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ON ZETA FUNCTIONS ASSOCIATED WITH QUADRATIC
FORMS OF VARIABLE COEFFICIENTS

TOSHIAKI SUZUKI

Introduction

In 1938, C. L. Siegel studied zeta functions of indefinite quadratic
forms ([6], ¢). On the other hand, M. Sato and T. Shintani constructed
the general theory of zeta functions of one complex variable associated
with prehomogeneous vector spaces in 1974 ([1]). Moreover T. Shintani
studied several zeta functions of prehomogeneous vector spaces, especially,
“Dirichlet series whose coefficients are class-numbers of integral binary
cubic forms” ([3]) and “Zeta functions associated with the vector space
of quadratic forms” ([2]).

In this paper, we study zeta functions associated with quadratic
forms of variable coefficients” which are closely related to zeta functions
(indefinite) quadratic forms (in Siegel’s sense) and zeta functions as-
sociated with the vector space of quadratic forms (in Shintani’s sense).

Let U be vector space of real symmetric matrices X of size n, and
W be the vector space of n-dimensional column vectors v. The group
GL(n; R) acts on U by X — gX'g = X[‘9] (9 ¢ GL(n; R)). For any XeU,
the isotropy subgroup G(X) = O(X) of X in GL(n; R) acts canonically on
W. 1t is easy to see that the pairs (GL(n; R),U) and (O(X) X R%, W)
are real forms of prehomogeneous vector spaces (R* acts on W by mul-
tiplication). Let M and N be lattices in U and W, which are invariant
under the actions of the groups GL(n;Z) C GL(n;R) and O0(X), =
O(X) N GL(n; Z) C O(X), respectively. By [1] and [6], ¢), if » >4 and
det X = |X| # 0, we can consider ‘“zeta functions of quadratic forms X

771(89 N: X) = eZ: ﬂX(’v)lX['v]l_S’ (.? = il) ’

[~

sgz X[v]=j
where N/~ is the set of O(X),-equivalence classes in N and py(v) are
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defined by the normalized measure dg, on O(X) such that

j Fo)dg = j XTI dXTgT) - j FG9)dgx(e) ,
GL(n; R) GL(n; R)/0(X) o(X)

(49 =91 _TT_ dguss (@ = @), $(9) € LGL(n; R))) .
Our “zeta functions” are defined as follows:

£:(81, 8, L) = X§/~ ) 7,8, N, X) | X |-~

sgn X =(i,n—1

5“(31, Sy L) = Ye%/~ i 771(82, N, Yc) ” Y“—-sl—-(n—l)/z ,
0<i<n, j=+1),

sgn Y =(i,n—1%

where L=M®N, L=M*®N (M* is the dual lattice of M), M/~
and M*/~ are the sets of GL(n; Z)-equivalence classes on M and M*,
respectively. Here Y° is the cofactor matrix of Y and GL(n; R) acts
contragrediently on the dual lattice M* of M.

On the other hand, we can see that the zeta functions &;,(s,, s,, L) and
&,,(s;, 8, L) are also defined as zeta functions of two complex variables
associated with the following prehomogeneous vector space (G, p, V) and
(G,p,V), respectively. This will be done in Section 2. We identify the
vector space U with its dual U* by Tr XY (Xe U, Y e U*), and identify
W its dual W* by ‘vu (we W, ue W*). Let p,p and p* be the represen-
sentations of G = GL(n; R) X R* on the vector spaces V=UOW, V=
U*@W and V* = U* @D W* defined by

p(9, )X, v) = (XT'g], ‘g ~'vh) ,
o(9, )Y, v) = (Y[g7'], ‘g~'vh)

and
e*(g, (Y, uw) = X[g™'], guh™) ,

respectively, where g e GL(n; R), he R*, X e U, Ye U*, ve W and ue W*.
It is easy to see that complexifications of the triples (G,p, V), (G,5, V)
and (G, p*, V*) are prehomogeneous vector spaces.

In Section 4, we prove the main results of this paper (Theorem 2),
which assert that, for n >4, &,,(s,, 8,, L), &,,(81, 8, L) and &,4(sy, 8,, L*) are
absolutely convergent for sufficiently large Re(s;) and Re(s,), and have
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analytic continuations to meromorphic functions of (s, s;) in the whole
plane C? satisfying the following functional equations:

éu(" ; L _s—s, 32:E>

= ’U(M*)-l(zn.)_nsl-szﬂn(n—l)M. e[M]
1

-F(s‘)r(sl__%) Z"(sl— n;2>p<81+32_ n;l)

Z;n Au,ij(su 8,)€4(81, 85, L)

0<k
¢

and

£.,(81 8, L¥) = v(N*)-*nzsz-w-lr(g - sz)m — )

: Z ng(82)§w<31 + 8 — n—1 ’ ro_ Sy Z) s
£=x1 2 2

O=ign, 7=+,
(for details, see Section 2 and 4) .

The functional equations of ‘“zeta functions” are based on their integral
expressions and functional equations of “local zeta functions (Section 1
and 3)”.

We know that zeta functions z,(s, N, X) have simple poles at s = n/2
and s = 1 with respective residues

o) | dgx = v(N)" (X)

0(X)/0(X) gz

(v(N) =I dv, dv = dv, ---dvn>
W/N

and

sinz(n — 1)/2 when j = +1
sin zi/2 when j = —1

v(N)“;/(X)n“"/ZF(% - 1){

where /(X) = | X||"%¢(n — 2) > ik px(vo), and {v,, ---,v,} is a complete
gystem of representatives of O(X),-equivalence primitive points on
{veN:X[v] =0, v+ 0} (see [1], §2,4). So, we may expect that zeta
functions &;,(s;, 8,, L) have poles at s, =n/2 and s, =1 with respective
residues :
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o5+ 4 M)

and
—1a7 1 1-n/2 n
V(s + 5 M@NT)e (g~ 1)
{sin a(n —1)/2 when § = +1
sin 7i/2 when j = —1
where

st M) = 2 @ X[

sgn X =(i,n~—1)

are “zeta functions associated with the vector space of quadratic forms” and

(s + 3 MONY) = 3 4@|X|
2 XEM /)~

sgn X =(i,N~1)

In Section 5, we define the zeta functions &/(s, M @ N*) by a similar way
to the case of zeta functions associated with prehomogeneous vector
spaces, which are in accord with the above formal residues. Further
we prove the convergence of &i(s, M @ N*)’s. The above formal argu-
ment is justified, and we obtain functional equations of &,(s, M) and
&4(s, M @ N*) (Theorem 3) which are inherited from that of &;,(s;,s,, L)’s.
It is easy to see that the (inherited) functional equation of ¢&,(s, M) is
accord with the result of [2].

The author would like to thank Prof. T. Kubota, Prof. T. Shintani
and Dr. Y. Kitaoka for their helpful advices.

Notation

For symmetric matrix X of size %, n-dimensional column vector v,
and g € GL(n; R), we use following symbols:

X[v] = wXv, X['g] = 9gX'g, |X| = det X.

Xc¢: the cofactor matrix of X (| X|-X~! when |X| =+ 0).

1 X1, | X[v]|: the absolute value of |X| and X[v], respectively.

sgn X[v] = X[v]/|X[v]] when X[v] is not zero.

sgn X = (i,n — %) when |X| is not zero.

(¢: the number of positive eigenvalues of X)
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e[r] = exp 2azv/ —1x), (x € C).

&L(V): thespace of rapidly decreasing functions on the vector space V.

€7 (F): the space of complex-valued smooth functions on the smooth
manifold £ with compact support.

Q,: the field of p-adic numbers.

Z,: the ring of p-adic integers in Q,.

F,: the fitite field with p elements.

lal,: the normalized absolute value of ac @,.

#[S]1: the cardinality of a set S.

For an algebraic set A defined over @, we denote by A the

algebraic set defined over F', obtained from A by reduction modulo p.

1.

Local zeta functions

In this section, we define “local zeta functions” of the triplets (G,

0, V), (G,p,V) and (G, p*, V*). We write the elements of V by 2z or
(X,v), where V=U®W and XeU, ve W. Similarly, we write 7 =
(Y,v) and 2* = (Y, u) for the elements of V=U*® W and V* = U* @ W*,
respectively.

are

The singular sets S,S and S* of (G,p, V), (G,5, V) and (G, p*, V*)
respectively defined as follows:

S=PUR, P={X,v)eV:|X|=0}, BR={X,veV:X[v]=0},

S=PUR, P={Y,v)eV:|Y|=0}, B={Y,v)eV:Y]=0}

and

Put

and

We

S* = P* U R*, P*={Y,uweV*:|Y|=0},
R* ={(Y,w)eV*; Y[ul =0}.

wn(9) =g and y,(h) = k* (9e GL(n: R), he R*), then we have

| X['g]l = n(9) 1 X, X['9ll'97'vh] = p(WX[V],
| YIg™ = n@HY|,  Ylg'Ill97wh] = u(9) (W)Y [v]

Yig7ilguh™1 = ()~ YTu] .
set, for 0 <i<n and 7 = +1,

Vii={X,v)eV —S:sgnX = (i,n — 9),sgn X[v] =5},
Vi={¥,v»eV—-S:sgnY = (i,n — i), sgn Y°[v] = j}
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and

Vi={Y,weV* —S*:sgnY = (i,n — 9),sgn Y[ul = j}.

Then we have

and

VE—-8*= U V§ (disjoint union) ,
0<i<n
j==x1

which are the orbital decompositions of V. — S, V — S and V* — S* by
the group G* = GL(n; R)* X R*, respectively. We normalize Euclidian
measures dz,dx and dz* on V,V and V* by dx = dX.-dv, dz = dY-dv
and dx* = dY -du, respectively, where

dX = J] dxy; X =(2), dv= T] dv; (=),
1<i<j<n 1<i<n

dY = [ dyy Y =@y, du= ][] duy (u= ().
1<i<j<n 1<ign

For any rapidly decreasing functions f(x)e #(V), f(Z)e #(V) and
S*(x*) e L(V*), we set

Oufrsns) = [ @ IX| | XMl dar,
By, 508 = jmf(a“c) IY || Yelolf de
and
880 = | . TR Y|P | Y da

(s,8)eC? Re(s) >0, Re(s,)) >0, 0<i<n, j = +1), respectively. It
is clear that 9;;(f, s, s, @”(f, 8, 8;) and @f(f*,s;,s,) are holomorphic
functions of (s, s,) € C* in the region {(s;, s,) € C*: Re(s) > 0, Re(s,) > 0},
and the mappings

f(x) —> @z‘j(f: SU SZ) ’ f(.’_f?) —> @ij(‘f_, Sl; Sz)

and

S*@*) —> OF(F*, 81, 8)
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are tempered distributions on V,V and V*. Now we call these distri-
butions “local zeta functions” of (G,p, V), (G,5, V) and (G, p*, V*), re-
spectively.

THEOREM 1. (1) As analytic functions of (s, s,), Dy, D;; and Of; have

analytic continuations in the whole complex plane C2.
(2) For any f(Y,v)e L (V), set

(X, v) = L*f(Y, v)e[Tr XY1dY .

Then we have f(X,v)e L(V), and

2 2
.F(sl—.1_> "'F(Sl— %~2>e[nsl+32]

© 20 Apeii(sy, 32)@2-/(.]?, n ; ! _ S; — 8;, 8, — %) s

0<i<n
j<=1

(1-1) %(f, s — s, — ﬁ) - (2n)-"s‘-“n"<"-”“r(sl +o- 2 1)r(sl>

where A, (8, 8) are defined by

e[ —(n+1)/2 + ?:]v(n-u (s)

4 k-1,1—-1
when £ = +1, j = (=1,

e[— S + s, —2(n — 1)/2]e[ n + 1)/?1 —n+1 ]v;i”_'lf%(sl)

when £ = +1, 7 = (=1)»"i+

e[—— s + s, —2(n —1)/2 ]e[(n + 1;/2 — i]vé'f{fi(sl)

when (= —1, j = (=1,
Joso
when £ = —1, j = (=1,

Akm/(su 8;) =

e[—(n+1)/2+n—i
4

,v’(;’z;(s) — ‘/_1(n+1)(lc+i-—n/2)(_1)(n~z‘)(n—i+l)/2

min(k,z) 27/. — k — i
(—1)""“’01“%-1.;:_16[8———2—— )

r=max (0,k+i-n)
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(—1)e-nr (i/Z) when © and r even ,
r/2
0 when © even, r odd ,
N 1)t = .
( ) * 4(—1)‘”“”/2((Z 1)/2) when i odd, r even ,
m|2
(—1)“""”2(8:11))// 22> when i and r odd .

3) For any f*(Y,u) e L(V*), put
FY,v) = fW* Y, weltvuldu .

Then we have f(Y,v) e (V) and

1-2) @kl(f, s+ s — 2EL —sz) - nm-"ﬂ-lr(g— - sz)m —s)

2
L3 By (S s — B = 1), O<k<n, (=D,
Jj==1
where B(s,) are defined by
—sinz(k/2 —s,) , when ¢ = (—1)"*% j= +1,
sinzk/2, when £ = (=% j= -1,
ij(sz) = . PR
sinz(n — k)/2, when ¢ = (=" %", =41,

—sina((n — k)/2 — 8), when £ = (=" j= -1,

Let |d/dY|, (d/dY)[v] and YId/dv] be the differential operators on
V defined by

7%7\ o[Tr XY] = @V =1)* | X|e[Tr X¥],
_c—l%[v]e[Tr XY] = 2zv —1X[v]e[Tr XY],
Y[ d ] ¢ — 2 t
——lel‘vul = @rv —1)*Y[ule[*vul ,
dv
respectively. It is clear that |d/dY|(d/dY)lv] = (d/dY)[v]|d/dY|. Simi-

larly we can define the differential operators |d/dz|, (d/dx)’[v] on V and
Yid/dul on V*.

COROLLARY TO THEOREM 1. We have the following equations:
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[v]'f_., n—1 — 8 — 8y 8 — g“)

-3 By

d‘d
dy | dY

2
= i(st s = 22 ) (s 4 s = B s - )

—2\s (7 n—5
.--<81—n2 )@Zj<f,n2 _81—82,82_—12?~,+1>-

(1-4) Q)”Q_dLXI (Tg{—)c[u]j, 8 — %,sz - %)

=]'(—1)(81 +8— ";3)(31 — 1)(31 1 %)
.(s,—l— ngz)'(81—2)(81—2——;-)

2
-(s,—z— = )@“(f,sl—~g+z,sz~%+1).

J d

= 4i(s, = (s, — Moy (r* s — Ly — L - 1).

a-6)  By(¥|- L ]is - 15— 2)
= 4i(s, — D5 = Z)0u(fss — s~ Lis, = 2 — 1),
O<i<n, j==1,
Proof of Cor. In (1-1), we put |d/dY|-(d/dY)[v]f instead of f.
Then f is changed into (—1)"*'@2rv/ —1)**'|X|-X[v]f, and we have;

n+1 — n+1 . . _ﬁ __i?/_
%((—1) eV =1 X |- X]-f, 8 — 5, 2)

— (—2ny/ —"'1)”+l<—1>"-ka>u(f, -2+l 2y 1) .

We calculate the above both members using (1-1) and the following
equations
Ake,ij(sl + 1,8+ 1= (—"1)n_kngk£,ij(SU 8y .

Then we have (1-3). In order to obtain (1-4), we put |Y|-Y[v]f in-
stead of f, then f is changed into |d/dX|-(d/dX)[v]f(@2rv —1)"2"*' and
other parts are similar to the above. (q.e.d.)
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We consider differential forms ,, @, and of on V —S, V — S and
V* — S*, which satisfy the following equations:

de = d( XD N A XD N o, on V-S,
dz = d(|Y) N dY°[v]D) A &, on V-8
and
da* = d(Y)D N d(YTuD N of on V* — S*

respectively, where dx = dx, ANdx, A\ -+« NdXp, NdO, N\ -+« Ndv, (x =
X,v), X =(2;;), v =(v)) and so on. Next we define the differential
forms w,@ and o* on V — 8, V-8 and V* — S* by

w = “X“—(n—Z)/Z IX[’U] l—(n—Z)/z.wa R

@ = ch[,v]l—(n—Z)/Z.(—Bo
and
¥ = “Y“—<n—2>/zIY[u”—m—z)/z.wSk ,

respectively. We may assume that w,, @), o, v, @ and o* are all positive,
because V. — S, V — Sand V* — S* are orientable. And we can identify
the above differential forms with the measures on the following mani-
folds:

Vi@ t) = {z = (X,v) e Vi [ X = t,) X[]| = t;} .
Vit t) = (& = (Y, 0) e Viy: | Y| = £, | Y[0]| = £}
and
Vi@, t) = {o* =X, w) e VE Y| = t,|Yull =t} ,
(OSiS’n, .7:i1, t1>0: t2>0)’
respectively. For any f(z)e L(V), f(@) e #(V) and f*(a*) e #(V*), set

U Syt t) = j f@-o,

Vij(t1,ta)

T, (f tnt) = j @)

Vijt1,t2)

and

TH(F*, by ty) = j FHaHo*

V%;(t1ata)

(OSiSn,j=i1,tx>0, t2>0)’
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respectively. Then it is easy to see that

wij(f(q,h)v i, t) = wij(f, Xx(g)tu Xz(h)tz) )
Tz’j(f‘(g,h)’ t19 tz) = ?[f-‘ij(f_’ Xl(g)_ltly X1(g)—lX2(h)tz)

and
TE(S Gy tu ) = EU™, 1(9) '8, () 7't
where
Fom@ = flolg, W) ,  Fioun(® = flolg, )T)
and

f?;,h)(x*) = f*(P*(g, n)x*)

for (9,h) e G*. Moreover we have

a-m @ij(fi 81,8) = Jj Jj t§1+n/2_1t§2+n/2_lwij(f, t, tdtdt, ,
WD ByFses) = [ [ T b i,
and

AT PE(F*, s, 8) = j j pprenaigen R (PR Lt
O<i<n, 7= +1, Re(s) >0, Re(sy) > 0).

2. Zeta functions
Set
G, ={(g,MeG" = GL(n; B* X R*: y(9) = 1, 3,(h) = 1}
= SLn;R) X {+1}.

We normalize the Haar measure dG* on the group G* by

dG* =|g|™ I dgylh|™"dh, (9 =(9:)eGL(n; R)*",he R*) .
5%
Then we can define the Haar measure d'g on the group G% by

_ o[ @ d® (o e
en [ semag = DB rag, g,

(f(g,h) € L(G")) .
Set G*(x) ={(9,WeG\:plg, )z =2}, G'@) = {(g,h) eqG.: olg, )T = T}
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and G*(z*) = {(g, k) e G~ : p*(g, h)x* = x*} for any xeV, Te V and a* € V*,
respectively. Since || X||~"|x[v]|~**dz, |Y | |[Y[v]|""*dx and |Y|™*
| ¥Y[u]|""* da* are G*-invariant measures on V,;, V,; and V¥, respectively,
there exist, for any xzeV,;, zeV,, and z*e V¥, Haar measures dy,,
dy; and dy,. on the groups G*'(x), G*(Z) and G*(x*) such that

(2-2) I Slg, WG = j 1 XUglI= | X[*g1*g " wh|~"*
G+ G+ /G+(a)

dlo@, W) [ 79, W)

@2 [ s@made = Y YR

/Gt (%)

A, )| 769, i)

and

@2y | remder = ¥ Y g

oG, ) [ 79, dva9)
(g, ) e LG ,

respectively. Now we can easily prove the following equations:

@y [ r@ag={ o@D #60)

L6

@-3) [ r@eg=[  oe@vn| 1o

GY/G+(Z

and
@3y [ n@dg=| o@D 1G9,
[23% z* G+ (z*)
(9 € L(GL) -

The complexifications of the triplets (G, p, V), (G, 5, V) and (G, p*, V*)
have natural @-structures such that Gy, = GL(n; Q) X Q%, U, is the set
of rational symmetric matrices of size n, and Wy, is the set of n-dimen-
sional rational column vectors. Set I'=SL(n;Z) X {£1}C G}, and
let L=M®N be a :I-invariant lattice in V, where M and N are
lattices in U and W, respectively. Write M* and N* for the dual lat-
tices of M and N, respectively, (i.e., M* = {Y e U*: Tr XY € Z for any
any xeM)}). Then L =M*@®N and L* = M*@® N* are also [-invari-

& /G+
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ant lattices in V and V*, respectively. We call two points in V (or V,
V#*) ”I-equivalent” if they lie in the same orbit of I. For any I'-
invariant subset A of V (or V,V*), let A/~ be the complete set of
representatives of I'-equivalence classes in A. We set

L'=L-8S, ’'=L-S8, (L*)=L*—8*
and

Now we define (formally) the following Dirichlet series which we
call “zeta functions associated with quadratic forms of variable coef-
ficients” :

£:5(81, 8, L) = (;L/pmwxwﬂxwww,
z=(x,v)ELjj/~
Subpspl)= 5 @YYl
gk (s), 85 L*) = P ~/z(ac"‘) Y|~ | YTul|~*,

*= (¥ ,u) €LY /

(8,8¢cC, 0<i<n, j=+1),

where p(x), u(%) and p(x*) are defined by

p@ = ., T.=T0G@),
G+ @)/ Iz
p@ = ds,  T=IN06@)
GT(@)/r
and
)= e, Tw=TNGG@,

respectively. It is easy to see that &}(s,, s,, L) = &,,(s, 8, L), so that we
write &;,(s,, s;, L*) instead of &f(s,, s, L™).
Then we can state the main results of this paper.

THEOREM 2. (1) For n > 4, there exist positive numbers A and B
such that if Re(s) > A and Re(s,) > B then &,,(s, 8,, L), &,,(s,,8, L) and
&:,(8), 8, L*) are absolutely convergent, and they are analytic functions
of (s),8,) in the region {(s;,s,) e C?; Re(s) > A, Re(s) > B} (0 <1< n,
j==£D.

(@) &,(s1, 8, L), &, /(51,85 L) and &,(sy, 8, L*) have analytic continua-
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tions to meromorphic functions of (s;, s, in the whole plane C? satisfy-
ing the following functional equations

(2-4) Ew(n +1 s, — 8, L) = p(M*)~(2r) - sagn(n-D/4

2
L R
o

) 20 Aviis(S1, 88481, 8, L)

0<<

+32_

(2-5) £.,(80 8 L¥) = v(N*)-lnzsa-m-‘r(g _ sz)m — )

D Bij(sz)éu<sl FRP Gt Y I?)
e=x1 2 2

O<i<m, j==+1
where

(M%) = fvw*dy and v(N*):I du .

W*/N

(3) The functions

(sl+sz~— 3)(3‘—1)(81—1—%)---(31—1—”;2)

.(sl—z)(sl—2~_21_)---(sl—2— e

-(s2 — %)Sij(sn 8, L)

and

e oo 2

'éij(sly SZ,I—’) ’ (0 é ) é n, j= il) »

-(s,—l—sz——l——n

of (s,,8,) are entire on the whole plane C2

3. Proof of Theorem 1
We introduce the following distributions for fixed v, = (1,0, :-:,0)

eW. For any f(X)c#(U) and f*(Y)e L(U*), we set
‘Qij(f’ 317 82) = J‘

sgn X=(i,m—1)
sgn X[vol=Jj

JX) [ X[ [ XTwolf* dX,
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QE(f*,81,8) = f

sgn ¥ =(i,n—1)
sgn Y[vol=Jj

(8,8,€C, Re(s) >0, Re(s)) >0, 0<i<m, 7= =+1).

SKDNY | Y vl dY ,

It is known that the mappings
JX)— 2,,(f,8,8) ,  [HY)——>2,(f*, 8, 8)

are tempered distributions which have analytic continuations to mero-
morphic functions of (s,,s,) in the whole plane C* (see [4]).

LEMMA 3-1. For any f*(Y)e FL(U*), if we set
X)) = fm F*(Y)elTr XY1AY
then f(X)eL(U) and

Qm<f, 8 — g,sz _ _7_;_) — (zn)—n81—827rn(n—l)/4e[ 7131;‘ Sz]

'F(SJT(SI—%) ...I’(sl__ ngz)r(sl‘l'sz'— n—2-1>

* Z Akl,ij(sl’ sz)Q;kj(f*, n—1 — 8 — 83 8 — ﬁ)
0<T<n 2 2

0<k<n, {==x1.

Proof. This is a similar calculation to Lemma 4.1 of [1]. Also,
we can derive the above result by the method of ‘“microlocal calculus”
(see [14]), too.

Remark. v{(s)’s are expressed by the following generating function.

> v TE = e[ —”8] I (e[ s—m+1)/2+0p ]

0<%<n 4 4
+e[ s—(n +41)/2 +p ]T)
'lsl;lsi (e[_ s—(n +41)/2 +q ] n e[ s—(n +41)/4 +q ]T) ,

where T is indeterminant (see [2],[14]). It is easy to see that;

els/2lvi(s) — v a(s)  _ e[ —(m+1)/2 + i]v;cn__ll‘ (s _ 1)
els/2] — e[—s/2] 4 o 2/’
—e[—s/2v{(8) + vi.a(8)
e[s/2] — e[—s/2]
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[ 2—@+D2+n—3i] wyf. 1
= e[ 4 ]v’(“"i<s 2) ’
—el[—s/2wi(s) + v () _ e[_ 28 — (n 4+ 1)/2 + i]v(nfl)(s _ l)
e[s/2] — e[—s/2] 4 il 2/’
els/21v0(s) — vIa(s) _ e[ —m+1D/2+n—1 ]vmm(s _ l) .
e[s/2] — e[—s/2] 4 o 2

Proof of Theorem 1. In Lemma 3-1, we replace v, by arbitrary » in
W, then we can see that functional equations are unchanged. Replacing
f*Y) by f(Y,v)e#(V), we integrate those functional equations on
parameter v, then we obtain (1) of Theorem 1. In similar way, we
obtain (2) of Theorem 1 by integrating “Formula of Fourier transforms
of distributions attached to quadratic forms Y[v]” ([5], [6]) on parameter Y.

Note. At first the author calculated the results (1) of Theorem 1 in
a different way. The above simple method was noticed later. On the
other hand, F. Sato, who were studying” Eisentein series for indefinite
quadratic forms [13]” by a similar way to [1], pointed out the fact, too.

4. Proof of Theorem 2.

First, we prove the convergence of “zeta functions”. It is easy to
see that the following method is applicable to the cases of many pre-
homogeneous spaces.

Let ¢, and ¢, be non-zero rational numbers. We define

V(t,t) ={(X,v)eV:|X|=t, X] =t}
and
Vit,t) = {(Y,0)eV:|Y|=t, Y[vl =t,},
which are affine varieties defined over @. We set
V(t,t)g =V, t) NV, V(t, t)e =V, t) NV,
L(tl’ tz) = V(tly tz) n L ’ Li;(tu tz) = V(tn tz) n Lij ’

Similarly, set for Vg(t,t,), etc. We show that, if n > 4, there exist
positive numbers A’, B’ and C such that

(4-1) ) Au(x) < Cla* P,
x€Lij(tyte)/~
4-1y b w(@ < CH*Y|LE, o=sign, 1=41).

FeLij(tiyte)/~
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By Lemma 2-3 in [1], we have

ST (g, Da)dig = 3 @) j fo, (F@ePV).

GL /I zeL’ zEL/~ (G )z

For the sake of brebity we set ¢ =(9,1)e G, = SL(n; R) X {+1}. We
may assume that f = 0 and the support of f is contained in V;,, then
we have

.reLi]%,tz)/'v @) = (IV(tl,zg)R f'w)_l j >, J@ndyg

GY./T z€L(t1,t2)

-1
- <J‘V(h‘tz)lg fw) J.SL(n: R)/SL(n: Z) tel%i,ﬁ'z) f(P(g)x)dlg )

Let H = SL(n), H, be the adelization of H and dH, be the canonical

Haar measure on H, (i.e., I dH , = 1>. We denote by p, the action

of H, on the adelization V, IZ)AfH%/Q. It is easy to see that

Slp(9)zd'g

jSL(n: R)/SL(n: Z) € L(t1,t2)

- ST Flpo)n)dH (9)- j dg

HA/HQ xXE V(tl,tz)Q SL(n. R)/SL(n: Z)

where F' is the Schwarz-Bruhut function on V, defined by the direct
product of f(z) and the characteristic functions of L, for all prime
numbers p. Here L, is the closure of L in V,=V,®@Q,. Using the
fact that Tamagawa number of the isotropy subgroup of any @Q-point
of V(t,t,) is 2 and Hasse principle for the homogeneous space (H, V(¢,, t,)),
we get

F(o,(g9)x)dH ,(g)

IHA/HQ ZEV (t1,t2)Q

=2 Fow,<2 F.o,

HyV(ti,te)Q V(tit2)a

= 2I fo]] j wp ,
Viti,ta) g P J L(t1t2)p

where o, and o, are derived from the differential (gauge) form o on
V(t,t,), and L(t,t,), is the closure of L(¢,¢,) in V,. Then we have

(4-2) S ) <2 j

d j o,
TELij (G, ta)/~ SLG: R)/SL(n: 2) p J Lty

It is easy to see that there is a finite set J of prime numbers, such
that, if peJ, then L, = Vz,, and H® and the isotropy subgroup of an
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Fypoint of V(1,1)” are both connected. Here V,, = {x = (X,v)eV,:

the entries of X and v are containted in Z,}. We calculate W,
L(tyste
in the following cases: R

1. p€J1={p€J:lt1|p=1, Itzlpzl},
2. ped,={peld:|t], <1or|t)|, <1}
3. ped.

This is easy when peJ, (see [8]):
(4-3) J 0, = I 0, = DUV H[V(, 1)) .
L(t1,t2)p VZp(h,tz)

Here V,;,(t,t) = {z = (X,v) e Vg, | X|=t, X[v] = ¢t,}.
When the other cases, we have

| | (@),
VZp(t1st2) Vzp(tists)

and

1= JVZ de .Z_ J|X|etl(l+pzp) de = p-z ((Uo)p ’

X[vl€ts(1+pZ ) Vzp(tste)

where (w,), is derived from o, and dV, is from dV. So, when peJ,,
by the inequality p < |¢,t,|;*', we have

(4-4) f 0, < |t .
L(t1,t2)p
‘When peJ, we have

- [ an = cpltit,
1,02)p

where ¢, is a constant depending on ». On the other hand we must
show that the product

H p—dim V+2 #[V(tl’ tz)(p)]

PEJy
is dominated by a constant which is independent of ¢, and ¢,, We know
that V(¢,,t,) is a homogeneous space of the special linear group H =
SL(n) and the isotropy subgroup H, of a @-rational point of V({,t,) is a
special orthogonal group. So, (H,V({,%)) is “a special homogeneous
space” in the sense of [9]. Further, we have
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p—dim V+2#[V(t1, tz)(p)] — p—dim H#[H(p)]/p‘dim Ho#[Hép)]
where pelJ,.

LEMMA 4-1 (Chevally and Steinberg). Let H be a linear algebraic
semisimple group (defined over Q) and H, be a maxtmal compact sub-
group of H. We have the following inequalities for primes p (if H'? is
defined) :

4 ¢
[ —p™) =p=™HHPT < []A +p7*),

where a;, = 2 for all © and £ is the rank of H, Here a,s are deter-
mined by the Betti numbers b, of H,, i.e.,

[N

Z’C] :H A + ),

Proof. See [7] and [10].
It is a straight consequence of Lemma 4-1 that there exists a con-
stant C, which is independent of ¢, and ¢, such that

[T p== 724V, t)P] < G .

PEJ1

By (4-4), (4-4)’ and the above inequality we have
(4-5) T J IR A A
» L(t1,t2) p

Then we obtain (4-1) by (4-2) and (4-5).
For (4-1)’, we can apply similar arguments.

Next, we congider integral expressions of “zeta functions” and prove
their analytic continuation and functional equation.
We define the following integrals:

2 Lasus) = [ ale o 3 Fele, adgdh
25 Losys) = [ 0@ 3 Filg, badgdn
and

Z*(f*, L*,8,8,) = I 1D () > f*(e*(g, hax*)dgdh ,
G+/Ir T*E (LY’

where f(z) e #(V), f(&) e A(V), f*(x*) e L(V*).
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LEMMA 4-2. We have the following integral expressions of “zeta
functions” :

4-6)  Z(f,L,s,8) = 3 s“(sl,sz,m-@i,(f, P sz—-”—),
0570 2 2

(Re(s) > A, Re(s) > B),

j==1

(4"'6)/ Z(f—, Ey 817 sz) - Z - 829 82’ E)'@M(f} 81 - 82 - 1’ 82 - %) ’

(Re(s; —s) > A, Re(s) > B),

|f ll/\

U6 27" L 5,80 = 3 6l s, L 05( 7%, 5 — 2,5 — 2),

(Re(s) > A, Re(s,) > B).
Proof. We only show the case of Z. We have

7(f T, — -51 So Xm(g) dXz(h) 1
LG Lsos) = [ 0@ ) L L o 5 0G0, DD

_ = S\ -s1 s Xm(g) dXz(h) rd _
- 1 2h A S g, W
2 o) [ 2@ i T

where f; (%) = f(p(¢, )Z). It is easy to see that

f . _f(g',h)@:f L _f'w
p(GY)T (G (p(9,)T)

=T, 0@ Y, 1@ p(h) | Y1)
when 7 = (Y,veV,, 0<i<n, j= +1). And we have

Z(f,L,s,s) = %}/ p@) T (F, @Y, (@) aR) | Ye[w])
s s dX1(g) dXz(h)
. 1 h 2
f e e P ()

= % u@ j [[Pu bty

TeLl’/~
'ch[v][_sz'tzsz'”Y”sz'tlsi’_di_dk
T
= 55 @I Yl
0=7=p e Lij/~
[ Tttt g e s
o L4

= Eij(sl — 83 Sy E)@zj<fy s —8 —1,8 — g) .

*1

=3
“IA,

J
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The above calculations are justified if Re (s, — s,) > 4 and Re (s, > B.

(q.e.d.)
Now we prove the functional equation. For f(z) e #(V), put

f@) = f(X,v) = IU*f(Y, ve[Tr XY1dY ,

then we have the Poisson summation formula

4-7 IFORRUSEPWIOR

TeL

where v(M*) =J ay.

U*/M*

Let fy(@) e % (V — 8) and set f(%) = |d/dY|(d/dY)[v]-f«(Z), then the
function f(z) = f(X,v) = j AY,v)e[Tr XY1dY vanishes on the hypersur-
U*

face S. We apply the formula (4-7) to the function f(p(g, h)x) of =, where
(9,h) e G*, then we have

4-8) 1(g)~ 0 3 flplg, W) = v 2, Flelg, h)x) .

el

It is easy to see that the functions

Z(F Insus) = [ @ uhy 3 Selg, o)dgdh

eL
(21

and

2. Lsus) = [ ulo) u®y 3 Felg, zdgdh
AT wel!
are holomorphically continued to the domain {(s;, s,) € C*: Re (s,) > B}. By
(4-8), we can calculate

(4-9) v(M*)'Z(f,L, s, s,) = v(M*)"‘{LW + L+/r }

(g1 (@£l

B@ ) T S elg, a)dgdh

= v(M*)-IZ.,,(f, Ly Sy 82) + jGJr/P ){1(‘(])‘“"(n+1)/2)(2(}1,)82

r1(g) 21

- 2 folg, h@)ydgdh

zel!

= U(M*)—1Z+(f, L: Sl’ SZ) + Z+(f_’ I_Jy " :2]_ 1 - Sl, 82) .



138 TOSHIAKI SUZUKI

Similarly we have

(4-10) Z(f, L ; L_ sl,sz) =v(M*)Z,(f,L,s,s,)

+z@n”;1—%g.

And, the following equation holds:

(4-11) V(M¥Z(F, L, 51, 8,) = Z(f, L™ ;r 1 _ s, sz) ,

which are holomorphic in the domain {(s,, s;) € C*: Re (s,) > B}.
Now we suppose that supp (f;) C V.; then (1-1), (4-6), (4-6)’ and
(4-11) imply

. 1 N o (rn—1
(4-12) si,(“;“ s — sz,sz,L)-aL-,< e L g)

= v(M*)™! Z Ere(Syy Spy L)‘Qu(f: S — IL‘, S, — ﬁ‘)
0<izn 2 2

é=x1

— )Ry v o M B x Sl]r(sl)r(sl ~ %)

n—2 n—1
- r(sl - )r(s, ro— 22 )[ z Aufsi )

&8y, 8,y L)]Qu( —; " ; 1 — 8 — 8,8, — _g_) .

On the other hand, by (1-3), we have

@ij(_: 7’&-2—1 — 8 — 85,8 — 'g)
= is 4 s = 252 (ks = A5 )a(s - )
'(31_‘ n;Z)@“(—m ’I’l/g5 _31_32’32—?—;'+1)-

For any (s, s,) € C°, we can find /(%) € 7(V;,) such that @,,(f, s, s,) # 0.
So, the functions

R i AR X Gl TR CEE

'Eij(n—gl—sl_sb'gmi), (0§i§n,j=i1),
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are holomorphic in the domain {(s, s, € C,: Re(s;) > B}, and (2-4) holds
in this domain.
Let f(x) e ¢5(V,;) and set f(x) = |d/dx|(d/dx)[v]- f(x), then the func-

tion f(z) = A(Y,v) = I f(X,v)e[Tr XY]dX vanishes on the hypersurface
U
S. For this f(z) and (&), (4-11) holds, too. So, by (1-4), the functions

(81——1)(81———;——1)~~(81— ";2 -1)(31_2)(31_%_2)

(51'— %;2 —2>(31+32— 1’Lg3 —‘2)&1‘(31732714)»

O=sisn j==x1

are holomorphic in the domain {(s, s,) € C*: Re (s,) > B}.
Next for f*(x*) e #(V*) and f(ZT) = j (Y, wel'uv]ldu, we have the
W*

Poisson summation formula

> ) = o) X @) .

z¥EL* el
We take fi(x*) e €5(V¥) and put f*(a*) = Y°ld/dul- f§(x*). The follow-
ing is easy:

4-13) (@ n) ™ e}(; F*e*(g, Wa*) = v(N*)™' 3 flplg, W7) .

iclk

By calculation similar to (4-9), we have, for the above f* and f,

(4_14) ?)(N*)‘IZ(‘]“_, -Z’ Sl + “;—’ ZLZ" - 82) = Z*(f*’ L*’ sls 82) ’
which is holomorphic in the domain {(s,,s,) € C*: Re (s, + 8, — (n — 1/2))
> A, Re(s) > A4}.

By (1-2), (4-6)’, (4-6)” and (4-14), we obtain

@-15)  £,(5, 5, L*)-@zé(f*, - 25— 1’2‘—)

= (N*)-igeann- 11’(_ - sz) 1—s)

-2 Bﬁj(sz)fn(sx + 8 — n—1 —TE‘ Sy E)
== 2 2

‘d):’f7<f*, 8 — %’ Sy — %) ’ (O 1’&, j= il) .
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By (1-5) and similar arguments to the former part, we can see that the
functions (s, — (#/2))(s, — 1)&;,(Sy, S L*), (0 £ ¢ < m, § = +1) are holomor-
phic in the domain {(s,,s)eC?:Re(s; + s, — (n — 1/2)) > A, Re(s) >},
and (2-5) holds there.

Similarly, the functions (s, — (#/2))(s, — DE&,(s; — 85, 8), 0 <7 < n,
j = +1) are holomorphic in the domain {(s,s,) eC?:Re(s, — s, > A,
Re(s) — 1/2 > A}.

Combining the above results, the functions

N

(e 5o )

and
: r 1 2
Sij(su Sy L)'(sl - 1)(31 - 2)<31 + S, — 1-— ‘2—)(31 + S, — 1-— —)

2
n—1 n
-(sl-}—sz—l— 5 )(sz~1)<sz——2—),

(U

IA
IA

are holomorphically continued to the domains {(s, s,) € C*: Re(s, + s,
—(n—1/2)) > A, Re(s) > A} U {(s;,8) € C*: Re(s) > B}. So, they are
holomorphic on the whole plane C?, and (2-4), (2-5) hold on the whole
plane C-.

5. Some residues

In this section, we shall study some residues of the zeta functions
£;,(81, 8, L) and &,(s,8,L), 0 <i<n, j=+1).

The triplet (G, p, V) induces the action of GL(n; R) C G on the subset
R — P of V, whose complexification is prehomogeneous. We decompose
(GL(n; R), R — P) into two spaces (GL(n; R), R — P — U®{0}) and (GL(n; R),
U @ {0} — P), whose complexifications are homogeneous. The zeta func-
tions associated with the vector space of quadratic forms, &;(s), (0 <i< n),
is obtained from the latter space, (see [2]). We define zeta functions
£(s), A <i<n — 1), attached to the former space (GL(n;R),R — P — U
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@ {0}). For the sake of brevity, we write R instead of R — P — U @ {0}.
Similarly, we write R and R* instead of R — P — U* ® {0} and R* — P*
— U* @ {0}, respectively.

Let R¥ ={o* = (Y,weR*:sgnY = (i,n — %)} and R, ={z = (Y, v)
eR:sgnY¥ = (i,n — 9}, A1 <i<n—1), then we have R* = U Rf and
R = U R,, which are the orbital decompositions of R* and R by the
group GL(n; R), respectively.

We define the measures dR* and dE on R* and R by

dR* = dY-] dz;[”“'] \_lduz ceedu, = AT, =y - )
Uy
and
dR = dY~] dg”“’] Cdv, - -dv, =AY D@, =),
Uy

respectively. (It is easy to see that o and @, can be defined on a neigh-
borhood of any generic point of the hypersurface S.) Let R}¥®) = {(Y,w)
eR¥:|Y| =t} and R,(t) = {(Y,v)e R;:|Y| = t}, for a real number ¢ = 0.
We define the differential forms o} and @ on R* and R by % = || Y|~ 2w
and @, = | Y||"""~?"%@,, respectively. They may be considered the measures
on R¥(t) and B,(t), respectively.

For any a* € R*(t) and = e R,(t), there exist Haar measures dv, and
dy; on the isotropy subgroups G*(z*) and G*(z) of G, C GL(n; R) such
that

[ r@ag=|  oxvtinin [ 7o)

and

[ r@eg=[ exxgngo |  raoe
Gy RBi(t) G+ (@)
(fre LG ,

respectively.
The zeta functions &/(s, L*) and &(s,L), (1 <¢ < n — 1), are defined
by
(5-1) gis, L*) = > p@M)|Y|®
z*e B0 L4/~

and
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(5-1y s, D)= X p@|Y|*, (A=izn-1),
ZER{NL/~
where
) = I Ayl = G*(x¥) N 1)
G (x*) [Tz
and
W= ar.=e@nD,
G+ (Z)/T=z
respectively.

We show that there exists a positive number K such that, if n>=5
and Re(s) > K, then &j(s, L*) and &(s,L), 1 <i¢<n — 1), are absolutely
convergent, i.e., there exist positive numbers K’ and C such that

(5-2) > ) < CltE

24€ RE@D) N L¥/~

(5-2) > um < Ot

ZeER;WNL/~
where ¢ is a rational number.
For any rational number ¢ # 0, set E*(¢) = {* € (B¥)¢:|Y| = {} which
are affine varieties defined over Q. Suppose n = 5 and consider the special

homogeneous space (H, R*(t)). By similar arguments to the former part
of section 4, we have

(5-3) > ensz|  ag]| @, ,
*€ RY(D) NL¥/~ GL/r p J(BXONLYp

where (R*(t) N L*), is the closure of R*(#) N L* in V} and (o}), is de-
rived from w%. There is a finite set J of prime numbers such that, if
ped, then LF = Vi, and H? and the isotropy subgroup of an F,-point
of R*(t)® are both connected. Further, by Lang-Weil theorem, we can
choose J such that p = p~ ™"+ [R*®] if peJ (see [12]). When |¢|,=1
for peJ, we have

J (wﬁ)p — p—dlm V+2#[R*(t)(p)] .
(B¥t)NLNp

When |t|, <1 for peJ, we have

j @8, < [t,™"
(R¥()NLH) p

because
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promriReo] = [ @ar, = | @R, = [ @)y,
Zp

Ry R¥(1)Zp

P
¥ €tQ+pZp)

where (dR*), is derived from dR*.

And other parts follow after similar arguments to section 4. We
can identify U*@® {0} with U*. Let Uf={YeU*:|Y|#0, sgnY =
(i,n — 1)} be considered the submanifold of V* and V, (0 <1 < n).

Let f*e¢7(VE) and f(®) = jW* Y, weltvuldu. Then, supp (f) is

contained in ( U V,-,) UR,UU*CV — P. At least formally, we show
Jj==1

the following by routine arguments ([1]):

G-4) £.,(sh 50 L*)-G);'}(f*, 5= 28— g)

= 29 (7%, L 5, 8) + o0 2 (F Lo+ 2 = s,)

+ ,v(N*)-lj. ) xl(g)—sx—(I/Z)xz(h)(‘n/Z)—sn Z _f(p(g, h)o‘c)dgdh
fg(fi)['él ZeRinL

+ o(VF)! j (@) Py (D=1 ST fa(g, W@dgdh
f;&'{)rél seuint

where
Z % Lsps) = [ n@ 3 Mg, havdgdn
22(R)S1

and

G Lsws) = @b 3 g, WEdgdn .
2221 el

Using the results of [1], § 2, 4°, we calculate the following integral, which
is absolutely convergent if Re(s) > K:

(5-5) _[GW (@) PP 5 flp(g, WE)dgdh

seFinL
r2(R)S1 Fefin

N=s1- -5 @1i(9)  dy(h) g -
— ) ) $1—(1/2) (h)(n/Z) S2 1 : . f( ( , h/ xl d]
J.ang(g X @) 1) Jsemnc p(gg, WTHd'g

=G~ D" ¥ @Yo F@ Y peredR

ZeR;nL/~

r22(R) =1
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= (s, — 1)"5{(81 + %,Z).Lﬁ | Y [[r-tm-dy

.fYc[vjzof(E)l dl;;[v] ‘d’l)z - do,

= (s, — 1)*5;(31 n % E).nl-mmp(% B 1>

.JV* f*(x*) ” Y “s;-(n/Z) l Y[u] l—(n—Z/Z)deu
iJ

v sin z(n — 1)/2 when j = +1,
sin z7/2 when j = —1.

Similarly, using the results of [2], chap 2, we have

G-6) [ w@ Tty 3 fl, hadgdh

2a(h) 51 TeunL
= (82 — ﬁ_)_l.&(sl + _1_, M*) I f—(Y, 0) “Y”s;‘(n/Z)dY
2 2 vy

= (82 — ZL’)-}-&-(SI + l, M*)J f*(x*) ”Y“Sl—(n/z)dx* .
2 2 Vis

We can see that (5-4) is justified in the domain {(s,, s,) € C*: Re(s) > A4,
Re (s, + (1/2) — (n/2) + s,) > A, Re(s, + (1/2)) > Max {K, (n + 1)/2}}. So,
(5-5) and (5-6) imply
(5"7) (32 - %)Eij(sly Sz; L*)Isg———nlz = /v(N*)‘I'SZk(Sl + ‘%‘9 M*) b
. 1 n
0<i<n, R AK — =, =2
( <i<n e(sl)>Max{ K 5 2})
and
(5-8) (s — D&;y(81, 82y L*) |goy = v(N*)"Eé(& + %,E)n“‘”ﬂ’l’(g — 1)

.{sin n(n — 2)/2 when j = +1,
sin z1/2 when j = —1,

<1gi§n-—1, Re(sl)>{MaxA+ "5311/1_%.’21})

Similarly, for sufficiently large Re (s)), we have

G (s —;‘—)é,.j(sl,sz, L) s = 0V 8 (3, + 2 £ Lu),
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6-1)" (sz — %)Eu(sl, 800 L) oy = v(N)‘lsi(sl + % M) ,

and

(5-8) (5, — DE,y(81 80 L) |oyr = v(N*)-lé;(sl - 1,E)nl-<n/2>r(g - 1)

_{sin a(n — 1)/2 when j = (—~D"*,
sin #i/2 when j = (=1,

(5-8)" (5, — 1&,(81) 83 L) |yyor = w(N)-ls;(sl - %,M@N*)nl-mmr(g — 1)
.{sin a(n — 19)/2 when j = +1,
sin 7t /2 when j = —1,
a1gig<n-—-1).

Now it is clear that &{(s,L*) and &(s,L) (1 <i<n — 1) are continued
to meromorphic functions of s on the whole plane C.

THEOREM 3. For n =5, the zeta functions &(s,L*) and &Js, L)
Asign — 1, and, if n is even, © s odd.) are absolutely convergent if
Re(s) > K, and continued to meromorphic functions of s on the whole
plane C satisfying the following functional equation :

-F(s _ n—2)F(s _ n;?))_n_n(n—lw 5 1Dik(8)

2 1<k <n~

-s;(s + ~;-,MeaN*)
where

D;(s) = Ay _1s_(s,1)  when n,1 odd ,
D;(s) = Ay 14,105, 1) when n odd, i even ,
D;(8) = Ay 048, 1) + Ay s _i(8, 1)

= Ak,+1,1‘,+1(8, 1) + Ak,—l,i,+1(s9 1) = 'Z),ﬁ?(s + ‘;‘)

when n = 2(4), 1 odd
D(s) = Agiro-a(8, D — Ag _is, (s, D
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= —Ap 06D + A 08D = ’Uz(c’fi<3 + %)

when n = 04), 7 odd .

Proof. Because, by Theorem 2 and the above results, we obtain the
following equations:

)

— v(M*)-l(zn)-"ﬂ-le[ﬂS-lf_L] n"‘”'”/“F(SI)F<Sl — —;-)

(= )= 15)

n—1

Ak,v-l,i(—l)"‘l(sl’ Dsinx + Ak,—l,i(—-l)n-i(sb 1) sin 7’-'—2‘

2
ksn—-1

)
A iecyn-t4:(8, D sin e

1=

.1
+ Ay 1 i—pyn-14:(Sp 1) sin 71—2—

‘s;(sl+ -%-,M@N*), A<i<n—1.
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