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QUANTUM WHITE NOISES

WHITE NOISE APPROACH TO

QUANTUM STOCHASTIC CALCULUS*

ZHIYUAN HUANG

I . Introduction

Let H = L (R) be the Hubert space of all complex-valued square integrable

functions defined on R, Φ — Γ(H) be the Boson Fock space over H. For each

h ^ H, denote by ε(h) the corresponding exponential vector:

ε(h) = 1 Θ A Θ Γ / 2 ! Θ ••• h*n/n\@ •••,

in particular ε(0) is the Fock vacuum. It is well known (cf. [9,15]) that the family

E = {ε (h) h G H} is linearly independent and total in Φ. In developing their

quantum stochastic calculus, Hudson and Parthasarathy [9] used the set E as

"testing vectors": all operators on Φ were firstly defined on E and then extended

to their proper domains. Instead of operator valued processes, they essentially

dealt with vector valued ones and, therefore, obtained a quantum (i.e. noncommuta-

tive) version of Itό's product formula which was only based on the commutation

rules of a free Boson field and Lebesgue integration. The three fundamental integ-

rators are annihilation, creation and number processes which played the role of

"quantum noises" in quantum stochastic evolutions. They are noncommutative

extensions of classical Brownian motion and Poisson process.

On the other hand, the white noise approach initiated by T. Hida [5] has been

proved highly effective to the classical stochastic integration theory. One natural

question is: what one can do with it in quantum stochastic calculus?

In the present paper, we define the "quantum white noise" as a generalized

quantum process in terms of Hida's derivative (or "causal calculus"). Since it could

be rigorously treated in the framework of Hida's distributions over white noise

space rather than in Fock space Φ, we establish some kind of chaos decomposition

for operators which is a considerable extension of those decompositions for
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vectors (or functionals). Moreover, we investigate quantum stochastic measures of

the "normal form", define quantum stochastic integrals with respect to them and

extend Hudson and Parthasarathy's formulae to the more general case.

I . Quantum white noises

In general description of quantum stochastic evolutions (cf. [1,7,9,15]), there

usually is another Hubert space K called "initial space" and a dense linear

manifold D in K. A quantum stochastic process is a family of operators X —

(X(t),teR)onK®Φ as well as its adjoint process X * = (X*(t), t e R)

with domains containing D & E. However, in our presentation here, we shall neg-

lect the initial space K and restrict ourselves to real Hubert space //just for nota-

tional simplification. The general case will be treated by taking tensor product and

complexification.

We briefly recall some notions and notations in white noise analysis. Let

A = 1 + t — d /dt be the harmonic oscillator in H and Γ(A) be its second

quantization. The Schwartz spaces of rapidly decreasing C°°-functions on R and

tempered distributions will be denoted by E and E respectively. Let μ be the

white noise measure on E and (L) — L (E , μ). It is well known that (L) is

isometrically isomorphic to the Boson Fock space Φ = Γ(H). This isomorphism

gives the Fock space a "white noise interpretation" (cf. [7,15] for different prob-

abilistic interpretations of Fock space) and, therefore, Γ(A) could be considered

as a densely defined selfadjoint operator in (L ). For k= 0,l>2, . . . , we put

Ek = Όom(Ak) and (Ek) = Όom(Γ(Ak)). Then, Ek (resp. (Ek)) is a Hubert space

with norm \ξ\k = \Akξ\0 (resp. || φ\\k = || Γ(Ak) φ ||0) where | | 0 (resp. || ||0) is

the norm in H (resp. (L)). Denote by E_k (resp. (E_k)) its dual space with dual

norm | \_k (resp. || ||_Λ). Then, the projective limit E — Π Ek (resp. (E) =

Π (Ek)) is a nuclear Frechet space and the inductive limit E = U E_k (resp.
k * *

(E) — U (£_Λ)) is its topological dual space. Thus we have two GeΓfand
triplets:

and

(E) c (L2) c (£)*

with dual pairings < , > « , » respectively. The elements in (E) are called

Hida's testing functionals and elements in (E) are referred to as Hida's general-

ized functionals (or distributions).
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Note that the exponential functionals

(2.1) ε(ξ)=exp{( ,ξ> -\ξ\2

0/2), ξ <Ξ E

belong to (E) and for every k e NQ, as ξ—> ξ0 in E,

(2.2) || ε ( £ ) - ε(ξo)\\l = exp\ξ \\ + e x p | ξ0 \\ - 2 e x p (ξ, ξo)k -> 0

hence the map £ ^ ε(ξ) is continuous from E to ( £ ) . Under the isomorphism bet-

ween (L ) and Φ, the exponential functionals just correspond to those exponential

vectors (and accordingly we denote them by the same symbols). It follows that the

family E o = {ε(ξ), ξ ^ E} is linearly independent and total in (E). We shall use

this much more restricted family as "testing vectors" and propose the following

DEFINITION 2.1. A generalized quantum process (abbr. GQP) is a pair of

densely defined, mutually adjoint families of linear operators (X(t), X (t) t e
a.

R) from (i?) into (E) with domains containing Eo.

By definition, all Xt and Xt are closable. Taking their closures if necessary,

we may assume that they are closed operators. If the domain of Xt is the whole

space ( £ ) , then, by closed graph theorem, it is a continuous linear operator from

(E) into ( £ ) *

The 5-transform of functional F €= (E) is defined by

(2.3) (SF) (ξ) = «F,ε(ξ)», ξ e £

and, as a functional on E, is characterized by the following two conditions (cf.

[18]):

( i ) it has a ray entire extension on E\ i.e. for any ξ, rj €= E the function

i?B λ-+ (SF) (η + λξ)

admits an entire extension to C;

(ii) there exists k ^ No and constants Clf C2 ^ 0 such that

(2.4) | ( S F ) (zξ)\<C1exp{C2\z\2\ξ\2

k}

for all f e E and z e C.

Any functional on E satisfies these two conditions is referred to as a

[/-functional.

As an important example of GQP, we investigate Hida's differential operator

dt (t ^ R) which is defined as
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(2.5) dtφ = S [jFζή (Sφ) (ξ)j, φ <= (£)

where δ/δξ(t) stands for Frechet functional derivative (cf. [5,12]). This operator

could also be interpreted as Gateaux derivative in the direction δt, the Dirac delta

function at t. More specifically, let φ ^ (E) and x, y ^ E , the Gateaux deriva-

tive of φ at x in the direction y is defined as

(2.6) Dyφ{x) =-^φ(x + sy) | s = 0

= limy {Φ(x + sy) - φ(x)}.

It is known that (cf. [6,19]) for all y ^ E , Dy is a continuous linear operator on

(E) and if y ^ E, it can be extended to a continuous linear operator on (E) .

Accordingly, for all y ^ E , the dual operator Dy is a continuous linear operator

on (E) and iί y ^ E, its restriction is a continuous linear operator on (E). For

the special choice y = δt, we have

(2.7) 9, = Dδt

and for ξ ^ E,

(2.8) 9,6(0 = ξ ω ε ( ξ ) .

DEFINITION 2.2. The GQP (9,, 9,* t e if?) is referred to as quantum white

noise process (abbr. QWN).

Remark Sometimes we call dt the annihilation operator and its dual dt the

creation operator. Note that for any s, t ^ R, the product 95 dt is a well defined

operator from (E) into CE) but it is not the case when they are in inverse order.

However, since for ξ, η e E,

(2.9) Dξ= fξ(t)dtdt

and

(2.10) D*= fη(s)d*ds,

we can interpret 9, 9S as an operator valued distribution. By the well known

canonical commutation relation:
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(2.11) W,9D*] = (£, )?)/ ,

we have

(2.12) [dt, ds*] = δ(t-s) I.

M. Quantum multiple Wiener integrals, chaos decomposition for operators

It is remarkable that Hida, Obata & Saitδ [6] have developed a general theory

of operators which could be represented as integrals of dt and dt. In this connec-

tion see also Kree [10] and Meyer [16]. So far as we know, this idea trace back to

Berezin [2] who proved that any bounded operator B in Φ has a representation in

the following "normal form":

(3.1)

B = Σ J ]8u(si s, ;*!,.. .,tm) 9* 9* dtl--dtm ds,- -dst dtγ- dtm
l,m R

where βι>m are, generally speaking, generalized functions and are supposed to be

symmetric in sl9. . . ,s, and tl9. . . ,tm separately. Note that in every summand, the

creation operators (ds) stand to the left of the annihilation operators (dt), that is,

in the Wick ordering. In the same spirit. Maassen [14] has developed a method to

describe quantum processes by integral kernels. Here we use the results obtained

in [6] to extend the integral representation (3.1) to any continuous linear operator

ίίfrom (E) into (£)*.

We note that, for any 0, φ e (E) and /, m ^ JV0, the function ηφ>φ on R +m

defined by

(3.2) (slt...,s, tu.. .,tj ~ «d* • d* dh • dtm φ, φ»

belongs to E +m (for the proof we refer to [6]). Therefore, for any K ^

IJtL J , there exists a unique continuous operator

ΞltmU) : ( £ ) - * ( £ ) *

such that

(3.3) «3,,m(κ)φ, φ» = <«, ηφ,φ>.

The operator Ξlm(κ) has a formal integral expression:

(3.4)

Ξ,,m (*) = Jl+m K Ui s,;t1,...,tjd* d*dlι " d,m ds^ ds, dt,-• dtm
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Moreover, Ξlm(tc) is continuous from (E) into itself if and only if K ̂  E

[E*mY.
Recall that the 5-transform of functional F ^ (E) is

(3.5)

For any closed linear operator K : (E) —+ (E) with domain containing Eo, we

shall frequently consider its symbol:

(3.6) K(ξ, η) = «Kε(ξ), ε ( τ ? ) » , ξ,η^E.

This terminology was introduced by Berezin [3,4], Kree & R^czka [11] in the con-

text of operators on Fock space. Since E o is total in (E), it follows that the oper-

ator K is uniquely determined by its symbol. Moreover, we have the following

PROPOSITION 3.1 For any continuous linear operator K : (E) —> (E) , K is separ-

ately continuous on E X E and for any ξ, η e E, t e R

(3.7) Kdt(ξ,η) =ξ(t)K(ξ,η);

(3.8) ί f f (ξ, η) =η(t)K(ξ, η).

If K is continuous from (E) (resp. (E) ) into itself then K is Frechet differentiable

and

(3.9)

(3.10) (resp. ί s * (ξ, η) =j^yK(ξ, η)).

Proof The first assertion is obvious. Since

K(ζ,η) = (SKε(ξ))(η),

it follows from equation (2.5) that

,η) = (SdtKε(ξ))(η)

= «dtKε(ξ),ε(η)?>.

Similarly, in view of

K(ξ,η) = (SK*ε(η))(ξ),

we have
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= «ε(ξ),dtK*ε(η)»
= «Kd?ε(ξ),ε(η)».

This proves second part of the proposition. Q.E.D.

Let Po be the projection onto the vacuum (or O-th chaos). It is easy to see that

Po = 1 and, by the preceding proposition,

(3.11) ^ ^ ί ^ ^ Λ n ^ ^ ^ =ξ(t1) ξ(tjη(s1)'-η(sι).

According to Schwartz kernels theorem, for any κUm

 e [ E ® E m] (resp.

®1 0 *
®1

E®1 Θ [i?0™]*, where ® Λ stands for symmetric tensor product), there is a uni-

que continuous linear operator A/ : t -^ [t i (resp. Jb —> t ), such that

(3.12) < < * 0, 0> = <Λr/tm, 0 ® 0> V 0 e £ ® w , 0 e E®1.

Hence, it is reasonable to propose the following

DEFINITION 3.2. For any continuous linear operator Kj" : [E®m —> [ £ β / ] *,

the quantum multiple Wiener integral (abbr. QWI) of Kt is a continuous linear

operator I™(K™): (E) —• (j?) denoted by

(3.13) I?(Kr)=

•d*---d*podtι-- dtmdsι- dsldtι---dtm

whose symbol is

(3.14) / T O O (f, i?) = <K?ξ&m, r?δί>.

Remark. By an argument similar to that in [6], we can prove that if Kx is

continuous from E m into E , then I™(K™) is continuous from (E) into itself.

We have the following fundamental result:

THEOREM 3.3. Every continuous linear operator K : (E) —• (2?)* {resp. (E) —*

/ιαs α unique decomposition.

(3.15)
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Kι \ h —* γh> J (resp. is —• ii ) αr<? continuous linear operators and

the series converges weakly on the set E o , that is,

(3.16) X(ξ, η) =

c. In view of the chaos decompositions of (E) and (E) established in

[8] (cf. also [13] for a different dual pair), for any φ ̂  (E) and any F ^ (E) , we

have unique decompositions:

(3.17) φ = Σ (niy1 δn φn,
n

(3.18) F= Σ (n\y1δ"Fn
n

where φn ̂  E , Fn ^ E n and δn is an isometric isomorphism of Ek

 n into

(Ek) for any k ̂  Z (hence, it is a linear homeomorphism of E®n into (2?) and is

extended to that of E into (E) ). Moreover,

(3.19) « F , 0» = Σ ( n ! ) " 1 <FW, 0W>.

It is easy to see that series (3.17) (resp. (3.18)) converges in (E) (resp. (E) ) and

the projections /n's are continuous. Hence, the direct sum decompositions for

(E) and (E) are topological. Consequently, we have a strongly convergent series

(3.20) K=ΣKlιm

where Klm = JιKJm is a continuous linear operator from m-th chaos of (E),

Jm(E), into the /-th chaos of (£)* , / , ( £ ) * Letting

(3.21) K™ = (δ1)'1 KUmδm

for each / and m, we see that

K(ξ,η) = «Kε(ξ),ε(η)»

as desired. Q.E.D.

Note that the operator /, (Kt ) acts only on the m-th chaos of (E) and takes
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value only in the /-th chaos of (E) . Since Po has representation

" (n!)"1 £ 9* 9*(3.22) P o = Σ ( - 1)" (n!)" 1 £ 9* 9* 9Sj -dSn ds, • dsn,

by inserting equation (3.22) into equation (3.15), we obtain a similar decomposi-

tion in terms Ξlm(icι>m) where

t + 1 , ίffl_t+i) δ(s,, ί w )

and «,„, is related to K™ by equation (3.12). Conversely, we have

(3.24) κ / Λ ( s 1 , . . . , s / ; ί 1 ίj

,tΌ A!(l-k)\{m-k)\ */-*.*-*̂ i» - s ' - * ' ri- 'Γ»-*;'

• δ(s,_λ+1, ^-t+iJ δίs,, tj.

THEOREM 3.4. Every continuous linear operator K : (E) —* (E) (resp. (E)

feαs α unique decomposition:

(3.25) i ί = 1

Ξι>m's are defined by equation (3.3) and ΛΓ/>m's ar^ determined by equation (3.23).

The series converges weakly on the set E o , that is,

(3.26) K(ξ, η) = Σ (llmiy1 (iclM, η m <g> ξβB>> exp <f, r?>.

/. In view of equation (3.3), we have

%J^ (ξ, η) = <κhm, η®'

Summing up for all / and m, we have

Σ (llmiy1 <«,,„, r ? 0 ' 0 ^ f f l > exp <ξ, η>

I Am / 1 j

= Σ Σ . , / , _ ιsU~- v\y <κ -k,m-ic> V <8> ξ m~ > (ξ, η> exp
l,m k =

= Σ ( - l ) * ^ ! ) - 1 <ξ, ιj>*Σ U!^!)" 1 <«,„, rjβ A ® eu> exp <ξ,
Λ=0 /I,//



32 ZHIYUAN HUANG

which converges to K(ξ, η) according to equation (3.16). Q.E.D.

Consider the particular case when m — 0:

/ (k" i 1 ~~ I *• I p C i ^ ίi Λ ? ' • ' / / ? 1

is just the (generalized) multiple Wiener integral of /C/. In fact, the S-transform of

/,(«,) 1 is

(3.27) ( S W Ό φ = «/((κ,)ε(0), ε(f)»

Thus we have

THEOREM 3.5. If φ = Σ (w!)"1 Im(φjl ^ (E) and
m

K=Σ aim!)"1 / " ( O : (£) -• (E)*,
Urn

then

(3.28) Kφ = Σ (Z!)"1 /,(Σ (m!)"1 / iΓ^Jl .

//, moreover, K : (£) —• (£) ancί

yliί = Σ (nlifil) In ( Σ (/!) ^nKt ).

New we give some examples:

EXAMPLE 1. Translation and Gateaux differentiation of φ ^ (E) in the direc-

tion y e £ * (Cf. [19]):

(3.30) r,0Cr) =φ(x

(3.31) Z)̂ 0 = lim {τεy φ - φ) /ε.

Since

τεy
ε | 0
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f,(f, v) = exp<y, ξ>exp(ξ, η>

and

£>y(ξ, η) = <*/, ξ>exp<ξ, η>,

it follows that

(3.32) D,= fy(t) dtdt
JR

(3.33) τy = Σ (Λ!)" X ( Γ»(/) S, Λ ) =

and that

^ -1/ Γ \ n

" ' " exp.

EXAMPLE 2. Scaling transformation and second quantization of the multiplica-

tion by λ G i? (cf. [19]):

(3.34) Zλφ(x) = φ(λx), 0 €Ξ (E);

(3.35) Γ U ) ε ( ξ ) = e U ξ ) , ξ e £ .

Since

Zλ(ξ, η) = expU<ξ, 77>}exp{U2 - 1) | ξ\2/2}

and

Π>ί) (ξ, 17) = expU<ξ, 17)},

it follows that

(3.36) Zλ = Σ (/Im!)-1 ^ ^ ' ( ( / - 1) /2)*9,* •< P03S i 9S/ 9J- 9fβ

• d^! dsι dt1''' dtm

and that

(3.37) Γ(λ) = Σn W)"1 JΓ.-Ϊ" <• 9jΛ9 ( l -9.

EXAMPLE 3. Renormalization operator (cf. Yan [20]):

(3.38) R

R'1 =
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By formulae (3.29), (3.36) and (3.37), we have

(3.39) R=Σ (llmiy1 j f^ ( - l /2) w a* 9* Po dSχ -9,,

and

(3.40)

Let In(φn)l be the Wiener-Itό's multiple integral of 0W. By formula (3.28), we

obtain that

-l ln/2] n\ Γ
R /n(0n)l = Σ - " I 0 w ( 5 i , . . . ,sn_2m; tv tv... ,tm, tj

^=o (n - 2m)\m\2 JRn~m

which implies the transformation formula from Wiener-Itό's multiple integrals into

Wiener-Stratonovich's ones (cf. [20])

(3.41) X®n= inΣ :x®in-2m):^Tr®m

m=o (n-2m)\m\2m

where Tr is the trace operator defined by

(3.42) <Tr, ω) = Γ <δf2, ω>dt= f ω(t, t)dt

for ω e £ <g) £.

F . Mutual quadratic variation of quantum stochastic measures

In the integral representation (3.4), for every t e i?, let the kernel /c

it J defined as follows:

(4.1) Oc(f), ω> = j Γ ω(s, . . . ,s)ώ, V ω e E®iι+m\

then

(4.2) ^ ( 0 Ξ Γ a f δ f d s , ί e i ?

is a family of continuous linear operator from (E) into CE) . Thus,
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(4.3) W*Jt) = / ' d*m d's ds, t<ΞR
+* — oo

and (WlM(t), W*m ( ί ) ; ί e R) is a GQP.

Generally speaking, we can define GQP by any Wick polynomials of QWN.

For example,

(4.4) Xn(t) = jΓ' : (d* + ds)
n: ds

n I\ r>t

i Λ \J I %) oo

or, formally

(4.5) Xn(f) = f Hn(x(s) \/ds)ds

where Hn is the Hermite polynomial of degree n with variance parameter 1/ds

and .r (5) = ds + 95. The most interesting GQPs are representable by polynomials

of at most second degree (quadratic processes), namely:

1° The annihilation and creation process:

(4.6)

A{t) = W0Λ(t) = Γ ds
J—oo

ds

A*(t) = Wh0(t) = fjt ds.

Note that

(4.7) Q{t) = A * ( t ) + A ( t ) , t ^ R

is a quantum Brownian motion. It is reasonable to call the GQP

(4.8) x(t) = 9* + dt, t*Ξ R

a quantum Gaussian white noise.

2° The number process:

(4.9) N(t) = ^1,1 U) =

It is remarkable that the process

(4.10) Nλ(t) = N(t) + yfλ Q(t) + λt

is a quantum Poisson process with parameter λ (cf. [9,15]). So the GQP
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(4.11) n{t) = 9,* 9, + Jλx(t) + λl

could be reasonably interpreted as a quantum Poisson white noise.

3° The Volterra Laplacian process:

V(t) = W0Λ(t) = J dtds
(4.12) 7

V*(t) = W2Λ(t)= I d*2ds.
• ' - o o

Differentiation of these processes yields operator valued measures on R

which could be regarded as quantum stochastic measures (abbr. QM). For example,

(4.13) dWι>m(t) = d?d?dt,

(4.14) dXn(t) = :x(t)n:dt

etc. They will play the role of integrators for quantum stochastic integration.

DEFINITION 4.1. Let (X(t), X*(t) t <Ξ R) be a GQP which is weakly

measurable in t on E o (that is, for any ξ, η ^ E, the map t1-* Xt(ξ, η) is Lebes-

gue measurable). The central (resp. right, left) quantum stochastic integral (abbr.

QI(c), QI(r), QI(1) respectively) of X(t) with respect to QM dWlffn(t) is a family of

closed linear operators:

(4.15) f d*' Xs d? ds : (E) — (E) *,
J— oo

d*'dTxsds, f'xsd*'d:ds)

with domains containing E o whose symbols are

(4.16) Γ ξ(s)mη(s)'Xs(ξ,v)ds,

(
*%t «WZ Λ/ CT/ \

resp.J η(s)1 -4—Xs(ξ9η)ds, J ξ(s)m-f~-Xs(ξ, η)ds)
J-~ δη(s) J-~ δξ(s) /

provided these Lebesgue integrals exist and are ί/-functionals of η.

In this sense, Wι>m(t) can be regarded either as QI(r) of 9,m with respect to

dWlι0(t) or as QI(1) of 9*' with respect to dW0M(t).
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Remark. Recently, N. Obata [17] obtained a criterion for functionals on

E X E to be symbols of continuous linear operators from (E) to (E) . It is quite

useful for derivation of conditions which ensure the existence and continuity of

quantum stochastic integrals.

If, for any t, Xt and dt commute, that is,

(4.17) ^

for any ξ, η ^ E, then Ql(r) coincides with Ql(c). Especially, we introduce the

following

DEFINITION 4.2. A GQPCY(f), X*(t) ί e R) is said to be adapted (with re-

spect to the filtration generated by QWN(9,, dt )) if for any t ^ R, X(t) commute

with all du and du whenever u ^ t. More precisely,

(4.18)

on Eo, or equivalently,

(4.19)

for all ξ, η e E.

For example, for annihilation process (4.6),

Mξ η) =

which obviously satisfies equation (4.19) and, therefore, is an adapted GQP.

Note that any operator K : (E) —• (E) which commute with dt and dt for all

t is a multiple of identity. This can be shown very easily by the following argu-

ment: In equation (4.19), substituting Xt by K, we see that the unique solution for

functional equations (4.19) for all u €= R is a multiple of the exponential function-

al exp(£, η}. So, roughly speaking, any adapted GQP acts like identity in the fu-

ture.

To obtain the quantum Itό's formula, the essential step is to compute the

so-called mutual quadratic variation of QMs which is determined by the "integra-

tion by part" formula.
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DEFINITION 4.3. The mutual quadratic variation of QM dX{t) and dY(t) is

the QM dX(t) dY(f) defined by

(4.20) f dX(s) dY(s) = X(t)Y(t) - f X(s)dY(s) - f (dX(s))Y(s)
*)—oo • ' — o o * ' — oo

provided the right hand side makes sense.

According to this definition, we have

THEOREM 4.4. For any I, m, n e. No,

(4.21) 1° dWUm{t) -dWOtn(t) = 0 ;

(4.22) 2° dWn>0(t) dWltJf) = 0.

Proof. Since for ξ, η ^ E,

= j ' _ ξ(s)mη(s)' ds f_ ξ(r)n dr exp <ξ, η>

= [f^(fj(s)mη(s)' ds)ξ(r)n dr +

+ f ξ(s)mη(s)' (f_S ξ{r)n dr) ds] exp <ξ, η>,

it follows that the equation

WlMit) W0,n(t) = [' WlM(r) d"r dr + Γ 9S*' 3f WM(s) ds
•S — oo * ' —oo

holds on Eo. Thus we have proved (4.21). The equation (4.22) can be proved simi-

larly. Q.E.D.

THEOREM 4.5. For any /, m e N and t ^ i?,

(4.23) 1° Wω, Wlrm(t)] = IW^Jf)

(4.24) 2° [Wι>Jt),A*(t)]=nιWι>m_1(t).

Accordingly,

(4.25) 3° dA(t) dWι>m(f) = idW^Jt)

(4.26) 4° dWlιm(t) Λ4*(/) - mdWUm_γ{t).
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Proof. Let t ^ R be arbitrarily fixed. By the canonical commutation rule, for

ξ, η G E and/, g e E with supports in ( — °°, 0, we have

«DfD* Dm

g ε(ξ), ε(η)»

= «D*' D™ Dfε(ξ), e(i?)» + / • ( / , g) «D*('-Ώ Dm

g ε(ξ), ε(η)»

which means that, in distribution sense,

A(t)WlM(t) (ξ,η)

^ W (ξ, η) + l W^Jΐ) (ξ, η).

Since the right hand side is well defined, so is the left hand side hence the equa-

tion (4.23) follows. By definition (cf. equation (4.20)) we have

dA(t) - dWlm{t) = dWlM(t) - dA(t) + ldW,_lm(t)

= ldWl_Lm(t).

equations (4.24) and (4.26) can be proved similarly. Q.E.D.

COROLLARY 4.6. For any n ^ N, t ^ R,

(4.27) 1° [A(t), Xn(t)] = nX^it)

(4.28) 2° [Xn(t), A*(t)] = nX^it)

(4.29) 3° [Q(t), Xn(t)] = 0.

Consequently,

(4.30) 4° dA(t) - dXn(t) = ndX^it)

(4.31) 5° dXn(t) dA*(t) = ndXn_St);

(4.32) 6° dQ(t) dXn(t) = dXn(t) dQ(t) = ndX^it).

Proof. It suffices to look at the following equalities:

[A(t), xn(t)] = u ω , ί:

= Σ ifj [A(t), WiM_,(t)1

= nXn_x{t)
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and

[Xn(f), A*(t)] = Σ (fjlW^it), A*(t)]

j=0

= nΣ (n -ι) w ^

The remaining parts are obvious. Q.E.D.

In particular, for the three fundamental QMs dA(t), dA*(t) and dN(t), we

have Hudson-Parthasarathy's formulae:

(4.33)

dA(f) dA*(f) = dt

dA(t) - dN(t) = dA(f)

dNit) dA*(t) = dA*(t)

dN{t) - dN(t) = dNit).

Other mutual quadratic variations (following the Wick ordering) all vanish. This

approach gives the quantum Itό's product formula a very concise form:

(4.34)

dt dt = 0

9, 9*m = mdf{m~ι)

For example, we can easily obtain that

dQ(t) dQ(t) = 9, d*(dt)2 = dt

dN\t) dNλ(t)

= (d* d, d* dt + τ/λ d* d, d* + JI dt d* d, + λ dtd*) (dt)2

= (d* d, + vi d* + jλ dt + λ) dt

= dNx(t).

Finally, for adapted integrands, we have the Itό's formula:

T H E O R E M 4 . 7 . If ( X ( t ) , X * ( t ) t e R ) and ( Y ( t ) , Y* ( t ) t(Ξ R ) are

adapted GQPs, tfien, /or /,

(4.35)

N,

Xt dt dt Ytd*' d? dt = IX, Yt d*u~ι) d? dt

Yt d*1 d? dt - X, d* dt = mYtXt d*' d?'1 dt
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provided the involved QIs exist. Other mutual quadratic variations with Wick ordering

all vanish.
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