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ON THE DECAY OF SOLUTIONS FOR SOME NONLINEAR
EVOLUTION EQUATIONS OF SECOND ORDER

YOSHIO YAMADA

1. Introduction

In this paper we consider nonlinear evolution equations of the form
(E) w'@®) + Au@®) + BOw@) = f@, 0=t<oo,

W) = daut)/dt?, w(t) = du(t)/dt), where A and B(t) are (possibly) non-
linear operators. Various examples of equations of type (E) arise in
physics; for instance, if Au = —4u and B({)uw' = |w'|w/, the equation
represents a clagsical vibrating membrane with the resistance propor-
tional to the velocity. As to the initial value problems for (E), many
authors have established various sufficient conditions on A and B(f) so
that there exists a global solution of (E) (see e.g. Barbu [4], Lions [10]
and Tsutsumi [18]).

As for the asymptotic behavior of solutions of (E), Nakao [14], [15]
has recently obtained interesting results under the appropriate assump-
tions on 4 and B(¢); in [15] he treats the case when A as well as B(t)
depends on t. When f(¢) tends to zero (in some sense) as t — oo, he
showed that any global solution of (E) satisfying the energy equation
satisfies a difference inequality of the form

sup E(s)'** < C(t + D{E@) — E¢t + D} + 9,

tSsst+l

where E(t) denotes the energy associated with such a solution, g(¢) is
a nonnegative function tending to zero as t — oo and «,y and C are
some positive constants. From this inequality he derived the decay
property of E(t): if f(t) tends to zero in an appropriate sense as t — co,
then E(t) decays to zero as ¢t — co.

The main purpose of the present paper is to discuss the asymptotic
behavior of solutions of (E). We put almost the same assumptions on
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A and B(t) as those of Nakao [15] so that the decay property of (E)
holds ; but, for simplicity of arguments, the case when A depends on ¢
is not treated here. Moreover, we assume that there exists a global
solution of (E) which satisfies a certain kind of an energy inequality
(see (2.6)). Then our problem is the following: if f(t) tends to zero
as t— oo, how fast does the energy E(t) decay to zero as t — c? Our
approach to this problem relies on the weighted energy method and is
quite different from Nakao’s. In order to investigate the rate of the
decay of E(t), we introduce a pair of {G(),h({)} of two monotone in-
creasing functions on [0, o) which satisfy several conditions (see §2.4).
We take G(t) as a weight function of E(¢) and take Ai(t) as an auxiliary
function of G(¢). Using this pair {G(¢), h(t)}, we can show

sup G@)E@) < oo .
t=20

If the rate of the convergence of f(¢) to zero is known, we can obtain,
with a suitable choice of {G(f), h(t)}, preciser results on the rate of the
decay of FE(t) than those of Nakao [14], [15].

The content of this paper is as follows. We introduce some nota-
tion in §2.1 and give some assumptions on A and B(t) in §2.2. In
§2.3 we define a solution of (E) which has the weak conservation prop-
erty. Main results (Theorems 1,2 and 3) are stated in §2.4. §3 is
devoted to the proofs of Theorems 1,2 and 3. Finally, in §4 we apply
our results to some nonlinear partial differential equations such as the
nonlinear wave equations and the nonlinear beam equations.

§2. Assumptions and Results
2.1. Preliminaries

We first of all explain some notation which will be used later.

Let X be a real Banach space. We denote the norm in X by ||y
and denote the dual space of X by X*. The pairing between x* ¢ X*
and z ¢ X is denoted by (x*, ).

Let 1<7<oo and a <b. When X is a real Banach space, we say
that f belongs to L'(a, b ; X) if f is measurable in a < ¢ < b with values
in X and satisfies

lf'Lf(a.,b;X) < oo,
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where

) 1/r .
s = ([ 17OKat)" it 157 <oo,
= esssup|f(®)|x if r=o00.
ast=h
In particular, for X = R we simply write L"(a,d) = L"(a,b; R). Finally,
we define L (0, o ; X) by
L5 0,00;X) = {f:[0,00) > X; feL(0,T; X) for any T > 0} .

2,2. Assumptions

We are given a real Hilbert space H and two real Banach spaces
V and W which satisfy

VcWcH,

where each inclusion mapping is continuous. Then there exist positive
constants ¢, and ¢, such that

(2.1) [V £ ¢ V) for veV
and
2.2) Wy < ¢ |wly for weW.

Moreover, we assume that V is dense in W and H. We identify H
with its own dual, so that the following inclusion relation holds

VcWcHCW*C V*,

The natural pairing between w* e V* (resp. u*e W*) and uweV (resp.
ue W) is denoted by (u*,u), (resp. (w*,w)y); if w*,ue H, this is the
ordinary inner product (u*,w); in H.

Besides these spaces we are given two nonlinear operators A and
B(t) which satisfy the following assumptions.

(A1) A:V — V* is the Fréchet derivative of a convex functional F,
on V such that

F, 0 =0
and

F,w) = alulp for ueV,
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where ¢ > 0 and p = 2.
(A.2) For each 0 <t < oo, B(t): W — W* satisfies
(Bu, w)y = b,pE) |uiy for ue W,
and
[((B®u, vw| < 0,80 [ull [v)w for u,veW,

where b, = b, > 0,9 = 2 and B(f) is a positive continuous function on
[0, c0).
Finally we assume

(A.3) S eL>(0,c0; W*).
Remark 2.1. Assumption (A.1) implies
2.3) (Au,u)y = F (u) = ajulp for ueV.
Indeed, since, by the convexity of F',,
a(F ,(0) — F,w) = F,(u + «(0 — w) — F,(w), 0<a<lueV,

we conclude, by dividing both sides of the above inequality by « and
letting « |0, that (2.3) holds.

Remark 2.2. We can replace (A.1) with a slightly weaker assump-
tion (A.1):

(AlY A:V - V* is the Fréchet derivative of a convex functional F,
on V such that

F,0 =0
and
F,(u) = a,|up, for ueV,

where a, > 0,p =2 and V, is a real Banach space such that VcV,Cc W
and the inclusion mapping of V, into W is continuous.

In what follows, we treat only the case of (A.1) because the argu-
ments in the case of (A.1) are quite similar (see Remark 3.1).

2.3. Definitions

Under assumptions (A.1)-(A.3) we consider abstract nonlinear evolu-
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tion equations of the form
(E) u”’(t) + Au(t) + BOw'(®t) = 1), 0=i< o0,

where «/’/(t) = du(t)/dt? and w'(t) = du(t)/dt. We first define a class of
solutions of (E) in which we investigate (E).

DEFINITION 2.1. Let u:[0,00)— V. Then u is called a solution of
E) if ueLz(0,00; V), eLi(0,00; H) N LL(0,00; W) and, for every
such function ¢: [0, o) — V, u satisfies

W), 6E)n + j (—@/(s), §'(Nu + (Au(s), §(8)y
@.4) + BEW(S), ¢(8)w)ds
= W/(0), $(O)x + j (), p(pds, 0=<t< oco.

DEFINITION 2.2. Let u be a solution of (E). Then the energy E(t)
is defined by

2.5) E@) = 21w @) + F4(u@) .

Moreover, it is called that « has the weak conservation property if, for
any positive C'-function ¢ on [0, ), u satisfies

v(OE®) + .r Y(EUB@)W (), w' (r)wdr

2.6) = Y(9E) + f W (r)E@r)dr + J‘ @), W @) ywdr

0s<t.

In this paper we are interested in the dacay property of solutions
of (E) rather than the existence of solutions of (E). Therefore, in what
follows, we always assume the existence of a solution of (E) with the
weak conservation property and treat only such a solution.

For the existence of solutions of (E) with the weak conservation
property, we refer to Barbu [4], Brezis [5], Lions and Strauss [11],
Strauss [17], Tsutsumi [18] and Yamada [19] (see also §4).

Remark 2.3. Formally, setting ¢ = #’ in (2.4) leads to the energy
equation of the form
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E@®) + j (BEW(S), W(s)wds = E(0) + j (F(&), w(S)wds ,
0<t<oo.

2.7

If (2.7) holds, then (2.6) also holds for any positive C'-function + on
[0, ). Therefore, any solution of (E) satisfying the energy equation
(2.7) has the weak conservation property.

2.4. Results

Now we shall investigate the rate of the decay to zero of solutions
of (E) when f(f) tends to zero as ¢t — co. To this end, we employ the
weighted energy method. We assume that we can take a pair of two
functions G(t) and A(t) which satisfy the following conditions.

(GH.1) G e C[0,00) N C¥0, o) is strictly monotone increasing on [0, co)
and satisfies

GO0)=0 and limG@#) = oo .

t—oo

(GH.2) heC[0, o) is strictly monotone increasing on [0, ) and satis-
fies

t>n@) >0 for t > t, and limA(t) = oo,

t—o0

where t, is a non-negative constant.

(GH-3) ?Btp {lﬁ—]/q‘Gl/q"flL‘l'(ha).t;W*)} =L< oo ’

where ¢’ = q/(g — 1) and g is the function in (A.2).

In addition to (GH.1)-(GH.3), we put different conditions on {G, &}
according as p +q¢ >4 or p = q¢q =2. (Recall that p (=2) and ¢ (= 2)
are constants in (A.1) and (A.2), respectively.)

When p + g > 4, we set the following conditions on {G, h}.

(GH.4) There exists a positive constant M with the following properties
i), (ii) and (iii).

(1) kl(p) + k2(p) = 2521;?/17 [Stgtp {l G”.(G,)-(p+2)/(2p)|L21’/(1"“)(h(t):t)}

7, (A= (p+2)/(2p)
+ 2|G <GTprRIer lL""(h(to),W)]
< M@-v/ep |
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(i) k() =

3c; - -
2b§2/q Szgt);:,) {1G7- (BG) ™| Lasa-nr cnir,nr} < M7/,

(iii) If p = q, then

b,c,
1 (g—1
a/Ppia-v/a

< M(p—q)/(pq) .

k(p,q@ = sup {174 (G @12 GO DI i o}
If p <gq, then

lim {8()G/ (DTG~} = 0 .

L—oco

Here a,b,,b,, ¢, and ¢, are positive constants in §2.2.

1 if p>2
E,(2)
1— k(2

(GH.5) |GRCDGC) ™ o,y <

1— ifp:Z.

When p = q = 2, we replace conditions (GH.4) and (GH.5) with the
following conditions (GH.4)’ and (GH.5).

(GH.4y k@) 4 £(2) + k(@) + (2,2) < 1.

, - k,(2)
GH.5) |G- NG() " perpyy < 1 — 2 .
( ) |GG  peoeo, T 7h@ — k(@) — 7i2.2)

When =1 and f = 0, examples of {G, k} which satisfy the above
conditions are given by functions of the form

©2.8) (G, W)} = {t,ct}, «a>0,1>¢>0, ifp+qg>4,
2.9 {G®),h®)} ={et—c}, a>0,c>0, ifp=qg=2,

where o« and ¢ in (2.8) (resp. (2.9)) must be determined so as to satisfy
(GH.4) and (GH.5) (resp. (GH.4) and (GH.5)). see also §§3.3 and 3.4.
Now we shall state our main theorems.

THEOREM 1. Let u be a solution of (E) with the weak conservation
property. If {G,h} satisfies (GH.1)-(GH.5) in case p + ¢ > 4 or (GH.1)-
(GH.3),(GH.4)" and (GH.5) in case p = q = 2, then there exists a posi-
tive constant C such that

GHE®) < C, t=0,
where E(t) is the energy defined by (2.5).
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Remark 2.4. Let p <gq. If it is known that E(t) decays to zero
as t — oo, then the latter condition in (GH.4) (iii) can be replaced with
the weaker one

[B- (G GV pan g,y < 0O

(cf. Remark 3.2).
When p@) = (¢ + 1)’ (-1 <0=<q—1) and | f({)|w.— 0 fast enough,
we have the following result on the rate of the decay of E(¢).

THEOREM 2. Let u be a solution of (E) with the weak conserva-
tion property. If p) =@ 4+ D’ with —1 <0< q— 1 and | f@) |y« = 0™
with y > (@ —1—60)/q as t — oo, then the following results hold.

(i) When —1<68<gq -1,

E®) = 0¢™) (as t — o0), @ = min {5’ o ——qq +11 : 0} ’

where 6 1s a positive number defined by
P1=D i 0 -2 +0>p0 -2

21 + 0
q— 2

if p—-2A+0)=pl@g-—2).

(ii) When 6 =q — 1,

B 0((log t)~2@~v/®"®) (as t —o0)  if p > q
o (ast—o) ifp=gq,
where « is a positive number such that
. 2q qr Qv ®-vp, . _
aémln{q_z,ﬁ} and a<W of p=gq
a:min{ﬁw, ar } ifp<gq.
q—2 ¢q-—1

(iii) When 6 = —1,

0((log t)~4¢=2) (a8 t — o0) if ¢>2

E@t) = { .
0t (as t — oo0) if =2,

where a is a positive number satisfying
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20,
3¢z’

agmin{ 2p ,2r—z} and a <
p—2

In particular, when p = ¢ =2 and |f(¢)|y~ decays to zero expo-
nentially, we have

THEOREM 3. Let u be a solution of (E) with the weak conservation
property. If p=q=2,8) =+ 1) with —1<6<1 and |f(&)|w«
= 0 (exp (—yt'™'"") with y > 0 as t — oo, then

E(t) =0 (exp (—at'~!?)) as t — oo,

where o ts a positive number satisfying

b .
<2 and a< %1 0<6<1
a2y «a « biad —0) if

2 b,c — .
<2 and 3( Gy 02) €1 o< 1 6 =0
r=er N T o

a<min{——2~b~’—,27} if —1<6<0.

3ci(1 + 6)
Remark 2.5. Recently, Nakao [14],[15] has studied the asymptotic

behavior of solutions of (E) under the similar assumptions to ours. He
proved that the energy F/(t) satisfies a difference inequality of the form
sup E(©)'"* < Cit + V{E{Xt) — E¢ + D} + 9@),

tssst+1

where C > 0, > 0,1 =y =0 and g(¢) is a non-negative function tending
to zero as t — c. From this inequality he derived the rate of the de-
cay of FE(t). However, Theorems 2 and 3 give preciser results than
the corresponding ones in [14], [15].

§3. Proofs of Theorems

In this section we always assume that a pair of functions {G,h}
satisfies (GH.1)-(GH.5) (in case p + q¢ > 4) or (GH.1)-(GH.3), (GH.4)’ and
(GH.5) (in case p =q¢ =2). To prove our theorems we employ the
weighted energy method. We take G(t) as a weight function of E(¢)
and take h(f) as an auxiliary function of G(¢).

3.1. Some Lemmas

LEMMA 3.1.
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sup {ﬁm G(s) | F(S)[E. ds} =M, < oo,

where p' = p/(p — 1).

Proof. To prove this lemma, we have only to show that there
exists a positive constant M/ satisfying

3.1 j G/(3) | F(S) o ds < M,

for all ¢t > ¢, (note (2.1)).
First we shall prove (3.1) in case p > q. We note that

JZ(:) G- ds = Ji(c) {B(s)"¥'19G(8)?"14" | £(8) |5}
X {ﬁ(S)pl/qG'(s)G(s)*P'/q'}ds ,
where ¢’ = ¢/(¢ — 1) (> p). Using Holder’s inequality we have

J ;m G'(s)| /()i ds
"
= {j“ B(s)«/9G(8) | S (3) i ds}" ’
X {J‘ ﬁ(s)p/(p—q)G/(s)q<p—1>/<p-q)G(s)_mq_l)/(p_q)ds}l-p’/q, ,
R

which, together with (GH.3) and (GH.4) (iii), implies (3.1).
In case p < q, we have
[ couromas={ @6 o5
X {B()71G'()G(8) '} f(®) =7 ds

é l‘qu—”‘G/'G_l lem(to),m)'|f|z£/°°—<%:m;w*)

x ﬁm B(S)™19G() | S (8) fy dis .

Hence, recalling (A.3),(GH.3),(GH.4) and (GH-4)’, we see that (3.1)
holds. [Q.E.D.]

LEMMA 3.2.

j BS) /| f(S)[feds = M, < oo,

where ¢’ = q/(g — 1).
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Proof. To prove this lemma, we define functions #,(t) (¢ =0,1,2,
...) as follows:

h(t) =t and hy(t) = h(h, (1)) for ¢t such that n;,_,() > ¢t,,

3.2
(3.2) = h(t,) for ¢ such that h,_,(t) < ¢, .

Now let T and T’ be arbitrary numbers such that 7V > T > ¢, and
fix them. Then, by (GH.2), there exists a positive integer n such that

Ry (T)>T and R, (T)ZT.

Since the function ¢ € [T, c0) — h,(t) is continuous and strictly monotone
increasing, we can take a number 7" (= 1) such that »,(T") = T (note
that lim 2,(t) = o). Using (GH.1)-(GH.3), we have with the aid of such

t—oo

functions {h;}
7! , 777 , ,
[ p-eris@.as < | e @i as
n i —1(T")
3.3) = [ B @l ds
=1 J hi(T7)
< L7 3 G(h(T")™ .
On the other hand, (GH.5) (or (GH.5)) implies

Gh() _
U oy =<1

Therefore,

(GXY) Gh(T") = d'G(I)™  for1si=sn.

Combining (3.3) and (3.4) we get

v -a'/q 2’ L
[ e s@m.as < e

Thus we conclude the proof of Lemma 3.2 because T and TV (T > T
> t,) are arbitrary and G(T) tends to co as T — co. [Q.E.D.]

LEMMA 3.3. Let u be a solution of (E) with the weak conservation
property. Then

supE@t) =M, < oo,

t20
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where E(t) is the energy defined by (2.5).
Proof. We note that » satisfies (2.6). Putting + =1 in (2.6) we

have
E®) + | Bow @), w@)wdr
< E(s) + ﬁlf(r)\w,.-lu’(r)lw dr for 0<s<t,
from which we obtain, by (A.2) and Hoélder’s inequality,

13
E®) + b, | 80wl dr
(3.5) ¢ 1/q ([t , i 1/q
< E(s) + {j B |w'(r)ff, dS} {J Br)=/e| f(r) e dr}
for 0 <s<t, where ¢’ =¢q/(q —1). Therefore, using Young’s inequality
and Lemma 3.2, we see that sup E(t) < oo. [Q.E.D.]

t20
Finally we shall prove the following lemma which plays an impor-
tant role in the proof of Theorem 1.

LEMMA 8.4. Let u be a solution of (E) with the weak conserva-
tion property. Then there exist positive constants N,,N, N, and T
(=t satisfying

N,>1+2N,,
N, j:m G'(9E(s)ds = ﬁm G()(B(syu/(s), w/(s))wds

+ NAGOE®) + GRE)ER®)} + N,  for t > T,
and

Gh(t) 4 _ 2N,
G(@) N, —1

sup

Proof. Since u satisfies (2.4), we have, by putting ¢ = G'» in (2.4),

j " G (Aus), w())yds = j (G(S)W(8), w()u + G [ W)

+ G'(S)(f(9), u(s))y — G'(S)NB(S)W(S), u(s))w}ds
— G OWR), u®)uy + G (), u(r))y

for every 0 < r <t. On the other hand, by (2.3),
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[ e@E@s < [ ceaus,uey + Hubas for o<t
Consequently, we get
j ’( G(9)E(s)ds < f G(8)(at/(5), u(s)) gds + %r( G/(9) |/ (8) L ds
h(t) h(t) h(t)

+ Jtm) {—=G () B()w'(s), u(s)wlds

(3.6) l
n Lm G/(3)(f(3), (s))yds
+ {—GO@W®R), ut)y + G R®) R(E)), uh(®))z}
= L) + L® + It + 1) + 1D

for t > ¢,

Now we shall estimate each I, (=1, ---,5) in terms of
|G'E | nity,0 | GBI, W | racney .oy GEVE(E) and G(h(@®)E(h(t)). By virtue
of (2.1),(2.2) and (A.1) we have

Il(t) = ij) G”(S)(’LL'(S), 'ZL(S))Hd.S‘
= ﬁ(“ |G7(8)|- |9/ (8) |z - | u(8) |y ds

= j LG ds

@)

< v 2 ¢,

al/?

X {l G/'(S)l G/(s)—(p+z)/(2p)}ds s

L 1/2
[ {Fe@mwen (@ or ey
from which it follows that

3.7 L) < 2k1(p)'|%G/l w |y 1L/12<n(c),t>‘lG,FA(u) |1L/ﬁh(z),z> ’

where we have used Holder’s inequality.
L,(t) can be estimated in the same way as above

—_ 3 ‘ 4 7 2
L) = 5 .[hm G'(s)|w(s) [ ds

3c3
= 2p¥e

j ;m (GEBEW(S), w Sy} (G (S)BSG(E) ) ds ;

so that
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3.8) L®) = ks(Q)‘lG(B(‘)u/a u)w i/g(h(z),z) .
To estimate I,(t) we devide the proof into two cases: p = ¢ and

p < q. When p = q, we see by (2.1),(A.1) and (A.2) that

It = I {—=G'(S)(BEU(s), u(S))W}dé

h(t)
b,c t , , -
S g | GOBEWE), W)
X {G/(S)F ;u(s)}? - {B(s)/1G (5) @~ 1/2G(s) =@~ D/a}ds
Hence, using Holder’s inequality again, we have

3.9 L) £ k(p, @) |GBC)W, u’)wliql?hl()zl)‘{n |G'F 4(w) EL/lZ’(n(z),w

for p = q. When p < gq, we get

Lo s 2o | {GOBEUE), W) (G OF ()

aapia—ia
X {B(8)G/(8)T71G(s)~ 4 V}a. |u(s) |#-P/edls

Therefore, using Holder’s inequality, we find that for p <gq

L = DM gy (AT
(3.9 TS e oz G

X |G(B(- )/, u/)WIgll?hl()t/)q,z) JG'F 4(u) |1L/1q(h<t>,t> ’

where M, is the positive constant in Lemma 3.3.
I(t) is estimated as follows:

1(t) = f ;m G/(9)(f(5), w(s))pds

= a7PMPVP|GF 4) [,

(3.10)

where M, is the constant in Lemma 3.1.
Finally we note that

|G W), W) ] < ¥ 20 (Z6@ WOk} HGOF )

al/p
>< {GI(S)G(S)—(p+2)/(Zp)}

holds for every s = 0 (by (2.1),(2.2) and (A.1)). Thus
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I#) = {-G'OW®), wu®)r + G R RE), w(h(t)))x}
(.11 =< EMIEGO) W@ [} {GOF 4u@)}”
+ {FGR®) |0 () [} {GREDF ((u(R(E)}?] .

Then, by using (GH.4), (GH.5) (or (GH.4), (GH.5)) and Young’s
inequality, we deduce from (3.6)-(3.11) that there exist positive constants
C, =1,2,3,4) and T (= t,) satisfying

(3.12) C,+C,+20,<1,

G(9)E(s)ds < C, j‘( G'()E(s)ds
k()

h(t)

(3.13) +C, L‘M G(s)(B(s)/(5), w/(5))ds
+ C{GWE®) + GR®)ER®)) + C,,
for t > T,
and
G(h(t)) 2C.
.14 TVRAYT - 2¥s
.14 e T i1-¢6 ¢

Consequently, Lemma 3.4 follows from (3.12)-(3.14) with N, =1 — C)/C,,
N,=0C,/C, and N, = C,/C,. [Q.E.D.]

Remark 3.1. Suppose that A satisfies (A.1) in place of (A.1) (see
Remark 2.2); Then there exists a positive number ¢, satisfying

[vlw < ¢ lvly, for veV,,

where V, is a real Banach space such that Vc V,Cc W. Furthermore,
suppose that we can take a pair {G,h} satisfying (GH.1)-(GH.5) (in
case p + g > 4) or (GH.1)-(GH.3), (GH.4) and (GH.5) (in case p = q =2)
with o and ¢, replaced by a, and ¢, respectively. Then we can show
(8.1-(3.11) quite in the same way as in the proof of Lemma 3.4; so
that the conclusion of Lemma 3.4 remains true.

In this case, Theorem 1 also holds true (see the proof of Theorem 1).

3.2. Proof of Theorem 1
We put

G@) _
¢19 P ew ¢
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Since, by Lemma 3.4,

d<1—_2No and 1+ 2N,<Ng,
N —1 -

L —
we can take a positive number ¢, such that

1—d
(1 — d)N, — 2N, °

(3.16) &< 1-—

Now let # be a solution of (E) with the weak conservation prop-
erty. Then, setting ¢ = G and s = h(t) in (2.6) gives

GRER) + r G(S)(B(U(s), W' (s))wds
8.17) Mo

< GRR)ER®) + ﬁm G'(s)E(s)ds + .[:Lm G (8), w(s)wds

for ¢t > t,, On the other hand, by (A.2) we have

1 t
Lm G(S)(f(8), W(s)wds < by Lm {G)B)U(S), ' (8)w}'?
X {B(8)~V1G(8) 1~/ f(8) [ws}dS ;
so we find, by recalling (GH.3), that the right-hand side of the above
inequality is bounded by

N f GE)(B()w/(s), w(s)wds + Cs .

Here ¢, is a positive constant satisfying (3.16) and C; is some positive
constant. Hence it follows from (3.17) that

GROE®) + (1 — &) IL G(8)B(s)u'(s), u'(s))wds
(3.18) W
< GW)EM®) + j | GBS + C,

holds for every t > t,.
We shall combine (3.18) with the second inequality in Lemma 3.4;
then

1= N1 — NCHED + (N1 — &) — 1} ﬂm) G/(s)E(s)ds

< {1 + N, — e}GRENEM®) + N1 — &) + Cs
for t > T.

(3.19)
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But the function

tm B — C, [ g |f@)ldr, o = L

is monotone non-increasing for some C, > 0 (note (3.5)); so that

3.20) Jui O OFEs = Lm G’(S){E(t) — G, J B ~C19| £(7) [ dr}ds

=1 - dGOE®) — CLY for t> 7T,

where we have used (3.15) and (GH.3). Therefore, (3.19) and (3.20)
imply that for some C,

(A — &){N,A — d) — Ny} + dIGRE®)
< {1+ NA = }GREER®) + C., t>T,

because N,(1 —¢) — 1> 0 by (3.16). Hence, by virtue of (3.16) we see
that there exist some constants 0 < « <1 and C; > 0 satisfying

(3.21) GRER) < aGRANEMR®)) + Cs for t > T.

Finally to conclude the proof of this theorem, we take functions
{h;(®)} defined by (3.2). We recall that, for each ¢ > T, there exists a
positive integer »n such that h,_,(f) > T and h,(t) < T. Then it follows
from (3.21) that

GOE®) < «"Glhat)E(ha(®) + CZ o

< sup {G()E(s)} + G,
0SssET 1 i 4

’

which completes the proof. [Q.E.D.]

Remark 3.2. Let p <gq. If it is known that E(f) decays to zero
as t— oo, we can prove Theorem 1 with (GH.4) (iii) replaced by the
following weaker condition

[B- (GG Lo ntgyey < OO+

In fact, since E(t) - 0 as t — oo, the constant M, in (3.9) can be taken
sufficiently small for ¢ large enough; so that for any ¢ > 0 there exists
a sufficiently large T such that



86 YOSHIO YAMADA

L < 5{[ G(B( )/, u,)WlLl(h(L),t) + |G'F 4(w) lLl(h(t),t)}

holds for all £t > T. Hence we can show that not only Lemma 3.4 but
also Theorem 1 holds true.

Remark 3.3. Even if the operator A:V — V* depends on ¢, we can
employ the method used here to investigate the rate of the dacay of
solutions of (E). However, conditions on {G, h} will become more com-
plicate in this case (ef. Nakao [15]).

3.3. Proof of Theorem 2

Let pt) = + 1) with —1<60=<q—1 and let | f()|w. = 0(t™7) with
1>(@—1—6/q9 as t — . We shall apply Theorem 1 to prove this
theorem; we choose a suitable pair {G,h} so that it satisfies (GH.1)-
(GH.5) (in case p + q > 4) or (GH.1)-(GH.8), (GH.4)’ and (GH.5) (in
case p = q = 2).

(i) The case —1<g<q—1.
We put

(3.22) (G®), MO} = {tct}, a>0,0<c<1.

Let 0 <¢<1 be fixed. We shall determine « so that conditions (GH.3)
—~(GH.5) (in case p + ¢ > 4) or (GH.3),(GH.4) and (GH.5) (in case p
= q = 2) are satisfied; clearly the pair {G,h} defined by (8.22) satisfies
{(GH.1) and (GH.2).

We first treat the case p + ¢ > 4. From (GH.4) (i), (i) and (iii) we
have, respectively,

F<ag 2p it p>2
p—2

0< ifp=2,
q—2

0< if g=2,

and

p—q

{0<a§ﬂq_:}_:_@ if p>q
0<a if pgq.
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(Take t, sufficiently large if necessary.) Hence (GH.4) is satisfied for
every o« such that

2;1 _+2t9) if plg—-2=@—-2)1 + 0
323) 0<a<s, 6= 1
PO=1=0 it pq-29<@p-2A+0.

»—q
Moreover, (GH.5) is satisfied for every « > 0 if ¢, is sufficiently large.
In case p = ¢ =2, (GH.4) and (GH.5) are easily verified for every
a > 0 if t, is large enough.
Finally, it follows from (GH.3) that

(3.24) 0<a§‘”‘q+1‘9+1.
q_

Hence, all conditions on {G, i} are verified for every « satisfying (3.23)
and (3.24). Thus Theorem 1 assures that there exists a positive num-
ber C such that

E@) £ Ct~—, t>0,

where « = min {5, (g7 — ¢ + 6 + 1)/(¢ — 1}.
(ii) The case § = q — 1.
In this case we first put

(3.25) {G®),r@®)}={log + 1), C+1D?—-1}, p>0,1>d>0,

and fix d. Then taking ¢, sufficiently large, we see that all conditions
on {G, h} are satisfied for every p such that

p—4q

{0<‘0§M if p>q
0<p ifp<gqg.

Therefore, it follows from Theorem 1 that there exists a positive con-
stant C such that

C(og (t + 1)) -rtavitr-o if p>q

, E®) <
(3.26) = {C(log ¢+ 1) ifp=q,

where p is an arbitrary positive number.
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In order to obtain preciser results in case p < ¢, we make use of
Remark 2.4, because E(t) decays to zero as t — oo (by (3.26)).

Let p < q and take a pair of functions {G, k} of the form (3.22) with
¢ fixed. Then noting (3.23) and (3.24) we can determine « > 0; all con-
ditions on {G, h} are satisfied when

agpzmin{ 2q a } if p<gq

¢g—2"¢—1
aV-p, . _
a<p and a<W if p=gq.

Consequently, it follows from Theorem 1 that for some positive con-
stant C

(3.27) E(t)s{Ct‘”’ t>0, ifp<gqg
. S lote, t>0, ifp=gq,

where « is a positive number satisfying

< a]l/(p—l)b1

a<p and « oy *

Thus (3.26) and (3.27) give the desired results.

(iii) The case 6 = —1.
We take a pair {G, r} of the form (3.25) and fix 0 < d <1. Then,
just as in the proof of (ii), we can prove that for some C > 0

Clog (t + 1) >a», ¢t>0, if g >2

E(?) é{ .
Clog (t + 1))~ t>0, if =2,

where p is an arbitrary positive number.
In particular, when ¢ = 2, taking ajpair {G,h} of the form (3.22)
we can show that, for some C > 0,

E@®) < Ct, t>0,

where « is a positive number such that

« < min {2(r - 1),_2L} and a < 201
p—2 3¢k

[Q.E.D.]
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3.4. Proof of Theorem 3

Let p=q¢q=2, p®) = ¢ + 1)° with —-1<6<1 and [f()|w-
= 0 (exp (—yt'71"")) with y > 0 as ¢ —» co. We put

(3.28) {G(®), h(®)} = {exp (at'™?!) , (£~ — )/a-1D} | &> 0,¢> 0,

and determine « and ¢ so that {G, h} satisfies (GH.3),(GH.4)’ and (GH.5)’;
(GH.1) and (GH.2) are satisfied if ¢}7'' = ¢. First we fix ¢ > 0. Then
(GH.3) is satisfied for every « > 0 such that

(3.29) {a§2r ifogo<1

a < 2r if —1<6<0.

Moreover, by taking ¢, large enough if 6 % 0, we can verify (GH.4)' for
every « > 0 such that :

< _ @b if0<9<1
bici1 — 6)
2 b,c — .
3(0191 cz) ( z;>¢ <1 if6=0
(3.30) oo e )t \Vap )Y !

2,

< 2% it —1<6<0.
2¢(1 + 6)

Now we fix « so that it satisfies (3.29) and (3.30). Then it can be
shown that the pair {G, h} defined by (3.28) satisfies (GH.5)" if ¢, (resp.
¢) is large enough in case 6 % 0 (resp. § = 0). Therefore, using Theorem
1 we obtain the conclusions of Theorem 3 from (3.29) and (3.30).
[Q.E.D.]

§4. Applications

In this section we shall apply the preceding results to some non-
linear partial differential equations.

Let 2 be a bounded domain in R? with smooth boundary I. By
We2(Q) we mean {u; Duec L*({2) for || £ k}, and by W¥?(2) we mean
the closure in W#%?(Q) of the smooth functions with compact supports in
0. In particular, for »p =2 we write H¥*(Q) = W4*(Q) and H:Q)
= WEXD).

4.1. Example 1

First we study the decay property of solutions to the nonlinear
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wave equation

ou ou 272 ou .
— — du t+ 1) |—| — = 0 , 00)7,
4.1 Fﬁ Tt )a at Joon 2X10, 0),
w=0 on I' X [0, ),

where ¢ = 2 and 4 is a real number.
We take H = L* (), V = Hy2) and W = L4(Q). If we put

Au= —4du and B@w = (¢ + 1)’ |v|* 2,

then we easily see that A:V — V* is the Fréchet derivative of a convex
functional F, on V defined by

F (u) = —I—J |grad uf dx (E 1 |u]§,>
2 Ja 2
and that B(t) satisfies (A.2) with b, =0, =1 and () = (¢ + 1)°.
As for the existence of solutions of (4.1) with the initial conditions

a9

4.2) w(-,0) =u, and a?(-,O) = U, on 2,

it is well known that, for each fe L%, (0,c0; H),u,eV and u,e H, there
exists a unique solution % of (4.1) and (4.2) satisfying

we Ly (0,03 V) and % e L3 (0,0 ; H) N LL(0, c0; W)

(see e.g. Lions [10] or Lions and Strauss [11]). Furthermore, according
to the result of Strauss [17, Theorem 4.1], the solution u always satis-
fies the energy equation

E@) + L (s + D |w(s)ls ds = EO) + j: (f(s), w($)wds ,

where the energy E(t) is defined by
E®) = §|W'®F + 3u®f .

Therefore, we can investigate the rate of the decay of solutions of (4.1)
(see Remark 2.3).

Now suppose that ¢ =2 if n =1,2 and 2n/(n —2) = ¢ =2 if n = 3.
Then, by Sobolev’s lemma, there exists a positive number s, such that

Ul < sqluly for ueV;
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so that
VcWcH.

Hence, applying Theorems 2 and 3 to (4.1), we can obtain the follow-
ing results (cf. Nakao [15] and Sattinger [16]).

THEOREM 4.1. Let u be a solution of (4.1) and let ¢ =2 if n =1,2
and 2nj(n —2)=q=22if n=8. If —1<0=<q—1 and |f(t)|p= O™
with y > (@ —1—6)/q as t— co, then the following decay properties
(i) and (ii) hold.

(i) When —1<6<£q—1,
Et) =0t ast—co,

where « 18 o positive number such that

a <2y and oc<i if q=2and 6 =1
2s?
a=min{2(1+ﬁ),qr_q+1+0} otherwise .
q—2 q—1

(i) When 6 = —1,

O((log t)~%ta-%) as t— oo if ¢ > 2

E(t) ={ .
(0l(9) as t— oo if ¢ =2,

where o is a positive number satisfying a < 2r — 2 and a < 2/3.

In particular, if p =q=2, -1 <0 <1 and |f(t) |y = Olexp (—7t'~1?"))
with 1> 0 as t — oo, then for some sufficiently small « > 0

E@®) = O (exp (—at~'1) as t— oo .

Remark 4.1. When 6 =0 and f(x,t) tends to a function F(x) as
t — oo, Nakao [12] has investigated the rate of the convergence of u(x,t)
to the corresponding steady state solution #(x) (see also [13]). Our
method can also apply to the study of the stability of solutions of (4.1).

Remark 4.2. Levine and Murray [9] has discussed the asymptotic
behavior for solutions to semilinear wave equations and obtained their
lower bounds. In particular, when ¢ =2, = —1 and f=0 in (4.1)
(Euler-Poisson-Darboux equation), they showed that solutions of (4.1)
satisfy, for all ¢ sufficiently large and some C > 0 and p > 0,
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E@) = Ct,
unless # = 0 (ef. Theorem 4.1 (ii)).

4.2. Example 2

We consider the nonlinear equation of the form
ou P72 du

u u (
4.3) { ot* ?‘::1 o0x; ox;
w =0 on I' X [0,00),

where p = 2 and 6 < 0.

Take H = LX2), V = Wy?(2) and W = Hy2). If we put
E 9 ( ou P2 au)
; ox, \| 0x; ox;

and
B)v = —(t + 1)’4dv ,

we eagsily see that A: V — V* is the Fréchet derivative of a convex func-
tional F', defined by ‘
1
(= 2 1up)
p

and B(t): W — W* gatisfies (A.2) with b, =0, =1, ¢=2 and 5() = (¢t + 1)°.
When 6 = 0, Tsutsumi [18] treated the initial boundary value problem
for (4.3) with initial conditions

F,u) =~

(4.4 u(-,0) = u, and %(-,O)—_—ul on 2,

and showed that, for each fe L (0,c0; H), u,€ V and u, ¢ H, there exists
a solution u of (4.3) and (4.4) satisfying

4.5  ueLi(0,00;V) and « e L0, 00; H) N Li(0, 00; W),

(for the special case n =1 and 6 = 0, see e.g. Caughey and Ellison [6],
Greenberg [7] and Greenberg, MacCamy and Mizel [8]). He employed
the Galerkin’s method to construct such a solution u of (4.3) and (4.4).

When 6 < 0, we can apply Tsutsumi’s technies to the initial boundary
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value problem (4.3) and: (4.4); so that, for each fe L. (0,00; H),u,ecV
and u, e H, there exists a solution u# of (4.3) and (4.4) satisfying (4.5).
Moreover, such # has the weak conservation property: for every 0 < s
< t and every positive C'-function +,

POEG) + j “ @ + D W, dr
(4.6) :

§w®M@+ﬁWMMWM+£MMﬂ%MMMW,

where E(t) = 3w (@) + F.(w(®). We shall prove these facts briefly.

Let {u,} be a sequence of approximate solutions to (4.3) and (4.4)
defined by the Galerkin’s method (for details, see Tsutsumi [18]). Then,
almost in the same procedure as in [18], we can choose a convergent
subsequence {u,} of {u,} such that:

4. u,—->u weakly star in L=(0,7;V) and weakly in L?(0,T;V)
for every T > 0;

“4.8) w,—w weakly star in L=(0,7T; H), weakly in L*0,7T ; W) and
strongly in L*0,7T; H) for every T > 0;

where % is a solution of (4.3) and (4.4). On the other hand, by the
monotonicity of A, we have

lim [ (Au,(9), u,(8)yds = lim [ |u ()5 ds

oo p0

T
= J (Au(s), u(s))yds = r lu(s)g ds  for every T =0,
0 0
(cf. [18, (2.27) and (2.28)]), which, together with (4.7), implies
4.9) U, — U strongly in L?(0,T; V) for every T > 0,

because LP(0,T; V) is a uniformly convex Banach space. Now we recall
that the approximate function u, satisfies, for every 0 < s < ¢ and every
positive C'-function +,

wm&m+£mmwmmmmmw

=w®&@+£wmmmm+£MMﬂmmmmm,
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where E,(t) = 3| + F 4(u,(?)). Hence it follows from (4.8) and (4.9)
that (4.6) holds for almost every s and ¢ (0 < s £ ¢). Therefore, we may
conclude that u, after redefinition on a set of measure zero, satisfies

(4.6) for every 0 < s < t. (Note that the function
tm B@®) — o [ | 7@l ds
0

is monotone non-increasing for some ¢ > 0.)

Thus we have shown the existence of a solution # of (4.8) which
satisfies (4.6). Hence, applying Theorems 2 and 8 to the study of the
asymptotic behavior of such %, we have

THEOREM 4.2, Let —1<60=<0 and let u be a solution of (4.8)
satisfying (4.6). If |f(&)|ws = O™ with y > (1 — 6)/2 as t — oo, then

E@®) = 0@ as t— oo,

where o is a positive number satisfying

a:min{l".(l_z"ilzr 1+o} if —1<6<0,

2

if 6 = —1.
3s2 o

agmin{ 2p ,2r—2} and a <
p—2

In particular, if p =2, —-1<6 <0 and | f(@)|we = O(exp (—7t'*%)) with
vy > 0 as t— oo, then for some sufficiently small a > 0,

E(t) = O(exp (—at'*?)) as t— co .

4.3. Example 3

In this subsection we denote by £ an open interval (0,1). We dis-
cuss the rate of the decay of solutions to the nonlinear beam equation

du |, d'u ( I ou
— —\a
ot? + oxt + 2] 0
(4.10) on £ X [0,00),
ou
U=—==20 on I' X [0, ),
ox?

t)l dy——+(t+1)"%%=f
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where o and 6 are real numbers; the boundary conditions in (4.10)
correspond to the case when the ends of the beam are hinged.
We take H =W = L*Q) and V = H¥(Q) N HY(Q). Put

ou
ox

(Au, ’I))V :J‘ azu.@dm + <a + j
2

2
e 3 dx) ﬁa—vdas for u,veV,
2 0x® ox

2 0xr ox

and
By = (t + 1)%v .

Then A is the Fréchet derivative of a convex functional F', on V defined

by
2 1 > 2 2
do + (], |2 do)

(zémm+%m&+§mmy

u
ox

ou

1
F = —
() 5 Joloz

2 ou
+ > Jol 72

When 6 = 0 and f = 0, Ball [1], [2] treated the initial value problem
for (4.10) and showed the existence and uniqueness of solutions of (4.10).
His technics can also apply to the case when 6 % 0 and f = 0; so that,
for each fe L (0,00;H),u,e¢V and u,c H, there exists a unique solu-
tion # of (4.10) satisfying

w0) =u, and %'(0) =u,.

Moreover, such » always satisﬁes the energy equation
4.11) E®) + L (s + D’ |u' ([ ds = E(0) + L (f(s), w'(s)wds , t=0

where E(t) = ¢ |w/ (@) + F(w(®).
Now we note

4.12) [Uezly = 7 lUslg for ueV.
Thus
F,u) = 3@ + m)ufy + flu:lz  for ueV.

Therefore, for a = —n?, A satisfies (A.1) (see Remark 2.2) with V, = HYQ)
and



96 YOSHIO YAMADA. .

p=2 if @ > —nx?
p=4 if a =—=n".

Then, recalling Remark 3.1 we obtain the following results (cf. Ball
and Carr [3]).

THEOREM 4.3. Let a = —n%, —1 <6 <1 and let u be a solution of
(4.10)

(i) The case a > —a* If |f@®)|g = O@™) with y > A — 6)/2 as t— oo,
then

E@) = 0™ as t— oo,

where a is a positive number such that

«<2 and «a<%FTT  ifg=1
2r?

a=2r—1+4+6 if —1<6<1
«<2 —2 and a<% if 6= —1.
In particular, if —1<6 <1 and|f(®)|gz = Oexp (—rt*~'"")) with y >0
as t — co, then for some sufficiently small « > 0
E(t) = O(exp (—at!~1"1) as t — co .

(ii) The case a = —z’. If |f(®)|g = O@™") with y > (1 — 6)/2 as t — oo,
then

O((logt)™ ast—oo if =1

where a s a positive number such that

{a:min{2(1-—0),27-—1+0} if —1<6<1
a <min{4,2y — 2} and o« <2/3 if 6=-—1.

Remark 4.3. Even if we replace the boundary conditions in (4.10)
with the conditions corresponding to the case of clamped ends

U=—"=20 on I' X [0,00),
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we can also investigate the decay property of solutions for such problems
(which we denote by (4.10)").

Take H =W = L¥Q) and V = H¥2). As for the existence of solu-
tions of (4.10)’ satisfying the energy equation (4.11), the same results as
in the case of hinged ends hold true. (See [1] and [2].) However, we
note that, instead of (4.12),

Iuac:cll-[ g 27[|“le

holds for every ue V. Hence, for ¢« = —4r% we can prove the similar
results to those of Theorem 4.3.
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