Y. Kitaoka
Nagoya Math. J.
Vol. 73 (1979), 149-156

TENSOR PRODUCTS OF POSITIVE DEFINITE
QUADRATIC FORMS IV

YOSHIYUKI KITAOKA

Let L, M, N be positive definite quadratic lattices over Z. We treated
the following problem in [5], [6]:

If L® M is isometric to L ® N, then is M isometric to N?

We gave a condition (**) in [6] such that the answer is affirmative
for an indecomposable lattice L satisfying (**), and we gave some ex-
amples. In this paper we introduce a certain apparently weaker con-
dition (A) than the condition (**), and we show that the condition (A)
implies the condition (**) and more on integral orthogonal groups than
a result in [6].

By a positive lattice we mean a lattice of a positive definite quad-
ratic space over the rational number field Q. Terminology and notations
are generally those from [8].

Let L be an indecomposable positive lattice. We consider the fol-
lowing two conditions (A), (B).

(A) For any given positive lattices M, N and for any isometry ¢ from
L@®M on LN which satisfies that ¢(L&®m) =L &n (meM,neN)
implies m = 0,n = 0, there is a basis {v,, ---,v,} of L (depending on M,
N, o) such that

(i) M:>2 M1<oo,[N:3» N;]<oo where M;={meM;s(LRm)
Cvr,@NIL, N, ={neN;c"(L®n) C v, ® M}, and

(ii) o(v;® M) C v,®N, for i1 =1,2,.--,n.

(B) Let X be an indecomposable positive lattice. Then we have

(i) L ®X is indecomposable,

(i1) if X is isometric to L ® X’, then X’ is uniquely determined by
X up to isometries, and

(ii) if X =®*"L® X’ and X’ 2 L ® K for any pogitive lattice K,
then the orthogonal group O(X) of X is generated by O(L), O(X’) and
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interchanges of L’s.
Our aim is to prove

THEOREM. For an indecomposable positive lattice L, the conditions
(A), (B) are equivalent.

In this section we prove that (A) implies (B). Through this section
L denotes an indecomposable positive lattice satisfying the condition (A).

1.1. LEMMA 1. Let M,N,M, N,, o be those as in the condition (A).
Then we haove M = > M, N=> N,oL®M;)=v,®N and M =N
= LQ®K. Defining p by o(v;@m) = v, @ pu(m) (meM,;), we get an
isometry p from M on N such that p(M;) = N,. Especially the condition
(A) implies the condition (**) in [6].

Proof. Take any element m = >, m; of M where m; e QM,; then
o(v, @m) = > o(v, ®m,;) and (v, ® m,;) = v; ® n,; for some n, in QN by
the definition of M,. Since o(v,®m) = > v, @n, is an element of LN
and {v,} is a basis of L, we have n;e N. Hence it implies v, ® m;
=o'(v;®n;)e LM and so m;e M. As M, is obviously primitive in
M, we have m;e M, and M = >, M;. Since ¢(LQM,) Cv;®N, M is a
direct sum of M,, and we have ¢(LQM)=a(LQ> M) C > v;@N
=L®N. This implies o(L ®M,) = v, ® N. Hence N is isometric to
L ® K for some positive lattice K. oL ® M,) = v, ® N implies rank M,
= rank N/rank L. Similarly we have N = > N, (direct sum) and rank N,
= rank M /rank L = rank N /rank L. Since v; ® M;, v, ® N, are primitive
in LM, L Q@N respectively, and rank v, ® M, = rank v, ® N,, the part
(ii) in (A) implies o(v; ® M,) = v, ® N;. Define p by o(v; @ m) = v; @ p(m)
for me M;; then p is an isomorphism from M on N. We must prove
that x4 is an isometry. Take elements m; e M;, m;e M,; then B(v; ® m,,
v; ® my) = Blo(v; ® my), o(v; ® m,)) = B(v; ® p(m,), v; ® p(m,)) where B
denotes the bilinear form associated with quadratic spaces in general.
Hence we have B(v;, v,)B(m;, m;) = B(v;, v))B(u(m,), p(m,)), and B(m,;, m,)
= B(p(m,), p(m;)) for B(v;,v,;) + 0. Suppose B(v;,v,) = 0; then B(L®Q M,,
LM, = B(v;®N,v;®N) = 0 implies B(M;, M;) = 0. Since the situa-
tions are symmetric with respect to M, N, we have ¢ '(LQN,) = v,Q M,
"W, ®N) = v, @M, 67'(v; ®n) = v, @ p™'(n) for neN, Therefore
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B(v;,v;) = 0 implies B(N;, N;) = B(u(M,), (M )) = 0. Thus g is an iso-
metry. w(M,;) = N, is obvious by definition.

COROLLARY. The condition (A) tmplies (ii) in the condition (B).
Proof. This follows from Theorem in §1 in [6].

1.2. In 1.1 we proved that the condition (A) implies the condition
¢**) in [6]. Let X,Y be positive lattices and let ¢ be an isometry from
L®X on LQY. Then the proof of Theorem in §1 in [6] shows that

there are orthogonal decompositions X = i My, | M,Y = i Ny; I N
1=1 i=1

such that o(L&® M,;) = L®N,;, s LOM) =LXN, and ¢ = o, ® p; on
L®M,,; where a; € O(L), B;: M, ;= Ny, and o(LOm) = LROn (me M,neN)
implies m = 0, » = 0. Hence we have

LEMMA 2. Let X,Y be indecomposable positive lattices and o be
an isometry from LX®X on LQY. If there are non-zero elements
zeX,yeY such that o(L®x) = L@y, then we have o = a @ f where
acOL),p: X=Y. If s(L®2)=LQyweX,yecY) impliesx =0,y =0,
then we have X =Y = L ® K for some positive lattice K.

1.3. LeEMMA 3. Let M,N be indecomposable positive lattices, and
suppose MQN =K, | K,(K,+# 0,K,+0). Then an isometry e of M QN
defined by alg, = idg,, a|g, = —idg, s not in O(M) @ O(N).

Proof. Assume ¢ =oc® u,0€ OM), pc ON); then > =* Q=1
implies (i) ¢* =1, ¢ =1 or (ii) ¢* = —1, = —1. Suppose ¢* =1, /=1,
and put M, ={xreM;ox = +a}, N, = {xr e N; u(x) = +2}; then we have
IM:M, | M1<oo,[N:N, | N.]< . Fix a primitive element ne N
such that u(n) =dn (6= +1). For any element v =z, + z_ in M
(®,eQM,,x_cQM_), we have zQ@n =2, ®n + z_®n, and alz, @n)
=02, Qn,a(x_.Q@n) = —ox_Qn. 2@®neM@N =K, | K, implies z,
RnekK, if 6=1,2,QnekK, if 6= —1, and so 2, ®neM QN. This
means ¢, €M and «_ <M. Hence we have M =M, | M_. Since M is
indecomposable, we have M = M, or M_ and ¢ = 1. Similarly we
have p = +1. This contradicts « = o ® pu# +1. Suppose ¢ = —1, ;¢
= —1. Considering M as Z[s] = Z[+/—1]-module, M is isomorphic to
@ Z[v=1] as a Z[v —1]-module. Hence there is a submodule M, such
that M = M, ® o(M,). Similarly there is a submodule N, of N such that
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N = N,® p(N,). Taking a basis {m;} of M, and a basis {n;} of N,, we
have a basis {m; ®n,, m; @ p(m,),a(m;) @ n,,o(m;)  p(n,)} of MN.
Since a(m; @ n,) = a(m,) @ pn,), alm; @ p(ny)) = —a(m;) @n;, we have
{m; ®n; + alm;) @ p(ny), m; @ pu(n;) — a(m;) ®n,} as a basis of K, and
{m; @ n; — a(m;) @ pny, m;  p(n;) + o(m;) ®n,} as a basis of K,. This
implies that m; ® n; is not contained in K, | K, = M ® N. This is a con-
tradiction.

1.4. LEMMA 4. Let L be an indecomposable positive lattice satis-
fying the condition (A). Then we have

(i) L ® L is indecomposable, and

(i) OL®L)=0W)®O0L) UOL)®OWL)y, where peOL QL) is
an isometry defined by wWx@y) =y&® x for xz,ye L.

Proof. Take an isometry ¢ of L ® L. If there are non-zero ele-
ments z,y in L such that o(L® x) = L ®y, then Lemma 2 implies ¢
€ O(L) ® O(L). Suppose that o(LQ x) = L ®y implies © = y = 0; then
there is a basis {v;} of L such that ¢(L® L;) = v; ® L, putting L, = {z
eL;s(LQ®x)Cv;®L}. Hence we have rank L; = 1, and put L, = Z[u,].
It yields po(L ® ;) = L ® v;. Therefore poe OL) ® O(L) follows from
Lemma 2. Thus we have O(L®Q L) = O(L) ® O(L) U pO(L) ® O(L). This
completes the proof of (ii). Supposethat LQL =K, | K,(K, # 0, K, #+ 0).
Define an isometry « of L®L by o« = id. on K,, « = —id. on K,. Then
Lemma 3 and (ii) in this lemma imply « = (s, ® ¢,)1 Where gy, 0, € O(L).
From o« =1 follows that, for 2, z,e L, 2, ® 2, = (0, Q ay)p(o:(x,) & a,(2)))
= g,0,(x) ® g,0,(x,). This yields ¢, = +1. Hence we may assume «
=(0®ao Ny (6€0()), taking —a instead of « if necessary. Take a
basis {e;} of L and decompose o(e)®e; as a(e;) ®e; = (a(e;) @ e, + alo(e,)
®e) /2 + (a(e) D e; — alole;) ®ey)) /2. Then (a(e;) Qe; + alole,) ® e,))/2
e QK,, (a(e;) ®e; — alale) ®e;)/2e QK, and LOL = K, | K, imply (a(e;)
®e; + alole) @e,y)/2¢e K,. Therefore we have (a(e,) ®e; + ale;) D e,)/2
e L®L. This is a contradiction because {e;} is a basis of L.

1.5. LEMMA 5. ®™ L is indecomposable provided that the orthog-
onal group O(Q@™L) is generated by O(L) and interchanges of L’s and
that @™ * L is indecomposable.

Proof. By Lemma 4 we may assume m > 3. Suppose "L =K, | K,
(K, # 0,K, #+ 0) and define an isometry « of O(®™ L) by « = id. on K,,
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a = —id. on K,. By the assumption we have « = (®¢)p where o;
€O(L) and p is an isometry defined by px,® - - @z,) = 2,1, ® - --
Z,m, (¢ is considered as a permutation). «® =1 implies o*(z,® - -+ @ )
= a(0'1(xp(1)) ® - ®om(x/1(m))) = Ul(Up(l)(xuz(l))) ®--- ®0'm(0'#<m)(x#2(m))) =z,®
- @, for any ;€ L. Hence we have x* = 1. Suppose p(1) = 1; then
o, ® ) =a(x)® ---, and we have a € O(L) ® O(®™* L). This contra-
dicts Lemma 3. Suppose p(1) =j > 2. Define an isometry p; by p;
@Qr,Q® - - Qx;Q@ - Rz, =2, 92, -+ Qu,® --- @z, ; then pap;’
@®® --- ®xj® <) =#ja(xj® R ® )= ,Uj(O'l('%'1)® ®6j(xj)®
) =o0i2)® --- Qo) ® ---. Hence we have pap;'eO®* L)
® O(®™*L) for j=2. This contradicts Lemma 3 since pjay;' = id.
on u,(K), pap;' = —id. on p;(K;). Suppose (1) =7 > 3. Defining an
isometry p by (@, ®2,® - - @2, --) =202, - Qx,® ---, We
have ppap;'y™ @, Q@ 2, -+ @ x;---) = 0,&) Qofx) ® ---. Thus
Yt e O(®* L) ® O(®™*L). This is also a contradiction as in the
case of j = 2.

1.6. To prove that the condition (A) implies the condition (B), it
is sufficient to show

LEMMA. Let K be an indecomposable positive lattice such that K
2 LQK’' for any lattice K’'. Then we have

(i) ®™LQ K 1s indecomposable, and

(i) O(®™ L Q® K) is generated by O(L), O(K) and interchanges of
L’s.

Proof. We use the induction with respect to m. Suppose m = 1;
then Lemma 2 implies (ii), and (ii) and Lemma 3 imply (i). Suppose
that (i), (ii) are true for m = ¢{. Assume that there is an isometry ¢
€ OQ'"*!' L @ K) which is not in the subgroup generated by O(L), O(K) and
interchanges of L’s. Put M = ® L ® K; then OWM) is generated by
O(L), O(K) and interchanges of L’s, and M is indecomposable. If there
are non-zero elements m, m’ e M such that (L ® m) = L ® m/, then
Lemma 2 implies ¢ € O(L) ® O(M). This contradicts our assumption on
g. Hence for such an isometry ¢ follows that ¢(L ® m) = L & m’ (m, m’
e M) implies m = m’ = 0. Hence the condition (A) and Lemma 1 yield
dLQ®M,) =v,®M where {v;} is some basis of L and M,={melM;
a(L®m) C v, ®M}. Defining an isometry g, by 12 ®y®2) =yQx Q2
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(x, yeL,ze ®'L®K), we have uoL®M) = L1, ®(®"'L)R K.
Since p,o is not contained in the subgroup generated by O(L), O(K) and
interchanges of L’s, po(L ®m) =L®m (meM,C M,m' ev, ® (®*"'L
® K) C M) implies m = m’ = 0 as above. Applying the condition (A) to
10, M, v,® (® L) ® K instead of o, M, N respectively, we have yo(L
QM) =viQ@v, Q@@ 'L)R®K where {v} is a basis of L and M,,
={meM,; poLO®M) Cvi®v,®(®L)®K}. This is the similar situa-
tion to o(L @M, = v, Q(®* L) ® K. Hence we have inductively p;,,---
o (LOM,..)=LRv®v® - - v’ @K, where g, is an isometry
defined by @ ® - - ®2,;Q - 2, QW=2,8---Qx,Q --- Qx,,,
®y@x;eL,yc K). Since L® K is indecomposable, M, ..., is also inde-
composable. Moreover there are no non-zero elements meM,.. ,C M,
mev,@v® - @vi--- @K C M such that p,,, - - po(LOmM) = L.
Lemma 2 implies v, @11 Q - - - ®v7"' Q® K = L ® K’ for some positive lattice
K’. This contradicts the assumption on K. Thus the part (ii) for m
=t 4+ 1 has been proved. Now we must prove the part (i) for m = ¢
+ 1. The part (ii) implies that O(®*"' L ® K) = O(®!"' L) ® O(K), and
O(®**' L) is generated by O(L) and interchanges of L’s. From the part
(i) for m =1t follows that ®'L is indecomposable. Hence Lemma 5
implies that ®*' L is also indecomposable; then from Lemma 3 follows
that ®*'L ® K is indecomposable. This completes the proof.

In this section we prove the converse.
Let L be an indecomposable positive lattice which satisfies the con-
dition (B).

2.1. Let M, N be indecomposable positive lattices and let ¢ be an
isometry from LM on L®N such that s(L®m) = L n(meM,ne N)
implies m = 0, » = 0. Fix any basis {v,} of L. Assume that M = ®* L
@M ,N = Q@1LQN’ where M’',N’ are not isometric to any lattice of
the form L ® K. Since M,N are indecomposable, M’, N’ are also inde-
composable. Then the part (i) in (B) implies p = ¢ and «: M’ = N'.
Identifying M (resp. N) and ®* L@ M’ (resp. ® L ® N’), we have ¢
=(,® -+ ®o,® Py by virtue of (iii) in (B) where o, O(L), fc ON’)
and 7 is an isometry defined by 9z, ® -+ ® x, ® M) = Ly, ® - -+ @ X5y,
® a(m) (xg, +++, %, € L,meM,s: a permutation). s(0) = 0 implies o(L & 2,
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Q- Qx,®m) = L& 0(%51)) ® +++ ® 0,(Xsp) ® pa(m). This contradicts
our assumption on ¢. Thus we have s(0) > 1. It is easy to see that
WV, QLR - @LOM) =L®---®OLQ0s-10(v;) QLR --- LN/,
', QL® - - QLRIN)=LQ® - - QLRQRus;'(v)QLR® ... LRM where
Os-10/(¥;) (resp. a5'(vy)) is on the s7'(0) + 1-th (resp. s(0) + 1-th) compo-
nent. Put N;=L®:--QL®0;-1(»,)) QLK ---QLQIN', M; =L ---
QLRoi'w)OL® --- ®L®M where a,-.,(v,) (resp. g;'(v,)) is on the
§7!(0)-th (resp. s(0)-th) component. Then we have M; = {m e M ; (L ® m)
Cv;,®N}, Ny={neN; ' (LO®n) Cv,QM}, M =@ M,, N =DN,;, and
oc(v,®M;) = v, ®N,.

Hence we have proved that the condition (A) holds for indecom-
posable positive lattices M, N and for any fixed basis {v;} of L.

2.2. Let M,N be positive lattices and let ¢ be an isometry from
L®M on LN such that ¢(LQm) =LQ®n (meM,neN) implies m = 0,
n=0. Put M= | M, N= | N, where M,;, N, are indecomposable;
then the part (i) in (B) implies that L@ M,, L ® N, are indecomposable.
By virtue of 105:1 in [8] we may assume o(L ® M,) = L ® N,. Hence
2.1 implies the condition (A) for decomposable lattices M, N.

3. Miscellaneous remarks

3.1. Let k& be a totally real algebraic number field with maximal
order O,. We considered the following question in [3], [4] (see also [1],
[21, [9D.

If ¢ is an isometry from O.L = O,M, where L, M are positive lat-
tices, then does ¢(L) = M hold?

This is equivalent to the following if k/@Q is a Galois extension.

Assume that k is a totally real Galois extension over Q. Let G be
a finite group in GL(n,0,) such that g(G) = {g(4); A € G} = G for any
¢ in Gal(k/Q). Then does G C GL(n,Z) hold?

Sketch of the proof of the equivalence. Suppose that G C GL(n,O0,)
is given. Put P =Y ,.;'AA. Then P is a positive definite symmetric
matrix with rational numbers as entries since ¢g(G) = G for any ¢ in
Gal (K/Q). Let L be a positive lattice corresponding to P. Then O(O,L)
contains G. If O(O,L) = O(L) holds, then G C GL(n,Z) holds. Con-
versely, suppose that ¢:0,L = O, M is given. Define an isometry &
of O(O,(L | M)) by 6=0¢ on O,L,6=0¢" on O,M. Taking G as
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O0,(L | M)), we have 6e O(L | M) and o(L) =M if G = 0L | M).

3.2. Let F be a totally real algebraic number field. Suppose that
there is an unramified totally real Galois extension E of F. Denote the
Galois group G(E/F) by G. Put V = F[G] (group ring) and introduce
an inner product by (9,9") = d,, (= Kronecker’s delta) for g, g’'eG.
This makes V a positive definite quadratic space over F. We define the
operation G to EV = E[G] by ¢’ ,ec®:9) = Y ,ca 9'(@)g’'g for ¢'eG,
a,cE. Put L= LoecOr9, L = {3 ,c69(@ls);a€0g}.  Then L =0zL
and L is an indecomposable quadratic lattice over Op [3]. Put M
= | 4e605g; then L = OzM. Hence we have

(@) L,M are not isometric positive lattices over Oz, but OzL, OzM
are isometric.

Defining an inner product in Oz by (x,¥) = trg» xy(x,y € Og), we
have a positive lattice O,. Taking traces, we have O, ® L =~ O, @ M.
Here O, ® L is decomposable since O L is decomposable. Oy is inde-
composable because it is isometric to L. Hence we have, putting N
= OE’

(b) L,N are indecomposable positive lattices over Oy but LN is
decomposable.

(¢) NOYL=NQ®M but L # M.
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