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RATIONAL DOUBLE POINTS ON A NORMAL

OCTIC K3 SURFACE

LI-ZHONG TANG

0. Introduction

Let S be a normal surface of degree n in P c , where (n,k) = (4,3), (6,4) or

(8,5). People try to describe all possible combinations of singularities on such

surfaces. The case (4,3) is already very complicated. Using properties of K3 sur-

face and elementary transformations of Dynkin Graphs effectively, Urabe [17] was

able to solve the problem partially when all singularities are rational double

points.

In the following, we consider the case when (n,k) = (8,5). This paper only

concerns normal octic K3 surfaces in P . But such a surface may not be a com-

plete intersection. In this paper, we use Urabe's method to obtain a result concern-

ing some possible combinations of rational double points on the class of surfaces

with isolated singularities as its only singularities. We also give a criterion con-

cerning only a simple combinatorial condition determine when an octic K3 surface

in P is a complete intersection.

We assume that every variety is algebraic and is defined over the complex num-

ber field C.

DEFINITION 0.1. A disjoint finite union of connected Dynkin Graphs of type

A, B, D or E is called a Dynkin Graph. The following procedure is called an

elementary transformation of such a Dynkin Graph:

(1) Replace each connected component by the corresponding extended Dynkin

Graph;

(2) Choose in an arbitrary manner at least one vertex from each component

(of the extended Dynkin Graph) and then remove these vertices together with the

edges issuing from them [4].

Note that any connected Dynkin Graph of type A, D or E corresponds to a
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singularity on a surface [6].

If a Dynkin Graph G contains ak connected components of type Ak, bι compo-

nents of type Dlf cm components of type Em and dn components of type Bn(k >

1, / > 4, m = 6, 7, 8, n > 1), we denote

G = Σ akAk + Σ b,D, + ΣcMEM + Σ dnBn.

MAIN THEOREM 0.2. Let G = Σ ύ̂ A* + Σ 6, A + Σ c m £ w (α /mtte 5ww) fr<? a

Dynkin Graph with components of type A, D or E only. Set r = Σakk + Σδ,/ +

Σ c w m . T/ien the foHoming conditions (A) and (B) ar# equivalent.

(A) 77ι<?r<2 mste a normal octic K3 surface in P w/wse combination of singula-

rities corresponds to G, and moreover one of the following conditions (1) , <2>, <3),

<4> holds for the root lattice Q= Q(G) of type G.

<1> r = 17, 2d(Q) e Q*2, and εp(Q) = 1 /or βwry prim*? numberp,

<2> r — 16, εp(Q) = ( — 2, d(Q))p for every prime numberp,

<3> r = 15, — 2d(Q) & Qp or ε̂ CQ) = (— 1, — 1) ,̂ for every prime number p,

<4> r < 14.

(B) G coincides with a Dynkin Graph which is obtained from one of the following

19 basic Dynkin Graphs by elementary transformation repeated twice.

2E8 + A19 D16 + A19 A 1 7 , Dlo + E7, 2E8, D16, D, + D12, 2DS, E8 + D8,
2Aλ Ί ~ 2hΊy 2A8, Al2 ~t~ A4, Al6, A7 ~r 2D5, A9 H~ Aι ~r D6, A7 ~r D9, Aί5,

E7 4- A99 E6 + D7+ A3.

(C) In particular, if the Dynkin Graph G satisfies condition (B), then there is a

normal octic K3 surface which is a complete intersection of three quadrics in P whose

combination of singularities corresponds to G.

Remark and explanations

1. r = rank Q = The number of vertices in G\

2. The symbol εp(Q) e {+ 1, — 1} is the Hasse symbol of the inner product

space Q ® Q over Q. The symbol (, ) p is the Hubert symbol. Q̂ , is the field of

p-adic numbers and Q*2 = {a2 \ a e Q ,̂ a Φ 0} [14]

3. If there is a normal octic K3 surface in P , whose combination of singular-

ities corresponds to G, then r ^ 19.

In Section 1, some notation and terminology are stated. Section 2 is devoted

to the geometry on K3 surfaces. We owe essential ideas in this section to

Saint-Donat [13]. Theorem 2.15 is the goal of Section 2. To show it we used the

theory of integral bilinear forms. In Sections 3, 4 and 5, we explain this theory. It
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is explained in Section 3 why the elementary transformation of Dynkin Graphs is

essential. In Section 5 the conditions on isotropic elements written with the Hasse

symbol and Hubert symbol are discussed. The proof of the converse of the main

Theorem 0.2 is given in Section 6.
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1. Notation and terminology

A free Z-module L of finite rank is called a quasi-lattice if L is supplied with

a symmetric bilinear form L X L~* Q. If all possible values of the bilinear form

are integers, then L is called a lattice.

For a quasi-lattice L, set R(L) = {x e L \ χ2 = 2 or 1}. We say that L is a

root module and R(L) is the root system of L if the following two conditions are sa-

tisfied

(/?!> For every a e R{L) and every x e L, 2(£'$ G Z

(i?2) For every a, β e R(L), (α, β) e Z

If L is a root module, then the sub-module Q(R(D) — ΣaGR{L) Zα of L is a

lattice, called the root lattice of the root system R{L). The elements in R(L) are
2 2

called the roots. A root a is a long root if a = 2, a short root if a = 1.

If a root module L is positive definite or negative definite, then there are only

finitely many roots. Every finite root system can be decomposed to a direct sum of

irreducible root systems, and every irreducible positive definite root system with-

out short roots is of type A, D, or E.

Let p be a rational double point on a surface X, π : X~* X be the minimal re-

solution of p. The intersection matrix of the exceptional set π (p) is negative de-

finite. If we reverse the sign of every entry of this matrix, the lattice generated by

the irreducible components of 7Γ (p) is a root lattice, which is of type Ak (k > 1),



150 LI-ZHONGTANG

Dk (Λ; > 4), or Ek (k — 6, 7, 8). The sets are exactly the irreducible root lattices

without short roots.

2. Geometry of K 3 surface

In this section, we will reduce the problem of determining the combination of

rational double points on a normal octic K3 surface to a purely combinatorial

problem. The main result is Theorem 2.15. First, we make some preparation.

LEMMA 2.1 ([13] Proposition 3.2). Let \ D \ be a complete linear system on a

K3 surface, then \ D \ has no base point outside its fixed components.

LEMMA 2.2 ([13] Proposition 2.6). Let D be a divisor on a K3 surface S such

that I D I is non-empty. Assume that \ D \ has no fixed components. Then either

(1) D > 0 and the general member of \ D\ is an irreducible curve of arithmetic

D2

genus -y—^ l ^n this case h (OS(D)) = 0 or

(2) D = 0, then D is linearly equivalent to kE, where k is a positive integer

and E is an irreducible curve of arithmetic genus 1. In this case, h (OS(D)) = k — 1

and every member of\D\ can be written as a sum Eλ + E2 + + Ek, where E{ ^

\ E\ for i = 1 , . . . ,k. Thus | E \ is also base point free.

LEMMA 2.3 ([18]). Let D be a nef divisor with D2 = 2n on a K3 surface S

where n is a positive integer. Then h (OS(D)) — n + 2 and h (Os (D )) —

h (OS(D)) = 0. Moreover, the following three conditions are equivalent.

1. The complete linear system | D | has a base point.

2. I D I has a fixed component.

3. There is a smooth elliptic curve E and a smooth rational curve A such that

(n + ΐ)E + A e | D |, EA = 1, E2 = 0 and A2 = -2.

Proof. Kawamata's vanishing theorem [9] implies that h (Os (— D)) = 0.

Meanwhile, — DH ^ 0 for every very ample divisor H, for D is nef. Thus

h°(Os(- D)) = 0. Hence hι{Os(D)) = h2(Os(D)) = 0 by Serre duality. Then

Riemann-Roch Theorem implies that h (OS(D)) — n + 2 immediately. The equiva-

lence of 1 and 2 is clear by Lemma 2.1.

2 => 3 Write D — V + F, in which F denotes the fixed part. Suppose that

V2 > 0. Then D2 = V2 +VF+ DF> 0. Since dim | V\ = dim | D |. the first

part of this lemma implies V2 = D , thus VF + DF = 0. Since both VF and DF
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are non-negative, we have VF = F = 0, which is a contradiction. Thus V is

zero. By Lemma 2.2 there is a smooth elliptic curve E and a positive integer k

such that V is linearly equivalent to kE, since h°(Os(kE)) = k + 1 =

h (OS(D)) = n + 2, A: must be equal to n + 1. Note that KF > 0, otherwise

F = 2w, which would contradict Hodge index theorem. Since 2n = D — VF +

DF>VF=(n + 1)EF, we have £ F = 1 and so F 2 = - 2. Write F = Σ , Fv

where F/s are the irreducible curves. We may assume that EFX = 1 and EFt — 0

for z Φ 1. Every F, must be a smooth rational curve, otherwise F, ^ 0 and

dim I F, I > 1 by Riemann-Roch Theorem. Denote F x by A and F — A by S. It

suffices to show that B = 0. Suppose that B Φ 0. Let i4f be an arbitrary compo-

nent of 5 . Thus FAt = Zλ4f > 0, since F 2 = Σ< FAt = — 2, we must have

FΛ < - 2. Note that AB > 0, for Λ is not a component of B. Thus FA = A2 +

AB > A = — 2, hence AB = 0, which means that A does not meet B. Since the

intersection matrix for the components of B is negative definite, there exists a

component A{ of B such that A^JB < 0. So A{D < 0, which contradicts the assump-

tion that D is nef.

3 => 2 Assume that D is linearly equivalent to (n + 1)E + A, where E is

a smooth elliptic curve and A is a smooth rational curve on 5 with EA = 1, then

Z) = 2w. Hence h (OS(D)) = w + 2 by the first part of the Lemma. Easy calcula-

tion shows that h (Os((n + 1)E)) = n + 2, which implies that A is a fixed com-

ponent oί\D\. Q.E.D.

Some facts (see [13] Sec. 4 p. 614)

Let L be an invertible sheaf on a K3 surface F such that L > 0 and is

base point free. By Lemma 2.2 L = OF(C) where C is an irreducible curve. We

shall denote by φL the map F - > P * β α ) defined by | L\. Note that dim0£(F) = 2

and 0 £ (F) is not contained in any hyperplane. The degree of φL (F) is at least

pa(L) — 1, so we see that only two cases can occur:

Either (i) φL is of degree 2 and its image has degree pa(L) — 1;

or (ii) φL is birational and its image has degree 2pa(L) — 2.

In the first case, we shall say that L is hyperelliptic: In the second case, L is

nσn-hyperelliptic.

LEMMA 2.4 ([13] Theorem 5.2). Let \ L\ be a complete linear system on a K3

surface F, without fixed components such that L > 4. Then L is hyperelliptic only in

the following cases.

(i) There exists an irreducible curve E such thatpa(E) = 1 and EL = 2

(ii) There exists an irreducible curve B such thatpa(B) = 2 and L = OF(2B).
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LEMMA 2.5 ([13] Proposition 5.6). Let B be an irreducible curve on a K3

surface F such that pa(B) = 2 and let L = OF(2B). Then φL(F) is the Veronese

surface in P : In fact, φL—u2° φB, where u2: P —• P is the Veronese embedding.

LEMMA 2.6 ([13] Theorem 7.2). Let \L\ be a non-hyperelliptic complete linear

system on a K3 surface F without base point and L > 8. Let I be the kernel of the

canonical surjective map

Then the graded ideal I is generated by its elements of degree 2 and 3. I is generated

by its elements of degree 2 except in the following cases:

i ) There exists an irreducible curve E such that pa(E) = 1 and EL — 3.

ii) L = OF(2B + Γ) where B is an irreducible curve of genus 2, and Γ is an

irreducible rational curve such that BΓ = 1.

We denote by εL be the set of irreducible curves Δ such that LA — 0; It

follows from Hodge index Theorem that such a curve is rational and non-singular.

Moreover εL is finite. Let (εL)λ=1>^tN be the connected components of εL\ Hodge

index Theorem implies that the intersection matrix of εL is negative definite. If

εL = Δlf... ,Δr, we defined the fundamental cycle EL having for support εL by the

following conditions: EL = Σ [ = 1 m{ Δjf ELΔt < 0 for all z, mi > 0, the m{ are the

smallest.

Then there exists (M. Artin [1] p.638), by contraction of the EL, a normal

surface FL having only rational double points and a map ΘL: F—+ FL such that

( i ) θL(εL) is a pointy,

(ii) θl (pλ) = EL as schemes for all λ,

(iii) ΘL : F\ U xsL-+ F\ Upλ is an isomorphism.

Furthermore, using Zariski's main Theorem we can say that φL admits a

factorization φL— uL° ΘL where uL: FL—+ φL(F) is a finite morphism; Morever,

FL is the normalization of φL(F) in the function field K(F).

Now assume that L > 8, | L \ is a non-hyperelliptic complete linear system

without base point. Then φL induces an isomorphism onto its image outside εL (see

[13] (6.5.13) p.625). Thus uL is an isomorphism, so φL(F) is normal.

LEMMA 2.7 ([17] Proposition 1.9)). Let L be a numerically effective line bundle

K3 surface Z with deg L = L2 > 0.

(1) For every M e Pic Z with M = — 2, either M or its dual M , and only one
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of them is effective.

(2) Set R = {M e Pic Z | M2 = - 2, ML = 0} and

Δ — {OZ(C) ^ P icZ| C ts an irreducible smooth rational curve, CL — 0, C

= -2).

Then R is a finite root system whose fundamental root system is Δ. Any irreduci-

ble components of R is of type A, D, or E.

LEMMA 2.8 ([17] Corollary 1.10). Let EL denote the union of curves C such

that OZ(C) ^ Δ. Every connected component of EL coincides with the exceptional curve

in the minimal resolution of a rational double point. Let p : Z—> X be the contraction

morphism sending each connected component of EL to a normal singular point. X has

only rational double points as singularities and their combinations is described by the

number of components of each type A, D, E in the irreducible decomposition R = (&R{

of the root system R.

Next, we state further properties related to numerical effectiveness.

The bilinear form induced by the intersection form on

HίΛ(Z9 R) = H2(Z, R) Π H\Z, Ωι

z)

has signature (1,19) for a K3 surface Z. Thus the positive cone

Σ = {x^H1Λ(Z,R) \χ2 > 0 }

has two connected components. Let Σ+ denote the component containing the

Kάhler class k, the other one is Σ_ = — Σ+. Let M ^ H (Z, Z) be an element

with M = — 2. We can define a linear isomorphism SM :

SM:H2(Z,Z)-+H2(Z,Z)

by SM(P) = P + CP* M)M, we call SM the reflection with respect to M, SM

induces an isomorphism

S M : P i c Z - + P i c Z

if M e Pic Z. By Proposition 3.9, in [2, Chap. W], we have the following.

PROPOSITION 2.9. Let L be a line bundle on a K3 surface Z with deg L —

L > 0, such that L belongs to Σ+. Then there are a finite number of elements Mlt

M2,. . . Mr in Pic Z with Mt = — 2 for 1 < i < r so that SMi...SMr(L) are numer-

ically effective.
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Here we recall the theory of periods for K3 surfaces.

Let A be an even unimodular lattice isomorphic to the second cohomology

group of a K3 surface with the intersection form. It is known that

Λ = Q(- E8)ΘQ(- E8)®H®H®H.

The above Q (— E8) is a free Z-module of rank 8 with the bilinear form

which is — 1 times that on the root lattice Q(ES) of type Es. H = 7M + Zv is the

hyperbolic plane. H is a free Z-module of rank 2 and u — υ = 0, uv — vu = 1.

A pair (Z, a) where Z is a K3 surface and a : H (Z, Z) —* A is a linear iso-

morphism which preserves bilinear form, is called a marked K3 surface.

For any marked if 3 surface (Z, α),

has the Hodge decomposition

H\Z, C) = H2(Z, Oz) ®H\Z, Ωι

z)@H\Z1 KZ).

We have a nowhere vanishing holomorphic 2-form φ in H (Z, i ί z ) , since the

canonical line bundle Kz is trivial. The 2-form φ is unique up to the multiple of

non-zero complex numbers. Thus the point

[a(φ)] = a{φ) mod C* e P(Λ <g> C)

is uniquely determined by the pair (Z, #). The point ίa(φ)] is called the period of

(Z, α). Set

fl= {[ω] e P < g ) C | 0 ^ ω ^ y l Θ C , ωω = 0, ωώ = 0).

Then the point [α(0)] e Ω.

The 20-dimensional complex manifold Ω is called the period domain.

THEOREM 2.10 ([2]). For every point [ω] in Ω, there is a marked K3 surface

(Z, a) whose period agrees with [ω].

LEMMA 2.11. Pic Z = {x e fΓ2(Z, Z) | x 0 = 0}.

LEMMA 2.12 ([11] Corollary 5.13). // X c P w is an irreducible projective

variety and X is not contained in any hyperplane, then

degX> codimX+ 1.
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PROPOSITION 2.13. Let L be a numerically effective line bundle of degree & on a

K3 surface Z. Then the following two conditions are equivalent.

(1) I L I does not define a morphism ^ - ^ I c P to an octic surface X.

(2) There is an element M ^ Pic Z either with M = 0, ML = 2 or with

L = 2M.

Proof (1) => (2) First of all, we assume that | L | has a fixed point. Then

Lemma 2.3 (3) holds. Then L = Oz (52? + Γ ) , EΓ = 1, E2 = 0 and Γ* = - 2.

Let M = OZ(2E), then M satisfies condition (2) above. Next assume that | L | has

no base points. Since h (L) = 6 by Lemma 2.1, we have a morphism φL : Z—> P .

By (1) we know that | L | must be hyperelliptic. Then by Lemma 2.4 either there

exists an irreducible curve E such that/>β (2?) = 1 and EL = 2, or there exists an

irreducible curve B such that pa(B) = 2 and L = OZ(2B). Then M = OZCB) or

M = OZ(E) satisfies the above condition (2).

(2) => (1) We shall deduce a contradiction assuming that (2) holds but (1) does

not hold.

Case 1, 3 M e Pic Z with Λf2 = 0, ML = 2. Let M * denote the dual line

bundle of M. By Riemann-Roch Theorem,

h°(M) + Λ°(M*) > ^ - + 2 > 2.

Since LM — 2, h (M) > 2. Let D + Δ be a general member in the linear system

I M\, Δ being the fixed part. Now D >: 0 and 0L !# is a generically one to one

morphism, since the condition (1) does not hold. Note that every irreducible

component of D has positive arithmetic genus by Lemma 2.2. If LD = 0 then

D < 0 by Hodge index Theorem. Thus LD > 0 since L is nef. By the same

reason LΔ > 0. Since 2 = LM = LD + LΔ, deg φL(D) = LD < 2. Let Z)7 be an

irreducible component of D. We have άegφL(Dr) ^ 2. By Lemma 2.12 we have

φL{Df) in P . Hence φL(D') = P . Since φL\Dr is generically one to one, Df is

isomorphic to P , which is a contradiction.

Case 2, 3 M e Pic Z with L = 2M. We claim that | M | is base point free.

Otherwise by Lemma 2.3, | M\ = | 22? + A |, where £ is a smooth elliptic curve

and A is a smooth rational curve, such that EA = 1, note that h (E) = 2. Since

LE = 2, this implies | L | is hyperelliptic by Lemma 2.4, which contradicts the

above hypotheses. It follows that | M | is base point free. By Lemma 2.5 φ\L\ —

φ\2M\ defines a double cover. Q.E.D.
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THEOREM 2.14. Let \L\ be a non-hyperelliptic complete linear system on a K3

surface Z without base point and L = 8, and φL : Z—• φL (Z) c: P be the associated

morphism. Then the following two conditions are equivalent.

(A) φL (Z) is a complete intersection of three quadrics',

(B) There exists no F e Pic Z , F* = 0, LF = 3.

Proof Let C ^ | L | be a generic member of | L | . Then C is an irreducible

curve.

(B) => (A) is obvious by Lemma 2.6.

(A) => (B) Let F e PicZ, F2 = 0, LF = 3. We will get a contradiction.

Note that h°(F)>2.

Case 1, I F | has no fixed part. By Lemma 2.2, there exists a positive integer

k, so that I F \ — \ kE |, where E is a smooth elliptic curve. Hence 3 = LF — kLE.

If k= 1, then LE = 3. Then C has a ft1, which contradicts that φL(Z) is a

complete intersection (see [3] Ex.11, Ch. 1 ) . If k = 3, then LE = 1, *0(2?) = 2.

CE = 1 implies C = P which contradicts C = 8. Thus Case 1 can not occur.

Case 2. Let F= M + T, where Γ is the fixed part of | F\. Then we have the

following subcases:

( i ) LM - 0, then M2 < 0, which contradicts M2 > 0.

(ii ) LM = 1 or 2. Note that every irreducible component Df of the general

member D of | M\ has positive arithmetic genus by Lemma 2.2. Since

φL \D,: D'->φLW) c p 5 ,

is generically one to one and deg φL{Df) < 2, it implies that φL(Df) is a curve in

P 5 with degree less than 3. So φL(Df) c P 2 by Lemma 2.2. Thus φL(D') has an

irreducible component which is isomorphic to P . Since ΦL \D, is generically one to

one, Df isomorphic to P , which is a contradiction.

(iii) LM = 3. Since L > 0, L M < (LM) , by Hodge index theorem. So we

have obtained 8M < 9. Thus M = 0 since M is neither negative nor odd. It re-

turns to Case 1.

Finally, we have proved (A) => (B). Q.E.D.

THEOREM 2.15. Let G = ΈakAk + ΣbιDι + ΈeιEι be a Dynkin Graph with

components of type A, D or E only. The following conditions are equivalent.

(1) There is a normal octic K3 surface in P with only rational double points as

singularities, the combination of singularities corresponding to G;

(2) Let Q = Q(G) be the root lattice of type G. Let A denote the unimodular even

lattice with signature (19,3). The lattice S = Zλ φ Q (λ = — 8, orthogonal direct
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sum) has an embedding S c A satisfying the following conditions (a) and (b). Let S

denote the primitive hull of S in A.

(a) Ifη^Sfηλ=O and rf = 2, then η e Q.

(b) S does not contain any element μ either with μ = 0 and μλ — —2 or with

λ = 2μ.

Proof (2) => (1) First we reverse all the sign of bilinear forms in (2). Thus

in the sequel A has signature (3,19). λ = 8, η = ~ 2 in (a) and λ = 2μ or μλ =

2, μ = 0, in (b) Let T be the orthogonal complement of S in A T has signature

(2, t — 2) (t = rank T). Choose a base el9. . . 9et of T with et > 0 . Let εx,. . . ^ . ^

be real numbers so that εί9... ^ _ l f 1 are linearly independent over Q. Let εt be a

sufficiently large rational number. Set μ = Σ / = i ε ^ £ Γ ® R . Since

2

= ( Σ ε^J + 2 Σ
N ί = l 7 ί = l

w e h a v e μ > 0. P i c k i G y l , s i n c e ( x , ̂ ) ^ Z ,

O r , μ ) = 0 ^ — > Σ f i , f c F , e<) = 0<—>(x, e t ) = 0 ( i = 1 , 2 , . . . , ί ) ^ — > x ^ S.
t = l

Set Γ' = {u G Γ ® R I wμ = 0}. T' is an R-vector space equipped with a

bilinear form with signature (1, t — 2). Pick u ^ Tf with w = μ . Set ω = μ +

yF7! u^ A®C. Now ω2 = μ - u + 2 ^F7! μu = 0 and ώ ω = μ + u =

2μ > 0. Thus [ω] e fl. Here S = {x e yl | (x, ω) = 0} since

S c {.r e Λ I (Xf ω) = 0} = ίr e Λ | (x, μ) = OF, M ) = 0} c S.

Let (Z, a) be the marked i ί 3 surface whose period is [ω] . Let φ be a

non-zero holomorphic 2-form on Z. We identify φ with the cohomology class de-

fined by it. There is a non-zero complex number c with a{φ) — cω. By Lemma

2.11, a induces an isomorphism a : PicZ—• S. We consider the line bundle L =

α" 1 U ) , Z,2 = degL = λ2 = 8. Note that (Z, α) and (Z, — a) defines the same

period. Thus considering (Z, — a) instead of (Z, a) if necessary, we can assume

that L and the Kahler class k belongs to the same connected component of the

positive cone in H ' (Z, R ) . Then by Proposition 2.9, there are finite elements

Ml9... ,Mr in Pic Z with M2 = — 2 (1 < i < r) such that SMχ.. .sMjr(L) is numer-

ically effective. Now for M ^ Pic Z with Λf2 = — 2, (Z, β) and (Z, βs^) defines

the same period. Thus by considering (Z, asMisM2. . . sMf) instead of (Z, a), we

can assume that L = a" (λ) is numerically effective. By condition (b) and Proposi-

tion 2.13, the morphism φL : Z—* P 5 to a normal octic K3 surface in P 5 is defined.

Let p : Z—• X be the contraction morphism defined in Lemma 2.8, then φL(Z) =
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X. The singularities on X are described by the root system

R={M^ PicZ\ML = 0, M2 = - 2 } .

Condition (a) implies that R has the type corresponding to the original Dynkin

Graph G. Hence the desired surface exists.

(1) => (2) First, we will show that the assertion obtained by reversing all

the sign of bilinear forms in (2) holds under (1). Now let X ^ P be the normal

octic K3 surface with singularities as G. Let p : Z—• X be the minimal resolution

of singularities. Then Z is a K3 surface. Set Δ = {OZ{C) ^ Pic Z\ C is an irre-

ducible component of an exceptional curve of p). Δ is a fundamental system of

roots of type G. Let Q a Pic Z be the free module generated by Δ, set R = {M e

Q\M = — 2}. Q is a lattice isomorphic to (?(— G) and R is a root system of

type G. Let L = p * O z (1). L is a numerically effective line bundle such that

L2 = 8 and LQ = 0. Let R' = {M e Pic Z | ML = 0, M 2 = - 2}. By definition

R c /?', let pf: Z^> Xf be the contraction morphism defined as before associated

with R'. By the preceding notation, we have X — X', thus R = I?'. Next take a

suitable isomorphism a : H (Z, Z) —>Λ where yl is an even unimodular lattice

with signature (3,19). The lattice S = Zλ® Q(G) ( / = 8, orthogonal direct sum)

has an embedding S ^ Λ such that λ = a(L) and Q(— G) = a(Q). We have only

to check that the embedding satisfies the conditions corresponding to (a) and (b).

Take η ^ S with rf — — 2, ηλ = 0, then M = α" 1 (η) belongs to the primitive

hull of Z L Θ Q in H2(Z, Z), since H2(Z, Z)/PicZ has no torsion, M e Pic Z.

Moreover since M = — 2 and ML = 0, one can conclude that M ^ Rf — R c Q.

Thus 7? = α ( M ) ^ α (Q) = Q ( ~ G). The condition corresponding to (a) is sa-

tisfied. By Proposition 2.13, the condition corresponding (b) is satisfied. Then re-

versing the sign, we have (2). Q.E.D.

Remark. If S in (2) satisfies another additional condition: there exists no μ

4th μ = 0, μλ =

complete intersection.

with μ — 0, μλ — — 3, then the normal octic K3 surface obtained in P is a

3. Theory of bilinear forms and elementary transformation

By Theorem 2.1, describing possible combinations of singularities on octic

K3 surfaces is reduced to the theory of integral symmetric bilinear forms. In this

section we explain this theory. We free use the standard terminologies in [10],

[12], [14]. Consider a quasi-lattice L of finite rank. Denote
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O(L) = { / e Hom(L, L) | / is bijective,

for any x, y e L, (x, y) = (f(x),f(y))).

Now let I be a lattice. The correlation morphism φ :L~*Hom (L, Z ) is

defined by φ(x) = Cr, ). This map is injective if and only if L is non-degenerate.

Next we explain the concept of discriminant quadratic forms due to Nikulin

(see [12]).

Let L be an even non-degenerate lattice. The dual module L =

Horn (L, Z ) can be identified with L = {x ^ L ® Q | Or, y ) ^ Z for every

y ^ L). The quotient L /L is called the discriminant group of L. The discrimi-

nant form qL : L /L—>Q/2Z of L is defined by qL(x moάL) — x mod2Z for

x ^ L . Let L be another even non-degenerate lattice. Then ([12, Corollary 6.2]):

there is an isomorphism φ : L /L—• L /L of group such that qL' ° Φ = ~~ QL ^

and only if there is an embedding L 0 L c_> Γ into some even unimodular lattice

Γ such that L and L are the orthogonal complement of each other in Γ.

LEMMA 3.1. (1) Let L be a non-degenerate quasi-lattice and M be a primitive

non-degenerate subquasi-lattice. Then M — C (M, L) is a non-degenerate quasi-

lattice, too. If we denote the composition of the natural morphisms M —* L—> L/M by

fyfis injective and we can define a non-degenerate bilinear form (,) on L/M with

values inQ such that (x, y) — (f(x),f(y)) for every xf y e Λf1.

(2) When L is a unimodular lattice, L/M and M are isomorphic as

quasi-lattices.

The proof is easy.

New let L be a root module. For a root a e R(L), we set a = 2a/a and we

call a the coroot of a. We define the reflection sa : L~^ L with respect to a by

sa(x) = x — 2(x, d)a/a = x — (x, a)a = x — (x, a)a.

Then sa e Horn (L, L). The subgroup of O(L) generated by sα's is denoted

by W(L) and is called the Weyl group of the root system R{L) or the Weyl group

of L. W(L) is a normal subgroup of O(L). We call

Q(R) = Σ Zά(c QCR) c L)
αe/ί

the corooί lattice. Note that the reflection sα (α ^ i?) defines an isomorphism of
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LEMMA 3.2 ([17, Lemma 2.2]). For any a e R, R α Π QCR) = Zα.

We say Z, is of finite type, if R(L) is a finite set.

Now we explain the notation of Dynkin Graphs. Let A = {av . . . ,ak} be the

fundamental root system of a finite root system 7?. The system Δ is a basis of

Q(R), we can draw a graph according to the following rule.

(1) The set of vertices in the graph has one to one correspondence with Δ.
2 2

(2) If i Φ j , afiίj Φ 0 and α f = α ; , then the vertices corresponding to a{ and

α ; are connected with a simple edge;

(3) If i Φ /, oίfiίj — 0, then the corresponding vertices to <xi and α ; are not

connected;

(4) If i Φ j , aflίj Φ 0 and a] > ah then the vertices to a{ and α, are con-

nected with a double edge with an arrow directing from a{ to α ; .

The resulting graph is called the Dynkin Graph of R. Note that the irreducible

root system under consideration is uniquely determined by its Dynkin Graph, if it

is not of type A1 or Bv

DEFINITION 3.3. Let L be a root module, R (L) be its finite root system. Let

Δ = {alf . . . ,ak) be its fundamental root system. The following procedure by

which we can make a root system Rf from R(L) is called an elementary trans-

formation of the root system R.

(1) Decompose R = 0 ^ i?, into irreducible root systems;

(2) Choose a fundamental system of root Δ{ c R{ for 1 < i < m, set Δ{ =

Δ{ U {— η{} for \ < i < rn, where 7?, is the maximal root associated with Δ{

(3) Choose a proper subset 4, c: Δ{ for 1 < z < m

(4) Set i?' = φ ^ ! i?f where R' is the root system generated by Δ{.

Assume that the above R is of type G and R' is of type G\ It is clear that G'

is obtained by an elementary transformation of Dynkin Graph from the Dynkin

Graph G.

PROPOSITION 3.4 ([17] Corollary 2.6). Let L be a non-degenerate root module of

finite type and R be the root system of L. Let x €= L ® R be a point. Then

Rf = ia<Ξ R\ sa(x) - x e Q(R)}

is a root system which can be obtained from R by one elementary transformation. In par-

ticular, the Dynkin Graph of Rf can be obtained from the Dynkin Graph of R by one

elementary transformation.



RATIONAL DOUBLE POINTS ON K3 SURFACE 1 6 1

We would like to apply the above notions to our problem.

LEMMA 3.5. Let A be a non-degenerate even lattice and λ be a primitive element

of A with λ2 = ~ 8. LetMλ = (Zλ)1 = C(Zλ, A)

(1) Λ/Zλ is a free module]

(2) Let 7i : A —• A /Zλ denote the canonical map, and let μ — π(μ)

(a) There exists no μ in A, such that μ — 1,

(b) // ~μ = 2, then ^ E Z ,

(c) Let x ^ Λ/Zλ, x = 2. Then 3 μ ^ Mj, μ = 2 such that μ — x if

and only if ^- ^ Z for some η ^ 7Γ (x).

(3) Assume further that A is unimodular and denote qκ to be the discriminant

form of the lattice K. Then

(e) Λ/Zλ = Mλ + Zώ,

where ω ^ Λ, ωλ = 1, Mλ = π(Mλ). Then | det Mλ \ — 8, qM — — qN where N =

(f) Let Uλ = {x ^ Λ/Zλ \ x ^ Z), then Uλ = M^ + Z4ω and ί/̂  i5 an

βwn lattice with discriminant 2.

(g) If A has signature (/, 1 ), / > 1, then R (Mλ ) can be obtained from

R(Uλ) by one elementary transformation.

Proof. (1) Obvious.

(2)(a) If μ e Λ, p;2 = 1, let a = >ί//. Then //2 = (μ + f ^) = 1. Hence for
2 \ » /

2 £Z
some integer n, — 2n — μ — 1 ^-. We get a contradiction.

σ

(b) If μ —2, then 2 = [μ + ^ /ί) , where a — λμ. Thus for some integer
2

w, — 2w = μ — 1 — 4-. We have -j- GZ

(c) \ί μ^ S,μ — x, then ^ e T Γ ' 1 ^ ) and ^ = 0 e Z. Conversely, if 97 e

Γ ^x) , b = p~ ^ Z, then μ = η + bλ satisfies μλ = 0, μ — 2 and μ — r\—x.

(3)(e) and (f) are easy.

(g) Since /I has signature (/, 1) / > 1. C/̂  is an even positive definite lat-

tice of rank /. Let xl9. . . fxι be in A such that x x , . . . ,x, forms a basis of t/ .̂ We

define x : Ĉ  -> R, by ^ ^ ^ - , i = 1,.. .,/. Then x e ί// ® R. For α €



162 LI-ZHONGTANG

sa(x) - x = - (x, a)a e Q(R(Uλ)
v) if and only if (x, a) e Z by Lemma 3.2.

Moreover by (2)(c) (x, a) e Z if and only if α e M .̂ Thus

# ' = ί α e= # ( [ / , ) I sa(x) - x ^ Q(R(UλΫ)} = R(Mλ).

Then the result follows from Proposition 3.4 ([17]). Q.E.D.

Now we would like to treat the situation in Theorem 2.15 (2). The following

proposition is the key part in this article. It explains why the elementary trans-

formation appears in our problem.

PROPOSITION 3.6. Let A be an indefinite unimodular even lattice and S be a

non-degenerate sub-lattice. We assume that the following condition

I {A, S) holds.

I {A, S)\ The orthogonal complement S of S in A contains an isotropic element.

Then the following hold.

(1) There are element μ ^ S1, u ^ A with μ = u = 0 and μu = 1. Set

H = Zμ + ΊM and A — Λι@ H {orthogonal direct sum). The following inclusion rela-

tion holds:

S(z§ = P(S, A) c A, + Zμ.

(2) Let it :Λ—>Λ1 denote the orthogonal projection to the Aγ-factor. The restric-

tion π IJ and π \s are isomorphisms of lattices onto their images.

(3) Set Sι = 7r(S) c Aγ and Sλ — P(Sλ, ΛJ. Then Sλ is a non-degenerate sub-

lattice of Aγ and S1/π(S) is a finite cyclic group.

Now assume further that S has signature (k, 1), k G Z . Let λ ^ S with λ =

— 8, Mλ = C(Zλ, A). Assume that Mλ Π S is non-degenerate. Let τc(λ) = λv Then

(4) 7? (Mλ Π S)/π(Mλ Π S) is a finite cyclic group, where π(Mλ Π S) is the

primitive hull of' π(Mλ Π S) in Λv

(5) Let Sf be a non-degenerate sublattice of Mλ satisfying (a), (b), (c).

(a) π(Mλ n S ) c y c Λv

(b) S' is primitive in Av

(c) S' is positive definite.

Then the finite root system R(Mλ Π S) can be obtained from the finite root system

i?(S0 by one elementary transformation.

Remark. Sf = π(Mλ Π S) satisfies (a), (b) and (c).
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Proof. The proof is almost the same as that of Proposition 2.9 (4) ([17]).

Q.E.D.

Now here we consider the situation in Theorem 2.15 (2). By condition (a) and

(b), the root system R(S Π Mλ) is of type G. Assume moreover that I(Λ, S) is sa-

tisfied. Let λλ = π(λ) ^ Aλ, then R(S Π Mλ) is obtained by one elementary trans-

formation from R(S1 Π Mλι).

Assume moreover I(ΛV Sλ) is satisfied.

We can apply the above proposition once more and we have an even unimodu-

lar lattice Λ2 with signature (17,1). Let λ2 = π(λλ). In this case Mλz itself satisfies

conditions (a), (b) and (c) above. Thus we can conclude that the original Dynkin

Graph G can be obtained from the Dynkin Graph of R(Mλ2) by elementary trans-

formations repeated twice.

Note that λι = λ2 = — 8, but they may not be primitive in Λ1 and Λ2, respec-

tively.

If λx is not primitive in Aλ then -£- ^ Λu -£ ^ Λ2. If λλ is primitive in Λh but

λ2 is not primitive in Λ2, then ~γ ^ Λ2. So in both cases, M^ is an even positive

definite lattice of rank 17 with discriminant 2. By the classification of even posi-

tive definite lattice of rank 17 with discriminant 2 ([5]), there are only four kinds

of such lattice as follows:

(1) 2K8 Θ Iv its root system is 2 £ 8 θ 4 where K8 = Q(E8), I, = QiA,);

(2) Kl6 θ Iv its root system is Dl6 θ A{,

(3) The even overlattice with index 3 of the root lattice of type Al7, its root

system is AlΊ\

(4) One of two isomorphic even overlattices with index 2 of the root lattice of

type Dlo + E7, its root system is D10 + E7.

If λ2 is primitive in Λ2, then Mλ2 is an even positive definite lattice of rank 17

with discriminate 8 and qMχ = — qN, where N = Zλ, λ — — 8 is a free module.

The remaining parts to show (A) => (B) in our Theorem 0.2 are the following

two.

(1) To write condition I {A, S) and I(Λl9 SL) with the Hasse symbol and the

Hubert symbol.

(2) To classify of R (Mλ) where Λ2 is an even unimodular with signature

(17,1), λ2 G Λ2 is a primitive element with λ2 — — 8 and Mλi is the orthogonal

complement of Zλ2 in A2.



164 LI-ZHONGTANG

4. Positive definite even lattices of rank 17 with discriminant 8

There have been extensive lists of enumerations of positive definite lattices of

small ranks and small determinants in literature (cf. [5]).

As far as we know, the complete classification of rank 17 positive definite lat-

tices of discriminant 8 is still unknown. In this section we shall find the root sys-

tems for positive definite even lattices of rank 17 whose discriminant equal to 8

such that their discriminant quadratic form amounts to — qN, where N — Zλ with

λ2 = - 8.

Recall that the only positive definite even unimodular lattice of rank 8 is

Q(ES) = {(x1 (.. .,Xg) e R 8 Vx, e Z, or Vx, <= Z + γ ( Σ xt = 0 (mod 2)}.

The fundamental root system of Et is

e1 = (1,1,0"), e2 = ( 0 , - 1,1,0s), e3 = ( 0 2 , - l , l ,0 4 ) , e4 = ( 0 3 , - 1,1,0s),

e5 = ( 0 4 , - 1.1.02), e6 = ( 0 5 , - 1,1,0), e7 = ( 0 6 , - 1,1),

= (-λL -λ
es [ 2 - 2 ' 2

e2 es e4 e5 e 6 e7

Recall that (i), Q(An) = {(x0, x19 . . . ,xn) e Z M + 1 : x0 + ^ + + xn = 0}

for n i> 1. The fundamental root system of An is

e x = ( ~ 1 , 1 , 0 , . . . , 0 ) , e 2 = ( 0 , - 1 , 1 , 0 , . . . , 0 ) , e3 = ( 0 , 0 , - 1 , 1 , 0 , . . . , 0 ) , . . . ,

e n = ( 0 , 0 , . . . , 0 , - 1 , 1 ) .

e2

(ii) Q{Dn) = {(xv x2, . . . ,xn) ^ Zn : x1 + x2 + + xw even}, for w > 4. The

fundamental root system Dn is
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e1=(0 0 , l , - l ) , e 2 = < 0 0 , 1 , - 1 , 0 ) , e 3 = ( 0 , . . . , 0 , 1 , - 1 , 0 , 0 ) ,

en^= a,-l,0,...,0),en= ( - 1 , - 1 , 0 0) .

LEMMA 4.1. Let Q(A7) C_» Q(E8) be a primitive embedding of the root-module

of type A7 into the root-module of type E8. Then

(1) There exists an automorphism of the lattice Q(E8) such that the image of the

seven vertices ofΆ7 in Q(E8) is {elf e2,.. ,,e7);

(2) The root system of the orthogonal complement of Q(A7) in Q(E8) is empty.

Proof (1) By the transitive property ([7] Table 11, p.149) of the auto-

morphisms group of E8 acting on root sub-systems of E8, we may assume that the

images of the 7 vertices of A7 in E8 are {elt e2,... ,e7}.

(2) It is only due to a trivial calculation. Q.E.D.

Remark. The composition Q(A7) C_» Q(E7) c_» Q{E8) defines an embedding,

but it is not primitive. Thus the above assumption that the embedding is primitive

is essential.

LEMMA 4.2. (a) There is an embedding. Q(A7) C_+ Q(An) if and only if

n>7;

Now assume that Q(A7) C-» Q(An) (n > 7) is an embedding

(b) There exists an automorphism of the lattice Q(An) (n > 7) so that the image

of the seven vertices of A7 is {elt e2,... ,e7)

(c) The root system of the orthogonal complement of A7 in Q(An) is An_8.

Proof (a) Obvious.

(b) Let the image of the seven vertices of A7 be e[, e'2, e'3, e'4, e'5f e'6, e7.
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-o

e[ e2 e's e\ e'5 e'6 e7

A 7

S i n c e Q(An) = {(x0, x l t . . . ,xn) e Zn+1 : x 0 + x γ + . . . + x n = 0 } , w e m a y

assume that ^ = ^ = (— 1,1,0, . . . , 0 ) .

By e[, er

2 — — 1, so either

Cα5^ (1).

^ = ( 0 , - 1 , 0 , . . . ,0,1 , 0 , . . . , 0 )

or

Case (2).

e'2= ( 1 , 0 , . . . , 0 , - 1 , 0 , . . . , 0 )

3<ί<«+l

Case (1). If ^ = ( 0 , ~ 1,0,.. .,0,1^ ,0, . . .,0), then there is a permutation φ

3<ι<n+l

of the coordinates of Q(An) such that e[ = ^ is invariant under φ and

0 e £ = (0, - 1 ,1 ,0 , . . . ,0) = e2.

Case (2). If e'2 = ( 1 , 0 , . . . , 0 , - 1 , 0 , . . . ,0) then there is a permutation φ

of the coordinates of Q(An) such that φ(e[) = φ(e^) — ( 1 , — 1,0,. . .,0) and

φ(ef

2) = ( 0 , 1 , 0 , . . . , 0 , - 1 , 0 , . . . , 0 ) .

3<ί^«+l

Now let φ be the automorphism of the lattice Q(An) defined by the negative

unit matrix — In+1.

Then φφ(e[) = φφ{e^) — eγ and

φφieQ = (0,-1,0 , . . . ,0,1 ,0,...,0).
3<ι<«+l

Then Case (2) comes back to Case (1).
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Thus in any cases, we may assume that e[ = ev e2 = e2. Since e[ e3 = 0, e2e3

-I

e'3= ( 0 , 0 , - 1 ,0, . . . ,0 ,1 , 0 , . . . , 0 ) .

4<t<n+l

Obviously, there is a permutation φ of coordinates of Q(An) so that elf e2 are

invariant under φ and φ(e3) = (0,0,— 1,1,0,.. .,0) = e3.

By similar discussion, we conclude that e'A — eA, e'5 = e5, e'6 = e6, e7 = e7.

(c) By (b) we may assume that the image of the seven vertices of A7 is ielf

e2,.. ,,e7}. So

Q\A7) — \\XO,... ,xn+\) ^ Z : x0 H~ * * ~r xn+ί — 0, x0

 = xγ — = x7)

whose root system is obviously An_8, for n > 9 (we denote Ao = A_-^ — φ). Q.E.D.

LEMMA 4.3. (1) There exists an embedding. Q(A7) C_> Q(Dn) if and only if

n>8;

(2) There is an automorphism of the lattice Q(Dn) (n > 8) such that the image

of the seven vertices of A7 in Dn is {eve2i... ,e7)

(3) The root system of the orthogonal complement of A7 in Q(Dn) is empty if

n = 8,9 2AX if n = 10 A3 if n = 11 Dn_8 if n > 12.

Proof (1) Obvious.

(2) Since Q(Dn) = {(xλ,. . . ,xn) ^ Zn: x1 + + xn even}, we may assume

that e[ = e1= (0, . . . ,0,1,— 1). Since e[ e2 = — 1, e2 is either

Case (1).

(0,. . . , 0 , ± 1 .0, . . . , 0 , - 1 , 0 )

or Case (2).

,0, . . . ,0, l)

Case (1). Since the two elements (0, . . . ,0 ,± 1 ,0, . . .,0,— 1,0)

are different up an automorphism of the lattice Q(Dn), we may assume that

e2 = (0, . . . ,0, l , 0 , . . . , 0 , - 1,0).
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Obviously there is a permutation φ of coordinates of Q(Dn) so that e[ = eγ is

invariant under φ and φ(e2) = e2 = (0, . . . ,0,1,— 1,0).

Case (2). With the same reason as above, we may assume that

e'2= ( 0 , . . . , 0 , l , 0 , . . . , 0 , l ) .

Obviously, there is a permutation φ of coordinates of Q(Dn) so that e[ = eι is

invariant under φ and

φ(eQ = (0,...,0,1,0,1).

Then the permutation of the last two coordinates defines an automorphism a of the

lattice Q(Dn) so that a(e[) = a(ex) = (0, . . . , 0 , - 1,1) and

a*φ(e'2) = (0,...,0,1,1,0).

Then there exists another automorphism β of the lattice Q(Dn) defined by the

matrix

so that jS ° a(e[) = β ° α ( ^ ) = ^ = ( 0 , . . . , 0 , 1 , - 1) a n d

β°a°φ(e'2) = e2= ( 0 , . . . , 0 , l , - 1,0) .

Hence in both cases, we may assume that e2 — e2. Since e'3 e[ = 0, e'3 e2 —

— 1, e'3 is either

Case (a). ( 0 , . . . ,0, ± 1 , 0 , . . . , 0 , - 1,0,0) or Case (b). (0, . . .,0,1,1).

l<,i<,n-3

Case (a). We may assume that e'3 = (0 , . . . , 0 , 1 , 0 , . . . , 0 , ~ 1,0,0).

l^t<n-3

Obviously, there is a permutation φ of coordinates of Q(Dn) so that e[ and e2

are invariant under φ and

φ(e'3) = e3 — (0, . . . ,0,1,— 1,0,0). Thus we may assume that e3 — e3.

Case (b). e3 — (0, . . .,0,1,1). We shall prove that this case can not occur.

Since e'4e3

= — 1, e'4 must be one of the following forms:



RATIONAL DOUBLE POINTS ON K3 SURFACE 1 6 9

( 0 , . . . , 0 , ± l . ,0 0 , - 1 , 0 ) or ( 0 , . . . , 0 , ± l , 0 , . . . , 0 , - 1 ) .

\<.i<.n-2 l^ι^n-2

But in both cases, we get e4 e2 Φ 0 or ef

4 e2 Φ 0, which is a contradiction.

Thus Case (b) can not occur.

By a similar discussion, we may assume that e4 = e4, e'5 = e5, e'6 = e6, e'7 =

e7.

(3) QiAj)1 = {(xlf.. .,xn) e Zn I Σ"llxi even and xn_7 = = χM}.

Then the assertion of (3) is obvious. Q.E.D.

Now suppose that a primitive embedding Zλ C_> /^ is given. Let M denote the

orthogonal complement of Zλ in Λv Here consider the lattice K — Q(A7). Let N =

Z/ί with /ί = — 8. Then K /K and N /N are both cyclic group of order 8.

K /K is generated by the image of

a = ̂ {eι + 2e2 + 3e3 + Ae4 + 5e5 + 6e6 + 7e7) e K*

Q

in K*/K, N*/N is generated by the image of -Q λ e JV* in N*/N.
o

&(α) = f, ft,(f*) = - § = |-mod (2Z).

* * 3
Let p : K /K—+N /N be the isomorphism defined by p (a) = TΓ >ί. Then

QK~QN° P> where # denotes the discriminant quadratic form. Thus there is an

isomorphism φ : K /K~* Λf / M with QM ° Φ = ~~ QK- We can conclude that for

some positive definite even unimodular lattice JΓof rank 24 and for some primitive

embedding K c_» Γ, M is isomorphic to the orthogonal complement of K in Γ.

Conversely, associated with such an embedding of K in 7̂ , we can make a

primitive embedding Zλ t—±Al with C(K, Γ) = C(Zλ, Ax). Each one Γ is unique-

ly determined by its root system. These root systems are listed as follows ([5]

p.427):

l f 12A,, 8A3, 4A6, 3A8, 2A1 2, A24f 6D4, 4D6, 3D8,

2D12, D24, 4E6, 3£ 8 , 4Λ5, + D4, 2A7 + 2ΰ 5 , 2A9 + D6, A15 +D91

E8 + D16, 2E7 + Dlo, E7 + A17, E6 + D7+ An, 6A4.

The candidates of Γ have been listed in the above. Moreover, since the root

system of Γ has to contain a root sub-system of type A7, we can consider only the

following of 14 isomorphism classes.
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Λ15 + Z)9, £ 8 + Dlβ, 2E7 + D10, E7 + A17, E6 + D7+ An.

PROPOSITION 4.4. The root system of every positive definite even lattice of rank 17

and discriminant 8 such that their discriminant quadratic forms are equal to — qN as

above is one of the following 15:

2A8, A12 + A4, Al6, 2D8, D12 + D4, Dlβ, 2E8, A7 + 2D5,

A
9
 + A, + D

6
, A

7
 + D

9
, A

l5
, E

8
 + D

8
, 2E

7
 + 2A

lf
 E

7
 + A

9t
 E

6
 + D

7
 + A

3
.

Proof By Lemmas 4.1, 4.2, 4.3 and the statement above, our results are

obvious. Q.E.D.

COROLLARY 4.5. There is a primitive element λ G Q(2E8) Θ H = A with

λ = — 8, such that the root system of Mλ — C(Zιλ> A) is of type G if and only if G

is of one of the following 15:

2ES, D16, Dt + D12, 2DS, Es + Ds, 2A, + 2E7, 2Ag, A12 + A,, Au,

/1 7 ~ ^^5, /li ~ /1 9 ~ JJ9, /1 7 i U91 / 1 1 5 , /±9 Ύ^ £L7, /1 3 ~ £L% Π̂  Uη.

5. Theory of bilinear forms

In this section we denote by d(L) €= Z the discriminant of a lattice L.

Let F be a finite-dimensional vector space over Q, equipped with a symmetric

bilinear form Vx V—> Q. We can define the discriminant d(V) and the Hasse

symbol εp(V). d(V) e Q/Q* 2 . rf(V) = 0 is equivalent to that F i s degenerate. If

V is non-degenerate, the Hasse symbol εp(V) ^ {+ 1, — 1} is defined for every

prime number/? andp = oo (Serre [14]). Obviously for any lattice L,

d(L<g)Q) = d(L) (modQ*2).

We use the Hubert symbol ( . ) p in the sequel (Serre [13]).

LEMMA 5.1. Let Δ be an even unimodular lattice with signature {a, b) and S be a

non-degenerate sublattice of A with signature (r, 1). Let λ ^ S with λ = — 8. Set

T= C(S,Λ) = S\Q= ΠZλ1 = C(Zλ, S).

(1) d(T) = ( - lΫd(S) (modQ*2),

(2) εp(T) = εp(S) ( ( - 1)6+1, d(S))p(- 1, - 1)^" 1 ) / 2 ,

(3)
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(4) εp(T) = εp(Q)((- l)% d(Q))p(- 1, - i ) ™ - 2 ) / 2 .

(5) The following three conditions are equivalent

εp(T) = ( - 1 , -d(T))p,

εp(S) = ( ( - I)4, d(S))p(- 1, - D - ' X ™ ,
εp{Q) - ( ( - 1) , d{Q))p{— 1, - Dp

(6) The following three conditions are equivalent

ε,(7) = ( - 1, - 1),,
εp(S) = ((- l)b+\ d(S))p(- 1, - lΫp

b+1Hb+2)/\

6,(0) = ( ( - Ό * 2 , d(Q))p(- 1, - l)b

p

iM)/2.

Proof It is known that εp(Λ) = (— 1, — 1 ) , ~ ([14]). The Lemma is an

easy consequence of this equality. Q.E.D.

PROPOSITION 5.2. Let A be an even unimodular lattice with signature {a, b) and S

is a non-degenerate sublattice of A with signature (r, 1). Set T= C(S, A) = S .

The following 4 conditions are equivalent.

(A) I {A, S) is satisfied, i.e. T contains an isotropic element.

(B) Γ ® Q contains an isotropic element.

(C) a > r, b > 1 and moreover one of the following (1), (2), (3), (4) is satisfied.

(1) a + b = r + 3 and- d(T) e Q*2,

(2) a + b — r + 4 and εp(T) = (— 1, — d(T))p for every prime numberp,

(3) a + b= r + 5 and d(T) & Q*2 or εp (7) = ( - 1, - 1) , for every prime

number p,

(4) a + b > + 6.
(D) # > r, δ > 1 and moreover one of the following (1), (2), (3), (4) is satisfied.

(1) a + 6 = r + 3 and ( - 1) 6 + 1 d(S) e Q*2,

(2) a + b = r + 4 and

εp(S) = ( ( - l)\ d(S))p(- 1, - iγp

b-mb~2)/2

for every prime number p,

(3) a + b = r + 5 and ( - 1)* rf(S) £ Q*2 or

/o\ / / -ι\δ+l j / r w / Λ Λ \ (b + l)(b+2)/2

εp(S) = ( ( - 1) , d(S))p(- 1, - 1),

/or ei ery prime number p,

(4) a + b>r + 6.

If -3 λ ^ S with λ = — 8 or — 2, then the following condition (E) is also

equivalent to the above 4 conditions.

(E) a > r, δ > 1 and moreover one of the following (1), (2), (3), (4) is satisfied.
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(1) a + b = r+3 and ( - lΫ2d(Q) e Q*2,

(2) a + b = r+ 4 and

ε,(Q) = ( ( - 1)'+12, d(Q)),<- 1, - ;

for every prime number p,

(3) a + b = r + 5 and ( - l ) m 2d(Q) £ Q*2 or

ε,(Q) = ( ( - D*2, d ( Q ) ) , ( - 1, - 1)Γ + 1 > / 2

/or every £nm# number p,

(4) a+ b>r+6.

Proof. (A) <=> (B) obvious. (B) & (C) by Theoreme 6 and Theoreme 8 in ([14,

Chap. F]). (C) <£> (D) <=> (E) by Lemma 5.1. Q.E.D.

COROLLARY 5.3. Let Q be a positive definite lattice of rank r and λ = — 8 or

"~ 2. Set S = Z/ϊ 0 Q (orthogonal direct sum). Assume that there is an embedding

Scz Q(2E8) ®H®H®H. If I (Q (2£8) Θ H® H® H, S) is satisfied, then

there is an embedding S c Q(2£ 8) Θ H® H. Moreover, the following conditions are

equivalent.

(a) I(Q(2E8) ®H®H®H, S) and I(Q(2E8) ®H®H, S) are satisfied,

(b) one of the following (I), (2), (3), (4) holds.

(1) r — 17, 2d(Q) ^ Q and εp(Q) = 1 for every prime numberp,

(2) r = 16 αncί ε^(Q) = (— 2, d{Q))p for every prime number,

(3) r = 15, and - 2d(Q) & Q*2 or ε / Q ) = ( - 1, - 1 ) ,

number p,

(4) r < 14.

By Theorem 2.15, Corollary 5.3 and Corollary 4.5, the implication (A) => (B)

in our main Theorem 0.2 is clear.

6. Proof of the converse

In this section we prove the converse part as well as (C) of the main Theorem

0.2. Let L be a non-degenerated lattice and L be its dual lattice of L.

LEMMA 6.1. Let Q(G) be the root lattice of a Dynkin Graph G with components

of type Af D or E only.
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i ) If there is a nonzero element ζ ^ Q(G) with ξ < 1, then ζ = , • -. for

some positive integer k\

ii ) For every nonzero element β in Q(An) of QiAy,), either β — — χ - y or

2 ft

β > 1, and the lower bound • -. can be reached:

iii) For every nonzero element β in the dual lattice of Q(Dn), Q(E8) or Q(E7),

/ 3 2 > 1 ;

2 4

iv) For every nonzero element β in the dual lattice of Q(E6), either β — ~ή or
2 4

β > 1, and the lower bound ~~ can be reached.

v ) There exists an element β with β = y in Q(G) if and only if G contains a

component of type Aλ and β ^ Q(Λχ) .

vi) For any ξ ^ Q (G) with ξ = TΓ, there is a unique connected component

Go of G with ξ ^ Q(G0) c: Q(G) . Go must be of type ̂ 48A_i for some positive inte-

ger k.

vii) Assume further rank Q(G) ^ 17. There does not exist an element ζ ^

Q(G)* with ξ2 = | .

Proof For i ), ii), iii) and iv), we can use the standard theory of discrimi-

nant quadratic form on lattices ([16, Ch. I, p.19]).

v) It follows from the statements of i ), ii), iii) and iv) above.

vi) Write Q(G) = ®fL{ where each L{ is the root lattice of a component of

G. Accordingly ξ can be written as £ = Σ , £t , where ξ{ belongs to L{, the dual

lattice of L{ for every i. Since ξ — Σ , ζi and every ξ{ is non-negative. By ξ =

9

-Q- and i), we conclude that only one ξf is nonzero.

Let T = Q(G0) be the root lattice of a component Go of G with ξ ^ T .

lίT= Q(ES), then Γ * / Γ = 0. But ξ2 = - |, which is impossible.

If Γ = Q(E7), then 7 * / 7 = Z/2. Since (2ξ)2 = |-, this case can not occur.

If Γ = Q(E6), then T*/T= Z / 3 . Since (3£)2 = - y , this case still can not

occur.

If T= Q(Dr) ( r > 4 ) , Then T*/T= Z / 2 + Z/2 if r is even and Γ * / Γ =
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Z / 4 if r is odd.

Since (2ξ) 2 = - | , r must be odd and T*/T= Z/4. Let π: Γ * ^ Γ * / Γ b e

the canonical map. We assign e{ to be vertices of Dr as in Section 4. Set

ω = ieι + 2e2 + + (r - 2)er_2 + (r - 2)er_1/2 + rer/2} /2.

Note that ω = ~τ. Then ω ^ T and 7r(ω) is a generator of the determinant

group T /T (see [16, Ch. I, p.19 Ex. 3.3]). Note π ( ξ ) is also a generator of

T /T. So ξ — kω — a where a ^ T and k = 1 or 3. Thus

I = ξ2 = k2ω + 2teω + α2 = ^ + 2kaω + α2,

which is a contradiction since 2kaω + a ^ 2Z. Thus the case T = Q(Dr) can

not occur.

If Γ = 0 ( Λ n ) , then the determinant group Γ * / Γ = Z / ( ^ + 1). Note that

there exists an element ω in T such that the image of ω in T / Γ i s a generator

and ω 2 = - q p y (see [16, Ch. I, p.9, Ex. 3.3]). Write ζ = to + a, where ί e Z
2

and a ^ T. Thus "o" = ? = —X~T + 2toω + a . Note that 2taω + a is an even

integer. Thus n + 1 is a multiple of 8.
* 2 9

vii) By vi) we can assume ξ ^ Q04w) for n = 7 or 15 and £ = TΓ. If « = 7,
9 7 2then -7Γ — -5- / is an even integer for some integer t with — 4 < t < 4. By trivial
0 o

9
calculation, we find that the above equation has no solutions. If n = 15, then -w —
15 2

y^-1 is an even integer for some integer / with — 8 < t < 8. The equation still

has no solutions. All together, we have proved that there is no element ξ ^ Q(G)

with ξ2 = I". Q.E.D.

LEMMA 6.2. Let G = Σ akAk+ ΣbιDι + Σ cmEm be a Dynkin Graph with

components of type A, D or E only, where ak1 bt and cm are positive integers. Set r —

Σ akk + Σ btl + Σcmm. Let Q = Q(G) be the root lattice of type G. Let Zλ be a

lattice with λ = — 8. Assume that the orthogonal sum ofZλ and Q(G) is embedded

in the unimodular even lattice A of signature (19,3) such that λ is primitive in A.

1 ) There does not exist an element ξ in primitive hull ofZλ@QinA so that ξ

= 0 and ξλ = - 2.
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ii) Suppose further that r < 17. There does not exist an element ζ in the primi-

tive hull of Zλ® Q in A such that ξ2 = 0 and ξλ = — 3.

Proof. i ) Suppose such an element ζ exists. Since ξ — 0 and ξλ — — 2.

Write ξ = j + q in (Zλ Θ Q) <8> Q, where ^ Q ( G ) ® Q , and #2 = - | . For

every α e Q(G), qa = ξa ^ Z. By Lemma 6.1, G must contain a component of

type i4x and q e QG^)*, the dual lattice of QG^). Since Q(Aλ)* /Q(Aλ) is a cyc-

lic group of order 2, 2# ^ Q C ^ ) c A Since ξ lies in the primitive hull Zλ Θ

(?(G) in A, ξ G i4. ^- = 2ξ — 2^ e A, which contradicts that Λ is primitive in A.

3

ii ) Suppose that such ξ does exist. Write ξ = ^r λ + q in (Zλ Θ (?) Qs> Q,

where g £ (?(G) ® Q and <?2 = -g. For every a in Q(G), qa = ξa ^ Z. Hence

# lies in the dual lattice of Q(G), which contradicts Lemma 6.1 vii). Q.E.D.

Let L be a root module and 5 be a submodule. We say that the embedding

5 c L is full if i?(S) = Z?(5) for root systems. Here S is the primitive hull of

S in L.

LEMMA 6.3 ([17] Proposition 4.2). Let Rf be a root system which is obtained by

one elementary transformation from a finite root system R of some root module. Let L be

another root module. Assume that a full embedding Q(R) c L is given. Then there is

a full embedding Q(Rr) C_>Z,Θ H such that u orthogonal to Q(Rr), where H —

2,u + Zυ with u = v2 = 0, uv = vu — 1 If Q(R) is orthogonal to ω e L, Then

Q(R') is orthogonal toω = ω@0<ΞL(BH.

Next, we shall prove the converse of the main Theorem 0.2.

First, let R be a root system whose type is one of the following 15:

2A8, A12 + A4, A159 Alβ9 2D8, D12 + D49 DlS9 2E8, A7 + 2D5, A7 + D9J

Aλ + A9 + D6, E8 + D8, 2E7 + 2Aιy E7 + A9, E6+ D7 + A3.

There is a primitive element λ £ Q(2E8) Θ H with λ = — 8 such that

R = R(MX), where Mλ is the orthogonal complement of Zλ in Q(2E8) Θ H. Let

R' be a root system obtained from R by one elementary transformation. By Lemma

6.3, there is a full embedding Q(R') c_+ Mλ 0 Hγ where Hι = Zuγ + Zvί (u\ =

^ = 0, ux v1 = 1) is a hyperbolic plane. We can assume that u1 is orthogonal to
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Q(R'). Let R" be a root system obtained from Rf by one elementary transforma-

tion. There is a full embedding Q(R") c ^ Mλ © Hλ φ # 2 where i/2 = Zw2 + Z*;2

(u2 = v2 = 0, u2v2= I) is another hyperbolic plane. By Lemma 6.3, Q(R") is

orthogonal to uγ and u2. Let i:

M.ΘH.ΘH, c_» 2Q(£8) ΘHΘH.ΘH,

be the natural embedding. Set S = Zλ ® Q{R") (orthogonal direct sum). The lat-

tice S satisfies condition (b) in Corollary 5.3, since uλ and u2 are orthogonal to it.

Let S denote the primitive hull of S in Q(2E8) ®H®HX®H2.

Next we will check S and S satisfy condition (a) and (b) in Theorem 2.15 (2).

(1) Let η e S, ηλ = 0 and η2 = 2. We can write η = m Θ tf^ 0 te2, where

m e 2Q(£ 8 ) Φ i / and Λ, 6 e Z. Then m2 = 2. Since ηλ = 0,rnλ = 0. Hence

m e Λfj, which means r; e M^ 0 ^ 0 H2. So ry e Q(R") by fullness, which im-

plies condition (a) in Theorem 2.15 (2) is satisfied.

(2) Let μ ^ S, μ = 0 and μλ = — 2. By Lemma 6.2, such an element μ does

not exist, which implies condition (b) in Theorem 2.15 (2) is satisfied. By Theorem

2.15 one knows that condition (A) in Theorem 0.2 holds. By Lemma 6.2 ii) and

the Remark of Theorem 2.15, the surface obtained in P is in fact a complete in-

tersection of three quadrics.

Second, let R be a root system whose type is one of the following 4: 2E8 +

Al9 Dιs + Aί9 A17, Dlo + EΊ.

There is λ1 e Q(2ES) ®H with λ\ = - 2 such that R = R(Uh), where Uλχ

is the orthogonal complement of λλ in Q (2ES) © H. Let Rf be a root system

obtained from R by one elementary transformation. By Lemma 6.3 there is a full

embedding Q(R') (Uί/^ φ H, where ^ = ZMX + Zvx(u\ = vί = 0, ^ ^ = 0) is

a hyperbolic plane. We can assume that uγ is orthogonal to Q(R'). Let i?r/ be a

root system obtained from Rr by one elementary transformation. There is a full

embedding Q(R") c ^ [/̂  φ i/x φ Z^, where H2 = Zu2 + Zv2 (u\ = t f = 0, u2 v2

— 1) is another hyperbolic plane. By Lemma 6.3, Q(R") is orthogonal to uι and

w2- Let i:

be the natural embedding. Let λ = 2λλ + u2. Then λ is primitive in 2Q(ES) φ H

0 # ! 0 i/2. Set S = ZΛ φ Q(i?r/) (orthogonal direct sum). Such S satisfies condi-

tion (b) in Corollary 5.3. Let S denote the primitive hull of S in 2Q(E8) φ i / φ

Hλ φ H2. Now let η e S, ηλ = 0, η2 = 2. We can write η = m φ auγ © ftw2,

where w £ 2 Q ( £ 8 ) Φ Jϊ, and 0, 6 e Z. Thus m2 = 2. Since ηλ = 0, m^x = 0.
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Therefore m e R(Uλ). By η e S, ϊ] lies in the primitive hull of Q{R") in Uλχ Θ

H^H* But QGR") is full in Uλ@ H,® H2, thus η e Q (/?"), which implies

condition (a) in Theorem 2.15 (2) is satisfied. By Lemma 6.2, condition (b) in

Theorem 2.15 (2) is also satisfied. By Theorem 2.15, one knows that condition (A)

in Theorem 0.2 holds. By Lemma 6.2 ii ) and the Remark of Theorem 2.15, the

surface obtained in P is in fact a complete intersection of three quadrics.

We have completed all the proof of our main Theorem 0.2.
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