereM i={meM;σ(L®m)

c vt (x) Λf}, Nt = {n e N σ~ι (L (x) n) c vt ® M}, and

(ii) σ(Vi®Mi) c ^ ® ^ for i = 1,2, ,w.

(B) Let X be an indecomposable positive lattice. Then we have

( i ) L (x) X is indecomposable,

(ii) if X is isometric to L®X', then Xf is uniquely determined by

X up to isometries, and

(iii) if X = (g)m L ® X' and Xf ψ L ® K for any positive lattice K,

then the orthogonal group O(X) of X is generated by O(L),O(Z0 and
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interchanges of Z/s.
Our aim is to prove

THEOREM. For an indecomposable positive lattice L, the conditions
(A),(B) are equivalent.

1.

In this section we prove that (A) implies (B). Through this section
L denotes an indecomposable positive lattice satisfying the condition (A).

1.1. LEMMA 1. Let M9N9Mi9Ni9σ be those as in the condition (A).
Then we have M = J^Mi9 N = Σ iV*, σ{L ® Λft) = vt ® N and M ^N
= L<g)K. Defining μ by σ(vi®m) = vi®)μ(m) (meMJ, we get an
isometry μ from M on N such that μiM^ — Nt. Especially the condition
(A) implies the condition (**) in [6],

Proof. Take any element m = 2] m>i of M where mt e QMt then
<J(VX ® m) = 2] <?Oi ® wt*) and ^C^ ® m )̂ = ^ ® % for some w£ in QΛf by
the definition of Mt. Since o ^ ^ m ) = Σ vt®nt is an element of L(x)ΛΓ
and {vj is a basis of L, we have nt e N. Hence it implies vx ® mt

= tf"1^ ® n€) e L ® M and so m̂  e M. As M̂  is obviously primitive in
M9 we have mt e Mt and M = 2 Mf. Since σ(L (8) Λft) c vt®N9 M is a
direct sum of M4, and we have σ(L ® M) = σ(L ® 2 M )̂ c 2] ^t ® ^
= L0N. This implies σ(L ® M, ) = vt ® JV. Hence iV is isometric to
L®K for some positive lattice J£. σ(L® M, ) = ^ ® Λ7" implies rankilί«
= rankiV/rankL. Similarly we have N = 2 ^ (direct sum) and rankΛ/^
= rank M/rank L = rank ΛΓ/rank L. Since vf ® ilf<, vt ® ̂  are primitive
in L (x)M, L ®iV respectively, and rank ^ ® M̂  = rank vt ® ΛΓ€, the part
<ii) in (A) implies a(v< ® M^ = vt ® iV̂ . Define // by σĈ t ® m) = ^ ® μ(m)
for meMt; then /̂  is an isomorphism from Λf on N. We must prove
that μ is an isometry. Take elements m£ e ilf<, m^ e Λf̂  then B(^ ® m£,
^^ ® m )̂ = B(σ(Vi ® m<), σ(̂ ^ ® m )̂) = J?(^ ® ̂ (mj, t?y ® //(m )̂) where J5
denotes the bilinear form associated with quadratic spaces in general.
Hence we have B(vί9 v3)B(mi9 mά) — B(vi9 vj)B{μ(m^)9 μ{m^j)9 and B(mi9 mά)
= B(μ(mi)9 μdntj)) for B(vi9 Vj) Φ 0. Suppose B(vi9 Vj) = 0 then β(L ® Mi9

L®Mj) = B(vi®N,vJ®N) = 0 implies B(Mi9Mj) = 0. Since the situa-
tions are symmetric with respect to M,ΛΓ, we have σ'^LφNi) = v<®M,
tf-1^ ® iV<) = v€ ® M€, σ"1^^ ® w) = Vi ® /i"1^) for neNit Therefore
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B(vi9 Vj) = 0 implies B(Nif Nj) = B(μ(Mi), μ(M3)) = 0. Thus μ is an iso-

metry. μ{Mt) — Nt is obvious by definition.

COROLLARY. The condition (A) implies (ii) in the condition (B).

Proof. This follows from Theorem in § 1 in [6].

1.2. In 1.1 we proved that the condition (A) implies the condition

(**) in [6]. Let X, Y be positive lattices and let σ be an isometry from

L ® X on L®Y. Then the proof of Theorem in § 1 in [6] shows that
t t

there are orthogonal decompositions X = _[_ MQΛ _[_ M, Y — _]_ JV0,i _L N

such that σ(L ® MOfί) = L ® 2VOfί, σ(L ® M) = L®N, and σ = at®βi on

L(g)MOft where α< e O(L), ^ :M O f < ~ NQyi, and σ(L(x)m) = L®n{m e M,neN)

implies m = 0, n = 0. Hence we have

LEMMA 2. Let X, Y be indecomposable positive lattices and σ be

an isometry from L®X on L®Y. If there are non-zero elements

x eX9y eY such that σ{L ®x) = L®y, then we have a — a (x) β where

a e O(L), β:X=Y. If σ(L®x) = L®y(xeX,y eY) implies χ = 0,y = 0,

then we have X = Y = L® K for some positive lattice K.

1.3. LEMMA 3. Let M,N be indecomposable positive lattices, and

suppose M®N = K1_\_K2(K1Φ0,K2Φ0). Then an isometry a of M®N

defined by a\Kχ = id^, a\κ% = — id^2 is not in O(M) ® O(N).

Proof. Assume a = σ ® μ, σ e O(M), μ e O(N) then a2 = σ2 ® μ2 = 1

implies (i) σ2 = 1, μ2 = 1 or (ii) σ2 = — 1, μ2 = — 1 . Suppose σ2 = 1, μ2 — !,

and put M± = {x eM ox = ±x}, N± = {xeN μ(x) = ±x} then we have

[M: M+ J_ M_] < oo, [ΛΓ: N + _[_ ΛL] < oo. Fix a primitive element n e N

such that μ(n) = δn (δ = ±1). For any element # = α;+ + x_ in M

(a;+eQM+,α;_eQM_), we have x®n — x+®n + x_®n, and α(a?+(8)w)

= δx+ ®n, a(x_ ®n) = — 3#_ (x)n. a? ® n e M ® N = Z x J_ K2 implies x+

®neK1 if (5 = 1, x+ ® n e K2 if δ = — 1 , and so x+ ® n e M ® N. This

means x+ e M and x_ e M. Hence we have M = Λί+ J_ M_. Since M is

indecomposable, we have M = M+ or Λf_ and σ = ± 1 . Similarly we

have μ = ± 1 . This contradicts a = σ® μΦ ± 1 . Suppose σ2 = — 1 , μ2

= — 1. Considering M as Z[σ] = Z[V — l]-module, M is isomorphic to

ΘZ[V —1] as a Z[V — l]-module. Hence there is a submodule ϋft such

that M = Mi Θ a(M^). Similarly there is a submodule iV̂  of iV such that
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N = 2Vχ Θ μiNJ. Taking a basis {mj of Aft and a basis {nt} of Λ ,̂ we

have a basis {m* ® nj9 m€ ® //(m; ), ^m^) ® w,, σ(ra^) ® /f(w,)} of M®N.

Since αr(m< ® ?&,) = σCm̂ ) ® μ(w,), a(mt ® j"(^)) = —σ(md ® njy we have

{m^ ® % + σ(m )̂ ® μ(nj), mt ® //(^ ) — σ(ra*) ® n }̂ as a basis of Kx and

{m£ ® n^ — (7(m<) ® μ(ns)9 mt ® μ(%) + σ(mz) ® %} as a basis of K2. This

implies that mt®Uj is not contained in Kλ ±_K2 — M®N. This is a con-

tradiction.

1.4. LEMMA 4. Lei L 6β an indecomposable positive lattice satis-

fying the condition (A). Then we have

(i) L®L is indecomposable, and

(ii) O(L ®L) = 0(L) <g) 0(L) U 0(L) (g) O(L)μ, where μ e O(L ® L) is

α^ isometry defined by μ(x ®y) = y®x for x,y e L.

Proof. Take an isometry σ of L®L. If there are non-zero ele-

ments x,y in L such that σ(L ® x) = L®y, then Lemma 2 implies σ

e O(L) ® O(L). Suppose that σ(L ®x) = L®y implies x = y = 0 then

there is a basis {vj of L such that σ(L ® Z )̂ = vt ® L, putting Lt = {α?

e L σ(L®x)dvi® L}. Hence we have r a n k L t — 1, and put 1^ = Z[uJ.

It yields μσ(L ® ^ ) = L ® vt. Therefore μσ e O(L) ® O(L) follows from

Lemma 2. Thus we have O(L ® L) = O(L) ® O(L) U μO(L) ® O(L). This

completes the proof of (ii). Suppose that L®L = Kι _J_ K2(Kx Φ 0, K2 Φ 0).

Define an isometry a of L®L by or = id. on ϋ^, α = —id. on K2. Then

Lemma 3 and (ii) in this lemma imply a — (σί ® σ2)μ where σlf σ2 e O(L).

From a2 = 1 follows that, for xl9 x2e L, xx ® x2 = (σλ ® σ^μiσxix^ ® σ2(xd)

— axσ2{x^ ® σ2(71( 2̂). This yields σγa2— ± 1 . Hence we may assume a

= (σ®σ~ι)μ (σeO(L)), taking —a instead of a if necessary. Take a

basis {eJ of L and decompose a(ef) ® eά as a{et) ® βj = ((7(6̂ ) ® ey + αW^)

® e,))/2 + (σίe*) ® ê  - α(cKe,) ® β^/2. Then (σ(e4) ® β̂  + α(σ(et) ®

G QJ^i, (σ(e,) ® e, - α(σ(βt) ® e3))β e QK2 and L®L = K,±K2 imply

® βj + a(σ(βi) ® βj))/2 e Kλ. Therefore we have {σ(eά ®eό + σ(βs) ®

e L® L. This is a contradiction because {βj is a basis of L.

1.5. LEMMA 5. ®m L is indecomposable provided that the orthog-

onal group 0(®m L) is generated by O(L) and interchanges of Us and

that ®m~ι L is indecomposable.

Proof. By Lemma 4 we may assume m > 3. Suppose ®m L = Kλ \_K2

(Kλ Φ 0, K2 Φ 0) and define an isometry a of 0(®m L) by a = id. on Kί9
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a — — id. on K2. By the assumption we have a = (® σ^μ where at

e O(L) and μ is an isometry defined by μ(xγ ® ® a?m) = ^ ( D ® •
^(m) (μ is considered as a permutation), α2 = 1 implies a\xx® ® xm)
= αίί/iί^d,) ® ® σm(xμim))) = ^((7M1)(xtt2(1))) (x) ® σm(σμim)(xμHm))) = ^ ®
• ® a?m for any oγe L. Hence we have μ2 = 1. Suppose μ(l) = 1 then
a{xλ ® . . . ) = tfiOi) ® , and we have a e 0{L) ® O((x)m-1 L). This contra-
dicts Lemma 3. Suppose μ(ΐ) — j > 2. Define an isometry μ3 by μ3

{xx ® #2 ® ® Xj ® ® #m) = ^ ® #2 ® ® xx ® ® ̂ m then

...) = Gj{Xj) ® ® σXxi) ® . Hence we have μjccμj1 e O((x)2 L)
® 0(®m"2 L) for j = 2. This contradicts Lemma 3 since μjtxμj1 = id.
on μj(Kλ)9 μjaμj1 = —id. on μj(K2). Suppose μ(T) = j > 3. Defining an
isometry μf by μ/(x1 ® α;2 ® ® x$ ® •) = ^ ® ̂  ® ® x2 ® , we
have μ'μjaμj'μ'-1 (xλ ® x2 ® ® ^ r •) = σ/^) ® ^0^) ® . Thus
μ'μjaμj1^'1 e O{®2 L) ® 0(®m~2L). This is also a contradiction as in the
case of y = 2.

1.6. To prove that the condition (A) implies the condition (B), it
is sufficient to show

LEMMA. Let K be an indecomposable positive lattice such that K
φ.L®K! for any lattice K\ Then we have

(i) ®mL®K is indecomposable, and
(ii) O((x)m L (x) K) is generated by O(L), O(K) and interchanges of

Us.

Proof. We use the induction with respect to m. Suppose m — 1
then Lemma 2 implies (ii), and (ii) and Lemma 3 imply (i). Suppose
that (i), (ii) are true for m — t. Assume that there is an isometry a
e O(x)ί+1 L®K) which is not in the subgroup generated by O(L), O(K) and

interchanges of Z/s. Put M = ®ί L ® K; then O(M) is generated by
O(L), O(K) and interchanges of L's, and M is indecomposable. If there
are non-zero elements m, m/ e M such that σ(L ®m) — L® m', then
Lemma 2 implies σ eO(L) ®O(M). This contradicts our assumption on
σ. Hence for such an isometry σ follows that σ(L ® m) = L®m' (m, mf

e M) implies m = mf — 0. Hence the condition (A) and Lemma 1 yield
a(L ® Mλ) = vλ ® M where {vt} is some basis of L and Mλ = {me M

c Vi ® Λf}. Defining an isometry μ2 by μ2
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(x, yeL,ze ® ί"1 L ® K), we have μ2σ(L ® Mx) = L®vx® {®l~l L) (g) 7L
Since μ2σ is not contained in the subgroup generated by O(L)9 O(K) and
i n t e r c h a n g e s of Z/s, μ2σ(L ®m) = L®mf (meM1cz M,m/ evλ® (®u~l L

®K)dM) implies m = m' — 0 as above. Applying the condition (A) to
μ2σ, M19 vx® (®ι~ι L) ® K instead of σ,M,N respectively, we have μ2σ(L
® Mhl) = v[ ® vλ ® (®ι~ι L)®K where {v } is a basis of L and MlΛ

= {m e Mi μ2σ(L ®m)cv;®ί; 1 ® (Θ^1 L) ® K). This is the similar situa-
tion to σ(L ® MJ = vλ ® (®ί L) ® Z. Hence we have inductively μt+ι -
μ2σ (L®Mu...tl) = L® Vx® vί ® ® vϊ"' ® K, where μό is an isometry
defined by μj(xλ ® ® Xj ® •.• ® a?ί+1 ® ̂ ) = ^ ® . . ® xx ® . . . ® α;ί+1

®y(xieL,yeK). Since L ® Z is indecomposable, Mlt...#1 is also inde-
composable. Moreover there are no non-zero elements m e Mίt...tl c ikf,
m'βVi® v[® •--®v'1- ®KcM such that μt+1... ^2σ(L ® m) = L®m'.
Lemma 2 implies vx ® v[ ® ® vi"#/ ®K^L®Kf for some positive lattice
if7. This contradicts the assumption on K. Thus the part (ii) for m
= t + 1 has been proved. Now we must prove the part (i) for m — t
+ 1. The part (ii) implies that 0(®t+lL®K) = 0(®t+1 L) ® 0{K), and
0(®t+1L) is generated by O(L) and interchanges of Z/s. From the part
(i) for m = t follows that ®ί L is indecomposable. Hence Lemma 5
implies that ®t+1 L is also indecomposable; then from Lemma 3 follows
that ®t+1L®K is indecomposable. This completes the proof.

2.

In this section we prove the converse.
Let L be an indecomposable positive lattice which satisfies the con-

dition (B).

2.1. Let M, N be indecomposable positive lattices and let σ be an
isometry from L®M on L®N such that σ(L®τn) = L®n(meM,neN)
implies m = 0, n = 0. Fix any basis {v€} of L. Assume that M = ®p L
® M', N ~ ®q L ® N' where M', N' are not isometric to any lattice of
the form L®K. Since M,N are indecomposable, M',N' are also inde-
composable. Then the part (ii) in (B) implies p = q and a: Mf ^ N'.
Identifying M (resp. N) and ®PL®M' (resp. ®PL®N'), we have σ
= (σ0® -- ®σp®β)η by virtue of (iii) in (B) where σύ e O(L), β e O(N')
and η is an isometry defined by η(x0 ® ® xv ® m) — xs(0) ® . . . ® xs{p)

® a(m) (x0, , xp e L, m e M', s: a permutation). s(0) = 0 implies σ(L ® xx



POSITIVE DEFINITE QUADRATIC FORMS 155

® ® xp ® m) = L ® σi(a?βα)) ® ® σp(,x8(p)) ® βa(m). This contradicts

our assumption on σ. Thus we have s(0) > 1. It is easy to see that

σ(vt ® L ® ® L ® MO = L (8) ® L ® σ,-i(0)(tf<) ®L® • ® L ® 2V7,

σ-ι(τ>i®L® .-. ®L®N') = L ® ®L®<70-
1Oι;i)®L® - O L Θ M ' where

^-i(0)(^*) (resp. (To"1^̂ )) is on the s~\ϋ) + 1-th (resp. s(0) + 1-th) compo-

nent. Put Nt = L ® . . ® L ® (7,-i(0,(Vi) ® L ® ® L ® N', Mt = L ® ..

® L ® (Ji"1^) ® L ® (x) L (x) M' where σs-1(0)(^i) (resp. σ^^t;*)) is on the

s-^O^th (resp. s(O)-th) component. Then we have Mt = {rneM σ(L(g)m)

V< = {w e 2V a - 1(L ( x ) n ) c ^ ® I } , I = 0 I o J V = θ iV̂ , and

Hence we have proved that the condition (A) holds for indecom-

posable positive lattices M, N and for any fixed basis {Vi} of L.

2.2. Let M,N be positive lattices and let σ be an isometry from

L ® M on L ® iV such that o (L ® m) = L ® n (m e M,n e N) implies m = 0,.

n = 0. Put M = J_ M o N = ±_Nt where M4,2V€ are indecomposable
then the part (i) in (B) implies that L®Mί9 L(x)Λ^ are indecomposable.

By virtue of 105: 1 in [8] we may assume <7(L®M^) = L^Nt. Hence

2.1 implies the condition (A) for decomposable lattices M,N.

3. Miscellaneous remarks

3.1. Let k be a totally real algebraic number field with maximal

order Ok. We considered the following question in [3], [4] (see also [1],

[2], [9]).

If a is an isometry from OkL = OkM, where L, M are positive lat-

tices, then does σ(L) = M hold?

This is equivalent to the following if k/Q is a Galois extension.

Assume that k is a totally real Galois extension over Q. Let G be

a finite group in GL(n, Ok) such that g(G) = {g(A) AeG} = G for any

g in Gal(fc/Q). Then does G c GL(n,Z) hold?

Sketch of the proof of the equivalence. Suppose that G c GL{n, Ok)

is given. Put P = Σ ^ e G ^ A . Then P is a positive definite symmetric

matrix with rational numbers as entries since g(G) = G for any g in

Gal (K/Q). Let L be a positive lattice corresponding to P. Then O(OkL)

contains G. If O(OkL) = O(L) holds, then G c GL(w, Z) holds. Con-

versely, suppose that σ: OkL ^ OfcM is given. Define an isometry σ

of O(Ok(L J_ M)) by tf = * on OfeL, σ = σ"1 on OkM. Taking G as
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O(Ok(L ± M))> we have σ e O(L J_ M) and σ{L) = M if G = O(L J_ M).

3 2. Let F be a totally real algebraic number field. Suppose that
there is an unramified totally real Galois extension E of F. Denote the
Galois group G(E/F) by G. Put V = F[G] (group ring) and introduce
an inner product by (g,g') = δgjQ, (— Kronecker's delta) for g,g'eG.
This makes V a positive definite quadratic space over F. We define the
operation G to EV = E[G] by gXΣoeG^g) = Σ.eα 9'iβdθ'g for ff'eG,
% e #. Put L = ±geG OEg, L = {Σ,€(? flr(αlσ) α e 0^}. Then L = O^L
and L is an indecomposable quadratic lattice over 0F [3]. Put M
= -Lgeo 0Fg; then L = O^M. Hence we have

(a) L, M are not isometric positive lattices over 0F, but 0EL, 0EM
are isometric.

Defining an inner product in 0E by (x, y) = trE/F xy(x,y eOE), we
have a positive lattice 0E. Taking traces, we have 0E® L = 0E®M.
Here 0E®L is decomposable since 0EL is decomposable. 0E is inde-
composable because it is isometric to L. Hence we have, putting N

= όs,
(b) L,N are indecomposable positive lattices over 0F but L®N is

decomposable.
(c) 2V(g)L ^iV®ikf but L ^ M.
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