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A NUMERICAL CRITERION OF QUASI-ABELIAN SURFACES

SHIGERU IITAKA

§ 1. Statement of the result

At first, we fix the notation. Let k = C and we shall work in the
category of schemes over fc. For an algebraic variety V of dimension
n, we have the following numerical invariants:

Pm(V) = the m-genus of V,
q(V) = the irregularity of V,
/c(V) = the Kodaira dimension of V

Pm(V) = the logarithmic m-genus of V,
q(V) = the logarithmic irregularity of V,
tt(V) = the logarithmic Kodaira dimension of V.

Note that the latter three invariants have been introduced in [1],
[2]. About seventy years ago, F. Enriques obtained the following
numerical criterion of abelian surfaces: Let V be an algebraic surface
(i.e., n = 2). Then V is birationally equivalent to an abelian surface
if and only if P^V) = P4(V) - 1 and q(V) = 2.

A slightly weaker version of this criterion is the following: V is
birationally equivalent to an abelian surface if and only if tc(V) = 0,
q(V) = 2.

Our purpose here is to prove the following numerical criterion of
quasi-abelian surfaces, which is a counterpart of the Enriques criterion
in proper birational geometry.

THEOREM I. Let V be a non-singular algebraic surface. The qwasi-
Albanese map av: V —»jtfv is birational and there is an open subset V°
of V such that av\V°: V° -» £v — {plf ,pr} is proper birational, if and
only if κ(V) = 0, q(V) = 2.

We have introduced WWPB-equivsΛence in [5]. By definition,
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av : V -> stfv is the WWPB-map. Thus, Theorem I is restated as follows:

THEOREM I*. Let V be an algebraic surface. V is WWPB-equivalent
to a quasi-abelian surface if and only if ic(V) = 0 and q(V) — 2.

WWPB-equivalence seems very unnatural. However, a
φ between affine normal varieties turns out to be an isomorphism.
Hence if we restrict ourselves to affine normal surfaces, we obtain the
following more natural

THEOREM II. Let V be an affine normal surface. Then V is
isomorphic to G2

m if and only if κ(V) = 0 and q(V) = 2.

Remark. Recently, K. Ueno [9] has obtained the following numerical
criterion of abelian varieties of dimension 3: Let V be an algebraic
variety of dimension 3. Then V is birationally equivalent to an abelian
variety of dimension 3 if and only if κ(V) = 0 and q(V) = 3.

We make the following

CONJECTURE. Let V be an affine normal algebraic variety of
dimension n. Then V is isomorphic to Gn

m if and only if κ{V) = 0 and

A partial solution of this conjecture is Theorem 12 [3], by which
we prove

THEOREM III. Let V be an algebraic variety of dimension n with
ic(V) = 0. Suppose that there is a dominant strictly rational map of V
into Gn

m. Then the quasi-Albanese map av: V -» Gn

m is birational. V is
WWPB-equivalent to Gn

m via av. Moreover, if V is affine and normal,
<xv is an isomorphism.

We recall the following genera. ΛfΎ) is called the logarithmic
geometric genus and denoted by pg(V). When dim V = 1, pg(V) coin-
cides with q(V), which is indicated by g(V). g(V) is the logarithmic
genus of the algebraic curve V. If V = P1 — {a0, , αm}, then g(V) = m.

Let V be a complete non-singular algebraic variety and D = Y]Dj
a reduced divisor on V. We say that D is a divisor of simple normal
crossing type if each Dj is non-singular and 2 Dj has only normal
crossings. If D is a divisor of simple normal crossing type, then we
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say that V is a completion of V — V — D with smooth boundary. Note
that Reg (D) = IJ (A — Uj=i Dj), which consists of non-singular points
of D. By definition, letting K(V) be a canonical divisor on V, we have

Pjy) = dim H°(V, Θ{m{K + D))) and

The main tools of this paper are the universality of quasi-Albanese
map [2] and fundamental theorems on logarithmic Kodaira dimension
([1] and [31). For instance,

1. Let / : Vι -> V2 be a dominant morphism with connected fibers.

Then aiYd ^ κ(f"ι(v)) + dim V2, v being a general point.
2. Furthermore, when dim f~ι(v) = 1, we have

This is Kawamata's Theorem [7].
3. Let / : V —> W be a dominant morphism with dim V = dim PP.

Then ^(F) ^ ic(TF), ?(7) ̂  5(TF), and Fm(V) ^ PW(TF).
4. Moreover, if / is proper and birational and κ(W) ̂  0, then for

any closed set Δ, we have

e(V - 4) = £(W - /(J)) .

This follows from Theorem 13 [3].

§2. Half-point attachment

Let S be a non-singular algebraic surface. There exists a comple-
tion S of S with smooth boundary D. Take a non-singular point p of
D and perform a monoidal transformation with center p, which we
write μ: S1 - QP(S) — S. Then ^*(JD) = /i^φ) ̂ D. + E, where A is
the proper transform of D by μ. Write Sx = Sx — A> which contains
S as an open subset, for S, - A D ̂  - A - # = S - D = S. We say
that ASΊ is a half-point attachment to S or that S is obtained from S1

by deleting one half-point. Then

A = μ*(K(S) + Z?) ,

where K(S) denotes a canonical divisor on S. Hence PTO(S) = FmiSJ for
any m ̂  1 and *(S) = (̂SΊ). We have q(S) = q(Sd or ?(S) - 3(Si) + 1,
according to the property of the irreducible component Cx containing
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φ. In fact, let D = d + C2 + + Cs be a sum of prime divisors Cό.
Then D1 = Cf + C2 + + Cs, Cf being the proper transform of CΊ by
/i. Furthermore, put S2 = Sι - C2 - . - Cs = QP(S - C2 - Cs).
Then g(S2) = g(S - Ca - - C.) = q(S) or g(S) - 1. Since S2 D S1? if
§(S2) = ?(S), then 5(50 = q(S). If tf(S2) = q(S) - 1, then in view of
Theorem 1 [2], there are mγ Φ 0, m2, ,ms such that

Wxd + + msCs = 0 in H\S,Z) .

From this, it follows that

m.iCf + E) + . . . + msCs = 0 in H2(Sl9 Z) .

By Theorem 1 in [2], we conclude that 5(Si) = q(S) — 1. Thus we obtain

THEOREM 1. Let Sλ be a half-point attachment to S at PeCλ c D
in which D is the smooth boundary of S. Then Pm(Si) = Pm(S), for
ΎYI — 1,2, . Moreover, if C1 is cohomologically independent of C2,
. , and Cs, then q(SJ = q(S). Otherwise, q(SJ = q(S) - 1.

Conversely, let E be a closed curve in S. If E => P1 and ί72 = —1,
then Z? is contracted to a non-singular point. E is called an exceptional
curve of the first kind in S. Furthermore, if E (the closure of E in
3) is an exceptional curve of the first kind and if (E, D) = 1, then E
is called a ^-exceptional curve in S (See Sakai [8]). Contracting the
E to a non-singular point, we obtain a complete surface So and a divisor
A = Cί + C2 + + CS9Cί being the image of CΊ. Putting SQ = SQ- Do,
we see that S is a half-point attachment to £0.

Let ^y be the connected component of supp (B) and denote by the
same symbol Sf^ the reduced divisor whose support is 3f3. Then we
have

D = 3fγ + . . . + 9r .

We assume that κ(β19 S) ;> ;> /e(^r, S). We have three cases.

Case a: κ(@ly S) = 2. We use the following

PROPOSITION 1. Let D be a reduced divisor 2 Cj o n S. Γ/2/βn
#(25, S) = 2 i/ and only if there exists an effective divisor mιCι + •
+ msCs with positive self-intersection number.

Proof. The proof of if-part is easy. We assume that κ(B, S) = 2.
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Then there is m > 0 such that \mD\ — \mD\ίix is not composite with a

pencil. Writing δm = |ral>| f lx we have \mD\ = \Dm\ + Sm,Dm being the

general member of \mD\ — $m. Then D2

m > 0. Hence

Dm = Σ diCt e \mD\ - im . Q.E.D.

PROPOSITION 2. Notations being as in Proposition 1, ίfeβ intersection

matrix [(Ciy Cj)] is not negative semi-definite if and only if κ(D, S) = 2.

If [(Ci9 Cj)] is negative semi-definite, then κ(D, S) <ί 1. Conversely, if

κ(D, S) = 1, then [(Cίf Cj)] is negative semi-definite that has 0 eίgen value.

The proof is easy and omitted.

In the case a, choose Dλ = axCx + + αsC5 whose support c ^

with ^ > 0 and D? > 0 by Proposition 1. Then (D19 @2) = = (A, 0,)

= 0. By the algebraic index theorem due to Hodge, we see that the

intersection matrices of @2, , @s are negative definite. Hence any

irreducible component E in @2 + + 3>s is cohomologically independent

of ^ i + + S 5 — ί7. ^Therefore, by Theorem 1, if a D-exceptional curve

Z? has a common point with ^ 2 , then 5(S) = 5θSΌ) Note that κ{β2, S)

b : AΓC ,̂ S) = 1. There is t > 0 such that

κ(βx, S) = . . . = «(^, S) = 1, *G»t+1, S) - . . . - Λ:(^S, S) = 0 .

Then consider the ^-canonical fiber space ψ : S -* J. Since ^ is con-

nected, ^ ! = ψ'^Oq) for some αlβ Moreover {βjy @d — (βj9 ψ'Ku)) — 0

for a general ue J. Hence 3f3 ^ ψ'Kdj). If y < ί, then ty~\a3) = ^ .

If ί > y, then ^ is an incomplete fiber Q ψ-\aj). In this case κ(D, S)

= 1.

Case c: A:(^!, S) = = *(0 r , S) = 0. Then /cφ, S) = 0.

§ 3. Surfaces with a = 0 and g = 2

Let S be a non-singular surface with /c(S) = 0 and q(S) — 2. Con-

sider the quasi-Albanese map as of S. By β we denote the closed image

of S in the quasi-Albanese variety stfs of S. We prove that B = s$s.

Actually if B Φ Js, then κ(B) > 0 by Theorem 4 in [2]. Since ^ s is

2-dimensional by q(S) — 2, B Φ £s implies that B is a non-singular

curve by Proposition 5 and Corollary 1 in [2]. In view of Kawamata's

theorem [7], we have
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+ 1 ^ κ(s) == 0 ^ icCα-1^)) + κ(B) for a general b e B .

This implies that £(i?) = 0, a contradiction. Therefore, B — jtf. In

other words, α s is dominant. Hence pg(S) = P2(S) = - = 1.

Case 1: g(S) = 2. Then J / ? is an abelian surface. Let S be a

completion of S with smooth boundary D. a = as defines a rational

map a: 3 -> J / 5 , which turns out to be a morphism by the minimality

of s/8. Hence 0 ^ κ(S) <: κ(S) — 0 and so a is the Albanese map of S.

By the classification theory of algebraic surfaces by Enriques-Kodaira,

we see that a is birational and hence as is birational. By Theorem 5

[3] (§1.4), we see that

κ(S) =:0 if and only if a*φ) = 0 .

Hence as(S) is stfs or a complement of a finite set of points in s/8.

Since a{D) is a finite set of points {pl9 , p,}, D c α" 1 ^!, , pr} and

S - U a-Xpj) aS.' We can say that a = a\S: S-* <$? is a TFPFP5-map

(see [5]). Hence S is TFWPB-equivalent to an abelian surface.

Case 2: g(S) = 0. Then J&S turns out to be an algebraic torus

GJj. Since G2

m ^ Gm x Gm9 we have the projection π of the product G2

m

—> Gm. Then ^ = zrα̂  : S —> Gm is a dominant morphism. Moreover, for

a general % e GTO, α s \π~ι(u): 9~1(/^) -* Gm = π~\u) is dominant and so φ~\n)

is not complete. Consider the Stein factorization φx: S —> J, τ : Δ —> Gm

of φ:S—*Gm. Applying Kawamata's Theorem [7] we obtain

0 = £(S) ^ tciφΓXu)) + ^(J) .

In general, we have

0 = /c(S) ^ ^(^Γ1^)) + dim Δ and /c(J) ^ /c(GJ = 0 .

From these, it follows that κ(Δ) = 0 and Λ ^ Γ 1 ^ ) ) = 0 and hence Δ — Gm

and φϊ\u) = Gm. By the universality of quasi-Albanese map, we have a

morphism φz: G^ —» J = Gm and the commutative diagram Fig. 2. Since

ψx: S —> J has connected fibers, ^2 has connected fibers, too. Therefore,

in view of Theorem 4 [2] and its corollary, we see that <p2: G
2

m—• G^fis

Fig. 1.



QUASI-ABELIAN SURFACES 105

the projection of a decomposition: G\ >̂ Gvι x Gn. Thus we have shown
that φ:S -> Gw has connected fibers. Let GnxGmdPl x P1 be the
natural open immersion and let π denote the natural projection: P1 x P 1

->PX which is the rational map defined by π. Choosing a suitable
completion 3 of S with smooth boundary D, we have a proper morphism
a: S-* P1 X P1 whose restriction to S is <xs.

We assume that as is proper and that D is connected. Write
ψ = π a9 which is a completion of φ (Fig. 2). Denote by H the horizontal
component of D with respect to ψ. Then (ψ*(α),iϊ) = 2 for any aeP\
because ψ^O) — D = f\u) — H ^ Gm for a general w 6 P1.

ψ pi
G

Fig. 2

We shall study singular fibers of ψ.

LEMMA 1. Let S be a completion of a non-singular surface S with
connected smooth boundary D. Suppose that there is a surjective mor-
phism ψ: S —> Δ whose general fiber ψ~ι(u), u being a general point of
Δ, is P1 and (D,ψ-\u)) = m. Then any singular fiber ψ~ι(a) Π S = YΛΓj

has the property that 2] 3(Γj) ^ m — 1 where the Γ5 are irreducible
components.

Proof. Denote by Γs the closure of Γj in S. Then ψ~ι(a) = Γx

+ + Γs + Dx + + Dr is a sum of irreducible components in which
Dj ^ D. Let H be the horizontal component of D. Then ^ — Dx +
• •.• + £)r + H + ψ"1^) is connected. We indicate by G{β) the (dual)
graph of 3t\ Letting aQ be the number of vertices of G(β) (=the num-
ber of irreducible components of @) and ax the number of edges and
h(β) the cyclotomic number of G(β) (=the number of loops in G(β)),
we have

a0 — ax = 1 — h{β) .

It is clear that h(β + Γ} + + Γs) =. pff(S - ί ί - ψ'ι(a) - ψ
m — 1. Counting <20 and ax of G(^ + A + + Γs), we get
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a0 - a, + s - Σ (βy Γd) = 1 - (m - 1) = 2 - m .

Moreover, by — Σ #(7^) = s — Σ (^, Γ,), we obtain

Σ ff(Λ) ^ m - 1 . Q.E.D.

In our case m in Lemma 1 is one. Hence g(Γj) <^ 1 and #{;/ g(Γj) = 1}

^ 1.
Let α e Gm — P1 — {0, oo} and use the following notation:

ψ*(a) = mιCι + + m^d ,

ψ-i(α) = d + . •. + Cσ ,

J = {ίe[l, ...,*];(?, c 25},

2β = [l, . . . , σ ] - 7 .

We assume that σ ^ 2. Then there is a component, say CΊ, which is
an exceptional curve of the first kind.

Case (i): 1 e 7. Contracting CΊ to a non-singular point p, we have
a protective surface Sx and a birational morphism μ:S->Sι such that
d = μ~\v)> We claim that

( * ) a(Cj) is a point, if / e /.

Actually, since a is proper, letting X = P1 x Pι — G2

m, we have a~\X)
= J5. Hence α(Cy) c X Π (P1 X (α)) = a finite set. In particular, s(d)
is a point. Therefore, ax = a-μ'1: Sx -• P1 X P1 is a morphism. It is
clear that Si — S is a divisor of simple normal crossing type. ax \ S = a
is proper. Hence we can replace S by Slβ Repeating such contractions,
we arrive at the following

Case (ii): 1 e 7C. Since d gL D, we know £(CΊ - d ίl fl) ^ 1 by
Lemma 1. Hence (CΊ, D) = 0,1,2.

Case (ii-a): (Cx, D) = 0. Contracting d to a non-singular point,
we obtain a non-singular surface Si and a proper birational morphism
μ\S-*Sι. Since α(d) is complete in G^,#(d) is a point and hence
aγ — a-μ'1 is a proper morphism. Replacing S by SΊ, we can assume
that such d does not exist.

Case (ii-b): (d, 25) = 1. Then Λ = Cx - d Π 25 r$ Gα. Hence αrCΛ)
is a point in G .̂ In fact, if α?(7~\) were a curve, a{a{ΓJ) <Ξ ̂ (Γ^ =
ic(Ga) = — oo. This contradicts the Ueno-type theorem (Theorem 4 [2])
to the effect that Λ(B) ^ 0 if B a Gn

m. Therefore a(Γd = a point on
X r= p 1 x p 1 - G2

m. Hence A ^ 7) = α" 1 ^) for α is proper. This con-
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tradicts the assumption 1 e 7C. Hence the case (ii-b) does not occur.
Case (ii-c): (d, D) = 2. We divide the case in the following way:
Subcase I: (7Ϊ, d) = 2. Since 2 = (H, ψ*(α)) = ra^ff, d ) + m2(H, C2)

+ , it follows that mx = 1, (7ϊ, C2) = = 0 . Then, there exists an
exceptional curve of the first kind, say d I*1 fact, if C} <̂  0 for
y = 2, . , σ, then

- 2 - (Z(S), ψ*(α)) = (X(3), d) + mJLK{S), d ) + ^ - 1 •

This is a contradiction. By assumption, 2 e 7C. Moreover, by Lemma
1 we have g(C2 - C2 Π D) = 1. Hence (d, 5) = 0 or 1. Thus we arrive
at the case (ii-a) or (ii-b).

Subcase II: (H, d ) = 1. By the same argument as in Subcase II,
we have an exceptional curve of the first kind C2,2 e 7C. Hence (C2, D)
= 0 or 1.

Subcase III: (if, d) = 0. In view of (d, D) = 2, there exist 2,3 e /
satisfying that (C19 C2) = (d> d) = l By the logarithmic ramification
formula for a: S —• G ,̂ we obtain

Write Γi = Ci — D ^ Gm and consider the singular fiber:

p-^α) = Λ + Γ2 + + Γ5 .

Since D is connected, by Lemma 1, we see that

Γj ~ Ga or P1 for j ^ 2 .

Hence αίΓj) = a point. This implies that Γj ^ βα for j ^ 2. Moreover,
for any ί e 7, we infer that d ^ 72α from the following

LEMMA 2. Lei f: Vλ^ V2 be a dominant morphism of an n-dim-
ensional non-singular algebraic variety Vλ into another n-dίmensional
algebraic variety V2. Let Vi be a completion of Yi with smooth boundary
Dt for each i such that f:Vx->V2 defined by f is a morphism. Let
peV1 and q = f(p) be closed points and choose systems of regular
parameters (z19 •••,«„) and (w19 , wn) around p and q, respectively as
follows: Dx is defined by zx zr = 0 locally at p and D2 is defined by
Wι- -ws = 0 locally at q. Let Γt be a local divisor defined by zt = 0
and Jj a local divisor defined by Wj = 0. Denote by Wj a local divisor
defined by Wj = 0 for j }> s + 1. We have
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f*(Wj) = ΣnjiΓi + some effective divisor

Then

ft/ = Σ ( Σ nJi]Γi locally at p .

Proof. By the^assumption, for j ^ s + 1 we have

Hence

Therefore, combining this with (dL/L) in § 3 of [1], we obtain

_^L Λ . . Λ -^- A dws+ι Λ . . Λ t o n
wx ws

= Π z?**φ(z)-^ Λ Λ - ^ - Λ dzr+ι A . Λ <&„ ,

where y>(«) is a regular function at p.

A local equation defining Rf at p is f] zV'φiz)* This implies that

^/ ^ Σ ( Σ nΛrt locally at p . Q.E.D.
i \y=β+i /

We claim that Ra J> Cx. Otherwise,

Ra = αC2 + 6C3 + Θ (Θ > 0)

induces that

Otaf C1)~a + b + (Θ, d ) ^ 2 .

On the other hand,

(Ra9 CJ = (X(S), CΊ) + ( A CΊ) = - 1 + 2 = 1. This is a contradiction.

Therefore, β α ^ ψ~;(α) From this it follows that

α), S) = 4α, P1) = 1 .

This is a contradiction. Therefore, the Subcase III does not occur.

Accordingly, after contracting exceptional curves of the first kind
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in ψ-\a), we conclude that ψ *(α) = P\ This implies that ψ~\Gm) is a

P^bundle over Gm, which turns out to be the product P 1 x Gm. There-

fore S = ^ - 1(Gm) = Gm x GTO. Thus we can summarize the above result

as follows: If as is proper and D is connected, then S is obtained

from G2

m by successive blowing ups.

Consider the general case in which as may not be proper. But,

assume that D is connected. Using the notation at the beginning of

Case (2), put § = a-ι{G2

m) and ά = a\S. Since S a S, it follows that

κ(S) ^ κ(S) = 0. There is a dominant morphism § -> G^. Hence Fm(S)

^ 1 and so Pm(S) = 1 for any m ^ 1. Let ΰ = S - S and ^ x the con-

nected component of D containing H + ψ'^O) + ψ-^oo). Then κ{βιy S)

^fc(H + ψ~\0) + ψ'^oo), S) = 2. Hence writing flasa sum of connected

components @u @2, , ®r9 we have κ{β2y S) = = κ{βr, S) = 0. More-

over, any £7 is cohomologically independent of Θ19 @2 — E> , ̂ r

Hence 5(S — ̂ x ) = g(S) = 2. Consider the quasi-Albanese maps of the

inclusion § -*> S' = S — ̂ . First we shall prove that the quasi-Albanese

map aλ of S is a. Denoting by i the inclusion S c S, we have the

homomorphism i*: G2

m—> G2

m such that i**a = ^i i (Fig. 3).such

us

i

that

c

y
Fig. 3

s

>Gl

By the universality of quasi-Albanese map, we have a morphism ψ: G2

m

—> G^ such that 9 αx = ά. Then

ΐ^ φ αfi = i* ά = ΐ^ ά = «i .

Hence i # p = id. This implies that φ is injective. Since ά is dominant,

9> is the etale covering. Therefore φ is an isomorphism. Hence ax — a.

Then denote by a! the quasi-Albanese map of S' = S — 3fx. We have

the following diagram:

j:S c S'

4
Fig. 4
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Since j * is a homomorphism and G2

m is an algebraic torus, /* turns
out to be the etale covering, which is proper. Recalling that ά is
proper, we have a proper morphism j*-ά — <*'•/. Hence S = S'. There-
fore, we can conclude that D is connected.

By the previous result, ά is a proper birational morphism. More-
over, write F == ά(D Π S), which is a closed set. Then by Theorem
12 [3], we have

κ(S) = κ(S - ά~\F)) = t(Gl - F) .

Hence ic(S) = 0 implies that F is a finite set of points by Proposition
10 [2]. Then D c a~\X) U a~\F) = ΰ U ά ^ F ) . Since D is connected,
this means that F — φ and D — D. Thus we establish the following

THEOREM 2. Le£ S be a non-singular surface with connected
smooth boundary. Suppose that κ(S) = q(S) — 0 and q(S) = 2. Then S
is obtained from G2

m by successive blowing ups.

We shall study the general case in which D may not be connected.
Note that D ^ H + ψ'\0) + ψ-^oo). Since H + ψ~ι(0) + ψ~!(oo) is con-
nected, we denote by 2fx the connected component of D that contains
H + ψ-χθ) + ψ-Koo). Note that κ(H + ψ-̂ O) + ψ-^oo), S) = 2 and so
κ(@ι, B) = 2. We write flasa Bum of connected divisors 2U @2, , 0,.
By the remark at the end of § 2, each intersection matrix of 3fά (j ^ 2)
is negative definite. Hence 5(3 - 3d = 5(3 — 5) = 2. The graph G(βJ
contains G(H + ψ'^O) + ψ'^oo)) which has one loop. Hence pg(S — 3d
^ 1. By the fact that κ(S - 3d ^ ε(S) = 0, we have «(3 - ^ x) = 0.
Hence applying Theorem 2, we conclude that S — @λ is obtained from
G2

m by successive blowing ups. Since each 3S (j ^ 2) consists of P1 in
3 — ̂ i, it follows that a(3j) — pό a point for each / ^ 2, where or is
the quasi-Albanese map of 3 — 3X. Hence we have

S° = S - U α " 1 ^ ) - ^ GJL - fa, •••tPs}

and >S0: S° -> G^ — {p2, , ps} is a proper birational morphism.
Case 3: g(S) = 1. Then the Albanese map of the quasi-Albanese

variety J3''S is a surjective morphism π: J£S-> E,E being the Albanese
variety of S, which is an elliptic curve. Any fiber of π is Gm and so
<p = π-a:S->E is an algebraic fibered surface whose fibers are Gm.
In fact, by the same reasoning as in the case 2, we can conclude that
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φ has connected fibers. Indicate by Z the completion of Z — £ with

smooth boundary Δ which was constructed in §10 [2]. Since Z—>E is

the Gm-bundle whose fibers are P\ Δ is a sum of two sections Δx and

Δ2. q(Z) = qiZ) + 1 = 2 implies that Δx and Δ2 have the same class in

H\Z,Z) by Theorem 1 in [2]. We choose a completion S of S with

smooth boundary D such that a rational map ψ: 3 —> £7 defined by p

and a rational map a: S -+ Z defined by a are both morphisms. Using

the same argument as in the case 2, we conclude that a is birational.

Moreover, letting Qfi be the connected components of D containing Di9

we know that D = (βx + ^ 2 ) = ^ U ^ 2 if and only if a is proper.

Therefore, if S is a non-singular surface with κ(S) = 0, q(S) — 1 and

q(S) = 2, then the quasi-Albanese map a: S -> Z is dominant and sat-

isfies the property to the effect that the composition:

is proper. Hence S is WWPB-equivalent to Z.

Remark. The proof of the case q(S) = 0 could be replaced by the

much easier argument in the proof of Theorem 12 [3]. However, our

proof will do for the case q(S) = 1.

§ 4. Proof of Theorem II

In this section by S we denote an affine normal algebraic surface

with κ(S) = 0 and q(S) = 2. We use the following

LEMMA 3. Let V be an affine normal variety and consider a com-

pletion V of V. Then the algebraic boundary D = V — V is connected,

provided that dim V ^ 2. When V is normal and D is a reduced

divisor, /c(D, V) is equal to dim V.

The proof follows from the connectedness principle. Q.E.D.

Let μ: S* ~+ S be a non-singular model and let S* be a completion

of S* with smooth boundary Z>*. Then Z)* is connected and Λr(D*,S*)

= 2. Hence <?(S) <; 1, and so the quasi-Albanese map α* : S* —• ^ s is

proper and birational. Hence a — as\S > S* —> stfs is also a proper

birational map. If q(S) = 0, then J28 = G^ is affine. By Lemma 1 [3],

as turns out to be an isomorphism. Hence S ^ G2

m. If q(S) = 1, ^

= Z is a Gm-bundle over E. From A:(JD*,S*) = 2, it follows that
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ιc{Δι + Δ2, Z) = 2. Since Δx.is cohomologous to Δ2, we have Δ\ — (Δlf Δ2) > 0

for κ(Δι + Δ2,Z) = 2. Hence Δx and Δ2 are both ample and so Δx + Δ2

is ample. This implies that Z — Z — (Δλ + Δ2) is an affine surface. Thus

Z is a quasi-abelian surface which is an affine algebraic group. This

is a contradiction.

EXAMPLE. Let Z = P1 x E and φ:E -*Pι a rational function.

Then the graph Γφ has the following property:

Γ\ = 2 deg p, deg 9 - [&(#): &CP1)] and if deg φ > 0, then £ - £ - Γφ

is affine and *(2) = - c o , q{Z) = 0. Put S = Z-(Γ9 + ΓΨ), φ Φ ψ. Then

S is affine and g(S) ^ 1 and κ(S) ^ 0. Moreover

§(S) = 2 if and only if deg φ = deg ψ,

^(S) = 0 if and only if p and ψ are constants and hence, S = E x Gm.

§ 5. Surfaces with λr(S) - 0, ?(fif) = 1

Let S be a non-singular surface with κ(S) = 0 and 3(5) = 1. The

quasi-Albanese variety Y = J / 5 is an elliptic curve or Gm according to

q(S) = 1 or 0. Then quasi-Albanese map a: S -> Y has connected fibers.

Let Cu = cΓ\v) be a general fiber. Then by Kawamata's theorem,

0 - ic{S) ^ ^(CJ + £(Y) ̂  «(CJ .

Hence κ(Cu) = 0. However, Λ:(Γ) = 0, /c(Cu) = —00 do not hold at the

same time. Moreover, if S is affine, then Y — Gm and Cu = Gm.

EXAMPLE. Let S = SpecC[x,^/, 1/F], F = xmy - 1. Then F^S) =

F2(S) = . . • - 1, *(S) = 0 and g(F) = 1.

§6. Surfaces with *(S) = -00 and q(S) ^ 1

Let S be a non-singular surface with κ(S) = — 00 and g(S) ^ 1.

Consider the quasi-Albanese map .KIS^.Y = J?S, - By Kawamata's

theorem, a general fiber Cu is of elliptic type, that is, Cu — Pι or Ga.

THEOREM 3. Let FeC[x,y] and S = SpecC[#, y, 1/F]. Assume

that ic(S) = — 00. ΓΛe^ there are new variables u,v eC[x,y] such that

C[x, y] = C[u, v]f F = Flu) e CM.

Proof. Let R be the integral closure of C[F] in C[x,y]. Then R

is normal and £(Spec R) ^ q(A2) = 0. Hence Spec(β) = Gα, in other

words, R = C[/] such that / — J is irreducible for a general λ. Since
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FeC[F] c R = C[f], F is a polynomial of / and f:A2->Aι is the

Stein factorization of F: A2 -> A\ Write F = α0 Π (/ - fy)% ^ > 0.

Then F(F) = V(/ - ad U U 7 ( / - αfi). Hence *U 2 - V(f - ad) ^

κ(A2 — V(F)) = — oo. Applying Kawamata's theorem to / — aγ\ A2 —

V(f - ad -» C*, we have for general Λ, 7 ( / — # => Gα. Hence by

Jung-Gutwirth-Nagata's pencil theorem, there are new variables u,v

e C[x,y] such that C[x,y] = C[u,v] and / — ̂  = w. Q.E.D.

COROLLARY 1. // dim Aut C[^, T/, 1/F] ̂  3, ίfeβ?z F = F0(u) as in the

theorem above. If dim Aut C[x9 y, 1/F] = 2, ίfeβ^ C[x, y, 1/F] =

Proo/. If dim Aut C[a;, y, 1/F] ̂  3, then by Theorem 7 [1], we con-

clude that κ{A2 - V(F)) = - c o . Then, apply Theorem 3. Note that

Aut C[x, y, l/(Π(x — α,-))] contains T such that Tx = x, Ty = y + a0 + aγx

+ + ocdx
d, oil belonging to C. Hence dim Aut C[x, y, 1/Π(x — α )̂] = oo.

The assumption dim Aut C[x, y, 1/F] = 2 implies that /c(Spec C[x,y, 1/F])

^ 0. Hence by Theorem 6 [1], we conclude that Spec C[x,y, 1/F] = G2

m.

COROLLARY 2. Let R0=C[x,y,l/F] and Rλ,R2 be integral domains

which are finitely generated over C. Then we have two cases: Case 1.

Any C-isomorphism Φ : Ro ® R2 =+ Rλ (x) R2 induces the isomorphism ψ: Ro

^ Rι such that Φ = ψ ® 1. Case 2. Ro >̂ C[u, l/f(u)] [v]. In this case,

let Rλ = Ro and R2 = C[w]. Define Φ by Φ{v) = v + w, Φ(u) = w, Φ(w)

= io. Then Φ does not induce ψ as in case 1.

Proof. Combining Theorem 1 in [6] with Theorem 3, we are through.

Note that the corollary is an affirmative solution of the conjecture

in [6].

THEOREM 4. Let Ro = C[x, y, x~\ y1] which is Γ(G2

m, Θ) and let Rx

and R2 be integral domains that are finitely generated over C. Assume

that Φ:RQ®R2^Rλ® R2. Then Ro ^ Rlm

Proof. Let Vx = Spec Rλ. Then by the isomorphism Φ, we have

^(7X) = 0 and q(Vd = 2. Hence the normalization of Vx is G2

m by Theo-

rem II. Counting the irreducible components of the singular set:

Sing (F o x Spec R2) - Vo x Sing (Spec R2)

=+ Sing (Vλ X Spec R2) = Vx x Sing (Spec R2) U Sing (Vd X Spec R2

we have SingiFJ = φ. Hence Vλ = G2

m. Q.E.D.
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§7 Polynomials φ(x,y)

Let φ e C[x, y\-C and let S = D(φ) = A2 - 7(0. If *(S) = 1, then
there is a surjective morphism / : S —> zf, J being a rational curve, for
0(4) ^ tfOS) = 0. Hence / = ψ/φd for some ψ e C[x, y]. Moreover, for
a general λ, V(ψ — λφd) — V(φ) >̂ Gm. Such φ is called a Gm-polynomial,
which will be studied in a forthcoming paper. We have the following
table:

TABLE

κ(D(φ))

— oo

0

1

2

q(D(φ))

^ 1

1

2

^ 1

^ 1

Ψ

φ = φQ(u)

for example
φ=χyrrι—l

φ=urVs

ίrm-polynomial

polynomial of

type

S=D(φ) = A2-V(ψ)

S=A1xC

f:S-+Gm, general fiber
being Gm

f: fiί->Δ, general fiber
being Gm

hyperbolic type

Referring to the following result by Sakai:
Theorem (Sakai [8]). If κ(V) = dim V, then V is measure-hyperbolic,
we obtain the Brody-type Theorem:

THEOREM 5. D(φ) is measure-hyperbolic if and only if κ(D(φ)) = 2,
that is, D(φ) is of hyperbolic type.

Remark. In order to generalize the theorem above, we have to
study the following surfaces.

A. Surfaces with κ(S) = — oo, q(S) = 0. These might be called
logarithmic rational surfaces.

B. Surfaces with ε(S) = 0, q(S) = 0. These might be called loga-
rithmic K3 surfaces.

After the completion of this paper, Kawamata succeeded in generalizing our
Theorem I* and obtained Theorem 5 ([7]). His proof is quite different from ours.
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