S. Iitaka

Nagoya Math. J.
Vol. 73 (1979), 99-115

A NUMERICAL CRITERION OF QUASI-ABELIAN SURFACES

SHIGERU IITAKA

§ 1. Statement of the result

At first, we fix the notation. Let $k=C$ and we shall work in the category of schemes over k. For an algebraic variety V of dimension n, we have the following numerical invariants:

$$
\begin{aligned}
P_{m}(V) & =\text { the } m \text {-genus of } V, \\
q(V) & =\text { the irregularity of } V, \\
\kappa(V) & =\text { the Kodaira dimension of } V ; \\
\bar{P}_{m}(V) & =\text { the logarithmic } m \text {-genus of } V, \\
\bar{q}(V) & =\text { the logarithmic irregularity of } V, \\
\bar{\kappa}(V) & =\text { the logarithmic Kodaira dimension of } V .
\end{aligned}
$$

Note that the latter three invariants have been introduced in [1], [2]. About seventy years ago, F. Enriques obtained the following numerical criterion of abelian surfaces: Let V be an algebraic surface (i.e., $n=2$). Then V is birationally equivalent to an abelian surface if and only if $P_{1}(V)=P_{4}(V)=1$ and $q(V)=2$.

A slightly weaker version of this criterion is the following: V is birationally equivalent to an abelian surface if and only if $\kappa(V)=0$, $q(V)=2$.

Our purpose here is to prove the following numerical criterion of quasi-abelian surfaces, which is a counterpart of the Enriques criterion in proper birational geometry.

Theorem I. Let V be a non-singular algebraic surface. The quasiAlbanese map $\alpha_{V}: V \rightarrow \tilde{\mathscr{A}}_{V}$ is birational and there is an open subset V^{0} of V such that $\alpha_{V} \mid V^{0}: V^{0} \rightarrow \tilde{\mathscr{A}}_{V}-\left\{p_{1}, \cdots, p_{r}\right\}$ is proper birational, if and only if $\bar{\kappa}(V)=0, \bar{q}(V)=2$.

We have introduced $W W P B$-equivalence in [5]. By definition,
$\alpha_{V}: V \rightarrow \tilde{\mathscr{A}}_{V}$ is the $W W P B$-map. Thus, Theorem I is restated as follows:
Theorem I*. Let V be an algebraic surface. V is WWPB-equivalent to a quasi-abelian surface if and only if $\bar{\kappa}(V)=0$ and $\bar{q}(V)=2$.
$W W P B$-equivalence seems very unnatural. However, a $W W P B$-map φ between affine normal varieties turns out to be an isomorphism. Hence if we restrict ourselves to affine normal surfaces, we obtain the following more natural

Theorem II. Let V be an affine normal surface. Then V is isomorphic to G_{m}^{2} if and only if $\bar{\kappa}(V)=0$ and $\bar{q}(V)=2$.

Remark. Recently, K. Ueno [9] has obtained the following numerical criterion of abelian varieties of dimension 3: Let V be an algebraic variety of dimension 3 . Then V is birationally equivalent to an abelian variety of dimension 3 if and only if $\kappa(V)=0$ and $q(V)=3$.

We make the following
CONJECTURE. Let V be an affine normal algebraic variety of dimension n. Then V is isomorphic to G_{m}^{n} if and only if $\bar{\kappa}(V)=0$ and $\bar{q}(V)=n$.

A partial solution of this conjecture is Theorem 12 [3], by which we prove

THEOREM III. Let V be an algebraic variety of dimension n with $\bar{\kappa}(V)=0$. Suppose that there is a dominant strictly rational map of V into G_{m}^{n}. Then the quasi-Albanese map $\alpha_{V}: V \rightarrow G_{m}^{n}$ is birational. V is $W W P B$-equivalent to G_{m}^{n} via α_{V}. Moreover, if V is affine and normal, α_{V} is an isomorphism.

We recall the following genera. $\bar{P}_{1}(V)$ is called the logarithmic geometric genus and denoted by $\bar{p}_{g}(V)$. When $\operatorname{dim} V=1, \bar{p}_{g}(V)$ coincides with $\bar{q}(V)$, which is indicated by $\bar{g}(V) . \quad \bar{g}(V)$ is the logarithmic genus of the algebraic curve V. If $V=\boldsymbol{P}^{1}-\left\{a_{0}, \cdots, a_{m}\right\}$, then $\bar{g}(V)=m$.

Let \bar{V} be a complete non-singular algebraic variety and $\bar{D}=\sum D_{j}$ a reduced divisor on \bar{V}. We say that \bar{D} is a divisor of simple normal crossing type if each D_{j} is non-singular and $\sum D_{j}$ has only normal crossings. If \bar{D} is a divisor of simple normal crossing type, then we
say that \bar{V} is a completion of $V=\bar{V}-\bar{D}$ with smooth boundary. Note that $\operatorname{Reg}(\bar{D})=\bigcup\left(D_{i}-\bigcup_{j=i} D_{j}\right)$, which consists of non-singular points of \bar{D}. By definition, letting $K(\bar{V})$ be a canonical divisor on \bar{V}, we have

$$
\begin{aligned}
\bar{P}_{m}(V) & =\operatorname{dim} H^{0}(\bar{V}, \mathcal{O}(m(\bar{K}+\bar{D}))) \quad \text { and } \\
\bar{\kappa}(V) & =\kappa(K(\bar{V})+\bar{D}, \bar{V})
\end{aligned}
$$

The main tools of this paper are the universality of quasi-Albanese map [2] and fundamental theorems on logarithmic Kodaira dimension ([1] and [3]). For instance,

1. Let $f: V_{1} \rightarrow V_{2}$ be a dominant morphism with connected fibers. Then $\bar{\kappa}\left(V_{1}\right) \leqq \bar{\kappa}\left(f^{-1}(v)\right)+\operatorname{dim} V_{2}, v$ being a general point.
2. Furthermore, when $\operatorname{dim} f^{-1}(v)=1$, we have

$$
\bar{\kappa}\left(f^{-1}(v)\right)+\bar{\kappa}\left(V_{2}\right) \leqq \bar{\kappa}\left(V_{1}\right) .
$$

This is Kawamata's Theorem [7].
3. Let $f: V \rightarrow W$ be a dominant morphism with $\operatorname{dim} V=\operatorname{dim} W$. Then $\bar{\kappa}(V) \geqq \bar{\kappa}(W), \bar{q}(V) \geqq \bar{q}(W)$, and $\bar{P}_{m}(V) \geqq \bar{P}_{m}(W)$.
4. Moreover, if f is proper and birational and $\bar{\kappa}(W) \geqq 0$, then for any closed set Δ, we have

$$
\bar{\kappa}(V-\Delta)=\bar{\kappa}(W-f(\Delta))
$$

This follows from Theorem 13 [3].

§ 2. Half-point attachment

Let S be a non-singular algebraic surface. There exists a completion \bar{S} of S with smooth boundary \bar{D}. Take a non-singular point p of \bar{D} and perform a monoidal transformation with center p, which we write $\mu: \bar{S}_{1}=Q_{p}(S) \rightarrow \bar{S}$. Then $\mu^{*}(\bar{D})=\mu^{-1}(\bar{D})=\bar{D}_{1}+E$, where \bar{D}_{1} is the proper transform of \bar{D} by μ. Write $S_{1}=\bar{S}_{1}-D_{1}$, which contains S as an open subset, for $\bar{S}_{1}-\bar{D}_{1} \supset \bar{S}_{1}-\bar{D}_{1}-E=\bar{S}-\bar{D}=S$. We say that S_{1} is a half-point attachment to S or that S is obtained from S_{1} by deleting one half-point. Then

$$
K\left(\bar{S}_{1}\right)+\bar{D}_{1}=\mu^{*}(K(S)+D),
$$

where $K(\bar{S})$ denotes a canonical divisor on \bar{S}. Hence $\bar{P}_{m}(S)=\bar{P}_{m}\left(S_{1}\right)$ for any $m \geqq 1$ and $\bar{\kappa}(S)=\bar{\kappa}\left(S_{1}\right)$. We have $\bar{q}(S)=\bar{q}\left(S_{1}\right)$ or $\bar{q}(S)=\bar{q}\left(S_{1}\right)+1$, according to the property of the irreducible component C_{1} containing
p. In fact, let $\bar{D}=C_{1}+C_{2}+\cdots+C_{s}$ be a sum of prime divisors C_{j}. Then $D_{1}=C_{1}^{*}+C_{2}+\cdots+C_{s}, C_{1}^{*}$ being the proper transform of C_{1} by μ. Furthermore, put $S_{2}=\bar{S}_{1}-C_{2}-\cdots-C_{s}=Q_{p}\left(\bar{S}-C_{2}-\cdots C_{s}\right)$. Then $q\left(S_{2}\right)=q\left(\bar{S}-C_{2}-\cdots-C_{s}\right)=\bar{q}(S)$ or $\bar{q}(S)-1$. Since $S_{2} \supset S_{1}$, if $\bar{q}\left(S_{2}\right)=\bar{q}(S)$, then $\bar{q}\left(S_{1}\right)=\bar{q}(S)$. If $\bar{q}\left(S_{2}\right)=\bar{q}(S)-1$, then in view of Theorem 1 [2], there are $m_{1} \neq 0, m_{2}, \cdots, m_{s}$ such that

$$
m_{1} C_{1}+\cdots+m_{s} C_{s}=0 \quad \text { in } H^{2}(\bar{S}, \boldsymbol{Z})
$$

From this, it follows that

$$
m_{1}\left(C_{1}^{*}+E\right)+\cdots+m_{s} C_{s}=0 \quad \text { in } H^{2}\left(\bar{S}_{1}, Z\right)
$$

By Theorem 1 in [2], we conclude that $\bar{q}\left(S_{1}\right)=\bar{q}(S)-1$. Thus we obtain
Theorem 1. Let S_{1} be a half-point attachment to S at $P \in C_{1} \subset D$ in which \bar{D} is the smooth boundary of S. Then $\bar{P}_{m}\left(S_{1}\right)=\bar{P}_{m}(S)$, for $m=1,2, \cdots$. Moreover, if C_{1} is cohomologically independent of C_{2}, \cdots, and C_{s}, then $\bar{q}\left(S_{1}\right)=\bar{q}(S)$. Otherwise, $\bar{q}\left(S_{1}\right)=\bar{q}(S)-1$.

Conversely, let E be a closed curve in S. If $E \leftrightarrows P^{1}$ and $E^{2}=-1$, then E is contracted to a non-singular point. E is called an exceptional curve of the first kind in S. Furthermore, if \bar{E} (the closure of E in \bar{S}) is an exceptional curve of the first kind and if (\bar{E}, \bar{D}) $=1$, then E is called a \bar{D}-exceptional curve in S (See Sakai [8]). Contracting the \bar{E} to a non-singular point, we obtain a complete surface \bar{S}_{0} and a divisor $\bar{D}_{0}=C_{1}^{\prime}+C_{2}+\cdots+C_{s}, C_{1}^{\prime}$ being the image of C_{1}. Putting $S_{0}=\bar{S}_{0}-\bar{D}_{0}$, we see that S is a half-point attachment to S_{0}.

Let \mathscr{D}_{j} be the connected component of supp (\bar{D}) and denote by the same symbol \mathscr{D}_{j} the reduced divisor whose support is \mathscr{D}_{j}. Then we have

$$
D=\mathscr{D}_{1}+\cdots+\mathscr{D}_{r}
$$

We assume that $\kappa\left(\mathscr{D}_{1}, \bar{S}\right) \geqq \cdots \geqq \kappa\left(\mathscr{D}_{r}, \bar{S}\right)$. We have three cases.
Case a: $\kappa\left(\mathscr{D}_{1}, \bar{S}\right)=2$. We use the following
Proposition 1. Let \bar{D} be a reduced divisor $\sum C_{j}$ on \bar{S}. Then $\kappa(\bar{D}, S)=2$ if and only if there exists an effective divisor $m_{1} C_{1}+\cdots$ $+m_{s} C_{s}$ with positive self-intersection number.

Proof. The proof of if-part is easy. We assume that $\kappa(\bar{D}, \bar{S})=2$.

Then there is $m>0$ such that $|m D|-|m D|_{\text {fix }}$ is not composite with a pencil. Writing $\mathscr{E}_{m}=|m D|_{\text {rix }}$ we have $|m D|=\left|D_{m}\right|+\mathscr{E}_{m}, D_{m}$ being the general member of $|m D|-\mathscr{E}_{m}$. Then $D_{m}^{2}>0$. Hence

$$
D_{m}=\sum a_{i} C_{i} \in|m D|-\mathscr{E}_{m}
$$

Proposition 2. Notations being as in Proposition 1, the intersection matrix $\left[\left(C_{i}, C_{j}\right)\right]$ is not negative semi-definite if and only if $\kappa(\bar{D}, \bar{S})=2$. If $\left[\left(C_{i}, C_{j}\right)\right]$ is negative semi-definite, then $\kappa(\bar{D}, \bar{S}) \leqq 1$. Conversely, if $\kappa(\bar{D}, \bar{S})=1$, then $\left[\left(C_{i}, C_{j}\right)\right]$ is negative semi-definite that has 0 eigen value.

The proof is easy and omitted.
In the case a, choose $D_{1}=a_{1} C_{1}+\cdots+a_{s} C_{s}$ whose support $\subset \mathscr{D}_{1}$ with $a_{j}>0$ and $D_{1}^{2}>0$ by Proposition 1. Then $\left(D_{1}, \mathscr{D}_{2}\right)=\cdots=\left(D_{1}, \mathscr{D}_{s}\right)$ $=0$. By the algebraic index theorem due to Hodge, we see that the intersection matrices of $\mathscr{D}_{2}, \cdots, \mathscr{D}_{s}$ are negative definite. Hence any irreducible component E in $\mathscr{D}_{2}+\cdots+\mathscr{D}_{s}$ is cohomologically independent of $\mathscr{D}_{1}+\cdots+\mathscr{D}_{s}-E$. Therefore, by Theorem 1, if a \bar{D}-exceptional curve E has a common point with \mathscr{D}_{2}, then $\bar{q}(S)=\bar{q}\left(S_{0}\right)$. Note that $\kappa\left(\mathscr{D}_{2}, \bar{S}\right)$ $=\cdots=\kappa\left(\mathscr{D}_{s}, \bar{S}\right)=0$.

Case b: $\kappa\left(\mathscr{D}_{1}, \bar{S}\right)=1$. There is $t>0$ such that

$$
\kappa\left(\mathscr{D}_{1}, \bar{S}\right)=\cdots=\kappa\left(\mathscr{D}_{t}, \bar{S}\right)=1, \kappa\left(\mathscr{D}_{t+1}, \bar{S}\right)=\cdots=\kappa\left(\mathscr{D}_{s}, \bar{S}\right)=0 .
$$

Then consider the \mathscr{D}_{1}-canonical fiber space $\psi: \bar{S} \rightarrow \Delta$. Since \mathscr{D}_{1} is connected, $\mathscr{D}_{1}=\psi^{-1}\left(a_{1}\right)$ for some a_{1}. Moreover $\left(\mathscr{D}_{j}, \mathscr{D}_{1}\right)=\left(\mathscr{D}_{j}, \psi^{-1}(u)\right)=0$ for a general $u \in \Delta$. Hence $\mathscr{D}_{j} \leqq \psi^{-1}\left(a_{j}\right)$. If $j \leq t$, then $\psi^{-1}\left(a_{j}\right)=\mathscr{D}_{j}$. If $t>j$, then \mathscr{D}_{j} is an incomplete fiber $\subseteq \psi^{-1}\left(a_{j}\right)$. In this case $\kappa(\bar{D}, \bar{S})$ $=1$.

Case c: $\quad \kappa\left(\mathscr{D}_{1}, \bar{S}\right)=\cdots=\kappa\left(\mathscr{D}_{r}, \bar{S}\right)=0$. Then $\kappa(\bar{D}, \bar{S})=0$.

§3. Surfaces with $\bar{\kappa}=0$ and $\bar{q}=2$

Let S be a non-singular surface with $\bar{\kappa}(S)=0$ and $\bar{q}(S)=2$. Consider the quasi-Albanese map α_{S} of $S . \quad$ By B we denote the closed image of S in the quasi-Albanese variety $\tilde{\mathscr{A}}_{S}$ of S. We prove that $B=\tilde{\mathscr{A}}_{S}$. Actually if $B \neq \tilde{\mathscr{A}}_{S}$, then $\tilde{\kappa}(B)>0$ by Theorem 4 in [2]. Since $\tilde{\mathscr{A}}_{S}$ is 2-dimensional by $\bar{q}(S)=2, B \neq \tilde{\mathscr{A}}_{s}$ implies that B is a non-singular curve by Proposition 5 and Corollary 1 in [2]. In view of Kawamata's theorem [7], we have

$$
\bar{\kappa}\left(\alpha^{-1}(s)\right)+1 \geqq \bar{\kappa}(s)=0 \geqq \bar{\kappa}\left(\alpha^{-1}(b)\right)+\bar{\kappa}(B) \quad \text { for a general } b \in B
$$

This implies that $\bar{\kappa}(B)=0$, a contradiction. Therefore, $B=\tilde{\mathscr{A}}$. In other words, α_{S} is dominant. Hence $\bar{p}_{g}(S)=\bar{P}_{2}(S)=\cdots=1$.

Case 1: $q(S)=2$. Then $\tilde{\mathscr{A}}_{S}$ is an abelian surface. Let \bar{S} be a completion of S with smooth boundary $\bar{D} . \alpha=\alpha_{S}$ defines a rational map $\bar{\alpha}: \bar{S} \rightarrow \mathscr{A}_{S}$, which turns out to be a morphism by the minimality of \mathscr{A}_{s}. Hence $0 \leqq \kappa(\bar{S}) \leqq \bar{\kappa}(S)=0$ and so $\bar{\alpha}$ is the Albanese map of \bar{S}. By the classification theory of algebraic surfaces by Enriques-Kodaira, we see that $\bar{\alpha}$ is birational and hence α_{S} is birational. By Theorem 5 [3] (§ 1.4), we see that

$$
\bar{\kappa}(S)=0 \quad \text { if and only if } \bar{\alpha}_{*}(\bar{D})=0
$$

Hence $\alpha_{S}(S)$ is \mathscr{A}_{S} or a complement of a finite set of points in \mathscr{A}_{S}. Since $\bar{\alpha}(\bar{D})$ is a finite set of points $\left\{p_{1}, \cdots, p_{s}\right\}, \bar{D} \subset \alpha^{-1}\left\{p_{1}, \cdots, p_{r}\right\}$ and $\bar{S}-\cup \bar{\alpha}^{-1}\left(p_{j}\right) \subset S$. We can say that $\alpha=\bar{\alpha} \mid S: S \rightarrow \mathscr{A}$ is a $W W P B$-map (see [5]). Hence S is $W W P B$-equivalent to an abelian surface.

Case 2: $q(S)=0$. Then $\tilde{\mathscr{A}}_{S}$ turns out to be an algebraic torus G_{m}^{2}. Since $G_{m}^{2} \xrightarrow{\Im} G_{m} \times G_{m}$, we have the projection π of the product G_{m}^{2} $\rightarrow G_{m}$. Then $\varphi=\pi \alpha_{S}: S \rightarrow G_{m}$ is a dominant morphism. Moreover, for a general $u \in G_{m}, \alpha_{S} \mid \pi^{-1}(u): \varphi^{-1}(u) \rightarrow G_{m}=\pi^{-1}(u)$ is dominant and so $\varphi^{-1}(u)$ is not complete. Consider the Stein factorization $\varphi_{1}: S \rightarrow \Delta, \tau: \Delta \rightarrow G_{m}$ of $\varphi: S \rightarrow G_{m}$. Applying Kawamata's Theorem [7] we obtain

$$
0=\bar{\kappa}(S) \geqq \bar{\kappa}\left(\varphi_{1}^{-1}(u)\right)+\bar{\kappa}(\Delta) .
$$

In general, we have

$$
0=\bar{\kappa}(S) \leqq \bar{\kappa}\left(\varphi_{1}^{-1}(u)\right)+\operatorname{dim} \Delta \quad \text { and } \quad \bar{\kappa}(\Delta) \geqq \bar{\kappa}\left(G_{m}\right)=0 .
$$

From these, it follows that $\bar{\kappa}(\Delta)=0$ and $\bar{\kappa}\left(\varphi_{1}^{-1}(u)\right)=0$ and hence $\Delta=G_{m}$ and $\varphi_{1}^{-1}(u)=G_{m}$. By the universality of quasi-Albanese map, we have a morphism $\varphi_{2}: G_{m}^{2} \rightarrow \Delta=G_{m}$ and the commutative diagram Fig. 2. Since $\varphi_{1}: S \rightarrow \Delta$ has connected fibers, φ_{2} has connected fibers, too. Therefore, in view of Theorem 4 [2] and its corollary, we see that $\varphi_{2}: G_{m}^{2} \rightarrow G_{m}$ is

Fig. 1.
the projection of a decomposition: $G_{m}^{2} \leftrightharpoons G_{m} \times G_{m}$. Thus we have shown that $\varphi: S \rightarrow G_{m}$ has connected fibers. Let $G_{m} \times G_{m} \subset \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ be the natural open immersion and let $\bar{\pi}$ denote the natural projection: $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ $\rightarrow \boldsymbol{P}^{1}$ which is the rational map defined by π. Choosing a suitable completion \bar{S} of S with smooth boundary \bar{D}, we have a proper morphism $\bar{\alpha}: \bar{S} \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ whose restriction to S is α_{S}.

We assume that α_{S} is proper and that \bar{D} is connected. Write $\psi=\bar{\pi} \cdot \bar{\alpha}$, which is a completion of φ (Fig. 2). Denote by H the horizontal component of \bar{D} with respect to ψ. Then $\left(\psi^{*}(a), H\right)=2$ for any $a \in \boldsymbol{P}^{1}$, because $\psi^{-1}(u)-\bar{D}=\psi^{-1}(u)-H \leftrightharpoons G_{m}$ for a general $u \in \boldsymbol{P}^{1}$.

Fig. 2
We shall study singular fibers of φ.
Lemma 1. Let \bar{S} be a completion of a non-singular surface S with connected smooth boundary \bar{D}. Suppose that there is a surjective morphism $\psi: \bar{S} \rightarrow \Delta$ whose general fiber $\psi^{-1}(u)$, u being a general point of Δ, is P^{1} and $\left(\bar{D} ; \psi^{-1}(u)\right)=m$. Then any singular fiber $\psi^{-1}(a) \cap S=\sum \Gamma_{j}$ has the property that $\sum \bar{g}\left(\Gamma_{j}\right) \leqq m-1$ where the Γ_{j} are irreducible components.

Proof. Denote by $\bar{\Gamma}_{j}$ the closure of Γ_{j} in \bar{S}. Then $\psi^{-1}(a)=\bar{\Gamma}_{1}$ $+\cdots+\bar{\Gamma}_{s}+D_{1}+\cdots+D_{r}$ is a sum of irreducible components in which $D_{j} \leqq \bar{D}$. Let H be the horizontal component of \bar{D}. Then $\mathscr{D}=D_{1}+$ $\cdots+D_{r}+H+\psi^{-1}(u)$ is connected. We indicate by $G(\mathscr{D})$ the (dual) graph of \mathscr{D} : Letting α_{0} be the number of vertices of $G(\mathscr{D})$ (=the number of irreducible components of \mathscr{D}) and α_{1} the number of edges and $h(\mathscr{D})$ the cyclotomic number of $G(\mathscr{D})$ (=the number of loops in $G(\mathscr{D})$), we have

$$
\alpha_{0}-\alpha_{1}=1-h(\mathscr{D}) .
$$

It is clear that $h\left(\mathscr{D}+\Gamma_{1}+\cdots+\Gamma_{s}\right)=\bar{p}_{g}\left(\bar{S}-H-\psi^{-1}(a)-\psi^{-1}(u)\right)=$ $m-1$. Counting α_{0} and α_{1} of $G\left(\mathscr{D}+\Gamma_{1}+\cdots+\Gamma_{s}\right)$, we get

$$
\alpha_{0}-\alpha_{1}+s-\sum\left(\mathscr{D}, \bar{\Gamma}_{j}\right)=1-(m-1)=2-m .
$$

Moreover, by $-\sum \bar{g}\left(\Gamma_{j}\right)=s-\sum\left(\mathscr{D}, \bar{\Gamma}_{j}\right)$, we obtain

$$
\sum \bar{g}\left(\Gamma_{j}\right) \leqq m-1
$$

Q.E.D.

In our case m in Lemma 1 is one. Hence $\bar{g}\left(\Gamma_{j}\right) \leqq 1$ and $\#\left\{j ; g\left(\Gamma_{j}\right)=1\right\}$ $\leqq 1$.

Let $a \in G_{m}=\boldsymbol{P}^{1}-\{0, \infty\}$ and use the following notation:

$$
\begin{aligned}
\psi^{*}(a) & =m_{1} C_{1}+\cdots+m_{\sigma} C_{\sigma}, \\
\psi^{-1}(a) & =C_{1}+\cdots+C_{\sigma}, \\
I & =\left\{i \in[1, \cdots, \sigma] ; C_{i} \subset \bar{D}\right\}, \\
I^{c} & =[1, \cdots, \sigma]-I .
\end{aligned}
$$

We assume that $\sigma \geqq 2$. Then there is a component, say C_{1}, which is an exceptional curve of the first kind.

Case (i): $1 \in I$. Contracting C_{1} to a non-singular point p, we have a projective surface \bar{S}_{1} and a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{1}$ such that $C_{1}=\mu^{-1}(p)$. We claim that
(*) $\bar{\alpha}\left(C_{j}\right)$ is a point, if $j \in I$.
Actually, since α is proper, letting $X=P^{1} \times P^{1}-G_{m}^{2}$, we have $\bar{\alpha}^{-1}(X)$ $=\bar{D}$. Hence $\bar{\alpha}\left(C_{j}\right) \subset X \cap\left(\boldsymbol{P}^{1} \times(a)\right)=a$ finite set. In particular, $\bar{\alpha}\left(C_{1}\right)$ is a point. Therefore, $\bar{\alpha}_{1}=\bar{\alpha} \cdot \mu^{-1}: \bar{S}_{1} \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ is a morphism. It is clear that $\bar{S}_{1}-S$ is a divisor of simple normal crossing type. $\quad \bar{\alpha}_{1} \mid S=\alpha$ is proper. Hence we can replace \bar{S} by \bar{S}_{1}. Repeating such contractions, we arrive at the following

Case (ii): $1 \in I^{c}$. Since $C_{1} \not \subset D$, we know $\bar{g}\left(C_{1}-C_{1} \cap \bar{D}\right) \leqq 1$ by Lemma 1. Hence $\left(C_{1}, \bar{D}\right)=0,1,2$.

Case (ii-a): $\left(C_{1}, \bar{D}\right)=0$. Contracting C_{1} to a non-singular point, we obtain a non-singular surface S_{1} and a proper birational morphism $\mu: S \rightarrow S_{1}$. Since $\alpha\left(C_{1}\right)$ is complete in $G_{m}^{2}, \alpha\left(C_{1}\right)$ is a point and hence $\alpha_{1}=\alpha \cdot \mu^{-1}$ is a proper morphism. Replacing S by S_{1}, we can assume that such C_{1} does not exist.

Case (ii-b): $\quad\left(C_{1}, \bar{D}\right)=1$. Then $\Gamma_{1}=C_{1}-C_{1} \cap \bar{D} \rightrightarrows G_{a} . \quad$ Hence $\alpha\left(\Gamma_{1}\right)$ is a point in G_{m}^{2}. In fact, if $\alpha\left(\Gamma_{1}\right)$ were a curve, $\bar{\kappa}\left(\alpha\left(\Gamma_{1}\right)\right) \leqq \bar{\kappa}\left(\Gamma_{1}\right)=$ $\bar{\kappa}\left(G_{a}\right)=-\infty$. This contradicts the Ueno-type theorem (Theorem 4 [2]) to the effect that $\bar{\kappa}(B) \geqq 0$ if $B \subset G_{m}^{n}$. Therefore $\bar{\alpha}\left(\bar{\Gamma}_{1}\right)=$ a point on $X=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}-G_{m}^{2}$. Hence $\bar{\Gamma}_{1} \leqq D=\bar{\alpha}^{-1}(X)$ for α is proper. This con-
tradicts the assumption $1 \in I^{c}$. Hence the case (ii-b) does not occur.
Case (ii-c): $\quad\left(\bar{C}_{1}, \bar{D}\right)=2$. We divide the case in the following way:
Subcase I: $\quad\left(H, C_{1}\right)=2$. Since $2=\left(H, \psi^{*}(a)\right)=m_{1}\left(H, C_{1}\right)+m_{2}\left(H, C_{2}\right)$ $+\cdots$, it follows that $m_{1}=1,\left(H, C_{2}\right)=\cdots=0$. Then, there exists an exceptional curve of the first kind, say C_{2}. In fact, if $C_{j}^{2} \leqq 0$ for $j=2, \cdots, \sigma$, then

$$
-2=\left(K(\bar{S}), \psi^{*}(a)\right)=\left(K(\bar{S}), C_{1}\right)+m_{2}\left(K(\bar{S}), C_{2}\right)+\cdots \geqq-1
$$

This is a contradiction. By assumption, $2 \in I^{c}$. Moreover, by Lemma 1 we have $\bar{g}\left(C_{2}-C_{2} \cap \bar{D}\right)=1$. Hence $\left(C_{2}, \bar{D}\right)=0$ or 1 . Thus we arrive at the case (ii-a) or (ii-b).

Subcase II: $\left(H, C_{1}\right)=1$. By the same argument as in Subcase II, we have an exceptional curve of the first kind $C_{2}, 2 \in I^{c}$. Hence (C_{2}, \bar{D}) $=0$ or 1 .

Subcase III: $\left(H, C_{1}\right)=0$. In view of $\left(C_{1}, \bar{D}\right)=2$, there exist $2,3 \in I$ satisfying that $\left(C_{1}, C_{2}\right)=\left(C_{1}, C_{3}\right)=1$. By the logarithmic ramification formula for $\alpha: S \rightarrow G_{m}^{2}$, we obtain

$$
K(\bar{S})+\bar{D}=\bar{R}_{\alpha} .
$$

Write $\Gamma_{1}=C_{1}-\bar{D} \rightrightarrows G_{m}$ and consider the singular fiber:

$$
\varphi^{-1}(a)=\Gamma_{1}+\Gamma_{2}+\cdots+\Gamma_{s} .
$$

Since \bar{D} is connected, by Lemma 1 , we see that

$$
\Gamma_{j} \simeq G_{a} \quad \text { or } \quad P^{1} \quad \text { for } j \geqq 2 .
$$

Hence $\alpha\left(\Gamma_{j}\right)=$ a point. This implies that $\bar{\Gamma}_{j} \leqq \bar{R}_{\alpha}$ for $j \geqq 2$. Moreover, for any $i \in I$, we infer that $C_{i} \leqq \bar{R}_{\alpha}$ from the following

Lemma 2. Let $f: V_{1} \rightarrow V_{2}$ be a dominant morphism of an n-dimensional non-singular algebraic variety V_{1} into another n-dimensional algebraic variety V_{2}. Let \bar{V}_{i} be a completion of V_{i} with smooth boundary \bar{D}_{i} for each i such that $\bar{f}: \bar{V}_{1} \rightarrow \bar{V}_{2}$ defined by f is a morphism. Let $p \in \bar{V}_{1}$ and $q=\bar{f}(p)$ be closed points and choose systems of regular parameters $\left(z_{1}, \cdots, z_{n}\right)$ and $\left(w_{1}, \cdots, w_{n}\right)$ around p and q, respectively as follows: \bar{D}_{1} is defined by $z_{1} \cdots z_{r}=0$ locally at p and D_{2} is defined by $w_{1} \cdots w_{s}=0$ locally at q. Let Γ_{i} be a local divisor defined by $z_{i}=0$ and Δ_{j} a local divisor defined by $w_{j}=0$. Denote by W_{j} a local divisor defined by $w_{j}=0$ for $j \geqq s+1$. We have

$$
\bar{f}^{*}\left(W_{j}\right)=\sum n_{j i} \Gamma_{i}+\text { some effective divisor } .
$$

Then

$$
\bar{R}_{f} \geqq \sum_{i}\left(\sum_{j=s+1} n_{j i}\right) \Gamma_{i} \quad \text { locally at } p .
$$

Proof. By the assumption, for $j \geqq s+1$ we have

$$
w_{j}=\eta_{j} \cdot \Pi z_{i}^{n_{j} /} .
$$

Hence

$$
\begin{aligned}
d w_{j} & =d \eta_{j} \Pi z_{i}^{n_{j i}}+\eta_{j} \Pi z_{i}^{n_{j i}} n_{j i} \frac{d z_{i}}{z_{i}} \\
& =\Pi z_{i}^{n_{j i}}\left\{d \eta_{j}+\eta_{j} \sum n_{j i} \frac{d z_{i}}{z_{i}}\right\} .
\end{aligned}
$$

Therefore, combining this with ($d L / L$) in § 3 of [1], we obtain

$$
\begin{aligned}
\frac{d w_{1}}{w_{1}} & \wedge \cdots \wedge \frac{d w_{s}}{w_{s}} \wedge d w_{s+1} \wedge \cdots \wedge d w_{n} \\
& =\Pi z_{\imath}^{\Sigma n_{j}} \varphi(z) \frac{d z_{1}}{z_{1}} \wedge \cdots \wedge \frac{d z_{r}}{z_{r}} \wedge d z_{r_{+1}} \wedge \cdots \wedge d z_{n}
\end{aligned}
$$

where $\varphi(z)$ is a regular function at p.
A local equation defining \bar{R}_{f} at p is $\Pi z_{i}^{n_{f i t}} \varphi(z)$. This implies that

$$
\bar{R}_{f} \geqq \sum_{i}\left(\sum_{j=s+1} n_{j i}\right) \Gamma_{i} \quad \text { locally at } p .
$$

Q.E.D.

We claim that $\bar{R}_{\alpha} \geqq C_{1}$. Otherwise,

$$
\bar{R}_{\alpha}=a C_{2}+b C_{3}+\Theta \quad(\Theta>0)
$$

induces that

$$
\left(\bar{R}_{a}, C_{1}\right)=a+b+\left(\Theta, C_{1}\right) \geqq 2 .
$$

On the other hand,
$\left(\bar{R}_{\alpha}, C_{1}\right)=\left(K(\bar{S}), C_{1}\right)+\left(\bar{D}, C_{1}\right)=-1+2=1$. This is a contradiction. Therefore, $\bar{R}_{a} \geqq \psi^{-1}(a)$. From this it follows that

$$
k\left(\bar{R}_{a}, \bar{S}\right) \geqq k\left(\psi^{-1}(a), \bar{S}\right)=k\left(a, P^{1}\right)=1 .
$$

This is a contradiction. Therefore, the Subcase III does not occur.
Accordingly, after contracting exceptional curves of the first kind
in $\psi^{-1}(a)$, we conclude that $\psi^{*}(a)=\boldsymbol{P}^{1}$. This implies that $\psi^{-1}\left(G_{m}\right)$ is a \boldsymbol{P}^{1}-bundle over G_{m}, which turns out to be the product $\boldsymbol{P}^{1} \times G_{m}$. Therefore $S=\varphi^{-1}\left(G_{m}\right)=G_{m} \times G_{m}$. Thus we can summarize the above result as follows: If α_{S} is proper and \bar{D} is connected, then S is obtained from G_{m}^{2} by successive blowing ups.

Consider the general case in which α_{S} may not be proper. But, assume that \bar{D} is connected. Using the notation at the beginning of Case (2), put $\hat{S}=\bar{\alpha}^{-1}\left(G_{m}^{2}\right)$ and $\hat{\alpha}=\bar{\alpha} \mid \hat{S}$. Since $S \subset \hat{S}$, it follows that $\bar{\kappa}(\hat{S}) \leqq \bar{\kappa}(S)=0$. There is a dominant morphism $\hat{S} \rightarrow G_{m}^{2}$. Hence $\bar{F}_{m}(\hat{S})$ $\geqq 1$ and so $\bar{P}_{m}(\hat{S})=1$ for any $m \geqq 1$. Let $\hat{D}=\bar{S}-\hat{S}$ and \mathscr{D}_{1} the connected component of \hat{D} containing $H+\psi^{-1}(0)+\psi^{-1}(\infty)$. Then $\kappa\left(\mathscr{D}_{1}, \bar{S}\right)$ $\geqq \kappa\left(H+\psi^{-1}(0)+\psi^{-1}(\infty), \bar{S}\right)=2$. Hence writing \hat{D} as a sum of connected components $\mathscr{D}_{1}, \mathscr{D}_{2}, \cdots, \mathscr{D}_{r}$, we have $\kappa\left(\mathscr{D}_{2}, \bar{S}\right)=\cdots=\kappa\left(\mathscr{D}_{r}, \bar{S}\right)=0$. Moreover, any E is cohomologically independent of $\mathscr{D}_{1}, \mathscr{D}_{2}-E, \cdots, \mathscr{D}_{r}$. Hence $\bar{q}\left(\bar{S}-\mathscr{D}_{1}\right)=\bar{q}(\hat{S})=2$. Consider the quasi-Albanese maps of the inclusion $\hat{S} \rightarrow S^{\prime}=\bar{S}-\mathscr{D}_{1}$. First we shall prove that the quasi-Albanese map α_{1} of \hat{S} is $\hat{\alpha}$. Denoting by i the inclusion $S \subset \hat{S}$, we have the homomorphism $i_{*}: G_{m}^{2} \rightarrow G_{m}^{2}$ such that $i_{*} \cdot \alpha=\alpha_{1} \cdot i$ (Fig. 3).

Fig. 3
By the universality of quasi-Albanese map, we have a morphism $\varphi: G_{m}^{2}$ $\rightarrow G_{m}^{2}$ such that $\varphi \cdot \alpha_{1}=\hat{\alpha}$. Then

$$
i_{*} \cdot \varphi \cdot \alpha_{1}=i_{*} \cdot \hat{\alpha}=i_{*} \cdot \hat{\alpha}=\alpha_{1}
$$

Hence $i_{*} \cdot \varphi=$ id. This implies that φ is injective. Since $\hat{\alpha}$ is dominant, φ is the étale covering. Therefore φ is an isomorphism. Hence $\alpha_{1}=\hat{\alpha}$. Then denote by α^{\prime} the quasi-Albanese map of $S^{\prime}=\bar{S}-\mathscr{D}_{1}$. We have the following diagram:

Fig. 4

Since j_{*} is a homomorphism and G_{m}^{2} is an algebraic torus, j_{*} turns out to be the étale covering, which is proper. Recalling that $\hat{\alpha}$ is proper, we have a proper morphism $j_{*} \cdot \hat{\alpha}=\alpha^{\prime} \cdot j$. Hence $\hat{S}=S^{\prime}$. Therefore, we can conclude that \hat{D} is connected.

By the previous result, $\hat{\alpha}$ is a proper birational morphism. Moreover, write $F=\hat{\alpha}(\bar{D} \cap \hat{S})$, which is a closed set. Then by Theorem 12 [3], we have

$$
\bar{\kappa}(S)=\bar{\kappa}\left(\hat{S}-\hat{\alpha}^{-1}(\boldsymbol{F})\right)=\bar{\kappa}\left(G_{m}^{2}-F\right) .
$$

Hence $\bar{k}(S)=0$ implies that F is a finite set of points by Proposition 10 [2]. Then $\bar{D} \subset \bar{\alpha}^{-1}(X) \cup \hat{\alpha}^{-1}(F)=\hat{D} \cup \hat{\alpha}^{-1}(F)$. Since \bar{D} is connected, this means that $F=\phi$ and $\bar{D}=\hat{D}$. Thus we establish the following

THEOREM 2. Let S be a non-singular surface with connected smooth boundary. Suppose that $\bar{\kappa}(S)=q(S)=0$ and $\bar{q}(S)=2$. Then S is obtained from G_{m}^{2} by successive blowing ups.

We shall study the general case in which \bar{D} may not be connected. Note that $\bar{D} \geqq H+\psi^{-1}(0)+\psi^{-1}(\infty)$. Since $H+\psi^{-1}(0)+\psi^{-1}(\infty)$ is connected, we denote by \mathscr{D}_{1} the connected component of \bar{D} that contains $H+\psi^{-1}(0)+\psi^{-1}(\infty)$. Note that $\kappa\left(H+\psi^{-1}(0)+\psi^{-1}(\infty), \bar{S}\right)=2$ and so $\kappa\left(\mathscr{D}_{1}, \bar{S}\right)=2$. We write \bar{D} as a sum of connected divisors $\mathscr{D}_{1}, \mathscr{D}_{2}, \cdots, \mathscr{D}_{s}$. By the remark at the end of $\S 2$, each intersection matrix of $\mathscr{D}_{j}(j \geqq 2)$ is negative definite. Hence $\bar{q}\left(\bar{S}-\mathscr{D}_{1}\right)=\bar{q}(\bar{S}-\bar{D})=2$. The graph $G\left(\mathscr{D}_{1}\right)$ contains $G\left(H+\psi^{-1}(0)+\psi^{-1}(\infty)\right)$ which has one loop. Hence $\bar{p}_{g}\left(\bar{S}-\mathscr{D}_{1}\right)$ $\geqq 1$. By the fact that $\bar{\kappa}\left(\bar{S}-\mathscr{D}_{1}\right) \leqq \bar{\kappa}(S)=0$, we have $\bar{\kappa}\left(\bar{S}-\mathscr{D}_{1}\right)=0$. Hence applying Theorem 2, we conclude that $\bar{S}-\mathscr{D}_{1}$ is obtained from G_{m}^{2} by successive blowing ups. Since each $\mathscr{D}_{j}(j \geqq 2)$ consists of \boldsymbol{P}^{1} in $\bar{S}-\overline{\mathscr{D}}_{1}$, it follows that $\alpha\left(\mathscr{D}_{j}\right)=p_{j}$ a point for each $j \geqq 2$, where α is the quasi-Albanese map of $\bar{S}-\mathscr{D}_{1}$. Hence we have

$$
S^{0}=S-\bigcup \alpha^{-1}\left(p_{j}\right) \xrightarrow{\alpha} G_{m}^{2}-\left\{p_{2}, \cdots, p_{s}\right\}
$$

and $S^{0}: S^{0} \rightarrow G_{m}^{2}-\left\{p_{2}, \cdots, p_{s}\right\}$ is a proper birational morphism.
Case 3: $q(S)=1$. Then the Albanese map of the quasi-Albanese variety $\tilde{\mathscr{A}}_{s}$ is a surjective morphism $\pi: \tilde{\mathscr{A}}_{s} \rightarrow E, E$ being the Albanese variety of S, which is an elliptic curve. Any fiber of π is G_{m} and so $\varphi=\pi \cdot \alpha: S \rightarrow E$ is an algebraic fibered surface whose fibers are G_{m}. In fact, by the same reasoning as in the case 2 , we can conclude that
φ has connected fibers. Indicate by \bar{Z} the completion of $Z=\tilde{\mathscr{A}}$ with smooth boundary Δ which was constructed in § 10 [2]. Since $\bar{Z} \rightarrow E$ is the G_{m}-bundle whose fibers are P^{1}, Δ is a sum of two sections Δ_{1} and Δ_{2}. $\bar{q}(Z)=q(Z)+1=2$ implies that Δ_{1} and Δ_{2} have the same class in $H^{2}(\bar{Z}, Z)$ by Theorem 1 in [2]. We choose a completion \bar{S} of S with smooth boundary \bar{D} such that a rational map $\psi: \bar{S} \rightarrow E$ defined by φ and a rational map $\bar{\alpha}: \bar{S} \rightarrow \bar{Z}$ defined by α are both morphisms. Using the same argument as in the case 2 , we conclude that α is birational. Moreover, letting \mathscr{D}_{i} be the connected components of \bar{D} containing D_{i}, we know that $\bar{D}=\left(\mathscr{D}_{1}+\mathscr{D}_{2}\right)=\mathscr{D}_{1} \cup \mathscr{D}_{2}$ if and only if α is proper. Therefore, if S is a non-singular surface with $\bar{\kappa}(S)=0, q(S)=1$ and $\bar{q}(S)=2$, then the quasi-Albanese map $\alpha: S \rightarrow Z$ is dominant and satisfies the property to the effect that the composition:

$$
S-\cup \alpha^{-1}\left(p_{j}\right) \hookrightarrow S \rightarrow Z-\left\{p_{1}, \cdots, p_{r}\right\}
$$

is proper. Hence S is $W W P B$-equivalent to Z.
Remark. The proof of the case $q(S)=0$ could be replaced by the much easier argument in the proof of Theorem 12 [3]. However, our proof will do for the case $q(S)=1$.

§ 4. Proof of Theorem II

In this section by S we denote an affine normal algebraic surface with $\bar{\kappa}(S)=0$ and $\bar{q}(S)=2$. We use the following

Lemma 3. Let V be an affine normal variety and consider a completion \bar{V} of \bar{V}. Then the algebraic boundary $\bar{D}=\bar{V}-V$ is connected, provided that $\operatorname{dim} V \geqq 2$. When \bar{V} is normal and \bar{D} is a reduced divisor, $\kappa(\bar{D}, \bar{V})$ is equal to $\operatorname{dim} V$.

The proof follows from the connectedness principle. Q.E.D.

Let $\mu: S^{*} \rightarrow S$ be a non-singular model and let S^{*} be a completion of S^{*} with smooth boundary D^{*}. Then D^{*} is connected and $\kappa\left(D^{*}, \bar{S}^{*}\right)$ $=2$. Hence $q(S) \leqq 1$, and so the quasi-Albanese map $\alpha^{*}: S^{*} \rightarrow \tilde{\mathscr{A}}_{S}$ is proper and birational. Hence $\alpha=\alpha_{S}: S \xrightarrow{\mu^{-1}} S^{*} \rightarrow \tilde{\mathscr{A}}_{S}$ is also a proper birational map. If $q(S)=0$, then $\tilde{\mathscr{A}}_{s}=G_{m}^{2}$ is affine. By Lemma 1 [3], α_{S} turns out to be an isomorphism. Hence $S \leftrightharpoons G_{m}^{2}$. If $q(S)=1, \mathscr{A}_{S}$ $=Z$ is a G_{m}-bundle over E. From $\kappa\left(D^{*}, \bar{S}^{*}\right)=2$, it follows that
$\kappa\left(\Delta_{1}+\Delta_{2}, \bar{Z}\right)=2$. Since Δ_{1} is cohomologous to Δ_{2}, we have $\Delta_{1}^{2}=\left(\Delta_{1}, \Delta_{2}\right)>0$ for $\kappa\left(\Delta_{1}+\Delta_{2}, \bar{Z}\right)=2$. Hence Δ_{1} and Δ_{2} are both ample and so $\Delta_{1}+\Delta_{2}$ is ample. This implies that $Z=\bar{Z}-\left(\Lambda_{1}+\Delta_{2}\right)$ is an affine surface. Thus Z is a quasi-abelian surface which is an affine algebraic group. This is a contradiction.

Example. Let $\bar{Z}=\boldsymbol{P}^{1} \times E$ and $\varphi: E \rightarrow \boldsymbol{P}^{1}$ a rational function. Then the graph Γ_{φ} has the following property:
$\Gamma_{\varphi}^{2}=2 \cdot \operatorname{deg} \varphi, \operatorname{deg} \varphi=\left[k(E): k\left(\boldsymbol{P}^{1}\right)\right]$ and if $\operatorname{deg} \varphi>0$, then $Z=\bar{Z}-\Gamma_{\varphi}$ is affine and $\bar{\kappa}(Z)=-\infty, \bar{q}(Z)=0$. Put $S=\bar{Z}-\left(\Gamma_{\varphi}+\Gamma_{\psi}\right), \varphi \neq \psi$. Then S is affine and $\bar{q}(S) \geqq 1$ and $\bar{\kappa}(S) \geqq 0$. Moreover
$\bar{q}(S)=2$ if and only if $\operatorname{deg} \varphi=\operatorname{deg} \psi$,
$\bar{\kappa}(S)=0$ if and only if φ and ψ are constants and hence, $S=E \times G_{m}$.
§ 5. Surfaces with $\bar{\kappa}(S)=0, \bar{q}(S)=1$
Let S be a non-singular surface with $\bar{\kappa}(S)=0$ and $\bar{q}(S)=1$. The quasi-Albanese variety $Y=\tilde{\mathscr{A}}_{S}$ is an elliptic curve or G_{m} according to $q(S)=1$ or 0 . Then quasi-Albanese map $\alpha: S \rightarrow Y$ has connected fibers. Let $C_{u}=\alpha^{-1}(u)$ be a general fiber. Then by Kawamata's theorem,

$$
0=\bar{\kappa}(S) \geqq \bar{\kappa}\left(C_{u}\right)+\bar{\kappa}(Y) \geqq \bar{\kappa}\left(C_{u}\right) .
$$

Hence $\bar{\kappa}\left(C_{u}\right)=0$. However, $\kappa(Y)=0, \kappa\left(C_{u}\right)=-\infty$ do not hold at the same time. Moreover, if S is affine, then $Y=G_{m}$ and $C_{u}=G_{m}$.

Example. Let $S=\operatorname{Spec} C[x, y, 1 / F], F=x^{m} y-1$. Then $\bar{P}_{1}(S)=$ $\bar{P}_{2}(S)=\cdots=1, \bar{\kappa}(S)=0$ and $\bar{q}(F)=1$.
§6. Surfaces with $\bar{\kappa}(S)=-\infty$ and $\bar{q}(S) \geqq 1$
Let S be a non-singular surface with $\bar{\kappa}(S)=-\infty$ and $\bar{q}(S) \geqq 1$. Consider the quasi-Albanese map $\alpha: S \rightarrow Y=\tilde{\mathscr{A}}_{s}$. By Kawamata's theorem, a general fiber C_{u} is of elliptic type, that is, $C_{u}=P^{1}$ or G_{a}.

Theorem 3. Let $F \in C[x, y]$ and $S=\operatorname{Spec} C[x, y, 1 / F]$. Assume that $\bar{\kappa}(S)=-\infty$. Then there are new variables $u, v \in C[x, y]$ such that $C[x, y]=C[u, v], F=F_{0}(u) \in C[u]$.

Proof. Let R be the integral closure of $C[F]$ in $C[x, y]$. Then R is normal and $\bar{g}(\operatorname{Spec} R) \leqq \bar{q}\left(A^{2}\right)=0$. Hence $\operatorname{Spec}(R)=G_{a}$, in other words, $R=C[f]$ such that $f-\lambda$ is irreducible for a general λ. Since
$F \in C[F] \subset R=C[f], F$ is a polynomial of f and $f: A^{2} \rightarrow A^{1}$ is the Stein factorization of $\boldsymbol{F}: \boldsymbol{A}^{2} \rightarrow \boldsymbol{A}^{1}$. Write $\boldsymbol{F}=a_{0} \Pi\left(f-a_{j}\right)^{e_{j}}, e_{j}>0$. Then $V(F)=V\left(f-a_{1}\right) \cup \cdots \cup V\left(f-a_{S}\right)$. Hence $\bar{\kappa}\left(A^{2}-V\left(f-a_{1}\right)\right) \leqq$ $\bar{\kappa}\left(A^{2}-V(F)\right)=-\infty$. Applying Kawamata's theorem to $f-a_{1}: A^{2}-$ $V\left(f-a_{1}\right) \rightarrow C^{*}$, we have for general $\lambda, V(f-\lambda) \leftrightarrows G_{a}$. Hence by Jung-Gutwirth-Nagata's pencil theorem, there are new variables u, v $\in \boldsymbol{C}[x, y]$ such that $\boldsymbol{C}[x, y]=\boldsymbol{C}[u, v]$ and $f-a_{1}=u$.
Q.E.D.

Corollary 1. If dim Aut $C[x, y, 1 / F] \geqq 3$, then $F=F_{0}(u)$ as in the theorem above. If dim Aut $C[x, y, 1 / F]=2$, then $C[x, y, 1 / F]=$ $\boldsymbol{C}\left[u, v, u^{-1}, v^{-1}\right]$.

Proof. If dim Aut $C[x, y, 1 / F] \geqq 3$, then by Theorem 7 [1], we conclude that $\bar{\kappa}\left(A^{2}-V(F)\right)=-\infty$. Then, apply Theorem 3. Note that Aut $C\left[x, y, 1 /\left(\Pi\left(x-a_{j}\right)\right)\right]$ contains T such that $T x=x, T y=y+\alpha_{0}+\alpha_{1} x$ $+\cdots+\alpha_{d} x^{d}, \alpha_{i}$ belonging to \boldsymbol{C}. Hence dim Aut $\boldsymbol{C}\left[x, y, 1 / \Pi\left(x-a_{j}\right)\right]=\infty$. The assumption $\operatorname{dim} \operatorname{Aut} C[x, y, 1 / F]=2$ implies that $\bar{\kappa}(\operatorname{Spec} C[x, y, 1 / F])$ $\geqq 0$. Hence by Theorem $6[1]$, we conclude that $\operatorname{Spec} C[x, y, 1 / F]=G_{m}^{2}$.

Corollary 2. Let $R_{0}=C[x, y, 1 / F]$ and R_{1}, R_{2} be integral domains which are finitely generated over C. Then we have two cases: Case 1. Any C-isomorphism $\Phi: R_{0} \otimes R_{2} \leftrightharpoons R_{1} \otimes R_{2}$ induces the isomorphism $\varphi: R_{0}$ $\xrightarrow{\Im} R_{1}$ such that $\Phi=\varphi \otimes 1$. Case 2. $\quad R_{0} \Im C[u, 1 / f(u)][v]$. In this case, let $R_{1}=R_{0}$ and $R_{2}=C[w]$. Define Φ by $\Phi(v)=v+w, \Phi(u)=u, \Phi(w)$ $=w$. Then Φ does not induce φ as in case 1 .

Proof. Combining Theorem 1 in [6] with Theorem 3, we are through.
Note that the corollary is an affirmative solution of the conjecture in [6].

Theorem 4. Let $R_{0}=C\left[x, y, x^{-1}, y^{-1}\right]$ which is $\Gamma\left(G_{m}^{2}, \mathcal{O}\right)$ and let R_{1} and R_{2} be integral domains that are finitely generated over C. Assume that $\Phi: R_{0} \otimes R_{2} \leftrightarrows R_{1} \otimes R_{2}$. Then $R_{0} \leftrightharpoons R_{1}$.

Proof. Let $V_{1}=\operatorname{Spec} R_{1}$. Then by the isomorphism Φ, we have $\bar{\kappa}\left(V_{1}\right)=0$ and $\bar{q}\left(V_{1}\right)=2$. Hence the normalization of V_{1} is G_{m}^{2} by Theorem II. Counting the irreducible components of the singular set:
$\operatorname{Sing}\left(V_{0} \times \operatorname{Spec} R_{2}\right)=V_{0} \times \operatorname{Sing}\left(\operatorname{Spec} R_{2}\right)$
$\leftrightarrows \operatorname{Sing}\left(V_{1} \times \operatorname{Spec} R_{2}\right)=V_{1} \times \operatorname{Sing}\left(\operatorname{Spec} R_{2}\right) \cup \operatorname{Sing}\left(V_{1}\right) \times \operatorname{Spec} R_{2}$
we have $\operatorname{Sing}\left(V_{1}\right)=\phi$. Hence $V_{1}=G_{m}^{2}$.
Q.E.D.

§ 7. Polynomials $\varphi(x, y)$

Let $\varphi \in C[x, y]-C$ and let $S=D(\varphi)=A^{2}-V(\varphi)$. If $\bar{\kappa}(S)=1$, then there is a surjective morphism $f: S \rightarrow \Delta, \Delta$ being a rational curve, for $g(\Delta) \leqq q(S)=0$. Hence $f=\psi / \varphi^{d}$ for some $\psi \in C[x, y]$. Moreover, for a general $\lambda, V\left(\psi-\lambda \varphi^{d}\right)-V(\varphi) \leftrightarrows G_{m}$. Such φ is called a G_{m}-polynomial, which will be studied in a forthcoming paper. We have the following table:

TABLE

$\stackrel{\sim}{k}(D(\varphi))$	$\bar{q}(D(\varphi))$	φ	$S=D(\varphi)=A^{2}-V(\varphi)$
-	$\geqq 1$	$\varphi=\varphi_{0}(u)$	$S=\boldsymbol{A}^{1} \times C$
0	1	$\begin{aligned} & \text { for example } \\ & \varphi=x y^{m}-1 \end{aligned}$	$f: S \rightarrow G_{m}$, general fiber being G_{m}
	2	$\varphi=u^{r} v^{s}$	$S=G_{m}^{2}$
1	$\geqq 1$	G_{m}-polynomial	$f: S \rightarrow \Delta$, general fiber being \boldsymbol{G}_{m}
2	$\geqq 1$	polynomial of hyperbolic type	hyperbolic type

Referring to the following result by Sakai:
Theorem (Sakai [8]). If $\bar{\kappa}(V)=\operatorname{dim} V$, then V is measure-hyperbolic, we obtain the Brody-type Theorem:

THEOREM 5. $D(\varphi)$ is measure-hyperbolic if and only if $\bar{\kappa}(D(\varphi))=2$, that is, $D(\varphi)$ is of hyperbolic type.

Remark. In order to generalize the theorem above, we have to study the following surfaces.
A. Surfaces with $\bar{\kappa}(S)=-\infty, \bar{q}(S)=0$. These might be called logarithmic rational surfaces.
B. Surfaces with $\bar{\kappa}(S)=0, \bar{q}(S)=0$. These might be called logarithmic $K 3$ surfaces.

[^0]
References

[1] S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, Complex Analysis and Algebraic Geometry, in honor of K. Kodaira, Iwanami (1977), 175-189.
[2] -, Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. of Tokyo, 23 (1976), 525-544.
[3] ——, Some applications of logarithmic Kodaira dimension, Proc. Int. Symposium on Algebraic Geometry, Kyoto (1977), 185-206.
[4] , On the Diophantine equation $\varphi(X, Y)=\varphi(x, y)$, J. für r. u. a. Math., 298 (1978), 43-52.
[5] ——, Finiteness property of weakly proper birational maps, J. Fac. Sci. Univ. of Tokyo, 25 (1978), 1-11.
[6] S. Iitaka and T. Fujita, On cancellation theorems for algebraic varieties, J. Fac. Sci. Univ. of Tokyo, 24 (1977), 123-127.
[7] Y. Kawamata, Addition Theorem of logarithmic Kodaira dimension, Proc. Int. Symposium on Algebraic Geometry, Kyoto (1977), 207-217.
[8] F. Sakai, Kodaira dimensions of complements of divisors, Complex Analysis and Algebraic Geometry, in honor of K. Kodaira, Iwanami (1977), 239-257.
[9] K. Ueno, On algebraic threefolds of parabolic type, Proc. Japan Acad., 52 (1976), 541-543.
[10] S. Iitaka, Classification of algebraic varieties, Proc. Japan Acad., 53 (1977), 103-105.
[11] - On logarithmic $K 3$ surfaces, to appear in Osaka J. of Math.
Department of Mathematics
University of Tokyo

[^0]: After the completion of this paper, Kawamata succeeded in generalizing our Theorem I* and obtained Theorem 5 ([7]). His proof is quite different from ours.

