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ON A LOCAL HOLDER CONTINUITY FOR A MINIMIZER OF

THE EXPONENTIAL ENERGY FUNCTIONAL

HISASHI NAITO1"

0. Introduction

Let Ω c Rm be a bounded domain with smooth boundary, where m > 2. We

consider the exponential energy functional

(0.1) E(u):= fe]Vu]2dx

for u : Ω —• Rw, where n > 2.

For minima of certain functionals with suitable growth conditions, many

authors have established regularity results [1,5,7,12]. For example, in [7], Hardt

and Lin proved that mappings minimizing the L -norm of the gradient

between compact Riemannian manifolds are smooth except singular sets with finite

(dim M — [p] — 1)-dimensional Hausdorff measure.

If a functional has sufficiently rapid growth, we can expect full regularity of

minima. In fact, quite recently, Due and Eells [2], Eells and Lemaire [3] show that,

in the case of n = 1, a minimizer u of E satisfies u ^ C°° (Ω) for any smooth

boundary data provided that Ω c R is a strictly convex bounded domain.

In this paper, we consider a local regularity of minima of E for the case of

n > 2. Our main theorem is stated as follows:

(0.2) THEOREM. For a given boundary data g ^ Π 1<p<oo Wι~1/P'P(dΩ, Rn), there

exists a unique minimizer of E on the space {u ^ Π 1<p<0O W ' (Ω, R w ) : u \dΩ — g) .

If BR (a) c: Ω, then there exists a number μ satisfying 0 < μ. < 1 such that the mini-

mizer belongs to C ' (BR/4(a)).
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9 8 HISASHI NAITO

From now on, we abbreviate W^^idΩ, R w ), WP(Ω, Rw) to Wι~ι/p'p(dΩ),

W (Ω), respectively.

For the sake of simplicity, we also use the following notations of function

spaces. Let Wbe the Banach space defined by

W'= n wltp(Ω),

and the space of traces of elements of W:

B:= n Wι~1/p p(dΩ).
K/Koo

For a given g e B, the function space on which we consider the functional E is

denoted by

VVg I** *= VV . U \dΩ gf .

Moreover, to prove Theorem, we consider a Hubert space

χ g : = {u<EHι(Ω) :u\dΩ = g)

for a given g e H (Ω).

In this paper, Br(a) expresses the ball centered at a ^ Ω with radius r, and

we abbreviate Br '-= Br(a) when there is no confusion. Moreover d stands for the

distance from the center a to dΩ, i.e, d : = dist(α, dΩ).

1. The existence of a minimizer

The aim of this section is to prove the following theorem.

(1.1) THEOREM. For a given boundary data g ^ B, there exists a unique mini-

mizer of the functional E on Wg.

The proof of Theorem 1.1 is divided into the following propositions.

First, we prove an existence and uniqueness theorem of minima on the space

xg.

(1.2) PROPOSITION. For a given boundary data g ^ B, there exists a unique mini-

mizer of the functional E on Xg.

Proof. We note that the set Xg is a closed convex subspace in H (Ω) and the

functional E is strongly convex and strongly lower semi-continuous on Xg. There-

fore, E is weakly lower semi-continuous on Xg.
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Moreover, we show that the functional E is coercive on Xg. Namely, any sequ-

ence {un} in Xg which satisfies || un || —•* °° contains a subsequence {uf

n} such that

E(uf

n) —* oo. Let {un} c Xg be a sequence which satisfies || «n ||—* °°. Since Ω is

bounded, using Poincare's inequality, we see || Vun\\L2{Ω)—> °°. On the other hand,

for any u €= Xg, we have

(1.3) E(u) = f eιWdx> f dx + \ f\ Vu\2 dx.

Therefore we get E(un) —* °°.

Since E is weakly lower semi-continuous, strongly convex and coercive, there

exists a unique minimizer on Xg, (cf. [8]). O

Hereafter we denote the minimizer of E in Xg by ux.

(1.4) PROPOSITION. The minimizer ux of E in Xg belongs to Wg, provided g e B.

Proof. Since £ ( % ) < °°, we obtain

oo > E(ux) = Γ^ l ϊ 7 M χ | 2dx> Σ T ^ Y Γ Γ| Vux\
2} dx.

JΩ j=0 \*J ) - JΩ

Therefore we have ux e Wlt2\Ω) for > = 2,3,4, . Since ux \dQ = ̂  e β, we get

% e Ŵ  •

(1.5) PROPOSITION. The minimizer ux of E in Xg is unique in Wg.

Proof First we note that B c H1/2(JdΩ). If g e β, then it is easy to see that

^ 3 PK̂ . Therefore we have

inf£O) > mίE(u).

wg x g

Moreover since ux ^ Wg, we have

E(μx) = inί E(u).

This equality implies that ux is a minimizer of E in Wg. Since the functional Z? is

strongly convex and Wg is convex, the proof of Proposition 1.4 shows the unique-

ness of the minimizer. Π
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2. Gradient bound

In the following sections, we prove the regularity of a minimizer of E by

Moser's iteration method. To do so, we first have to prove that a minimizer of E

satisfies the Euler-Lagrange equation of the functional E, since the tangent space

of the space W does not coincide with itself. Proposition 2.1 is found in [3], but we

describe the proof of it for the readers' convenience.

(2.1) PROPOSITION. The minimizer of the functional E in the class Wg satisfies

the Euler-Lagrange equation of E weakly.

Proof. Let e(') be the energy density of the functional E, i.e, e{u) — e .

For φ e f^with E(φ) < oot set

f ( t f X ) : ^ f o r 0 ^ ^ L

Since eiφ) > 1 for any ψ, we have

( 2 . 2 ) 0 < (fit, x)dx<t {em2dx+ ( 1 - t) f e { W d x f o r O < / ^ l .

Moreover, since e(m) is convex, we have

n < df(t,x)
dt '

(2.3) a t

0<f(t,x) for 0 < ί < l .

Therefore, by (2.2) and (2.3), l i m , | 0 / ( ί , x) exists and we have

Urn fit, x) = P(.wVF"'2 iVd0 - Vtu
a) e ύ,

Γ _ α \Vu\2 / ,-r .a ΓJ a\ j \ n

I Vμ e (Vjψ — VfU ) dx > 0.

10

Now we can replace φ to φ + sφ for any s ^ R and any φ ^ C<J°CO,RW) in (2.4).

Letting 5 — » o o o r s — » — oo, we have

X Γ7 α ry a I Pal2 , n

for any φ e C0°°(β,Rw). D



HOLDER CONTINUITY FOR A MINIMIZER 1 0 1

In the followings, we shall prove a bound of the gradient of minimizers. Since

it will be proved by Moser's iteration method, we shall first describe the proof in

the case of tn > 3, for the sake of simplicity. After the completion of the proof in

that case, we shall make a remark about the proof in the case of m — 2.

In order to justify the calculation in the proof, it is sufficient to have

F ^ | F w | 2 e W^{Ω) for γ> - 1.

(2.5) PROPOSITION. Assume m > 3. Let u be a minimizer of E. If Br(a) c Ω,

then we have

V^e^7^2 e Wι'2{Br(ά)) for γ > - 1.

Proof Let Δhφ be the difference quotient of a function φ in the direction ek.

Since u is a minimizer, u satisfies the Euler-Lagrange equation of E weakly:

(2.6) Γ ViUa F > V Vu]2 dx = 0 for all φ e C"(Ω).

In (2.6), replace φ to Δ_hφ, and substitute φa '*= Δhu
aη . Then we have

Using I V I Δhu I I = I Δh I Vu \ \ and Holder's inequality, we have

C f ( \ Δ h V u \ \ Δ h u \ + \ V u \ \ Δ h u \ \ Δ h \ V u \ 2 \ ) | Vη\ηeιVu]2 d x .

Therefore we have

( 2 7)
<LC f(\ΔhVu\2 + \Vu\2\Δku\2)\VV\

2elWdx.
JΩ

On the other hand, since ua | Δhu \2η ^ Wo' (Ω), and Mis a minimizer of E,

we obtain
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Therefore we have

X I Γ7 | 2 I A | 2 I Vu\2 2 ,I Vu I I Δhu \ e η dx

< f\Vu\\V\Δku\2\\u\eίVul!η2dx

+ 2f\Vu\\Δhu\2\u\eιVu]2\Vη\ηdx
JΩ

ε Γ|FU»«ΠV7"'y<ir+CsupUI f\ Vu\2 elVu%2 dx
JΩ Ω JΩ

_L Γ \ T7 \2 \ A 2 \Vu\2 2 i , ^ I \ Γ Λ \2 \Vu\2 2 i

T ε / I KM I I ̂ Λ M ^ 77 dx + C sup | u\ I Δhu\ e η dx.
JΩ Ω JΩ

Hence we obtain

(2.8)

f\Vu\2

JΩ

^ M l 2 2
 J

η dx

<ε f\V\Δku\2\2eιVu%2dx
JΩ

+ C sup I u I / (| Vu |2 + I 4 Λ M |2) e η2 dx.
Ω **Ω

Combining (2.7) and (2.8), we obtain

Γ7 A I 2 I I A I Γ7 I 2 I 2 \ I ^ « l 2 2 J

F Z 1 Λ M | + I 4 Λ I F M | I ) e 17 d x

Vu\2)eιVul2dx.<Cr~

On the other hand, we have

f\Vu\2e Vul\2 dx < Cr~2 Eosup\u\,
**Ω Ω

by putting uaη e Wo' (Ω) as a test function. Therefore we conclude that

(2.9) Γ (I VΔhu \2 + \Δh\Vu |212) eι Vu%2 dx < CE0.
JΩ

To show Vue2 η ^ Wo' (Ω) for — 1 < γ < 0, it is sufficient to show

f (\V2u\2 + \Vu\2\V\Vu\2\2)dx< C.
JΩ
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Therefore, by (2.9), the claim follows. D

(2.10) PROPOSITION. Assume m > 3. Let u be a minimizer of E. If Br(a) c Ω,

then there exists a positive number ε0 depending only on m such that

m-2
( - m i a+ε)\Vu\2 i \ m ^ SΛ -m ^

[r I e dx) < Cr Eo

\ JBr/2(a) '

for allO < ε < ε0, where C = C(m,ε) and Eo = f el Vu^ dx.

Proof First we take a negative number γ as γ > max{—1, —4/m}. In (2.6),

replace φ to Vkφ, set w '•— e u and substitute φ '-= Vku
awr η . Then we have

/ _ f — a I Vu\\ i-y / Γ7 (x γ/2 2\ ,

0 = / VΛVJU e ) V. {Vku w η ) dx

= f (VkViu°+ ViUaVk\Vu\2) VMuW^Wdx

(2.11)

+ £ \ (Vk V{u
a + Vιua Vk I Vu |2) Vku

awr/2+1 Vt I Vu |2 η dx
6 JBr

+ 2 [ (Vk Vμ" + V{u
a Vk I Vu Γ) Vku

awr/2+1η V{η dx

= (I) + (II) + (III).

By elementary calculations, the first term of the right hand side of (2.11) is equal

to

/r» 1 r»\ /τ\ Γ I Γ7 Γ7 |2 7V2 + 1 2 , . I Γ \ TΎ \ Γ7 2 |2 r / 2 + 1 2 i

(2.12) (I) = / I VVu\ w η dx + -~ \ \ V\ Vu \ w η dx

and the second term is equal to

(2.13) (II) = f f \V\Vu\2\2wr/2+ίdx + i f \<Vu,V\Vu\2>\2wr/2+1dx,
4 JBr

 Δ JBr

where <•, •> is the inner product Rw. Since — 1 < γ < 0, the sum of (2.12) and

(2.13) is estimated by

= f (\VVu\2 + ζ\ <Vu,V\Vu\2> \2)wr/2+ίη2dx

(2.14)
+ΐ(1 +l)X^ ( 7»ι !ι v '"V<i*
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On the other hand, the third term is estimated from above by

(III) < C J (1 + I Vu |2) I VI Vu Γ I I Vη | η wr/2+1 dx
(2-15) Br

< f f \V\Vu\2\\Vη\ηwr/2+ί+δdx,

Br

for any δ > 0, since xe° < -v e + x for any <5 > 0 and x > 0.

Inequalities (2.14) and (2.15) then give that

(2-16)

0 J β r

Since the left hand side and the right hand side of (2.16) are equal to

/T ττo\ 2 Γ I Γ7/ -s-(r/2+l)\ 12 2 T

(LHS) = ( 1 + r / 2 ) J J V(w* ) \ η dx,

J I F ( M ; 2(RHS) = -j Q + r / 2 ) J^ I F(M;2 ) I η w2 \Vγ]\dx,

and w > 1 and — 1 < 7 < 0, by taking δ = — 7/4 > 0 and the Holder's ine-

quality, we obtain

F ( w 2 ) I 77 <ijr < C — — / I F ( M ; 2 ) I 17
~r ϊ JBr

2
 J7 dx

r/4+l

for any δf > 0. Therefore, by taking δ' = — -f~, there exists a positive constant

C = C(m, 7) such that

(2.17) ΓI F ( z # ( r / 2 + 1 ) ) |%2 Λc < C Γ w;r/4+11 F^ |2 dx.
JBr

 JBr

I %
JBr

 JBr

By the Sobolev embedding theorem, (2.17) yields

m2

ί-m r ^m+v^Λ m < Cr-m r
X JBrn ' JB



HOLDER CONTINUITY FOR A MINIMIZER 1 0 5

Put 1 + ε •= (l + 2) m _ 9' t n e n w e °btain the inequality

( -m Γ <l+ε)|Fw|2 , \ m ^ -m Γ \Vu\2 , ^ ^ -m ^

\r J e dx) Cr J e dx < Cr Eo,

A i -u /A - (1 + ε) (w - 2) + 1 „. n i f w
and 1 "Γ 7/4 — ^ . Finally we remark that we can not
take r = 0. D

(2.18) PROPOSITION. Assume m > 3. Let u be a minimizer of E. For a finite

number q satisfying q > -y, if Br(ά) c i2, ί ^ n the following inequality holds:

-m Γ

where C — C{rn, Eo, d, q).

Proof In (2.6), if we take 7 ^ 0 , then the first and second terms are

estimated by

/T i ττ\ \ 1 / Λ i T\ / I Γ7 I ΓT |2 2 7/2+1 2 ,
(I + II) > -o U + o) I I V\ Vu\ w η dx.

Z \ Δl JBr

Hence we have

(2.19) ΓI V (w^r/2^) I V dx < 4 Γ I V (w^r/2+1)) I ̂ ( J /2+1)+5 \Vη\ηdx,
JBr ° JBr

for any <5 > 0, where the constant C = C(γ).

Take a = γ/2 + 1. Then using the Young's inequality and the Sobolev

embedding theorem, (2.19) yields that

(2.20) (r~m J wa^dx) m < Cr " 2 J wa+δ dx,

where C = C(δ, γ).

Taking a = 1 and δ = ε, by Proposition 2.10 and (2.20), we have

k w-2

(TTf



106 HISASHINAITO

T u , „ , / m \ u - 1 ) / 2

 A X ( m \k/2 (_mVk-1)/2

In the following, take a = ( ^ p r y j and δ = [^=2) ~ \W=

Then finite times iterations of this procedure implies that

(2.21) (r~m f e^^dx)^ < C{r~m E ^ \

where the constant C = (rn, k, σ, γ). Therefore for any finite number q satis-

fying q > "o" the following inequality is true:

D

(2.22) PROPOSITION. Assume m > 3. Let u be a minimizer of E. If B2r(a) c: Ω,

then there exists a positive number p satisfying 1 < p < — — ~ such that for
YH cL

a>2andθ<σ<l,

[r~m I (1 + I Vu \2)a"^dx) m <C\r~m I (1 + | Vu\2)ap dx) ,
^ JBσr(a) ' \ JBr(a) '

where the constant C = C{m, d, Eo, σ, a, p).

Proof In (2.6), replace φ to Vkφ, set w ' = 1 + \Vu\2 and subst i tute

φ '-= Vku
awr/2rj2 for γ > 0, then we have

( FΛI7 w + V{u Vk\Vu\)VkV{u w η e dx

(2.22) + i f (V.Vy + Viu
aVk\Vu\2) Vku

aViwwr/2~1η2eιVu*2 dx

= -2 ί\vkViU

a+ ViU

aVk\ Vu\2) Vku
aw7/2ViVVe

lVul2dx.
JBr

By a similar calculation to the proof of Proposition 2.10, we have

the first term of (2.22) = f \V2u | V / 2 τ ? V W dx
JBr

. Γ — I _ ι2 |2 r/2 2 I Fw|2 j

+ I V\Vu\ \ w η e dx,
JBr

the second term of (2.22) = [ \<Vu,V\Vu |2> \2wr/2~ιr)2e] W dx
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. Γ I r 7 l r 7 |2 2 r/2-l 2 \Vu\2 i

+ I \V\Vu\ w η e dx,
JBr

I the third term of (2.22) | < 2 Γ | Vw \ \ Vη \ wr/2+1ηelVu{2 dx
JBr

C f

\ f

Therefore we have

2 I Vu\2 j

e dx.
Γ I V (ηw1^) |2 dx< C \ w^~ I Vη

JBr

 JBr

By the Sobolev embedding theorem, we obtain

I - m C r+4 m X 2 2 ^ _m

(2.23) [r I w 2 w ~ 2 ^ < Cr
Applying the Holder's inequality to (2.23), we obtain the inequality

* e '

On the other hand, choose q > ~κ- then 1 < p < — — K and the integral

r~m J eq u dx is bounded from above. Therefore, setting a — ^—R— ^ 2, we

complete the proof. D

(2.24) PROPOSITION. Assume m > 3. Let u be a minimizer of E. If B2r(a) c Ω,

then there exists a constant C — C(rn,d,E0) such that

sup \Vu\2 < C.
Br/2(a)

Proof By Proposition 2.22, there exists a positive number p satisfying

P < ^ _ 9 such that for any a > 2 and any 0 < σ < 1

[r J v - 2 dxj < C (r J v dx) ,

where v '• — 1 + I Vu I . Take
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rk:=σkr, Bk:= B,t,

Then we obtain a recursion formula

y-im=2

[r~m \ vak^dx) <C[r~m Λ ' ώ for k > 1.
Bk ' * Bk_1 '

Therefore it holds that

(r~m f va*&* dx)ak m < C (r~m f vP dxj for k > 1.

Letting A : - > o o w e h a v e

/ r \1/p

supί;< C[r~m \ υp dx) .
Brn

 V JBr '

Therefore

sup\Vu\2 <C[r~m a + \Vu\2)Pdx)
Br/2

 X JBr '

<c(r-mfBe
ιVu]2dx)l/P<C(r-mE0)

1/t.

D

(2.25) Remark. In the case of m = 2, the argument similar to the proof of

Proposition 2.10 yields

(2.10') (r-2 f ea+ε)l ™ dx)^ < Cr'2 f eι W dx,
\ JBr/2(a) ' JBr(a)

for any 1 < q < 2 and 0 < ε < ε0, where the constant C = C (ε, | Ω | ) . The

inequality (2.100 is proved by taking γ as ~τ (l/q — 1) < γ < 0 in the proof of

Proposition 2.10.

We also obtain inequalities similar to (2.18) and (2.22). Therefore Proposition

2.24 also holds in case of m — 2.

3. Holder continuity of a minimizer

In the final section, we shall prove the main theorem. The proof of the



HOLDER CONTINUITY FOR A MINIMIZER 1 0 9

theorem is divided into several propositions. Using the bound of the gradient of

minimizers, we shall obtain an estimate of the growth order and the mean value of

them on a small ball.

(3.1) PROPOSITION. For 0 < r < l? 0/4 satisfying BR (a) c Ω and any constant

vector V ^ R satisfying

I V\ < sup \Vu\,

there exists a constant vector Vσ €= R such that

(3.2) I Vσ\ < sup \Vu\,

f Wu-VΔ2 dx
(3.3) BσAa)

< Cσm+2 / I Vu - V\2 dx + Cσm \Vu-V\2 dx,
^Br(a) ^Bjria)

for all 0 < σ < 1 /2.

Proof. Let v : Br—+Rn be an i/ -solution of Δv = 0 with u = v on Br. By

the definition of #, for any φ e C0°°(J5r), we have

Set Vσ

 : = (voKfi^))" 1 / Vυ dx. By applying the maximum principle and
JBσr

some well known results on the Laplace equation, we obtain

I Vσ\ < (voKBJΓ1 f \Vv\dx
JBσr< sup I Vv I < sup I Vv\ < sup I Vu \ < sup \Vu\.

Bar dBr dBr BRQ

Therefore we conclude (3.2).

On the other hand, we have

(3.4) f \Vu- Vσ\
2dx<2 f \Vu-Vυ\2 dx + 2 f \Vυ-Vσ\

2dx,
JB— JB— JB—

|2
r σ I

2 I Λ I ry i T 12
since \Vu - Vσ\ < 2 Vu - Vv\ + 2\Vυ - Vn\ . Here we note that υ satisfies aσ I

strongly elliptic system with constant coefficients: Δv = 0. Therefore v satisfies



110 HISASHI NAITO

an estimate due to Campanato [4,ΠI(2.8) or (2.11)], namely

(3.5) Γ I Vυ - Vσ |
2 dx < Cσm+2 [ \ Vυ - V1 Γ dx.

BσT Bγ

Since Vγ minimizes the integral J | Vυ — c \ dx, we have

(3.6) f I Vυ - V, Γ dx < f \ Vυ - V\2 dx.

Combining (3.5) and (3.6), we obtain

Γ I Vυ - Vσ |
2 dx < Cσm+2 f \Vv - V\2 dx

JB^ Jβ*
(3.7) '

<Cσm+2j \Vu-Vυ\2 dx+ Cσm+2 J \Vu~V\2dx.

In order to estimate I | Vu — Vυ \2 dx, we use the function φ — u — υ
Bγ

defined on Br. From differential equations, we derive
7^V'Λί!dt(euv+n-t)Vul2)dt]dx

Br

X Γ7 a „ a \V\2 , , Γ π a π a \V\2 , Λ

V.u V{φ e dx + I V{υ V>φ e dx = 0.
JR..

Since

^ / \tV + (l-t) Vu\\ CΛ(ΛT$ FT B\ ( ,ΛTB I /-, A Γ7 β\ \tV + (l-t)Vu\2

dt(e ) = 2(Vk — Vku )(tVk + (1 — t) Vku )e

we have

Γ \Vu-Vυ\2dx<2 f C\Vu\\Vu-Vυ\\Vu-V\
JBr

 JBr

 J0

x\tV + (l-t) Vu\eltv+a-t)Wdtdx.

Since | V\ < sup β | Vu \ and \tV + (1 — t) Vu \ < \ V\ + \ Vu |, using Proposi-

tion 3.17, we have

(the left hand side) < C f \ Vu - Vυ \ \ Vu - V\ dx.
JBr

Therefore we conclude
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(3.8) Γ I Vu - Vv |2 dx < C f I Vu - V\2 dx,

where the constant C = C(rn, d, Eo).

A calculation similar to lead (3.8) also yields that

f I Vu - Vv Γ dx < C f I Vu - V|2 dx.
JBσr JBiσr

On the other hand, since ua ' = ua + Σ^-i V? χι is also a weak solution of the
1

Euler-Lagrange equation of E, if o < y , then we have

(3.9) Γ | F « ~ V | 2 r f x < Cσm f \Vu- V\2dx.
JB2σr *>Br

Combining (3.4), (3.7), (3.8) and (3.9), we derive

Γ \Vu - Vσ |
2 dx < Cσm+2 f \Vu- V\2 dx + Cσm [ \ Vu - V\2 dx.

JBσr JBr

 JBr ^

(3.10) PROPOSITION. Let Ur(a) = Ur e Rnm be the average of Vu in Br(a), le,

Ur(a) = (voKB.ia)))'1 f Vudx.
JBr(a)

If BRQ (a ) ci Ω and 0 < r < /?0/4, then there exists a constant μ satisfying

0 < μ < 1 such that

f \Vu- Ur\
2dx<Crm+2\

JBria)

where the constant C = C(m, d, Eo).

Proof. By Proposition 3.1, we may choose a number σ e (0,1/2) such that

the following is true; for r, '•= σ' r and Bt '• = Br, there exist constant vectors

Wo, Wv...,Wk such that

(3.11) W0=Ur

(3.12) I Wi+Ϊ\ < S U P | F M | ,

(3.13)

+7 Γ I ̂ « - W,+i I2 dx < Cσ2r~m [ \Vu- W,\2 dx+ C f \Vu- W,
JBM

 JB{ JBl

2dx
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< C0σ
2r~m f I Vu - Wt \

2 dx + Clt

provided | W{\ <sup 5 / ? | Vu | , where the constant Cx depends on the bound of

Vu I on BRQ. By Proposition 3.1 again, (3.11)—(3.13) remain valid for all positive

integers i. Therefore choose o so small that σ satisfies Coσ < 1. Then (3.13)

shows that there exist constants C and μ satisfying 0 < μ < 1 depending on

m, d, Eo such that

-(m+2u) Γ I Γ? r r | 2 r ^ π

r \ \Vu— Ur\ dx < C.
D

Proposition 3.10 implies that if Bir(a) c Ω then Vu is Holder continuous on

Br{a) with the exponent μ.
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