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ON A LOCAL HOLDER CONTINUITY FOR A MINIMIZER OF
THE EXPONENTIAL ENERGY FUNCTIONAL

HISASHI NAITO'

0. Introduction

Let 2 C R" be a bounded domain with smooth boundary, where m = 2. We
consider the exponential energy functional

(01) E(u) ::j{;e\Vulzdx

for u: 2— R", where n > 2.

For minima of certain functionals with suitable growth conditions, many
authors have established regularity results [1,5,7,12]. For example, in [7], Hardt
and Lin proved that mappings minimizing the I’-norm of the gradient
between compact Riemannian manifolds are smooth except singular sets with finite
(dim M — [p] — 1)-dimensional Hausdorff measure.

If a functional has sufficiently rapid growth, we can expect full regularity of
minima. In fact, quite recently, Duc and Eells [2], Eells and Lemaire [3] show that,
in the case of # =1, a minimizer # of E satisfies # € C” () for any smooth
boundary data provided that 2 € R™ is a strictly convex bounded domain.

In this paper, we consider a local regularity of minima of E for the case of
n 2 2. Our main theorem is stated as follows:

(0.2) THEOREM. For a given boundary data § € N | pce W30, RY), there
exists a umique minimizer of E on the space {u € N e W (2, R") 1utl,0 =g} .
If By(a) C Q, then there exists a number y satisfying 0 < ¢ < 1 such that the mini-
mizer belongs to C* (Bg,,(@)).
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98 HISASHI NAITO

From now on, we abbreviate W' *?(5Q2, R"), W?(Q, R") to W'"*?(59),
W’ (), respectively.

For the sake of simplicity, we also use the following notations of function
spaces. Let W be the Banach space defined by

W= n W@,
1<p<oo
and the space of traces of elements of W-
B:= n w700).
1<p<oo

For a given g € B, the function space on which we consider the functional E is
denoted by

W,={ueW:ul,,=g.
Moreover, to prove Theorem, we consider a Hilbert space
X, ={ueH W ul,,=g

for a given g € HY(Q).

In this paper, B,(a) expresses the ball centered at @ € £ with radius #, and
we abbreviate B, := B,(a) when there is no confusion. Moreover d stands for the
distance from the center @ to 0, i.e, d := dist(a, 09).

1. The existence of a minimizer

The aim of this section is to prove the following theorem.

(1.1) THEOREM. For a given boundary data g € B, there exists a unique mini-
mizer of the functional E on W,.

The proof of Theorem 1.1 is divided into the following propositions.
First, we prove an existence and uniqueness theorem of minima on the space

X,
(1.2) PrOPOSITION.  For a given boundary data g € B, there exists a unique mini-
mizey of the functional E on X,.

Proof.  We note that the set X, is a closed convex subspace in H'(£) and the
functional E is strongly convex and strongly lower semi-continuous on X,. There-
fore, E is weakly lower semi-continuous on X,.
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Moreover, we show that the functional E is coercive on X,. Namely, any sequ-
ence {#,} in X, which satisfies | #, || — o contains a subsequence {u;} such that
E(u},) — oo, Let {#,} C X, be a sequence which satisfies || #, | — . Since 2 is
bounded, using Poincaré’s inequality, we see " Vu, ||Lz(m — 00, On the other hand,
for any # € X,, we have

2
(1.3) E@) = fe'V“‘ dr > fdx+—%—f| Vul dz.
) 9 2
Therefore we get E(u,) — .
Since E is weakly lower semi-continuous, strongly convex and coercive, there
exists a unique minimizer on X,, (cf. [8]). O
Hereafter we denote the minimizer of E in X, by uy.

(1.4) PropOSITION.  The minimizer uy of E in X, belongs to W,, provided g € B.

Proof. Since E(uy) < %, we obtain

- | Vi |2 1 2
> B = [ drz S gbr [| vl da.

it

Therefore we have uy € W' (Q) for j = 2,3,4, . Since uy l,o = & € B, we get
uy € W, O

(1.5) PROPOSITION.  The minimizer uy of E in X, is unique in W,.

Proof. First we note that B < H"”

X, D W,. Therefore we have

(09).If g € B, then it is easy to see that

inf E(u) = inf E (u).
W, X,

Moreover since uy € W,, we have
E(uy) = inf E(u).
WK
This equality implies that # is a minimizer of E in W,. Since the functional E is

strongly convex and W, is convex, the proof of Proposition 1.4 shows the unique-
ness of the minimizer. O
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2. Gradient bound

In the following sections, we prove the regularity of a minimizer of E by
Moser’s iteration method. To do so, we first have to prove that a minimizer of E
satisfies the Euler-Lagrange equation of the functional E, since the tangent space
of the space W does not coincide with itself. Proposition 2.1 is found in [3], but we
describe the proof of it for the readers’ convenience.

(2.1) ProposITION.  The minimizer of the functional E in the class W, satisfies
the Euler-Lagrange equation of E weakly.

Proof. Let e(+) be the energy density of the functional E, i.e, e(u) = ",
For ¢ € W with E(¢) < oo, set

_elu+ t(p —u) — elu)
t

ftx): for 0<¢<1.

Since e(¢) > 1 for any ¢, we have
22)0< | £, <t|e™ar+a- Tt dr for 0 << 1.
220< [ft, 2 dz tfge dr + (1 t)fge dr for 0 1

Moreover, since e(+) is convex, we have

0< LD
(2.3)
0<f(tx) for 0<t<1.
Therefore, by (2.2) and (2.3), lim, | , f (£, x) exists and we have
limf(t, 2) = Vu%e' ™ (V9" — Vu® € L,
4 tlo a | Vul? a a
@4 [ v ™ (747 — v dz 2 0.
)

Now we can replace ¢ to ¢ + s¢ for any s € R and any ¢ € C, (2,R") in (2.4).
Letting s — o0 or s — — oo, we have

f V' V% ™ dr =0
2

for any ¢ € C, (2,R"). O
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In the followings, we shall prove a bound of the gradient of minimizers. Since
it will be proved by Moser’s iteration method, we shall first describe the proof in
the case of m = 3, for the sake of simplicity. After the completion of the proof in
that case, we shall make a remark about the proof in the case of m = 2.

In order to justify the calculation in the proof, it is sufficient to have

Zu"'eg| e WD) for y> —1.

(2.5) PROPOSITION. Assume m = 3. Let u be a minimizer of E. If B,(a) C 2,
then we have

Vauler " € W2B (@) for 1> — 1.

Proof. Let A, be the difference quotient of a function ¢ in the direction e,.
Since # is a minimizer, u satisfies the Euler-Lagrange equation of E weakly:

(2.6) j; VaVip%' ™ dr =0 forall ¢ € CI(Q).
In (2.6), replace ¢ to A_,¢, and substitute ¢* := A,4"n”. Then we have
LA,,(Viuae'V"’z) V,(4,u"n") dx = 0.
Using | 7 lA,,u [?]? = | 4, | Vu |2 [> and Holder’s inequality, we have
L4l + 518, 17ul 7)™ o da
<C [ Aa,vull aul+|vull aul| 481 7uf) | 7] ne ™" dz.
Therefore we have

L (4wl + 514,17l ) ™ " dx
2.7)
<C [ Aa,vul+vul*| aul vy o™ da.
(]

On the other hand, since #” | Au 2772 € Wol'2 (2), and # is a minimizer of E,
we obtain

f Vs V,u® | Au 0 e'"" dx = 0.
2
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Therefore we have
_/; |Vul?] Aul? e ™ v dx
< LIVu| V| Aul]|ul ¢'™"'n? dx
+2 [ |vul | Al lul ™ |7y |y do
<e LIV aul [ e™ 5y de+ Csuplul [ |vul e ™y’ s
+ eLI Vul?| Aul? ™ ? dx + ngp | ] L| Aulte ™ 0 dx.
Hence we obtain
f [Vul?| Al '™ n* dx
28)
< 5L|V| Al e ™y do
+ Csl;p | u | j; (Vul> + | 4,4 ' ™y dx.
Combining (2.7) and (2.8), we obtain
L Avaml +14,|vul ) ¢ ™5 dx
<cr A (Aul®+|Vul? e de.
On the other hand, we have
j!;l Vul®e' V"'znz dx < Cr*E, sup | ],
by putting #“n € W, 2(£2) as a test function. Therefore we conclude that
2.9) fg (Va,ul+ |4, Va1 ¢ ™ p? dz < CE,
To show Vue? Vulznz € W,2(Q) for — 1 < 7 <0, it is sufficient to show

fg<|v2u|2+ |Vl | V| V| dz < C.
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Therefore, by (2.9), the claim follows. U

(2.10) ProposiTION.  Assume m = 3. Let u be a minimizer of E. If B, (@) C £,
then there exists a positive number €, depending only on m such that

-m
(™
Byo(a)

for all 0 < e < ¢, where C = C(m,e) and E, = fe
2

m—2

e(1+a:)|l7ul2 dl‘)T < Cf—m Eo

| Vul?

dx.

Proof. First we take a negative number 7 as 7 > max{—1, —4/m}. In (2.6),

e V)2 . . a /2 2
replace ¢ to V,@, set w 1= e and substitute ¢ := V,u w" " "n". Then we have

0= f v, (Ve ™) 7, (Vo w*n?) dx
B’

- f (V,Vu® + V'V, |Vul®) v, Vulw” 'y’ do
(2.11) Br
+1 fB (V,Va® + Va7, | V) 7w v | Vul* o dz

+2 [ (7,0 + T, | V) Va0 Vg do
B’

=D + 4D + dID.

By elementary calculations, the first term of the right hand side of (2.11) is equal
to

(2.12) o= f V7 u |2w7/2+1n2 dr + %f V| Vw2 |2wr/2+1n2 dr
B, B,
and the second term is equal to

213) =1 [ |VIvul*Fuw ™ dz+L [ | <00, 7|7u> 0" dz,

B, By
where <+, is the inner product R” Since — 1 < 7 < 0, the sum of (2.12) and
(2.13) is estimated by

A+ = [ AVPul + 11 <P, VI7ul> B’y dz
B
(2.14) .
1
+3 (L g) [Ivival oy’ de
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>1(1+1) f V|V 2™ 5 dx.
On the other hand, the third term is estimated from above by

ay < f a+1vuP) 7ivaf||vnly 0 dr
(2.15) c By
<=5 2 124140
5 L 1PIvul 17 |y ™ da,
for any 6 > 0, since xe” < % 1z
Inequalities (2.14) and (2.15) then give that

for any 6 > 0 and x = 0.

3 (1+2) [ 1717l Fu s dz
(2.16) c B
< '6—_]‘ |V|VM‘2|V77 l n wr/2+1+6 dr.
Br
Since the left hand side and the right hand side of (2.16) are equal to

(LHS) mflv( 7(7’/2+l)) lZUZ dx,
1
(RHS) = 5 T 7/2) fl V(w 2(7/2+1)) In WD | n | dz,

and w =1 and —1<7y<0, by taking § = — v/4 > 0 and the Holder's ine-
quality, we obtain

f|V( —(r/2+1) z dx< C—f|V( —(7/2+1) z dx

+C 75, f w vy P dr,
for any 0’ > 0. Therefore, by taking ' = — 4C’ there exists a positive constant
C = C(m, 7) such that
2.17) flV( «(r/2+1) Zd.z‘S wam+1|‘777 |z dr.
By

By the Sobolev embedding theorem, (2.17) yields

m—2

- (r/2+1) m - /4+1
(r'"f w”mzdx) <o [ W™ dz.
B. By

r/2
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Putl+e:= (1 + :2£> mrﬁ 5 then we obtain the inequality

m=2
— Vu|? m _ Vu|? —
(7’ mf e(1+e>l ul dx) Cr mf ei ul dr < Cr mEO,
B

r/2 By

AQ+eam—2) +1
2m

and 1+ 7y/4= . Finally we remark that we can not

take ¥ = 0. |

(2.18) PrROPOSITION. Assume m = 3. Let u be a minimizer of E. For a finite

number q satisfying q > % if B,(a@) C 8, then the following inequality holds:

1
- Vul? q
(r”'f e dx) <C,
B,/y(a)

where C = C(m, E,, d, q).

Proof. In (2.6), if we take 7 = 0, then the first and second terms are
estimated by

(I+1) = % (1 + -Zt) _];I VIVul? Pw* 'y dr.

Hence we have

1

1 1 1
(2.19) j;l v (w2720 |27]2 dr < %L‘V (W27 l L, \Vn | ndz,

for any 0 > 0, where the constant C = C(y).
Take a = y/2 + 1. Then using the Young's inequality and the Sobolev
embedding theorem, (2.19) yields that

m-2 -m
wa%d‘Z) m < Cr f wa+5 dx,
By

2.20 " <
( / (r a-o0?

BG"
where C = C(4, 7).
Taking @« = 1 and 0 = ¢, by Proposition 2.10 and (2.20), we have

m—2

(r-mj;z g T’ d:c>— < q _CG)Z r—mj; SOOI Vult o

< ((1 < o)2>2 ("
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k=172 %) (k=172
_ m _ m
I e T

Then finite times iterations of this procedure implies that

In the following, take @ = <m )

m_z)uz

(2.21) (rm [ dszees &)™ < com pye

where the constant C = (m, k, 0, 7). Therefore for any finite number ¢ satis-
fying ¢ > % the following inequality is true:

<r—mL eqqulz dx)l/q <cC.
" U

(2.22) PROPOSITION.  Assume m = 3. Let u be a minimizer of E. If B,,(a) C £,

such that for

then theve exists a positive number p satisfying 1 < p < mrﬁ 2

a22and0<og<1,
m—2
m

(r_mj; a 1+ |Vu Iz)a% dx>_ <cC (r'mf

B, (@)

2 1/p
(1+|l7u|)”dx> ,
where the constant C = C(m, d, E,, o, a, p).

Proof. In (2.6), replace ¢ to V,@, set w: = 1+ |Vul* and substitute

a r/2

@ = Vu"w"n’ for y = 0, then we have
(V, V™ +Va’V, | Vu DV, Vuw ne' ™ dr
B'
222 +1 [ 07+ 00, Vul) Vs Vo e ™ o
By

| Vul?

= Z_L:(VkViua+ V'V, | Vi) Vaw Van e ™" dz.
By a similar calculation to the proof of Proposition 2.10, we have
the first term of (2.22) = f |7 %u |21A)T/21']2e| " g
Bf

4+ f |V| Vu|2 |2wr/2n2e|Vu|2dx’
Bf

the second term of (2.22) = f | <Vu, V| Vul? P n%' ™" dx
By
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+ L’IVl vl 0™ e ™ dx,
| the third term of (2.22)] < 2 j}; |V | |7y | wr/“lnelwlzdx
= Cfg,lvwf% Pre' ™" dx
+3 fB w7y e ™ dr.
Therefore we have
j;r | V(nwj—j_“) 12 dx < C.L w%'iwn |2e|Vu|2 dz.

By the Sobolev embedding theorem, we obtain

m—2

(2.23) (r_mf u)];_“W’f—zdx)T < Cr_mf wi e g
B B,

or

Applying the Holder's inequality to (2.23), we obtain the inequality

144 _m m=2 e \UP .\l
(r'm w? Wdr) "< C(r_"'f w”2 dx) (r""f P dx) .
BG’?’ E’ Bf
m m .
On the other hand, choose ¢ > 3 then 1 <p< m— 2 and the integral

r_mf eqlvulzdx is bounded from above. Therefore, setting a = I—;——‘l =2, we
B

r

complete the proof. O

(2.24) PROPOSITION.  Assume m = 3. Let u be a minimizer of E. If B,,(a) C £,
then there exists a constant C = C(m,d,E,) such that

sup |Vul* < C.

By /5(@)

Proof. By Proposition 2.22, there exists a positive number p satisfying

p<m’f2suchthatforanyaZZandany0<0<1

—m em N\ m ap 1p
(r f v m-2 dx) <C (r f v dx) ,
Bg, By

where v :=1 + | Vu|*. Take
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Then we obtain a recursion formula

-1m=—2 -1

(r fB u“*ﬁ'f—zdx)akl " <c(rm j; P dx)am for k>1.

k k-1

Therefore it holds that

(r_mj; T dx>a;1m';z <cC <r"mj': g dx)w for k=>1.

k 0

Letting k — % we have

Therefore

sup |Vul? < C (r"”f 1 +|vuP)’ d.x)w

B

~

2 1/p -
<c(rm [ &™) <ce™E”.

B,

O

(2.25) Remark. In the case of m = 2, the argument similar to the proof of
Proposition 2.10 yields

2-¢
_ Va2 - Vw2
2.10) (r zf gl Tl dx) T <er "’f ¢ ™" ar,
By, (@) B,(@

for any 1< ¢ <2 and 0 <e <eg, where the constant C = C (¢, | 2]). The
inequality (2.10’) is proved by taking 7 as % (1/¢—1) <7 <0 in the proof of

Proposition 2.10.
We also obtain inequalities similar to (2.18) and (2.22). Therefore Proposition
2.24 also holds in case of m = 2.

3. Hélder continuity of a minimizer

In the final section, we shall prove the main theorem. The proof of the
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theorem is divided into several propositions. Using the bound of the gradient of
minimizers, we shall obtain an estimate of the growth order and the mean value of
them on a small ball.

(3.1) ProposiTioN.  For 0 < 7 < R,/4 satisfying B (a) © £ and any constant
vector V€ R™ satisfying

| VI < sup |Vul,

Bgyl@)

theve exists a constant vector V, € R™ such that

(3.2) | V,| < sup |Vul,
Bgy@
[ ivu-v,Pi
(33) Bg,la)
< cJ’"”f \Vu — V[P de + c(f”‘f \Vu — VI dz,
B,@ B,(@)

forall 0 <o <1/2.

Proof. Let v: B,— R" be an H'-solution of Av =0 with # = v on B,. By
the definition of v, for any ¢ € C, (B,), we have

Set V,:= (vol (B,,)) ™" Vv dz. By applying the maximum principle and
BU’

some well known results on the Laplace equation, we obtain

lv,| < (vol(Ba,))_lf |y | dx

BU’

< sup|Vv| < sup| V| < sup|Vu| < sup|Vul.
B, 2B,

Boar a. Ro

Therefore we conclude (3.2).
On the other hand, we have

(3.4) j;

ar

Vu—V,far<2 [ |Vu—voPdz+2 [ |vo—V,Idz,
By, Bgy

since |Vu — V, P<2 |Vu — Vo |2 +2|Vy— V, I*. Here we note that v satisfies a
strongly elliptic system with constant coefficients: Av = 0. Therefore v satisfies
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an estimate due to Campanato [4,[1(2.8) or (2.11)], namely
_ 2 < m+2 _ 2
(3.5) wa|Vv V.| dz < Co J;,W” v, | de.
Since V| minimizes the integral f | Vv — ¢|” dx, we have
BY
_ 2 ___ 2

(3.6) fB,IV” v, dxéfB’IVv VI de.
Combining (3.5) and (3.6), we obtain
[ ivo=v,faz<co™ [ 1vo-VId

B, B
(3.7) 7 ’

< Co’””f |V — Vo [ dz + CO’m+2f \Vu — V[ dr.
BI’ Bf

In order to estimate f |V — VUI2 dx, we use the function ¢ = u — v
B’

defined on B,. From differential equations, we derive
1 2
j}; Viua V1¢a[j(; 0t(e“v+“‘” Vu| ) dt] drx
— f Vau* Ve’ dx + f Vo Ve dx = 0.
B’ Bf

Since

at(eltVHl—t)VuIz) — 2(Vkﬂ _ Vkuﬂ) (thﬁ +a-9 Vkuﬂ)e\tw(l—n Vulz,
we have

1
2
—_ < — —
jl;’lmt Vuldx_2f_£|l7u||l7u Vol|Vu — V|

By

X | tV+A =D Vule 0™ dtax.

Since | V] < supBROIVu| and [tV+ (1 —t)Vu| <| V| +|Vu/|, using Proposi-
tion 3.17, we have

(the left hand side) < cf |Vu — Vol |Vu — V]dz.
Br

Therefore we conclude
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. 2 < 172
(3.8) j;eru Vol? dx CJ;,W“ VI dx,

where the constant C = C(m, d, E,).
A calculation similar to lead (3.8) also yields that

f |Vu — Vo |2 dz < cf \Vu— V[ dz.
Bay Bzaf

On the other hand, since #“:= u" + XL, Viaxi is also a weak solution of the
Euler-Lagrange equation of E, if 0 < o then we have

_ 2 g m _ 2 .
(3.9) me|Vu VI dr < Co f;eru VI dx

Combining (3.4), (3.7), (3.8) and (3.9), we derive

[ 1vu=v,Far<co™ [ |vu—vIde+ Co" [ |vu— V| dz.
Ba’ B’ Br D

(3.10) ProposiTioN.  Let U,(a) = U, € R™ be the average of Vu in B,(@), i.e,
U@ = volB, @)™ [ Vudz.
B, @)

If Bg, (@) € Q and 0 <7 < R,/4, then there exists a constant  satisfying
0 < u <1 such that

[ \vu—-u,ldx <o,
B,(@)
where the constant C = C(m, d, E,).
Proof By Proposition 3.1, we may choose a number ¢ € (0,1/2) such that

the following is true; for 7, : = o'+ 7 and B, := Brw there exist constant vectors
Wy, Wi,...,W, such that

(3.11) W,=U,
(3.12) | Wipi | <sup|Vul,

Bg,
(3.13)

i [ =W, [dz< cUzr;"’LWu— W I dx + ch|vu—W,.|2dx

i+1
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< Coo'r™ [ \vu— W, dz+ C,
B

provided | W,»| ésukao|Vu|2, where the constant C, depends on the bound of
| Va| on BR°~ By Proposition 3.1 again, (3.11)—(3.13) remain valid for all positive
integers 7. Therefore choose ¢ so small that o satisfies Cooz < 1. Then (3.13)
shows that there exist constants C and g satisfying 0 < g <1 depending on
m, d, E, such that

ym f |Vvu— U, |*dz < C.
B, =

Proposition 3.10 implies that if By, (@) C £ then Vu is Holder continuous on
B,(a) with the exponent .
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