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ON THE DECAY OF SOLUTIONS FOR SOME NONLINEAR

EVOLUTION EQUATIONS OF SECOND ORDER

YOSHIO YAMADA

1. Introduction

In this paper we consider nonlinear evolution equations of the form

(E) u"(t) + Aiiit) + B(t)u\t) = fit) , 0 ^ t < oo ,

(u"(t) = dhι(t)/dt\ u\t) == diφ/dt), where A and Bit) are (possibly) non-

linear operators. Various examples of equations of type (E) arise in

physics; for instance, if Au = — Δu and B(t)ιι' = \u'\v!> the equation

represents a classical vibrating membrane with the resistance propor-

tional to the velocity. As to the initial value problems for (E), many

authors have established various sufficient conditions on A and B(t) so

that there exists a global solution of (E) (see e.g. Barbu [4], Lions [10]

and Tsutsumi [18]).

As for the asymptotic behavior of solutions of (E), Nakao [14], [15]

has recently obtained interesting results under the appropriate assump-

tions on A and B(t) in [15] he treats the case when A as well as Bit)

depends on t. When fit) tends to zero (in some sense) as t-* oo, he

showed that any global solution of (E) satisfying the energy equation

satisfies a difference inequality of the form

sup Eis)1+a ^ Cit + iy{Eit) - E(t + 1)} + git) ,

where Eit) denotes the energy associated with such a solution, git) is

a nonnegative function tending to zero as t —> oo and a, γ and C are

some positive constants. From this inequality he derived the decay

property of Eit): if fit) tends to zero in an appropriate sense as t —* oo,

then Eit) decays to zero as t —> oo.

The main purpose of the present paper is to discuss the asymptotic

behavior of solutions of (E). We put almost the same assumptions on
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A and Bit) as those of Nakao [15] so that the decay property of (E)
holds but, for simplicity of arguments, the case when A depends on t
is not treated here. Moreover, we assume that there exists a global
solution of (E) which satisfies a certain kind of an energy inequality
(see (2.6)). Then our problem is the following: if fit) tends to zero
as t—>oo, how fast does the energy E(t) decay to zero as t-^coΊ Our
approach to this problem relies on the weighted energy method and is
quite different from Nakao's. In order to investigate the rate of the
decay of E(t)9 we introduce a pair of {Git), h(t)} of two monotone in-
creasing functions on [0, oo) which satisfy several conditions (see §2.4).
We take G(t) as a weight function of E(t) and take hit) as an auxiliary
function of Git). Using this pair {Git), hit)}, we can show

sup Git)Eit) < oo .

If the rate of the convergence of fit) to zero is known, we can obtain,
with a suitable choice of {Git), hit)}, preciser results on the rate of the
decay of Eit) than those of Nakao [14], [15].

The content of this paper is as follows. We introduce some nota-
tion in §2.1 and give some assumptions on A and Bit) in §2.2. In
§2.3 we define a solution of (E) which has the weak conservation prop-
erty. Main results (Theorems 1,2 and 3) are stated in §2.4. §3 is
devoted to the proofs of Theorems 1,2 and 3. Finally, in § 4 we apply
our results to some nonlinear partial differential equations such as the
nonlinear wave equations and the nonlinear beam equations.

§2. Assumptions and Results

2.1. Preliminaries

We first of all explain some notation which will be used later.
Let X be a real Banach space. We denote the norm in Z by | \Σ

and denote the dual space of X by X*. The pairing between ^ e P
and xeX is denoted by ix*,x)Σ.

Let 1 <̂  r < oo and a<>b. When X is a real Banach space, we say
that / belongs to Lr(α, b X) if / is measurable in a <̂  t ^ b with values
in X and satisfies
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where

= ess sup \f(t)\x if r = oo .

In particular, for X = R we simply write Z/(α, 6) = Lr(a, b R). Finally,

we define L[oc(0, oo X) by

LίJ(d,oo;X) = {f:[0,oo)-*X;feLr(0,T;X) for any T > 0} .

2.2. Assumptions

We are given a real Hubert space i ϊ and two real Banach spaces

V and W which satisfy

V aW aH ,

where each inclusion mapping is continuous. Then there exist positive

constants cί and c2 such that

(2.1) \v\w ̂  c, \v\v f o r veV

a n d

(2.2) \w\H ^ c2\w\w ίovweW.

Moreover, we assume that V is dense in W and H. We identify H

with its own dual, so that the following inclusion relation holds

The natural pairing between u* e F* (resp. u* e W*) and ueV (resp.

u eW) is denoted by (u*,u)v (resp. (u*,u)w); if u*,ueH, this is the

ordinary inner product (u*,u)H in H.

Besides these spaces we are given two nonlinear operators A and

Bit) which satisfy the following assumptions.

(A.I) A:V-*V* is the Frechet derivative of a convex functional FA

on V such that

FA(0) = 0

and

FA(u) ^ a\u\p

v for w e 7 ,
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where a > 0 and p ^ 2.

(A. 2) For each 0 ^ t < oo, j?(ί): W -> PF* satisfies

(B(tK%V ^ 6^(01w|S. fov ueW ,

and

W 1 ! ^ for u,veW ,

where 52 ^ bx > 0, ς ^ 2 and /}(£) is a positive continuous function on
[0, oo).

Finally we assume

(A.3) /eL~(0,oo;T7*).

Remark 2.1. Assumption (A.I) implies

(2.3) (Au,u)v ^ FJu) ^a\u\p

v for ue V .

Indeed, since, by the convexity of FΛ9

a(FA(0) - FA(u)) ^ F A ( u + α ( 0 - w)) - FA(u) , 0 < α < l , w e 7 ,

we conclude, by dividing both sides of the above inequality by a and
letting αJO, that (2.3) holds.

Remark 2.2. We can replace (A.I) with a slightly weaker assump-
tion (A.I)7:

(A.I)7 A: V —> V* is the Frechet derivative of a convex functional FA

on V such that

FA(0) - 0

and

FA(u) ;> &! 1̂ 1̂  for u e 7 ,

where αx > 0, p >̂ 2 and 7! is a real Banach space such that VcVΊaW
and the inclusion mapping of Vλ into PF is continuous.

In what follows, we treat only the case of (A.I) because the argu-
ments in the case of (A.I)7 are quite similar (see Remark 3.1).

2.3. Definitions

Under assumptions (A.1)-(A.3) we consider abstract nonlinear evolu-
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tion equations of the form

(E) u"(fi) + Au(t) + B(t)u\t) = f(t) , 0 ^ t < oo ,

where u"(t) = d2u(t)/dt2 and %'(ί) = du(t)/dt. We first define a class of
solutions of (E) in which we investigate (E).

DEFINITION 2.1. Let u: [0, oo)-* V. Then w is called a solution of
(E) if we Li~c(0, oo 7), ^ e L£c(0, oo H) Π Lfoc(0, oo W) and, for every
such function φ: [0, oo) —> F, u satisfies

(u'(fi),φ(f))H + Γ{-(^(β),^(s))H + (Au(8),φ(8))r

Jo

(2.4) + (B(s)u'(s),φ(s))w}ds

=: (u'((ϊ), φ(0))s + P (f(8), φ{s))vds , 0 ^ t < oo .
Jo

DEFINITION 2.2. Let w be a solution of (E). Then the energy E(t)
is defined by

(2.5) E(t) = ±\u'(t)\2

H + FA(u(t)) .

Moreover, it is called that u has the weak conservation property if, for
any positive (^-function ψ on [0, oo), u satisfies

ψ(t)E(t) + ^ψ(r)(B(r)u'(r),u'(r))wdr

( 2 ' 6 ) ^ ψ(s)E(s) + Γ ψ'(r)E(r)dr + ['ψ(r)(f(r),u'(r))wdr ,
J s J s

0 ^s £t .

In this paper we are interested in the dacay property of solutions
of (E) rather than the existence of solutions of (E). Therefore, in what
follows, we always assume the existence of a solution of (E) with the
weak conservation property and treat only such a solution.

For the existence of solutions of (E) with the weak conservation
property, we refer to Barbu [4], Brezis [5], Lions and Strauss [11],
Strauss [17], Tsutsumi [18] and Yamada [19] (see also §4).

Remark 2.3. Formally, setting φ = uf in (2.4) leads to the energy
equation of the form
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Eit) -
(2.7)

0 ^ t < oo .

If (2.7) holds, then (2.6) also holds for any positive C'-f unction ψ on

[0, oo). Therefore, any solution of (E) satisfying the energy equation

(2.7) has the weak conservation property.

2.4. Results

Now we shall investigate the rate of the decay to zero of solutions

of (E) when fit) tends to zero as t-> oo. To this end, we employ the

weighted energy method. We assume that we can take a pair of two

functions Git) and hit) which satisfy the following conditions.

(GH.l) G e C[0, oo) Π C2(0, oo) is strictly monotone increasing on [0, oo)

and satisfies

G(0) ^ 0 and lim Git) = oo .
ί-»oo

(GH.2) h e C[0, oo) is strictly monotone increasing on [0, oo) and satis-

fies

t > hit) > 0 f or t > t0 and lim hit) = oo ,

where ί0 is a non-negative constant.

(GH.3) sup {l/r^-G^' / U ^ ^ , , . ^ } Ξ L < O O ,

where q' — q/iq — 1) and β is the function in (A.2).

In addition to (GH.1)-(GH.3), we put different conditions on {G, h]

according a s p + g > 4 o r p = g = 2. (Recall that p ( ^ 2) and q (;> 2)

are constants in (A.I) and (A.2), respectively.)

When p + q > 4, we set the following conditions on {G, h}.

(GH.4) There exists a positive constant M with the following properties

(i), (ii) and (iii).

( i ) UP) + UP) =
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( i i ) kM = ^ s u p {|G' (j8G)-»"U (.-, ) ( f t (0, t,} <
ί>ίo

(iii) If p ^ q, then

h (n a) 2^x

If p < q, then

-"} - 0 .

Here α, b19 b2, cx and c2 are positive constants in §2.2.

fl if 29 > 2

(GH.5)

When p = q = 2, we replace conditions (GH.4) and (GH.5) with the
following conditions (GH.4)/ and (GH.δy.

(GH 4LY k (2) + k (2) H- k (2) -\- k (2, 2) <C 1

(GH.5)' IGWOXSC-rVao.oo, < I

When β =1 and / = 0, examples of {G, fc} which satisfy the above
conditions a re given by functions of the form

(2.8) {G(ί), fe(ί)} = {t% ct} , α > 0 , l > c > 0 , i f p + < ? > 4 ,

(2.9) {G(ί), Mi)} - {eat, t - c] , « > 0, c > 0 , if p = g = 2 ,

where α: and c in (2.8) (resp. (2.9)) must be determined so as to satisfy
(GH.4) and (GH.5) (resp. (GH.4)7 and (GH.5)7). see also §§3.3 and 3.4.

Now we shall state our main theorems.

THEOREM 1. Let u be a solution of (E) with the weak conservation
property. If {G,h} satisfies (GH.l)-(GH.δ) in case p + q> 4 or (GH.l)-
(GH.3), (GH.4/ and (GH.5)' in case p = q = 2, then there exists a posi-
tive constant C such that

G(t)E(t) g C , t ^ 0 ,

where E(t) is the energy defined by (2.5).
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Remark 2.4. Let p < q. If it is known that E(t) decays to zero
as t—> oo, then the latter condition in (GEL 4) (iii) can be replaced with
the weaker one

(cf. Remark 3.2).
When β(t) = (t + 1) (-1 ^ θ ̂  ? - 1) and |/(t)|ir. ~* 0 fast enough,

we have the following result on the rate of the decay of E(t).

THEOREM 2. Let u be a solution of (E) with the weak conserva-
tion property. If β(t) = (ί + 1)' with -l<>θ<Lq-l and \f(t)\w* = 0(r r)
with γ > (q — 1 — θ)/q as t —> oo, then the following results hold.

( i ) When -1 < θ < q - 1,

E(t) = 0(t~a) (as t->oo),a = min fδ, qγ ~~ q + 1 + θ\ ,

I q — 1 J

where δ is a positive number defined by

p(q - 1 - θ) , .p - q

2 ( 1

g - 2

(ii) When θ = g — 1,

B W = ί o ( ( i o g i

\θ(t-a)

where a is a positive number such that

and

^ p(q - 2) .

(as ί -> oo) if p> q

(as t -^ oo) if p ^q

g - 2 g - l

a = min ( Q , Qr )
1(7 — 2 q — 1J

(6 icI)
J > / < 1 >-»

if p < q .

(iii) Wfee% (9 = - 1 ,

_ (

where a is a positive number satisfying

( ί ) ' 2 / ( ? - 2 ) ) (as ί - oo) if q > 2

lθ(ί-«) (as ί -> oo) if q = 2 ,
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a < min ( 2p , 2γ - 2\ and a < ^ i
l p - 2 I 3ê

In particular, when p — q = 2 and |/(ί)|^* decays to zero expo-

nentially, we have

THEOREM 3. Let u be a solution of (E) with the weak conservation

property. If p = q = 2, 0(ί) = (ί + 1)' wiίfe - 1 < 0 < 1 cmd |/(ί)k

= 0 (exp (—pi1""1)) wiίfe 7* > 0 as ί —> 00,

= 0 (exp (-αί1-'"))

where a is a positive number satisfying

or ̂  2 r αmZ δC-^L- + -^-V + &

;— v/^"< 1 if θ = 0
\ V2α 26;/ Vαδi

Remark 2.5. Recently, Nakao [14], [15] has studied the asymptotic

behavior of solutions of (E) under the similar assumptions to ours. He

proved that the energy E(t) satisfies a difference inequality of the form

sup E(s)ι+« ^ C(t + iy{E(fi) - E{t + 1)} + g(t) ,

where C > 0, a> 0, l ^ ^ ^ O and git) is a non-negative function tending

to zero as t -* oo. From this inequality he derived the rate of the de-

cay of E(t). However, Theorems 2 and 3 give preciser results than

the corresponding ones in [14], [15].

§3. Proofs of Theorems

In this section we always assume that a pair of functions {G, h}

satisfies (GH.1MGH.5) (in case p + q > 4) or (GH.1)-(GH.3), (GH.4)' and

(GH.δy (in case p = q = 2). To prove our theorems we employ the

weighted energy method. We take G(t) as a weight function of E(t)

and take h(t) as an auxiliary function of Git).

3.1. Some Lemmas

LEMMA 3.1.
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sup { f G'(β) I /(s) |fT. ds\ =M,<oo ,

where pr = p/(p — 1).

Proof, To prove this lemma, we have only to show that there

exists a positive constant M[ satisfying

(3.1) Γ G'(
Jft(ί)

for all ί > ί, (note (2.1)).

First we shall prove (3.1) in case φ > q. We note that

Γ G'(S) |/(8) B?. <fc = f
ut)

X

where q' = q/(q — 1) (> p'). Using Holder's inequality we have

f G'(
Jh{t)

X I /3(s)ί'/<ί'-«)G/(s)«(ί-1)/(ί)-«)G(s)-ί1(«-1»^-«'ds

which, together with (GH.3) and (GH.4) (iii), implies (3.1).

In case p <; q, we have|

Γ G/(s)|/(s)ffi;ώ= Γ
JΛ(O JΛ(

x {β{syι«G'{s)G(sy'}\f{s)&;*' ds

X Γ /3(8)-*'/«G(8)|/(8)I«;.ώ.

Hence, recalling (A.3), (GH.3), (GH.4) and (GH-4)', we see that (3.1)

holds. [Q.E.D.]

LEMMA 3.2.

Γ β(s)-*'">\Xs)\i;,ds Ξ M2 < oo ,
Jo

where qr — q/(q — 1).
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Proof. To prove this lemma, we define functions ht(t) (i = 0,1,2,

) as follows:

ho(t) = t and ht(t) = fe(fe<_i(ί)) for ί such that /^_i(i) > t0 >

z= h(fio) for ί such that h^t) ^ ί0

Now let T and I" be arbitrary numbers such that Tf > T > tQ and

fix them. Then, by (GH.2), there exists a positive integer n such that

K-iiT') > T and hn(Ί") ^ T .

Since the function t e [T\ oo) π-> hn(t) is continuous and strictly monotone

increasing, we can take a number T" (̂ > TO such that hn(T") = T (note

that lim fen(ί) - oo). Using (GH.1)-(GH.3), we have with the aid of such

functions {hi}

Γ β(sy«'<«\f(s)\^ds ^ Γβ(sy«''«\As)\Uds

(3.3) = Σ Γ" I ( Γ ' βis)-9'"1 \f(s)\?;»ds
x = \ JhiiT")

£ L"' Σ GihiiT"))'1 .
i = l

On the other hand, (GH.5)(or (GH.5)0 implies

Therefore,

(3.4) GihiiT"))-1 ^ dn-lG(T)

Combining (3.3) and (3.4) we get

= (1 - d)G(T)

Thus we conclude the proof of Lemma 3.2 because T and V {T > T

> t0) are arbitrary and G(T) tends to co as Γ-> oo. [Q.E.D.]

LEMMA 3.3. Let u be a solution of (E) with the weak conservation

property. Then

sup E(t) = Mz < oo ,
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where E(t) is the energy defined by (2.5).

Proof. We note that u satisfies (2.6). Putting ψ = 1 in (2.6) we
have

E(t) + ^{B{r)u'(r),u'(r))wdr

^ E(s) + ̂ \f(r)\w*>\u'(r)\wdr for 0 ̂  s ^ t ,

from which we obtain, by (A.2) and Holder's inequality,

E(t) +

^ ί7(s) + IJsβ(r)I%'ίr)|fr cfcj |J^j8(r)-«'/«| f(r)\Udr\

for 0 <̂  5 ̂  ί, where qf — q/(q — 1). Therefore, using Young's inequality
and Lemma 3.2, we see that supί7(ί) < oo. [Q.E.D.]

Finally we shall prove the following lemma which plays an impor-
tant role in the proof of Theorem 1.

LEMMA 3.4. Let u be a solution of (E) with the weak conserva-
tion property. Then there exist positive constants NlfN2fNz and T
(^ ί0) satisfying

N1>1 + 2N2,

N1 Γ G'(s)E(s)ds ^ f G(s)(B(s)u'(s), u'(s))wds

+ N2{G(t)E(t) + G(h{t))E(h{t))} + N3 for t > T ,

and

sup
G(t) N,-l

Proof. Since u satisfies (2.4), we have, by putting φ = G'u in (2.4),

Γ G'(s)(Au(.s),u(s))rds = J' {G"(.s)(u'(s),u(s))H + G'(.8)\u'(.s)&

+ G'(s)(f(s),u(s))r - G'(s)(B(s)u'(s),u(s))w}ds

- Gf(ϊ)(y!(t)Mt))H + G'(rXu'(r),u(r))H

for every 0 5£ r ^ t. On the other hand, by (2.3),
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Γ G'(s)E(s)ds ^ Γ G'(s){(Au(s),u(s))v + \\u'(s)fH}ds f o r O ^ r ^ t .

Consequently, we get

P G'(s)E(s)ds ^ Γ G"{8){u'(β), u(s))Hds + f Γ G'(s) | u\a) fH ds
Jft(ί) Jft(ί) Jft(ί)

+ f {-G'(

7°(3.6) 7
+ Γ G'(s)(f(s),u(s))rds

Jft(ί)

Ξ !,(*) + /2(t) + /,(t) + /4(t) + 7,(t)

for t > U

Now we shall estimate each 74(ί) (i = 1, , 5) in terms of

|G'^U 1 ( f t ( t ) . t ), |G(B( )ΐ*/,MθHrU1(ft(t)>()fσ(ί)^(ί) and G(h(t))E(h(t)). By virtue

of (2.1), (2.2) and (A.I) we have

7 1 ( ί ) = f G"(8)(u'(8)M8))Bd8
Jh(t)

^ Γ \G"(s)\ \u'(s)\H \u(s)\Hds
Jft(ί)

^ C l c 2 f' I G"(β) I I u'(s) \H • I tt(s) \v ds

^ V T c c , f' f 1 G , ( 8 ) j M / ( β ) &

α / p
 JΛ(O 12

X {\G"(8)\G'(8)-i*+2Wp)}d8 ,

from which it follows that

(3.7) hit) ^ 2fc1(p).|iG/| ^1^1^(0,0'

where we have used Holder's inequality.

72(ί) can be estimated in the same way as above

2&i / Q JΛ(ί)

so that
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(3.8) 72(ί) ^ kMλG{B{ )u\u')w\ϊ?mt)it) ,

To estimate I3(t) we devide the proof into two cases: p >̂ q and

p < q. When p ^ g, we see by (2.1), (A.I) and (A.2) that

rt

»/ Λ-(ί)

>Λ r

X

Hence, using Holder's inequality again, we have

(3.9) 7,(ί) ^ A;4(pf q) • |G(B( ) < MO,Γ!»,<> I G'

for p Ξ> g. When 27 < #, we get

1/o^f'1)/a Γ {G(s)(β(sK(s), ^(β))^}"-"" {G'(s)FA(u(s)ψq

a/qb\q '/q Jft(ί)

X

Therefore, using Holder's inequality, we find that for p < q

h r M<.ί-p)/pq ( RfqΛfl-'ί<Λ<ι-i) i/q

( 3 > 9y o^&i"-1"* *(os«ιl G(s)«"1 J

X

where M3 is the positive constant in Lemma 3.3.

74(ί) is estimated as follows:

(3.10)

Ί is the constant in Lemma 3.1.

Finally we note that

l/p

x {6'(

holds for every 5 ^ 0 (by (2.1), (2.2) and (A.I)). Thus
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/,(*) = {-G'{t){u\t),u{t))H + G%Ut))(u'(h(t)),u(h(t)))H}

(3.11) ^ Uv)\.{\G{t) \u'(t) \iy<2 • {G(t)FA(u(tWp

Then, by using (GH.4), (GH.5) (or (GH.4)', (GH.5)') and Young's

inequality, we deduce from (3.6)-(3.11) that there exist positive constants

Ci (i = 1,2,3,4) and T ( ^ t0) satisfying

(3.12) C, + C2 + 2C3 < 1 ,

Γ G'(s)E(s)ds ^ C, Γ G'(s)E(s)ds
Jh(t) Jh(t)

(3.13) + C2 Γ G(s)(B(s)u'(s),u'(s))wds
Jh(t)

+ C3{G(t)E(t) + G(h(t))E(h(t))} + C4 ,

f or t > T ,

and

(3.14)
Git) i_ C l -C 2

Consequently, Lemma 3.4 follows from (3.12)-(3.14) with Nx = (1 - Cχ)/C2,

N2 = C3/C2 and ΛΓ3 = C4/C2. [Q.E.D.]

Remark 3.1. Suppose that A satisfies (A.I)7 in place of (A.I) (see

Remark 2.2) Then there exists a positive number c3 satisfying

\ v \ w ^ Cs\v\Vl f o r v e V l f

where Vx is a real Banach space such that V c V\ c TF. Furthermore,

suppose that we can take a pair {G,h} satisfying (GH.1)-(GH.5) (in

case v + Q > 4) or (GH.1)-(GH.3), (GRAY and (GH.5)7 (in case p = q = 2)

with & and cx replaced by a^ and c3 respectively. Then we can show

(3.7)-(3.11) quite in the same way as in the proof of Lemma 3.4; so

that the conclusion of Lemma 3.4 remains true.

In this case, Theorem 1 also holds true (see the proof of Theorem 1).

3.2. Proof of Theorem 1

We put

(3.15) sup
t>τ Git)
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Since, by Lemma 3.4,

d < 1 _ 2N* and 1 + 2N2 < 2VΛ

Λ/\ - 1

we can take a positive number ε0 such that

1 - d
(3.16) ε0 < 1 -

- d)N1 - 2N2

Now let u be a solution of (E) with the weak conservation prop-

erty. Then, setting ψ = G and s — h(t) in (2.6) gives

(3.17) Jm)

G(t)E(t) + f
Jft

^ G(h(t))E(h(t)) + Γ G'(s)E(s)ds + Γ
J hit) Jh

for t > £0. On the other hand, by (A.2) we have

f G(s)(f(s),u'(s))wds ^ &r1Az Γ {G(s)(δ(s)^(s),^(s))F}
Jh(t) JhU)

X

so we find, by recalling (GH.3), that the right-hand side of the above

inequality is bounded by

Jhtt)

Here ε0 is a positive constant satisfying (3.16) and C5 is some positive

constant. Hence it follows from (3.17) that

(3.18)
G(t)E(t) + (1 - ε0) P G(s)(B(s)u'(s), u\s))wds

JhU)

^ GQι{t))EQι(t)) + P G'(s)E(s)ds + C5

Jh(t)

holds for every ί > t0.

We shall combine (3.18) with the second inequality in Lemma 3.4;

then

{1 - 2V2(1 - eQ)}G(t)E(t) + {N^l - εQ) - 1} f G'(s)E(s)ds
JHt)

(3.19) ^ { 1 + Ni(χ _ ^ ) } G m ) ) E m ) ) + Ni(χ _ e<) + C6

f or t > T .
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But the function

t - C6 Γ β(rr**'* |/(r) |£. dr ,
Jo

gr _ 1

is monotone non-increasing for some C6 > 0 (note (3.5)) so that

Γ GXs)E(8)d8 ^ Γ CWJEίί) - C6 Γ(3.20)
^ (1 - d)G(t)E(t) - CJLfl' f or t > Γ ,

where we have used (3.15) and (GH.3). Therefore, (3.19) and (3.20)
imply that for some C7

[(1 - eβHΛΉl - (0 - N2} + d]G(t)E(t)

C7 , ί > T ,

because Nj(l — ε0) - 1 > 0 by (3.16). Hence, by virtue of (3.16) we see
that there exist some constants 0 < a < 1 and C8 > 0 satisfying

(3.21) G(t)E(t) ^ aG(h(t))E(h(t)) + C8 for t > T .

Finally to conclude the proof of this theorem, we take functions
{fet(ί)} defined by (3.2). We recall that, for each t> T, there exists a
positive integer n such that hn_x(t) > T and hn(t) <: T. Then it follows
from (3.21) that

G(t)E(t) ^ anG(hn(t))E(hn(t)) + CβΣα*
i = 0

^ sup {G(s)E(s)} +
— a

which completes the proof. [Q.E.D.]

Remark 3.2. Let p < q. If it is known that E(t) decays to zero
as t-*oo, we can prove Theorem 1 with (GH.4) (iii) replaced by the
following weaker condition

In fact, since E(t)-*0 as ί—>oo, the constant M3 in (3.9)' can be taken
sufficiently small for t large enough so that for any ε > 0 there exists
a sufficiently large T such that
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73(ί) ^ εftG(B(.)u',u')w\LHm)>t) + \G'FA(u)\L1{hUht)}

holds for all t>T. Hence we can show that not only Lemma 3.4 but

also Theorem 1 holds true.

Remark 3.3. Even if the operator A: V —•* V* depends on t, we can

employ the method used here to investigate the rate of the dacay of

solutions of (E). However, conditions on {G, h} will become more com-

plicate in this case (cf. Nakao [15]).

3.3. Proof of Theorem 2

Let β(t) = (ί + D' with - 1 ^ θ ̂  q - 1 and let |/(ί)k = 0(ί~0 with

γ > (q — 1 — θ)/q as £ —> oo. We shall apply Theorem 1 to prove this

theorem; we choose a suitable pair {G,h} so that it satisfies (GH.l)-

(GH.5) (in case p + q > 4) or (GH.l)-(GH.3),(GH.4y and (GH.5)' (in

case p = q = 2).

( i ) The case - 1 < θ < q — 1.

We put

(3.22) {G(t)9 h{t)} = {t% ct] , a > 0, 0 < c < 1 .

Let 0 < c < 1 be fixed. We shall determine a so that conditions (GH.3)

-(GH.5) (in case p + q > 4) or (GH.3), (GH.4)' and (GH.5)' (in case p

— q = 2) are satisfied; clearly the pair {G,h} defined by (3.22) satisfies

(GH.l) and (GH.2).

We first treat the case p + q > 4. From (GH.4) (i), (ii) and (iii) we

have, respectively,

[θ < a ^ — ^ — if p > 2
I p-2
iθ<a if p = 2 .

q-2

10 < a if q = 2 ,

and

if p > q

if p <^q .
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(Take t0 sufficiently large if necessary.) Hence (GH.4) is satisfied for
every a such that

(3.23)

2 ( 1 +JP if p(q - 2) ^ (p - 2)(1 + θ)

if p(q ~2)<(p - 2)(1 + 0) .

Moreover, (GH.5) is satisfied for every a > 0 if tQ is sufficiently large.
In case p = q = 2, (GH.4)' and (GH.5)' are easily verified for every

a > 0 if t0 is large enough.
Finally, it follows from (GH.3) that

(3.24) o < a < z v r q + e + i
q - 1

Hence, all conditions on {G,h} are verified for every a satisfying (3.23)
and (3.24). Thus Theorem 1 assures that there exists a positive num-
ber C such that

E(t) ^ Ct~a , ί > 0 ,

where a — min {δ, (qγ — q + θ + ΐ)/(q — 1}.

(ii) The case θ = q — 1.
In this case we first put

(3.25) {G(ί), MO} - {(log (ί + 1))' , (ί + 1Y - 1} , p > 0, 1 > d > 0 ,

and fix d. Then taking ί0 sufficiently large, we see that all conditions
on {G, h} are satisfied for every p such that

if p > q

if p ^ ? .

Therefore, it follows from Theorem 1 that there exists a positive con-
stant C such that

(3.26)

where /> is an arbitrary positive number.
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In order to obtain preciser results in case p ig q, we make use of
Remark 2.4, because E(t) decays to zero as t —* oo (by (3.26)).

Let p ^ g and take a pair of functions {G, ft} of the form (3.22) with
c fixed. Then noting (3.23) and (3.24) we can determine a > 0; all con-
ditions on {G,h} are satisfied when

a < μ =Ξ min ] -—, —?ϊ—1 if p < q
Ig - 2 g — l i

α^ and α < ( £ ^
Consequently, it follows from Theorem 1 that for some positive con-
stant C

(3.27) S
[Ci-e , t > 0 , if p = g ,

where a is a positive number satisfying

a < μ and a < — .
- ^ ( 6 ) 2 ) / ( 1 )

Thus (3.26) and (3.27) give the desired results.

(iii) The case Θ = — 1.
We take a pair {G, ft} of the form (3.25) and fix 0 < d < 1. Then,

just as in the proof of (ii), we can prove that for some C > 0

< ίC(log (t + l))-2/<«-2> , t > 0 , if β > 2
= \C(log (t + 1))-' , t > 0 , if g = 2 ,

where p is an arbitrary positive number.
In particular, when q = 2, taking afpair {G, ft} of the form (3.22)

we can show that, for some C > 0,

E(t) ^ Cr* , t > 0 ,

where ar is a positive number such that

a ^ min f2(r - 1), - ^ — ) and α < ^ i .
I p — 2 J 3<̂

[Q.E.D.]
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3.4. Proof of Theorem 3

Let v = q = 2, β(fi) = (ί + D' with - 1 < Θ < 1 and \f(t)\w.

= OCexpί-r*1"1'1)) with γ > 0 as ί-» oo. We put

(3.28) {(?(£), Λ(ί)} = {exp (αί1"1") , (ί1""1 - c)1"1"1'"} , a > 0, c > 0 ,

and determine a and c so that {G, h) satisfies (GH.3), (GH.4)7 and (GH.5)'

(GH.l) and (GH.2) are satisfied if tl~lθ] ^ c. First we fix c > 0. Then

(GH.3) is satisfied for every a > 0 such that

(a < 2γ if 0 < θ < 1
(3.29) I ~

Moreover, by taking t0 large enough if ^ 0 , we can verify (GH.4)' for
every a > 0 such that

(3.30)

2cl(l + θ)

i f " = 0

if - 1 < ^ < 0 .

Now we fix α so that it satisfies (3.29) and (3.30). Then it can be
shown that the pair {G,h} defined by (3.28) satisfies (GH.5)' if ί0 (resp.
c) is large enough in case θ ^ 0 (resp. θ — 0). Therefore, using Theorem
1 we obtain the conclusions of Theorem 3 from (3.29) and (3.30).

[Q.E.D.]

§ 4. Applications

In this section we shall apply the preceding results to some non-
linear partial differential equations.

Let Ω be a bounded domain in Rn

x with smooth boundary Γ. By
Wk>p(Ω) we mean {u; Daue LP(Ω) for \a\ ̂  k}9 and by Wt>v(Ω) we mean

the closure in Wk'p(Ω) of the smooth functions with compact supports in
Ω. In particular, for p = 2 we write iϊfc(β) = Wk>2(Ω) and H*(β)
= WkΛΩ).

4.1. Example 1

First we study the decay property of solutions to the nonlinear
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wave equation

(4.1) df
- Δu + (ί + I)9 du

dt
du

~dt
= / on Ω X [0, oo)^

on Γ X [0, oo) ,

where q ^ 2 and θ is a real number.
We take H = L2(Ω), V = flj(fl) and TF = L*(β). If we put

A^ = -Jw and J?(t)t; = (ί + D'l^Γ"2^ ,

then we easily see that A: V —> F* is the Frechet derivative of a convex
functional FA on F defined by

= 1 J ^ |grad |̂2 cte ( = 1 |

and that B(t) satisfies (A.2) with bx = 62 = 1 and j8(ί) = (t + 1)'.
As for the existence of solutions of (4.1) with the initial conditions

(4.2) u( , 0) = uQ and — ( , 0) = u, o n f i ,
dt

it is well known that, for each / e Lioc(0, oo H), uoeV and ux e H, there
exists a unique solution u of (4.1) and (4.2) satisfying

u e LSc(0, oo F) and vf e L^(0, oo 2Ϊ) Π Lfoc(0, oo W)

(see e.g. Lions [10] or Lions and Strauss [11]). Furthermore, according
to the result of Strauss [17, Theorem 4.1], the solution u always satis-
fies the energy equation

E(jt) + Γ (S + iy\u'(8)$rd8 = E(fl) + Γ (f(8),u'(8))wd8 ,
Jo Jo

where the energy E(t) is defined by

Therefore, we can investigate the rate of the decay of solutions of (4.1)
(see Remark 2.3).

Now suppose that q ^ 2 if n = 1,2 and 2n/(n — 2)^q^2ifn^3.
Then, by Sobolev's lemma, there exists a positive number sq such that

\u\w ^ sq\u\v for ueV;
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so that

F c W czH .

Hence, applying Theorems 2 and 3 to (4.1), we can obtain the follow-
ing results (cf. Nakao [15] and Sattinger [16]).

THEOREM 4.1. Let u be a solution of (4.1) and let q^Ξ>2 if n = 1,2
and 2n/(n - 2) ^ q ^ 2 if n ^ 3. If -l^θ ^q-I and \f(t)\w* = O(t"0
wi£/£ γ> (q — 1 — θ)/q as ί —* oo, ίfcew ίfcβ following decay properties
(i) αtieZ (ii)

(i) When — 1 < 0 rgi # — 1,

E(t) •= 0(t~a) aί

where a is a positive number such that

/ 1 if q = 2 αw<# 0 = 1

^ }α = min ^ ^ ^ , /̂ - ^ T - -r ^ \ otherwise .
I α — 2

(ϋ)

|Ό((log t)~2/iq~2)) as t —> oo if q > 2

\θ(ί~α) as t -* ex) if q — 2 ,

where a is a positive number satisfying a <2γ — 2 and a < 2/3.

/tι particular, if p — q~2, —-1<0<1 and | / ( ί ) | w * — O(exp (—

^ > 0 as t —> oo, ίfeen /or some sufficiently small a > 0

— 0 (exp (—atf1"1*1)) as ί —» oo .

Remark 4.1. When 0 = 0 and f(x,t) tends to a function F(^) as
£-> oo, Nakao [12] has investigated the rate of the convergence of u(x,t)
to the corresponding steady state solution ΰ(x) (see also [13]). Our
method can also apply to the study of the stability of solutions of (4.1).

Remark 4.2. Levine and Murray [9] has discussed the asymptotic
behavior for solutions to semilinear wave equations and obtained their
lower bounds. In particular, when q — 2, θ = —1 and / = 0 in (4.1)
(Euler-Poisson-Darboux equation), they showed that solutions of (4.1)
satisfy, for all t sufficiently large and some C > 0 and p > 0,
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E(t) ^ Of ,

unless u = 0 (cf. Theorem 4.1 (ii)).

4.2. Example 2

We consider the nonlinear equation of the form

(4.3)

d2u _ A d (\ du

3t2

= o

on β x [0, oo) ,

on Γ x [0, oo) ,

where p 7> 2 and 0 ^ 0.

Take if = L2(β), 7 - TP0 *(β) and TF = flj(β). If we put

and

we easily see that A: V —• F* is the Frechet derivative of a convex func-

tional FA defined by

1 r n

P JΩ i l
\

JΩ

du dx

and B(t): W -» TF* satisfies (A.2) with bx = b2 = l9q = 2 and #*) = (ί + 1)'.

When ^ = 0, Tsutsumi [18] treated the initial boundary value problem

for (4.3) with initial conditions

(4.4) u{ , 0) = u0 and — ( , 0) = ux on 13,
dt

and showed that, for each fe L2

loc(0, oo H), uoeV and ux e H, there exists

a solution u of (4.3) and (4.4) satisfying

(4.5) u e LΓoC(0, oo V) and u' e Lroc(0, oo H) Π Lfoc(0, oo ; Tf) ,

(for the special case n — 1 and 0 = 0, see e.g. Caughey and Ellison [6],

Greenberg [7] and Greenberg, MacCamy and Mizel [8]). He employed

the Galerkin's method to construct such a solution u of (4.3) and (4.4).

When Θ ̂  0, we can apply Tsutsumi's technics to the initial boundary
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value problem (4.3) and (4.4) so that, for each / e Lfoc(0, °o H), uQe V

and uλeH, there exists a solution u of (4.3) and (4.4) satisfying (4.5).

Moreover, such u has the weak conservation property: for every 0 <; s

<̂  t and every positive (^-function ψ,

ψ(ί)£7(ί) + ψ(r)(r + l)θ\uf(r)\^dr
(4.6) t

^ ψ(s)E(s) + Γ ψ'(r)E(r)dr + f ψ(r)(/(r), ιι'(r))wdr ,
Js J s

where £7(ί) = £ |w'(ί)|ff + FA(u(t)). We shall prove these facts briefly.

Let {MTO} be a sequence of approximate solutions to (4.3) and (4.4)

defined by the Galerkin's method (for details, see Tsutsumi [18]). Then,

almost in the same procedure as in [18], we can choose a convergent

subsequence {uμ} of {um} such that :

(4.7) uμ-*u weakly star in L°°(0, T V) and weakly in Lp(0, T V)

for every T > 0

(4.8) u'μ-+u' weakly star in L°°(0, Γ ίf), weakly in L2(0, T WO and

strongly in L2(0, Γ f?) for every T > 0

where ^ is a solution of (4.3) and (4.4). On the other hand, by the

monotonicity of A, we have

(Auμ(s), uμ(s))vds = lim \tιμ(s)$ ds

0 /!-»OO J 0

pr pr
= (AM(S), u(s))vds = |^(s)|^ds for every T ^ 0 ,

Jo Jo
(cf. [18, (2.27) and (2.28)]), which, together with (4.7), implies

(4.9) uμ -* u strongly in Lp(0, Γ 7) for every T > 0 ,

because Lp(0, Γ 7) is a uniformly convex Banach space. Now we recall

that the approximate function uμ satisfies, for every 0 <̂  s ^ t and every

positive (^-function ψ9

1) \u'μ{r)?w dr

= ψ(s)Eμ(s) + £ ψ'(r)Eμ(r)dr + £ ψ(r)(/(r), ufμ(r))wdr ,
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where Eμ(t) = i|^(ί)Br + FA(uμ(t)). Hence it follows from (4.8) and (4.9)

that (4.6) holds for almost every s and t (0 <; s <̂  £). Therefore, we may

conclude that u, after redefinition on a set of measure zero, satisfies

(4.6) for every 0 <^ s <^ t. (Note that the function

- c Γ|
Jo

is monotone non-increasing for some c > 0.)

Thus we have shown the existence of a solution ^ of (4.3) which

satisfies (4.6). Hence, applying Theorems 2 and 3 to the study of the

asymptotic behavior of such u, we have

THEOREM 4.2. Let — 1 <: # g; 0 and let u be a solution of (4.3)

satisfying (4.6). // \f(t)\w* = O(ί~0 wiίΛ r > 0- - 0)/2 as t -> oo,

= 0(t~a) as t -* oo ,

where a is a positive number satisfying

a = min < ————-, 2γ — 1 + θ\ i/ — 1 < 0 fg 0 ,

a < min < —, 2γ — 2 > and a < if θ — — 1 .
~ I p - 2 ' J 3s^

In particular, if p — 2, — 1 < 0 < ; O αtid |/(ί)|τF* = O(exp (—τ-ί1+(?)

^ > 0 as t —> oo, ίfeβ^ /or some sufficiently small a > 0,

S(£) = O(exp (-αt 1 + θ) as t -^ oo .

4.3. Example 3

In this subsection we denote by Ω an open interval (0,1). We dis-

cuss the rate of the decay of solutions to the nonlinear beam equation

—Γ + 7 ~" (^ + I
9ί2 to4 \ JΩ

(4.10)

+ (t + lY^L = f
dt

on Ω X [0, oo) ,

= | ^ = 0 on Γ X [0, oo),

to2
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where a and θ are real numbers; the boundary conditions in (4.10)
correspond to the case when the ends of the beam are hinged.

We take H = W = L\Ω) and V = H\Ω) Π H\{Ω). Put

for u,veV ,(Au,v)v = f ^ ^ - d x + ( a + [ *L'dx) ί
U dx2 dx2 \ JΩ dx ) U dx dx

and

B(t)v = (t +

Then A is the Frechet derivative of a convex functional F^ on V defined

by

[
2 JΩ dx2 2 h dx 4 \JΩ

du
dx

dx\

When θ = 0 and / Ξ O , Ball [1], [2] treated the initial value problem
for (4.10) and showed the existence and uniqueness of solutions of (4.10).
His technics can also apply to the case when θ ^ 0 and / ^ 0 so that,
for each /eL]OC(0, oo ίf), uQe V and t^ei ϊ , there exists a unique solu-
tion u of (4.10) satisfying

= u0 and u'(0) = ux .

Moreover, such u always satisfies the energy equation

(4.11) E(t) + Γ (s + 1) \u'(s)\2

Hds = JS7C0) + Γ
Jo Jo

where E(f) = i\u'(t)\2

H + FA(u(t)).

Now we note

t ^ 0

\U>XX\H ^ K\U>X\H f o r u e V .

FA(u) ^ i(α + 7r2)|^|^ + i|w,fe for

(4.12)

Thus

Therefore, for a ^ - π 2 , A satisfies (A.I)7 (see Remark 2.2) with Yx = HJ(fl)

and
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p = 2 ifα>-ττ2

p = 4 if a ~ —π2 .

Then, recalling Remark 3.1 we obtain the following results (cf. Ball

and Carr [3]).

THEOREM 4.3. Let a ^ —π2, ~1 ^ θ ̂  1 and let u be a solution of

(4.10)

(i) The case a > ~π\ If \f{t)\H = O(ί"0 with γ > (1 - ff)/2 as t-^oo,

then

Eit) = O(t'a) as t -> oo ,

where a is a positive number such that

a^2γ and a< a + π* if θ = 1
2ι7U2

or = 2 r - 1 + θ if - 1 < 0 < 1

α ^ 2 r - 2 απd or < — if θ = -1 .
ό

In particular, if -1<Θ<1 and \f(t)\H = O(exp (-γtχ-ιβι)) with γ > 0

as ί —> oo, then for some sufficiently small a > 0

= O(exp i-at1'^)) as t -> oo .

(ii) Γfeβ case a = - ^ 2 . // |/(ί) | H = O(ί~0 wiίΛ γ>(X-θ)/2 as t-+ oo,

fθ((log0"2) a s ί - o o i/ ί = 1

i ) asί->oo i/ -1 ^ β < 1 ,

where a is a positive number such that

a = min{2(l - θ),2γ - 1 + θ) if ~1< θ < 1

a ^ min {4,2γ - 2} a^d a < 2/3 if θ = -1 .

Remark 4.3. Even if we replace the boundary conditions in (4.10)

with the conditions corresponding to the case of clamped ends

u - — = 0 on Γ x [0, oo) ,
ox
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we can also investigate the decay property of solutions for such problems
(which we denote by (4.10)0.

Take H = W = L\Ω) and V = H&Ω). As for the existence of solu-
tions of (4.10)' satisfying the energy equation (4.11), the same results as
in the case of hinged ends hold true. (See [1] and [2].) However, we
note that, instead of (4.12),

\UXX\H ^2π\ux\H

holds for every ueV. Hence, for a ^ — 4π2, we can prove the similar
results to those of Theorem 4.3.
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