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BIRATIONAL AUTOMORPHISM GROUPS AND

DIFFERENTIAL EQUATIONS

HIROSHI UMEMURA

Painleve studied the differential equations y" = R(y\ y, x) without
moving critical point, where J? is a rational function of y\ y, x. Most of
them are integrated by the so far known functions. There are 6 equations
called Painleve's equations which seem to be irreducible or seem to define
new transcendental functions. The simplest one among them is y" = 6v2

+ x. Painleve declared on Comptes Rendus in 1902-03 that y" = 6yz + x
is irreducible. It seems that R. Liouville pointed out an error in his
argument. In fact there are discussions on this subject between Painleve
and Liouville on Comptes Rendus in 1902-03. In 1915 J. Drach published
a new proof of the irreducibility of the differential equation y" = βy2 + x.
The both proofs depend on the differential Galois theory developed by
Drach. But the differential Galois theory of Drach contains errors and
gaps and it is not easy to understand their proofs. One of our contem-
poraries writes in his book: the differential equation yff = 6y2 + x seems
to be irreducible dans un sens que on ne peut pas songer a preciser. This
opinion illustrates well the general attitude of the nowadays mathema-
ticians toward the irreducibility of the differential equation y'f = 6y2 + x,
Therefore the irreducibility of the differential equation y'f = 6yz + x
remains to be proved. We consider that to give a rigorous proof of the
irreducibility of the differential equation y" = 6yz + x is one of the most
important problem in the theory of differential equations.

In this paper we begin by clarifying the works of Painleve [P] since
they are not clear and it is indispensable to make them rigorous to prove
the irreducibility. In part I we give another proof of the following
theorem due to Painleve: any analytic subgroup G of the birational
automorphism group Bir X of an algebraic variety X is contained in an
algebraic subgroup of the group Bir X (Corollary (1.33) in Part I). We
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proved this in [U2] by constructing a protective model X of X on which

the group G operates regularly. Our proof in this paper is more direct.

In §2 of Part II, we characterize the permissible operations, so far known

functions or the classical functions. We show that the permissible oper-

ations discovered by experience is quite uniform and related with algebraic

groups (Theorem (2.19)). In §3 and §4 of Part II, we prove the following

solvability theorem more or less due to Painleve. Let F{y{n\y{n'1\ •••,

y9 x) = 0 be an algebraic differential equation such that the general solu-

tion y depends rationally on the initial conditions. Then the general

solution y can be constructed from the coefficients of F by the permissible

operations.

We treat differential equations but we use the language of the algebraic

geometry particularly that of E.G.A. which is very effective. For this

reason we tried to explain our tools for the non-algebraists.

This research was done when the author stayed at Strasbourg Uni-

versity in 1984/85. He wants to express his hearty thanks to Prof. R.

Gerard. Without his constant interest in author's work and encourage-

ment, this work would not certainly have been done.

Added in October 1989. We expected for long time that this paper

was to be published in the Proceeding of the Franco-Japanese conference

on Differential Equations held at Strasbourg 1985. But recently it comes

out that troubles with publishers make the publication of the Proceeding

impossible. This paper is the first attempt of understanding systematically

Painleve's Leςons de Stockholm [P], using the language of algebraic

geormetry but we find it in a strange situation. In fact, starting from

this paper, the following three papers improved parts of this paper:

Nishioka, K.: General solutions depending rationally on arbitrary constants.

Nagoya Math. J., 113, 1-6(1989);

: Differential algebraic function fields depending rationally on

arbitrary constants. Nagoya Math. J., 113, 173-179 (1989);

Umemura, H.: Second proof of the irreducibility of the first differential

equation of Painleve, Nagoya Math. J., 117, 125-171 (1990).

We also notice that the very important paper of Nishioka

A note on the transcendency of Painleve's first transcendent,

Nagoya Math. J., 109, 63-67 (1988)

is written in the same spirit as this paper. On this subject we quote our
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paper;

Umemura, H.: On the irreducibility of the first differential equation,

Algebraic Geometry and Commutative Algebra in Honor of Masayoshi

NAGATA, 771-789, Tokyo: Kinokuniya 1987.

Part I. Birational automorphism groups

§ 1. Analytic subgroups and algebraic subgroups of the birational

automorphism group of an algebraic variety

The aim of this section is to give a direct proof to the assertion of

Painleve: any analytic subgroup of the birational automorphism group

Bir X of an algebraic variety X is contained in an algebraic subgroup of

BirX In fact, this was proved in our preceding paper [U2]. The idea of

the proof was as follows. Let G be an analytic subgroup of Bir X. Then

we can find a projective model X of X on which G operates regularly.

Thus the group G is contained in the biregular automorphism group

AutX, which is algebraic by G.A.G.A. [Gl] and by [G2].

Painleve states this in his Stockholm Lessons, Quinzieme leςons p. 260.

His idea of the proof given there may be interesting but there are several

subtle problems if we want to complete his proof in a rigorous way.

Therefore the following 2 points are particularly important.

(1) To give the strict definitions of several basic notions; for example

algebraic subgroups or an analytic subgroups in a birational automorphism

group.

(2) The resulting theorem according to the adopted definitions should

be useful as Painleve applied his assertion to the integration of non-linear

differential equations.

For these reasons as in our preceding papers, we have to begin with

some unpleasant definitions. We apply our theorem to the integration of

non-linear differential equations in Part II, §4. We have consideraMy

simplified this part by our theorems (3.18) and (4.3) in Part II.

For the convenience of the reader, we recall as briefly as possible the

definitions and results in our papers.

In this section every algebraic variety, scheme and morphisms between

them are defined over the field C of complex numbers and by a general

point of X, we mean any point of a certain non-empty Zariski open set of X.
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Let X be a smooth algebraic variety defined over C. In the study of

the algebraic structure of the birational automorphism BirX, the most

natural way is to consider Bir X as a group functor on the category of

schemes over C ([D]). For an algebraic variety T over C the value of

the group functor Bir X (denoted Autbirat in [Ul]) at T is given by Bir

X(T) = {birational automorphism /: X X Γ ^ l x T\f commutes with the

projection p2: XX T->Ty i.e. A ° / = A and f defines a biregular iso-

morphism between open sets U, VdXx T with U Π XX tΦ 0 , V f] X X

tΦ 0 for any point teT}/~. (An open subset W oΐ X X T such that

W f) X X t ~ 0 for any point t e T is called 3Γ-open set.) Two birational

automorphism of X X T are identified if they coinside on an dense T-open

set. Intuitively the value Bir X{T) is the set of birational automorphisms

of X parametrized by T. If T is a C-scheme, then in the above definition

of Bir X(T), the birational automorphism should be replaced by its gene-

ralization pseudo-automorphism in E.G.A. Chap. IV

Let Y be a C-scheme. A morphism y~>Bir X is a morphism of functors

hγ -> Bir X on the category of C-schemes.

Let us recall the definition of an algebraic group germ.

DEFINITION (1.1). An algebraic group germ is a system (G, 1, θ, m)

satisfying the following conditions:

( i ) G is an (irreducible) algebraic variety;

(ii) 1 is a point of G;

(in) θ is a rational map of G to G which is regular in a neighbour-

hood of 1

(iv) m is a rational map of G X G to G regular on an open set

0 φΩ of Gx G;

( v) for any # e G, we have (1, g) e Ω, (g, 1) € β, m(l, g) = m(g, 1) = g;

(vi) for any geG such that θ(g) is defined, we have (θ(g), g), g) efl

and m(gy θ(g)) = m(θ(g), g) = 1;

(vii) for any g, h, keG satisfying (g, h)e Ω, (h, k) e Ω, {m(g, h), k)eΩ,

(g, m(h, k)) e β, we have m(m(g, h), h) = m(g, m(h, k)).

We denote m(g9 h) by gh or by g-h and θ(g) by g~\ We often denote

(G, 1, θ, m) simply by G.

See §2 [Ul].

DEFINITION (1.2). Let G be an algebraic group germ and X an alge-

braic variety. An algebraic pseudo-operation (G, ψ, X) is a rational map
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ψ\ G X X +X satisfying the following conditions:

(i) the rational map G x I > G χ I f e x ) ^ f e ψ(g, x)) is dominant;

(ii) the following diagram is commutative;

GX G X Z . . ^ G X X

Λ : : ψ

G x l > X ,

ψ

where fx((gx, gi9 x)) = (gxg2, χ\ f2((gu g2, x)) == (gu φ(g2, x)) by definition for

general gl9g2eG9 xeX.

DEFINITION (1.3). Let (Gi9 ψ i5 Xτ) be an algebraic pseudo-operation

(/ = 1, 2). A morphism (φ, f): (Gl9 Xx) ->(G2, X2) of algebraic pseudo-opera-

tions consists of a morphisms φ: Gx +G2 of algebraic group germs (see

[Ul]) and a dominant rational map /: Xx ••-> X2 such that the diagram

below is commutative:

Γ v y *l v y

ψxf : : /

G2 X X2 > X2

We say that (Gl9 Xx) and (G2, X2) are isomorphic if there exist morph-

isms (φl9 fx)\ (Gu Xx) -> (G2, X2) and (φ2, f2): (G2, X2) -»(G1? Z2) such that ψx o ^2

and ^2°9i are identity around 1 and fxof2 and ^ o ^ are equivalent to the

identities \Xii lXl.

DEFINITION (1.4). An algebraic subgroup of Bir X is a group subfunctor

of Bir X representable by an algebraic group.

The following proposition is very useful ([D]).

PROPOSITION (1.5). Let φ: G->Bir X be a morphism of group functors

of an algebraic group G to Bir X. Then the Ker φ is representable by a

closed subgroup of G. In particular there exists an algebraic subgroup

Gr ^—> Bir X such that ψ factors through G ^—> Bir X:

σ
PROPOSITION (1.6). For an algebraic group G and smooth algebraic

variety X, there is a 1-1 correspondence between the following:
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(i) the set of the morphism of group functors Hom^r (G, Bir X) and

(ii) the set of algebraic pseudo-operations (G, X).

Here in the set of (ii) we have to identify isomorphic algebraic pseudo-

operations.

See Demazure [D] and [Ul].

It is convenient to slightly generalize this result. To this end we need.

DEFINITION (1.7). Let G be an algebraic group germ. A morphism φ:

G -> Bir X of algebraic group germ functors on the category of C-schemes

is a morphism φ: hu = U->Bir X of functors of an open neighborhood U

of 1 e G to Bir X such that the diagram

χ B i r Z

U -*-> BirX

is commutative, where the vertical arrows are the composition laws

(namely, the diagram is commutative on a non-empty open set of U X U).

We identify two morphisms when they coincide on a neighbourhood of

1 e U. The set of morphisms of algebraic group germ functors of G modulo

above identification to Bir X is denoted Hom^ (G, Bir X).

The argument of the proof of Proposition (1.5) gives us

LEMMA (1.8). Let G be an algebraic group germ. There is a 1-1

correspondence between the following:

(i) the set Hom^ (G, Bir X) of the morphisms of algebraic group germ

functors)

(ii) the set of algebraic pseudo-operations (G, X).

By the same sprit as in the proof of Proposition (1.6), we can show

LEMMA (1.9). Let X be a smooth algebraic variety and Y an algebraic

variety. Then there is a 1-1 correspondence between the following:

(i) the set Hom(Y, Bir X) of the morphisms of functors;

(ii) {/: \f: Y X X -> Y x X birational inducing a isomorphism of

Zariski open sets U, V such that y X X Π U, y X X Π V Φ 0 for any yeY,

f commutes with the projection Yx X^>Y; F χ I -> Yx X is commuta-

Y
live) I ~, where we identify two birational automorphisms if they coincide
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on a dense Y-open set of Y X X.

We shall call an element of the set in (ii) Y-birational automorphism

of Y X X.

Remark (1.10). Lemma (1.9) is generalized to the case where Y is a

scheme. In this case, we take in (ii) Y-pseudo-automorphisms of Y X X

(cf. [D] and E.G.A. IV).

Remark (1.11). In our paper ([Ul], Definition 2.6), we adopted another

definition of algebraic pseudo-operation. But they are equivalent. In fact,

let G be an algebraic group germ, X an algebraic variety and φ: G X X

•••> X be a rational map. Then φ is an algebraic pseudo-operation if and

only if it satisfies the following conditions:

(a) for a general point x e X, φ is regular at (1, x) and φ(l, x) = x

(in particular φ is dominant);

(b) the diagram

G X Gx X . . . * G X X

GxX . . . -> X

in Definition (1.2) is commutative.

Let us prove this. Assume that φ is an algebraic pseudo-operation. As

G X X -> G X X, (g,x)>-+ (g, gx) is dominant, G x X -> G X X, (g, x) •->

(g~\gx) is dominant. Therefore for general geG and xeX, ψ is regular

at (g~\ gx) and we can define g~\gx). Consequently a rational map G X

X - > G χ X , ( f tX^te-Sg- ' te*)) is dominant and thus G x X - + G χ X ,

(g, χ) -* (g9 g'Kgx)) is dominant. Therefore we can define g(g~\gx)). On the

other hand for general h, k, j eG and xeXwe have h{k'\jx)) = (hk^Xjx)
by condition (2) of Definition (1.1). Hence φ is regular at (gg~\ gx) and

l(gx) = (gg~ι)gx = g(g~Kgx)). By the same argument, for general Λ, &, /

eG and x e l we have h(k~\jx)) = {hk~ιj)x. Therefore ^ is regular at

(£, g~\gx)) and g(g-\gx)) = gx. Hence 1(£#) = £x for general £ e G, * e

X As G X X-+ GxX, (g, x) -»(g, ^JC) is dominant, G X X ^ X, (g, x) >-+

gx is also dominant. Hence gx is a general point in X. This shows that

the condition (a) is satisfied. Conversely if the conditions (a), (b) are

satisfied. Then rational map G x X ^X, (g, x) >-> gx is dominant. For

general g, heG and xeX, we have g'\hx) = (g~1h)x by (b). (g'xg)x = 1.

x by (a). Therefore φ is regular at (g~\ gx) and we have g'Kgx) = (g"1^)^



8 HIROSHI UMEMURA

= x. If we denote yfn{g9 x) = gx, ψ2(g, x) = g"xx, we can define ψ2°fi and

Ψ2 ° Ψi = W By the same argument ψx o ψ2 = Id. Namely ΨΊ is birational.

We define similarly analytic group germ as in Definition (1.1). For

the precise definition see Definition 1.1 in [Ul].

But as we explained in [U2], even if we adopt an analogous definition

in the analytic case, subtle problems arise in the definition of the birational

automorphism group functor on the category of analytic spaces or in the

definition of analytic subgroups in Bir X. The difference between the

algebraic case and the analytic case comes from the existence of essential

singularities in the latter case. First of all it is convenient to recall the

definition of a meromorphic map between analytic sets ([K]).

DEFINITION (1.12). Let X be an analytic space. We say that a closed

subset A is rare if the restriction map Γ(U, OX)->Γ(U — A, Ox) is injec-

tive for any open set U.

DEFINITION (1.13). Let X, Y be analytic spaces. A meromorphic map

/: X'^Y is a closed analytic set ΓfdXχ Y satisfying the following

conditions:

(1) the restriction p of the projection px: X X Y-+X to Γf is proper,

(2) there exist a closed analytic subset A of X such that (i) A and

p~xA are rare and p induces a biholomorphic isomorphism Γ — p~ιA ~ X

- A .

DEFINITION (1.14). Let X be a complete algebraic variety. BimX or

Bim X&n is a group functor on the category of analytic spaces defined by:

Bim X(T) = {/: T X X -> T X X\f is a bimeromorphic map (/ and f'1

are meromorphic) commuting with the projection p ^ T X X->T, i.e. px o

f — Pi such that there exists an open set U with t X X f] U Φ 0 for any

teT on which / induces an isomorphism}/ ~, where by the equivalence

relation — we identify meromorphic maps which coincide on a dense T-

open set of T X X (i.e. the complement is rare).

Notice that the functor Bim X is independent of the choice of a

complete model of X. Therefore for an algebraic variety V, we denote by

Bim V the group functor Bim V for a complete model V of V. When we

consider Bim X for a complete variety X, we may assume by Hironaka's

theorem that X is projective and non-singular.

An analytic version of pseudo-operation is defined analogously but

carefully.
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DEFINITION (1.15). Let G be an analytic group germ and X a complete

algebraic variety. A rational pseudo-operation (G, φ, X) of the analytic

group germ G on Xa n is a meromorphic map φ: G x Xan >Xa n satisfying

the conditions (1), (2) of Definition (1.2). When there is no danger of

confusion, we denote XΆn by the same letter X

Proposition (1.15) is generalized to

PROPOSITION (1.16). Let G be an analytic group and X a complete

algebraic variety. Then there is a 1-1 correspondence between the following:

(Ί) the set Ή.omgr(G, BimX) of morphisms of group functors;

(ii) the set of rational pseudo-operations (G, X).

Here in (ii) we have to identify isomorphic rational pseudo-operations.

We define a morphism of rational pseudo-operations similarly as in

Definition (1.3).

DEFINITION (1.17). Let (Gu ψt, Xt) i = 1, 2 be rational pseudo-operations.

A morphism (φ,f): (Gu Xt) -»(G2, X2) consists of a morphism ψ: Gί~+G2

of analytic group germs and a dominant meromorphic map /: Xί ••-> X2

such that the diagram below is commutative:

G x X Ψl*X

ψXf : : /

Lr2 X Jί<z •>• Ji2

We say that (Gu XJ and (G2, X2) are isomorphic if there exist morph-

isms (φl9 ft: ( d , XO ~> (G2, X2) and (<ρ2, /2): (G2, X2) -> (G2, Xj) such that φx o D̂2

and ^ 2 o ^ are identity around 1 and ftof2 and /2o/j are equivalent to the

identities 1X2, l X l .

DEFINITION (1.18). Let G be an analytic group germ. A morphism

φ: G -> Bim X of analytic group germ functors on the category of analytic

spaces is a morphism ψ: U —>Bim X of functors of an open neighbourhood

U of 1 e G to Bir X such that the diagram

Ux I

U - ^ > BimX

is commutative, where the vertical arrows are the composition laws.
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The same spirit of the proof of Proposition (1.6) leads us to

PROPOSITION (1.19). Let G be an analytic group germ and X be a

complete algebraic variety. There is a 1-1 correspondence between the fol-

lowing:

(i) the set Ή.omgg(G,BimX) of morphisms of analytic group germ

functors (we identify two morphisms if they coincide in a neighborhood of

i);

(ii) open neighbourhoods U of leG and rational pseudo-operations

(U, X).

Here in (ii) we have to identify isomorphic rational pseudo-operations.

We have an analogue of Proposition (1.5).

PROPOSITION (1.20). Let X be a complete algebraic variety and φ: G->

Bim A"an is a morphism of group functors of an analytic group G to Bim X.

Then Ker φ is a closed analytic subgroup of G.

DEFINITION (1.21). An analytic subgroup Bim Xa n is a group subfunctor

of Bim Xan representable by an analytic space.

DEFINITION (1.22). Let X be an algebraic variety, G an algebraic

group germ and (G, X) an algebraic pseudo-operation. We can associate

to G an analytic group germ Gan. If X is complete, then algebraic pseudo-

operation G x I ^ I is defined by the graph Γ c G X X X X. If we con-

sider the associated analytic structure Γ a n c Gan X XΆn X Xan, then it

defines a rational speudo-operation (Gan, Xan) = (G, X)an. We call (Gan, Z a n)

the rational pseudo-operation associated to (G, X). If X is not complete,

then we take a completion X and we get an algebraic pseudo-operation

(G, X) from (G, X). Then we denote by (G, X)an or by (Gan, Z a n) the as-

sociated rational operation (G, X)an.

The definition is justified since (G, X)an is determined up to iso-

morphism.

Let now G be an algebraic group and X be an algebraic variety. Let

φ : G -> Bir X be a morphism of group functors on the category of C-

schemes. Then ψ is given by an algebraic pseudo-operation (G, X) by Propo-

sition (1.6), namely by a rational map ψ : G χ Z ->X Let X b e a completion

of X. Then ψ induces a rational map G x X ^ Z which we denote also

by ψ hence an algebraic pseudo-operation (G, X). Then the graph ΓΨ c

(G X X) X X of ψ is a meromorphic map ψa n : Gan X Xa n ••* Xan. Therefore a
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morphism <pΆn : Gan -> Bim Xan of group functors on the category of analytic

spaces by Proposition (1.16). It follows from the definition that φΆn is

independent of the choice of complete model X of X. When G is an

algebraic subgroup of BirX, then Gan —> Bim(Xan) is an analytic subgroup

by Propositions (1.20).

More generally by the same argument as above we can show

LEMMA (1.23). Let X be a complete algebraic variety and Y an analytic

space. Then there is a 1-1 correspondence between the following:

( i ) the set Hom(Y, BimX) of the morphism of functors;

(ii) {f: Y X X--+ Y X X\f bίmeromorphic inducing an isomorphism of

Zarίskί open sets U, V of Y X X such that y x XΓϊ U, y X Xf] V Φ 0 and f

commutes with the projection Yx X^> Y; namely the diagram Yx X * YxX

Y

is commutative}/ ~, where we identify by ~ two bimeromorphίc maps in (ii)

if they coincide on a dense T-Zariski open set of YxX.

Let X now be a smooth but not necessarily complete algebraic variety

and Y an algebraic variety. Let / : Y-> Bir X be a morphism of functors.

It follows from Lemma (1.9) that the morphism / is given by a Y-birational

automorphism ψ : Y X X •-* Y X X. Let us take a complete model X of X.

ψ induces a Y-birational automorphism ψ : Y x X •* Y x X. Let Γφ c Y

X ϊ χ 7 y χ ϊ = Yx XX X c Y x X x YXX be the graph of ψ. Then

Γ$ defines a Yan-pseudo-automorphism of the analytic space (YχX) a n -»

(YX X)an and hence a morphism Yan->BimXan of functors.

DEFINITION (1.24). We denote this morphism Yan -> Bim Xan by /a n.

The following trivial remark will be useful.

LEMMA (1.25). Let R be a ring of holomorphic functions over an domain

D C Cn. Assume that the ring R is of finite type over C: there exist finitely

may holomorphic functions fu f2, , fn over D such that R = C[/Ί, /2, , /J.

Let ψ:D^ Spec R c An be defined by ψ(x) = (/;(*),/2(x), , fn(x)) e An for

x e D. Then the image <p(D) is not contained in any closed algebraic sub-

variety of Spec R except for Spec R itself.

Proof. Let F(xu x2, , xn) e C[xu x2, , xn] be a polynomial. If

), f*(x\ , /*(*)) = 0 for any xefl, then F(fl9f29 -,/„) = 0 in Λ.

Remark (1.26). In other words, by letting K be the quotient field of
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i?, the if-valued point (fuf29 -,/«) e Spec R c Aw is the generic point of
the scheme Spec R.

LEMMA (1.27). Let A be an analytic manifold, X an algebraic variety
(defined over C) and f: A -> BimX a morphίsm of functors. Then, for any
point p eA, there exist an open neighborhood U of p, an algebraic variety
JB, a morphίsm of functors ff : B -* Bir X and a holomorphic map g : t/—> ΰ a n

swc/i 2/mZ (1) Z/ie image g(U) is Zarίskί dense in the algebraic variety B
and (2) f'™og = f

BimX

Proof We may assume that X is non-singular and projective. Let
/: A -*Bim X be difined by a correspondence A X X X XZ) Z (see Lemma
(1.9)). The closed analytic subset Z has the following property:
(1.27.i) The projection pn : A X X X X-* A X X induces Z-> A X X which
is an isomorphism outside of analytic subsets. As X is projective, px : A
X X X X-+A is contained in a projective fibration A x P ^ - > A for a
certain integer N. It follows from the relative G.A.G.A. [Gl] that the
A-analytic subspace ZdAχXχXc:AχJ?N is locally defined by some
homogeneous polynomials with holomorphic coefficients with respect to A.
More precisely there exist a neighbourhood U of p, a ring R of finite
type over C consisting of holomorphic functions over U and homogeneous
polynomials F.ia; Xo, Xu . , XN) = Ft(a, X) e Λ[Z0, XU -,XN\ l^ί£n,
a e A such that Z = {(α, x) e A X ~PN \ Ft(a9 x) = 0 for 1 <*ί £ n} over U.
The homogeneous polynomials F^a; x) 1 <I ί ^ n define a iϊ-scheme S7 C PΛ .
We put si =• Spec i?. Then we have an inclusion 5 c i χ l χ l c i
X P i V and the projection pί2 : <$/ X X X X-><stf X X induces q :&-+*/XX.

We have also a natural analytic map φ : U—> Spec i? = srf by Lemma (1.25).
The diagram of natural maps
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is a fibre product by construction, where we put Zυ = Z (Ί U X X X X

It follows from (1.27.i) that for any point a e A, there exists an open set

Va a X such that ^ ( α , x) consists of one point for (α, x) e a X Va. Since

by Lemma (1.25) the subset φ(U) C ssf is not contained in any proper closed

algebraic sub variety of J/, it follows from [M] that the proper morphism

q : Jf -> Λ/ X X is birational. By the same argument we can show that

the projection P i 3 : i χ ί χ l - > i χ l is birational. Namely ^ C i X

Xx^sέxX—srfxXxX defines a birational automorphism of <$/ X X

commuting with the projection.

Since the diagram is cartesian, the birational automorphism 2£ of

A x l i s biregular at (g'(p), x) for a general point xeX(l). Thus we may

assume that the correspondence & gives an element of BirX(j/) and the

Lemma is proved.

We proved the following Lemma in [U2],

LEMMA (1.28). ([U2]), Lemma (1.8)). Let X be a non-singular algebraic

variety and S an algebraic variety. Let φ : S —• Bir X be a morphism of

functors on the category of C-schemes. For any point s e S, there exist an

open neighbourhood S' of s, an algebraic variety T and a morphism ψf : Sr

—> T such that φ and ψr define the same equivalence relation on Sf in the

category of the algebraic varieties over C. Here the last phrase that φ and

φ' define the same equivalence relation on S/ in the category of the algebraic

varieties over C means that for any algebraic variety Z (defined over C),

φ' : S\Z) -* T(Z) and S'(Z) <=—> S(Z) Λ Bir X define the same equivalence

relation on the set S/(Z) = Bom(Z, S'), i.e., the subset W = {(a, b) e S'(Z) X

S'(Z)\φ'(a) = φ'(b)} of S'(Z)xS'(Z) coincides with the subset W'{(a,b)e

S'(Z) X S'(Z)\φ(a) -

LEMMA (1.29). Let B be an algebraic variety, X a smooth algebraic

variety over C and ff :B-> Bir X be a morphism of functors on the category

of C-schemes. Then there exist a non-empty Zarίskί open set Bf of B, an

algebraic variety C, a morphism h : C -> Bir X of functors on the category

of C-schemes and a surjective morphism q : B' -+C of algebraic varieties

such that (1) the restriction of h on the category of the algebraic varieties

is ίnjectίve and (2) f — h o q.

Proof. It follows from Lemma (1.28) that there exist a non-empty

Zariski open set W of B, an algebraic variety T and a morphism ψ' : W

—> T such that /' and φ' define the same equivalence relation on W on
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the category of the algebraic varieties. Then there exist a (not necessarily

closed) algebraic subvariety C of T and a non-empty open set U of W

such that U and C are non-singular and ψf \ U is smooth so that U X c U

is a union of algebraic varieties.

On the other hand since ψf \ U = q : U —> C is faithful flat, the sequence

(1.28.1) Bir X(C) - ^ > Bir X( U) = ΐ > Bir X( [7 X CU),

is exact or Im g* = {x e Bir X([/)|p** = pfx} by [U2], Lemma (1.9.2), where

Pi : C7 X c E7-> £7 is the ί-th projection. Let y e Bir X([7) defines f'\U:U

->BirX Then p*y = p*y by the definition of φ' :W-+T. Thus we get

an element z e Bir X(C) such that q*z — y. h : C —> Bir X defined by 2 e

BirX(C) satisfies the condition.

The combination of Lemma (1.25) and (1.27) gives

COROLLARY (1.30). Let A, X, f and p be as in Lemma (1.27). Then

there exist an open set U of A, an algebraic variety B, a morphism of

functors f : B -> Bir X on the category of C-schemes and a holomorphic map

g : t/->B a n such that (1) the image g(U) is Zariskί dense in the algebraic

variety J5, (2) //an<>g = f (3) U is dense in a neighbourhood of p and (4)

the restriction of f on the category of algebraic varieties is injective.

The following lemma shows the birational unicity of U in the corollary

LEMMA (1.31). Let A, X, f and f be as in Lemma (1.27). Let U be an

open set of A, B an algebraic variety, f/ : B -> Bir X be a morphism of

functors on the category of C-schemes and g : U -» B&n such that (1) the image

g(U) is Zarίski dense in the algebraic variety B, (2) f*n°g~f, (3) U is

dense in a neighbourhood of p and (4) the restriction of f on the category

of algebraic varieties is injective. Then there exists an birational map

h.B'^B between B of Corollary (1.31) and B making the following diagram

commutative:

h\

B

Namely we mean by the commutativity that the diagram above is
commutative on the open set of B on which h is regular.
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Proof. Since U and U are dense at p, W = U Π U is a non-empty

open set. The holomorphic maps g and g define Wr->J3an and VF->JB/an

and #(VF) and ^(W7) are dense respectively in B and B\ Hence we may

assume J7 = U. Therefore we have

t; Q Bir X| (alg),

g B >

where (alg) denotes the category of the algebraic varieties over C. It

follows from [D] that the fibre product

1
i

Bx B-^Bi

is representable by a closed subscheme of B X B where ψ is defined by

φ(s, t) = f\s)(f(t))-1 €BirX for (s, t)eBχ B. Therefore the fibre product

B XBiτXB\(alg) is representable by a closed subvariety C a B X B. The

projections B X B ->B defines a morphism q:C-+B of algebraic sub-

varieties, which is injective since B and B are subfunctors of Bir X\ (alg).

The variety C = 5 X B i r B contains the subset g(U) X g(U)(U — U) and its

image q(g(U) X g(U)) = g(U) in B is Zariski dense. In particular the

subvariety C c i B i s Zariski dense and hence q : C -+B is birational. The

same argument shows that the projection B X B~>B induces a birational

map C—>B.

Now we are ready to prove

THEOREM (1.32). Let G be an analytic group germ, X a complete algebraic

variety and (G, X) a rational pseudo-operation. Then there exist an algebraic

group H and an algebraic pseudo-operation (H, X) and a morphism of

rational pseudo-operations (G, X) -> (H, X)an inducing the identity on X.

Before we start the proof, we had better introduce a notion of algebraic

pseudo-group.

DEFINITION (1.33). An algebraic pseudo-group is a system (G, m) satis-

fying the following condition:

( i ) G is an algebraic variety,

(ii) m : G X G --+ G is a rational map;

(iii) the rational map G X G ••-> G X G, (x, y) •-> (x, m(x, y)) is dominant;
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(iv) the diagram

GxGxG — » • G X G

: IXm : m

GxG -> G
m

is commutative.

DEFINITION (1.34). Let Gλ and G2 be two algebraic pseudo-group. We

say that Gj and G2 are birationally equivalent or equivalent if there exists

a birational map φ : Gx ••-» G2 such that m2(̂ (Λ;), 9?(y)) = φim^x, y)), where m̂

is the composition law of Gt (ί = 1, 2).

THEOREM (1.35) [W]. Every algebraic pseudo-group is equivalent to an

algebraic group.

DEFINITION (1.36). Let G be an algebraic pseudo-group and X be an

algebraic variety. An algebraic pseudo-operation (G, ψ, X) is a rational map

φ : G X X-+X satisfying the condition of Definition (1.2). The equivalence

of algebraic pseudo-operations is defined as in Definition (1.3).

THEOREM (1.37) [W]. Let (G, X) be an algebraic pseudo-operation of an

algebraic pseudo-group G. Then there exist an algebraic group G and an

algebraic operation (G, X) equivalent to (G, X).

Proof of the Theorem. The pseudo-rational operation (G, X) defines a

morphism of functors X of an open neighbourhood U of 1 e G to Bim X

by Proposition (1.19). Since the question is local, we may assume that

the pseudo rational operation (G, X) defines a morphism / : G —> Bim X.

We apply Corollary (1.30) for A = G, p = 1 e G and / : G -* Bim X. There

exist an open set U of G dense in a neighbourhood of 1, an algebraic

variety H, a morphism of functors /' : H —> Bir X and a holomorphic map

g : U-+H&n such that (1) the image g(t/) is Zariski dense in the algebraic

variety H, (2) // a n o g = /, (3) the restriction of f on the category of the

algebraic varieties is injective.

f\ j
BimX

We show that H c Bir X|(Alg) has a natural structure of algebraic pseudo-

group, Let us define a composition law on H. We may assume that the
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following commutative diagram exists

X (jr > Joim A x .Dim A

(1.38) I I
G -—> BimX,

where the vertical arrows are composition laws. The diagram (1.38) gives

• Bim X X Bim X

U — > H*n >BimX.

We want to show that there exist a rational map φ: H X H~+ H such that

φ&n defines HΆn X H&n -> Bim X In fact, if we denote by h: H X # - > Bir X

the composite of the morphism f X f'\ H X H->Bir X X BirX and the

composition law B i r X x BirX—• BirX, then it follows from Lemma (1.29)

that there exist a Zariski open set W of the algebraic variety H X H, an

algebraic variety K, a morphism h': K->BirX of the functors on the

category of C-schemes and a morphism j : W-+K of algebraic varieties

such that (1) the image j(W) is Zariski dense in the algebraic variety K,

(2) h;oj = h and (3) the restriction of h' on the category of algebraic

varieties is injective.

The composite φx: U X U-+HΆn of g: l7->i/a n and the composition

law Ux U *U has the following properties.

(a) The image ψι{U X U) is dense in the algebraic variety H by

Lemma (1.25).

(b) U X Γ/ is dense in a neighbourhood of (1, 1) e G X G.

On the other hand, if we put U = (g X g)~ιW and denote the composite

map £/<=—> U X Ug-^?W^> K by φ2i then we have the following properties.

(a) The image φ2(U) is dense in the algebraic variety K since the

Zariski open set W is dense in H X H.

(b) U is dense in a neighbourhood of (1,1) e G X G.

It follows from Lemma (1.31) that the inclusion H<=—>BirX|(alg) and

K^—>BirX|(alg) give birational correspondence of H and K. Therefore

there exist a rational map φ: Hx H +H such that the diagrams
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and

U X U >H™ X iϊ a n > B i m I x B i m I

(1.39) j \Ψ™ j

U • H a n > B i m X

are commutative, where t h e r ight vert ical arrows are t h e composition laws

of Bir X and Bim X.

Since g(U) is dense in //, it follows from (1.39) and t h e proof of

Lemma (1.25) t h a t φ: H X H •+H is dominant . I t follows from (1.39) t h a t

H is a n algebraic pseudo-group and we have a dominant r a t i o n a l map

H X X ~> H X X, which we denote by (h, x) •-* (h, μ(h, x)). We have more-

over a commutat ive d iagram

lxXμl \μ

HxX -> X.
μ

Namely the algebraic pseudo-group H pseudo-operates on X. It follows

from Theorem (1.37) that there exist an algebraic group H and an algebraic

operation (H, X) equivalent to (H, X). In other words we have an equi-

valence a: H~+H of algebraic pseudo-group and a morphism β: H->BirX

of group functors by Proposition (1.6) such that the diagram below is

commutative:

a '

H

We thus get a morphism of an open subset U' dense in a neighbourhood

of 1 of U to H\ ϊ: Uf ~^H such that ϊ(x)ϊ(y) = ϊ(xy) since g(U) is dense

in H (cf. Lemma (1.25)). Since for a general x, yeU' we have ϊ(x) =

T(xy, y~*) = ϊixy^iy'1), T can be extended to a regular map at 1 e G.

Therefore we may assume that U' is a neighbourhood of 1 e G and ϊ: U'

-> H with r(x, y) = ϊ(x)ϊ(y) for general x.yeU' X U'. (H, X) satisfies our

requirement.

The following result is due to Painleve [P].

COROLLARY (1.40). Let φ: G->BimX be a morphism of group functors
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of a {connected) analytic group G to Bim X Then there exist an algebraic

subgroup ί: H^—>BirX and a morphism φ'\ G-+HΆn of analytic groups

such that φ = ίΆno φf.

Proof. Let φ: G -> Bim X be defined by a rational pseudo-operation

(G, X) by Proposition (1.16). Then by Theorem (1.32), we can find an al-

gebraic group H, an algebraic pseudo-operation (G, X) a local morphism

ΐ: G-+H of Lie groups such that (r, lx): (G, X) -+(H, X)an is a morphism

of rational pseudo-operations; G-->iian—> Bim X Therefore if we take the

universal covering group G of G, we get a morphism f: G —> H&n of Lie

groups locally equivalent to ϊ. Let Hr be an algebraic subgroup of BirX

such that the morphism H-*BirX factors through i ? 7 c B i r X ( c f . Pro-

position (1.5)):

H-

Therefore we get a o f: G -> / ί a n c=—> Bim X Hence o of factors t h r o u g h

9?: G - > B i m X

G

The algebraic subgroup Hr satisfies the conditions of Corollary (1.40).

Part II. Algebraic differential equations

§ 1. Preliminaries

In the study of algebraic differential equations, algebraic varieties

defined over not necessarily algebraically closed fields appear. We are

always in characteristic 0 but the algebraic non-closedness often makes

the argument delicate. The analyst may naively imagine with an algebraic

variety a set of the common zeros of certain polynomials. But we have

to clarify the definition.

DEFINITION (1.1). Let K be a field. An algebraic variety over K or

K-algebraic variety is an irreducible and reduced i£-scheme of finite type
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over Spec K.

We work always in characteristic 0. Even under this assumption for

a field extension LZD K and a if-algebraic variety X, the base change

X®KL is not always an L-algebraic variety. We know that in charac-

teristic 0, each irreducible component of X®KL is an L-algebraic variety

for sufficiently big L (see for example, E.G.A. IV, 4.3.).

DEFINITION (1.2). Let X be an algebraic variety over a field K. We

say that X is absolutely irreducible (in E.G.A. geometriquement integre)

if for any field extension LZD K, X®KL is an algebraic variety over L.

We know (cf. E.G.A. Chap IV, 4.5).

PROPOSITION (1.3). Let X be an algebraic variety defined over K. Then

X is absolutely irreducible if and only if there exists an algebraically closed

extension L~D K such that X®KL is an algebraic variety.

As we heavily use the algebro-geometric language in the following

discussion, it would be useful to explain certain basic conventions so

that the paper is accessible for analysts. Let V be an algebraic variety

defined over k or we say sometimes that V is a /^-algebraic variety. All

the ring we consider are commutative with the unit element. Let R be

a ring containing the field k. An irrational point or i?-valued point of

V is a morphism Spec R —• V of /^-schemes. In particular a ^-valued point

Spec k —> V is determined by its image and hence we say that the image

x e V of Spec k is a ^-valued point. More generally, for a field K Z> k

since Spec K consists of a point, the image Spec K—>Voϊ a i£-valued

point is sometimes called by abuse of language a if-valued point; if x is

the image of Spec K, K is an extension of the residue field k(x). Let

S D J ί be a over ring. Then the inclusion S ID R defines the morphism

Spec S -> Spec R and hence we have an S-valued point Spec S -> V by

the composition of the above two morphisms. For this reason an i?-valued

point is naturally considered as an S-valued point for S 3 R. Let now

/: V-* W be a morphism of ^-algebraic variety and g: Spec R —• V an R-

valued point. Then we get an R-valued point fog: Spec R-+W. Let

(G, φ, X), φ: G XkX-+X be a A-algebraic operation of a /^-algebraic group

G over ^-algebraic variety X. For g e G, x e X, we denote by gx the image

φ(g> x) (cf. Part I). Let /: Spec R —>G be an R-valued point and xeXbe

a β-valued point. Therefore we get an i?-valued point



BIRATIONAL AUTOMORPHISM GROUPS AND DIFFERENTIAL EQUATIONS 2 1

Spee i?-*Gx f c X-^->X of X.

a i >(f(a),x)

This rather trivial remark is useful when we try to integrate differential

equations.

Let D C C be a domain, R a ring of holomorphic functions and K

the quotient field of R. In the following sections, we consider field ex-

tensions L which is not necessary of finite type over K. But L is the

quotient field of a ring S of holomorphic functions on a subdomain Dλ of

Zλ

A typical example of such L is a finite algebraic extension of K. In

fact let L Z) K be a finite algebraic extension. Then L is a simple exten-

sion: L = K(ά). Let a satisfy an irreducible algebraic equation an + a^ά""1

+ + an + 0, α* e K (1 <J z <Ξ n). Let fl' C ΰ be a subdomain such that

the α̂  are regular on D''. Let / be a multivalued function on D' satisfying

/w + <hfn~ι + - + an = 0.

Namely / is an algebroid function. If we take a subdomain D1 C Z)' such

that / decomposes into ^-single valued functions, then by letting / be a

branch of / on Du we get that L = K(a) is if-isomorphic to i£(/Ί). Therefore

K(fi) is the quotient field of JR^, α2, , αn,/J. The latter is a ring of

holomorphic functions on A

We identify a holomorphic function on D with its restriction on a

sub-domain Dx. Therefore often we do not make the subdomain Dx precise.

It is convenient to use an algebraic closure K of K in the following

discussions but we should be careful because this fie]d is not of the above

type. Hence we have to justify this usage. In fact, every time we use

K, it is sufficient to consider a sufficiently big finite algebraic extension

of K and this field is of above type as we saw above.

A typical example is as follows. Let V C A^ be an iί-affine algebraic

variety. Let us decompose V0KK into the union of irreducible varieties

(hence absolutely irreducible varieties) over K. As every component of

V ®κ K is defined over a finite algebraic extension of K, the decomposition

is done over a finite algebraic extension of K.

For this reason, we may use the algebraic closure K in such situations

as in the above examples.

Let V be an algebraic variety defined over C and D a domain of C.

When there is no danger of confusion, we denote the analytic space Van



22 HIROSHI UMEMURA

associated with V also by V. For example a holomorphic map or a

holomorphic curve F: D -» F a n with be simply denoted by F: D —> V. Let

us now assume V to be affine so that we have an embedding V C A£ =

A*. Let F: D -> V c Aw be defined by holomorphic functions (/1? /2, , /n)

on D: F(t) = (^(ί), Λ(ί), , /»(*)) e V c A " for ί e D . Two interpretations

are possible. The first one is given above: F: D-+V is a holomorphic

curve on an algebraic variety V. The second one is algebro-geometric.

Let K be the field C(/Ί, /2, , /n) of meromorphic functions on D.

The map F defines a homomorphism C[-Xi, X2, , ̂ J -* C[/i, f2, , /J

= i? of C-algebras. Therefore a morphism / : Spec C[/i, /2, •• , / J - >

Spec C[Xi, X2> > ^w] = Ac of C-algebraic varieties. This morphism factors

through V C Ac giving an J?-valued point Spec i? —• V. Since KZ) R, we

get an if-valued point Spec if-> V, which we denote by P(F) and call the

if-valued point associated with F. We say also that F: D —> V is a K-

valued point. Conversely given a ΛΓ-valued point Q = (^Ί(0. 2̂(̂ )> '9Sn(Φ

e V® c i f with gi{t)eK, l<,ί<Ln. Then there is a subdomain D1 a D

such that the ^(ί) (1 ^ / ̂  n) are regular on Dx and hence defines a

holomorphic curve G: D1 -> V. If the variety V is not affine, using an

affine covering we define the if-valued point P(F) for a holomorphic

curve F: D —> V.

Let A C A be domains of C and Ft: Dt -* V be a holomorphic curve

(i = 1, 2). We say that F 2 is equivalent to Ft and write F2 — 2?\ if Fx is

the restriction of F2 onto A We have proved

PROPOSITION (1.4). Let L ZD C be a field of meromorphic functions on

a domain D. Let V be an algebraic variety over C. Then there is a 1-1

correspondence between the following.

(i) {F: U ->V\F is a holomorphic curve on a subdomain U C D

depending on F such that P(F) is a L-valued point} / equivalence relation

generated by —.

(ii) L-valued points of V.

Remark (1.5). In Proposition (1.4), we do not assume V to be affine,

since the question is local and hence reduced to the affine case discussed

above.

DEFINITION (1.6). Let p : S p e c L - > y be an L-valued point. The

corresponding holomorphic curve F: U —> V is denoted by F(P). For an

algebraic variety V, we have seen in Proposition (1.4) a nice 1-1 corre-
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spondence between the holomorphic curves F : Df -> V&n and L-rational

points of V. A similar correspondence exists between morphisms F: Π

-• Bim F a n and morphisms Spec L -> Bir V. Since Bim Van and Bir V are

functors, we should argue carefully. In fact, let V b e a projective algebraic

variety defined over C and D be a domain of C.

Let R be a C-algebra. E-rational point of Bir V is a morphism

Spec R -> Bir V of functors. Let F: D —> Bim Van be a morphism of func-

tors on the category of the complex analytic spaces. Replacing D by a

subdomain if necessary, we may assume by Lemma (1.27) that there exist

an algebraic variety W a morphism f'\B-+ Bir V and a holomorphic map

g: D -» J5an such that (1) the image g(D) is Zariski dense in the algebraic

variety W and (2) f^nog = F. It follows from the argument above that g

determines a K-valued point Spec K -> B hence a K-valued point Spec i£

—> £ —> Bir V, where .fί is an appropriate field of meromorphic functions

on D. We denote this K-valued point on the functor Bir V by P(F) and

call the associated if-valued point to F. We say also that F: Z>-> Bim Van

is a if-valued point. Conversely let L be a field of meromorphic functions

on a domain D and Spec L —> Bir V be a L-valued point. The L-valued

point Spec L —> Bir V is given by an L-birational automorphism of V(x)cL,

or by its graph Γ c (V®cί>) X (V®CL) = ( V χ c V)(g)cL (cf. Lemma (1.9)).

Therefore there exists a C-algebra of finite type R such that the graph Γ

is defined over R: there exists an algebraic subvariety ΓR c (V X V)(x)c

Spec i? such that Γ = ΓR(g)R K. We may further assume that ΓR c

(V X V) (x)c Spec R defines an Spec i?-birational automorphism of Spec R

®c V. Thus we get a morphism Spec R -» Bir V. Let R = C[/Ί, /2, , /„].

We get finally D -> (Spec i?)an -> Bim Van.

Let A c D2 be domains of C and Ft: Dt —> Bim V be a morphism of

functors. We say that F2 is equivalent to Fx and write F2 — Fj if Fj is the

restriction of F 2 onto Dλ. Leaving the reader the detail because it is only

a formal checking, we have thus proved

PROPOSITION (1.7). Let V be an algebraic variety over C, L Z) C be a

field of meromorphic functions. Then there is a 1-1 correspondence between

the following.

(i) {F: D; -> Bim V\F is a morphism of functors of a subdomain

D' a D depending on F such that P(F) is L-rational} / equivalence relation

generated by —.
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(ii) L-rational points of Bir V.

DEFINITION (1.8). Let p: Spec L -> Bir V be an L-rational point. Then

the corresponding morphism Π —> Bim V is denoted by F ( P ) .

The first statements in Propositions (1.4) and (1.7) are analytic na-

ture and the second statements are algebraic. The conditions on a dif-

ferential equation is given in the analytic language. In our study of the

differential equations, we trans late them by Propositions (1.4) and (1.7)

into the algebro-geometric language. Using the technique of algebraic

geometry, we study the properties of the differential equation and finally

we translate the results into the analytic language by Propositions (1.4)

and (1.7).

We shall study systems of Pfaffian differential equations over manifolds.

We need only the simplest systems.

DEFINITION (1.9). Let M be a (complex) analytic manifold. We de-

note by TM the tangent bundle of M and by ΘM the sheaf of its sections.

But we do not distinguish strictly a vector bundle and the locally free

sheaf of its sections. A regular system of Pfaffian differential equations

of corank 1 or of r a n k dim M — 1 over M is a subbundle L of r a n k 1 of the

tangent bundle TM so t h a t we have an exact sequence

(1.10) 0 > L • TM > TulL > 0 with TM\L

locally free OM-module. Considering the dual Ω\£ of TM, we can show this

is equivalent to giving a locally free subsheaf $ of rank dim M — 1 such

that Ω\\S is an invertible sheaf:

(1.11) 0 > £ - ί U βjf > Ω\\S > 0 .

Let F: D -> M be a holomorphic curve of a domain D c C , We say

that F is a solution of the system of Pfaffian differential equations if the

composite map F*£>1-%F*Ω1

M -> Ωι

D is 0, where F*Ω1

M-»Ω1

D is the natural

map. When $ is generated by 1-forms, wu w2, , wni we call (1.10) or

(1.11), a system of Pfaffian differential equations wx = 0, w2 = 0, , wn = 0.

We had better generalized Definition (1.9).

DEFINITION (1.12). A system of Pfaffian differential equation of corank

1, or of rank dim M — 1 is a coherent subsheaf (1.13) 0 -> L —> TM such that

there exists a non-empty open set M° c Mover which the injection (1.13)
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induces a regular system of Pfaffian differential equations of corank 1. By

duality a coherent subsheaf 0 -> £ —• Ωι

M such that £ is locally free of rank

dim M — 1 over a non-empty open set defines a system of Pfaffian differential

equations of corank 1. If there is no danger of confusion, we do not

make the open set M° precise.

A simple but important example of such a Pfaffian system arises when

we consider a group operation. Let G be a algebraic group, X a non-

singular algebraic variety and (G, φ, X), φ: G X X -> X be an algebraic

operation over C. We denote φ(g, x) by g-x or by gx for g e G, x e X. Let

F: D —> G be a holomorphic curve whose associated point P(F) is K-

valued for a certain field K of meromorphic functions. By enlarging K,

let us assume that if f(t) e K, then the derived function /'(£) e K. Then

we can define a if-vector field Θ(F9 (G, X)) = Θ(F) on X®c K or an element

of H°(X(g)cK, ΘX(g) K/K). In fact we construct Θ(F) locally. Let U d X be

an affine open set. Let U = Spec A with A = C[zu z2, , 2m]. We con-

sider C7cA m by CtZ^Zί, .. ,ZJ->Cfe,«2, •••,«»], ^ ^ « i (1 ^ i ^ m).

For /e# 0 ( ί7 , <%) and ί e ΰ , we put

(1.14) Θ(F)(f(x)) = lim fWt + h)F~\h)x) - f(x)
Λ-»0

considering ί e ΰ a s a variable. Then Θ(F): H°(i7, O )̂ ->iίo(?7® c # , O ^ ^ J

is a C-derivation. Let us check that Θ(F)(f(x)) is in fact in H°(U®CK,

Ou®cκ)- Let ε2 = 0. Then for an analytic function a(t) eKa(t + ε) = α(ί)

+ α'(0ε 6 K[ε] since α7(ί) is in ϋΓ. Let F: D->G be given locally by £ >->

, /m(0) e U C Aw. On a suitable subdomain Π <Z.D,F defines

Λ): Z)->G, ί->(/ ( ί + Λ),/2(ί + A), ••.,/«(« +A)) for A e C near the

0. If we consider F(£ + A) mod A2. We get a morphism P(F(t + h):

Spec K[ε] -> G. We have a natural map g: Spec K[ε] -> Spec ϋΓ. We thus

get a map (Id, q)\ Spec if[ε] ->Spec iί[ε] (x)c Spec K Composing with

Spec K[ε] ® c Spec i ()
c

we get a morpbism ψ: Spec K[ε] -> G and therefore we get

α: Spec K[ε] XcX-> G XcX-> X.

Since set-theoretically ψ r e d: Spec ^[ε] r e d = Spec K->Gveά = G factors through

1, for the open set U above, we get av\ Spec K[ε] X c U-+ U. Then
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f(F(t + h)F-\t)x) mod h2 is equal to a%f and hence Θ(F)(t(x)) = the co-

efficients of ε-term of affeH0 (Spec K[ε] X c [/, O) = A ®CK + A®cKε.

Therefore Θ(F)(t(x)) is in A ® c S p e c K Θ(F) is evidently C-linear and we

can check directly Θ(F)(fg) = θ(F)(f)mg + fβ(F)(g) for f9 y e H°(U, 0σ).

Extending the derivation Θ(F): H°(U, Oυ)-+H\U®cK, OUΘcK) to H°(U, OΌ)

®CK = H\U®C K, OϋΘcK) -> #°(£/®c K, OUΘcK) by sending 1 ® K to 0.

We get a if-derivation H°(U®CK, OUΘ κ) which we again denote by Θ(F).

We call Θ(F) the vector field associated with F. Another interpretation

of the formula (1.14) is: Θ(F) is a vector field on D X X if we put θ(F)(f(x))

= limΛ_0 (/CFX* + h)F~\h)x) — f(x))/h for any holomorphic function on Όf

X U where Π is a subdomain of D. Therefore we get a non-vanishing

vector field d/dt + Θ(F) on D X X and

(Pf(F)) 0 -> Oz,x.r(-^ + Θ(F)) -> TDXX

is a regular system of Pfaffian differential equations of rank dim X. It

follows from the definition that the holomorphic curve H: D —> D X X, t->

(£, F(t)x) is a solution of the system of Pfaffian differential equations

(Pf(F)) for any point x e l Jn fact the holomorphic curve H defines a

vector field X{t,Fit)x)φ = limΛ_0 (φ(t + h, F(t + h)x) - φ(t, F(t)x))lh at (t, F(t)x),

for a holomorphic function φ at (t, F(t)x). We have X{tyF{t)x)t = 1. Let ^

be a holomorphic function on a neighbourhood of F(t)x = y e X. Then

X(t,Fit)x)φ = limΛ_0 (ω(F(t + h)x)) - ψ(F{t)x)lh = l i m ^ 0 (<p(F(t + h)F(t)~ιy) -

ψ{y))lh = θ(F)(y)(φ). Hence H defines the vector field djdt + 0(F) and i ί

is a solution. The above argument shows that any solution D -> D X X,

11~> (t, a(t)) of the system Pf(#) is given by H varying x e l

We call Pf (F) the system of Pfaffian differential equation associated

with F and (G, X).

DEFINITION (1.15). If there exist a subfield L z> C of if and a vector

field θ on X(g)cL or θeH%X®cL, θz®cL/L) such that θ®LKeH\X®cK,
Θχ®cκ/κ) coincides with Θ(JF), then we say that the system Pf (F) of Pfaffian

differential equations are defined over L or the coefficients of the system

Pf (F) are in L.

A particular case of the above example is given by the operation

(G, G) of an algebraic group G on itself from the left. This appears in §2.

In our study of differential equations, the following situation appears

very often. Let X = Spec C[xl9 x2, , xn\ be an affine algebraic variety,
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D C C a domain and K a field of meromorphic functions on D containing

all the constant functions. We denote by Xΐeg the set of the non-singular

points of X. The coordinate on D is denoted by t. Let θ be a rational

vector field on the algebraic variety X®c K over K, namely a i£-derivation

θ: quotient field of C[xu #2, , xn] ®cK —>quotient field of C[xl9 x2, ,

xn] ®CK. θ is given by θ(Xi) = (F^t; xu xu , xn))l(Gi(t; xu xly , x%))

with i^(£; Z l 5 Z2, , Zn), G,(*; Z t, Z2, , Zn) 6 i ^ K , Z2, , Zn] such that

G*(*;*i, tf2, ••-,**) =£0 for l ^ i ^ T i . Therefore the vector field 3/3* +

Σΐ-iOFifo Z l 5 ,Xn))l(Gt(t9 Xu -, Xn)) X a/aZi on an open set of fl X Aw

defines a vector field θ on an open set of D X Z r e g c D X An, where

( Z ^ C ) I c — > Aw is defined by xl9 x2, , xn.

Therefore there exists an open set ί / c ΰ x Z r e g such that

(1.16) 0 —> Ovθ -> Tv defines a regular system of Pfaffiian differential

equations of corank 1 on U,

DEFINITION (1.17). We say that the system (1.16) of Pfaffian differential

equations is defined by θ over K or (1.16) is associated with θ. We denote

the system (1.16) by Pf(#). We do not make the open set U precise and

we say simply that Pf(#) is a system of Pfaffian differential equations on

I ) X l

The dual form to (1.16) is given by the set of 1-forms dxt —

(Fi(t; xl9 x2, , xn))l(Gi(t; xl9 x29 ? xn)) dt (l<Lί<Ln):

0 -

DEFINITION (1.18). If the exists a subfield L Z) C of K and a deriva-

tion θλ eΌerL(L(X®cL), L(XC®CL)) such that θ ^ ΘX®LK9 then we say

that the system Pf (θ) of Pfaffian differential equations is defined over L

or the coefficients of the system Pf(θ) is in L.

The most important case is the follows. Let F: D —> Bim X be a

morphism of functors. Let F be i£-valued for a field K of meromorphic

functions such that K is closed by differentiation. We put

Θ(F)(f(z)) = Km /(JΪL+ Λ ) J 1 ( ^ for f(z) e C(X).
Λ-0 k

By the same argument as in the case of algebraic operation, we can show

θ{F)(f(z))eK(X®cK) and Θ(F): C(X) -> K(X®C K) is a C-derivation.

Therefore we can extend θ(F) by sending 1®K to 0 to a if-derivation

iQ which we denote also by Θ(F). Θ(F) therefore
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defines a system of PfafEan differential equations Pf (Θ(F)) on X X D.

DEFINITION (1.19). We call Pf(θ(F)) the system of Pfaffian differential
equations associated with the morphism F: D -> Bim X of functors. We
denote it by Pf (F).

It follows from Lemma (1.27) Part I that if we replace D by an ap-
propriate subdomain D' there exists an algebraic variety Z, a morphism
/: Z-+Bir X of functors and a holomorphic map g: U -+Z&n such that the
image g{Π) is dense in the algebraic variety Z and

The morphism g: Z->BirX is given by a family of birational automorph-
isms g: Z X X~+ Z x l a s in Lemma (1.9). Let f Z x l Λ Z x I ^ I
be the composite rational map. Let us write ψ(z, x) = zx for a general
point (z9 x) 6 Z X X. Therefore for general t e Ώf and xeX, g(t)x is defined.
We may write g(i)x = F(t)x. Then as in the case of algebraic operation,
we can show that if we put for xeX, Ώ" = {t e D"\ψ is regular at (g(t), x)},
then D" ->Ό" X X, t «-> (ί, g(t)x)} is a solution of the system Pf(F). If
there exists a point tQ e U such that F(ί0) = Idz, let Z0 = {xeZ|ψis
regular at (g(t), x)}. Then Zo is a non-empty Zariski open set of X and
any solution t π-> (£, s(0) e ΰ x l o f the system Pf (F) is given by the above
form by the unicity of the solution at a regular point.

Remark (1.20). Let K be a field of meromorphic functions on a domain
D. Let θeΌerκ(K(X®cK), K(X®CK)). We consider the system Pf(0)
of Pfaffian differential equations on D X X, We are interested how we
can construct the general solution of Pf (θ) starting from K. Namely we
are concerned with the extension L over K generated by the coordinates
of the general solution U -> U X X, t -> (t, s(t)): L = K({s oφ\φeC(X)
(algebraic) rational function on X}). Therefore if Dx c D be a subdomain,
we identify the systems o n f l x l and on A X I defined by θ since by
the restriction the fields involved are isomorphic. As we are interested
in the general solution, if Y is birationally isomorphic to X, then
K{X®CK) ^ K(Y®CK) and by this isomorphism θ is considered as an
element of Όerκ(K(Y®cK), K(Y®CK)) and the general solutions on
I χ ΰ ; and on YX D' are identified by the birational isomorphism be-
tween X and Y. Therefore we identify also the system Pf (θ) on fl'xl
and the system on D'x Y.
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We need following

LEMMA (1.21). Let K be a field and X, Y be absolutely irreducible
algebraic varieties defined over K. If there exist a field extension LZD K
such that X®KL and Y®KL are L-birationally isomorphic, then there exists
a finite algebraic extension MZ) K such that X®KM and Y®KM are M-
bίratίonally ίsomorphίc.

Proof Let /: X®KL~> Y®KL be L-birational isomorphism. Since X
and Y are algebraic varieties, we may assume that L is of finite type over
K. Or there exist an integral domain S = K[xly x2, , xn] c L such that
the correspondence Γf C (X X Y) ®κ L is defined over Spec S: namely there
exists f C (X X Y)®κ Spec S such that Γf = f ®SL c ((X X Y) Θκ Spec S)
(g)sL. If we go to the algebraic closure K, then Γ®κKd({Xχ Y)®κ Spec S)
®if is a family of correspondences between X®KK and Y®KK para-
metrized by Spec S ®κ K. Let p: Γ ®κ K -> X X Spec S ®κ K (resp. g: Γ
O'jrϋΓ-> y®Spec S®A K) be the restriction to Γ®KK of the projection

f ® , f c l χ y χ Spec S®KK= (X X Spec S®KK) X Spec S®,, X

(YX SpecS®^Z)->Zx Spec S®KK (resp. Yx

We have two natural IΓ-morphisms a: X®κ Spec S®KK-+ Spec S®KK
and /3: Γ ®^ ϋί->Spec S®KK so that the following diagram is commutative:

f ®κ K ~ -̂> Z®,: Spec S ®κ K

Spec S®KK

The morphisms p and q of algebraic varieties over K are birational.
Therefore there exists a Zariski open sets W9 V of Γ®KK and of X X
Spec S ®JC K isomorphic by p. It follows from (2.31) Proposition of [M]
that there exists a Zariski open set U of Spec S®KK such that there
a(W) = β( V) Z> U. For any closed point set/, p ® ϊiΓ(s) gives ^-birational
morphism of Γ®κK®κK(s) to X X SpecS®*Z®^ J?Xs) = X0KK. By
the same argument for q we may assume that q®K{s) gives if-birational
morphism of Γ®κK®RK{s) to Y->SpecS®* X K®RK(s) =Y®KK for
any closed point se U. Therefore X®KK and Y®KK are if-birationally
equivalent. Since they are algebraic varieties, they are birationally iso-
morphic over a certain finite algebraic extension of K.
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Let X be an algebraic variety and G be an algebraic group over a

field K. Let ψ\ G-*Bir(X) be a if-morphism of group functors. Then φ

induces a morphism G(K[e]) —>BirX(K[ε]), where K[ε] is the ring of dual

numbers: ε2 = 0. Let K—>K[ε] be the canonical inclusion, then we get a

commutative diagram

G(K[ε]) >BirX(K[e])

G(K) > Bir X(K).

Therefore we get a map

φ*: Ker i > Ker c.

Ker i is the Lie algebra of G (see Borel [B]) and Ker c is identified with

the Lie algebra of if-derivations of the function field K(X) and φ* is a

morphism of Lie algebras (see [D]).

DEFINITION (1.22). Let if be a field and F(XU X2, , Xn) e K[XU Xt9

• , Xn]. We say that the polynomial F is absolutely irreducible if for any

extension L D K, F is irreducible in the unique fectorization domain

L[XU X2, - ,Xn]. This is equivalent to saying that V(F) C An

L is irre-

ducible.

It follows from Proposition (1.3) that to see whether F is absolutely

irreducible or not it is sufficient to check it for an algebraic closed ex-

tension of K,

LEMMA (1.23). Let L be a field (of characteristic 0) and MZ) L be a

field extension. Let F(X), G(X) e L[XU X2, , Xn] be relatively prime in the

unique factorization domain ( = U.F.D.) L[XU X29 , Xn]. Then F(X) and

G(X) are relatively prime in M[XU X2y , Xn],

Proof. As we see below, it is sufficient to assume that L is perfect.

Assume that F(X) and G(X) are not relatively prime in M[XU X2y , Xn],

There exists an H(X) e M[XU X2, , Xn] which is not constant and divides

F(X) and G(X). Geometrically V(H) c V(F) and V(H) C V(G) in Ajr.

Therefore the zero locus V(H) is a component of V(F) and V(G) on A*.

Therefore the subvariety V(H) c AM is defined over an algebraic closure

L since F9 G e L[XU X2, , Xn]. Or F and G have a non-trivial common

factor in L[XU X2, , Xn], Thus we may assume H(X) e L[XU X2, , Xn].

Let i V D L b e a finite Galois extension such that H(X) e N[XU X2, , Xn]
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and ^ be the Galois group of N/L. The Galois group & operates on

N[XU X2, , Xn] through the coefficients. Let ^ = {g e %\H8(X) = H(X)}.

Since V(F\ V(G) in An

N are G-invariant, V(H*) c V(F), V(G) for any

g e G: the Galois group % operates on A^ by (xl9 x2, , xn) »-> (gxu gx2, ,

gxn) for (xu xl9 , *n) 6 A ^ ^ e #. Therefore if we put I(X) = fl

then I(X) e L K , X2, , XJ and V(I(X)) c V(F(Z)) and VXI(X)) c

on A r̂, V(F(x)) and y(G(X)) have a common component in A^ and

hence they are not relatively prime in L[XU X2, , Xn].

By Lemma (1.23) we can say that the polynomials F and G are rela-

tively prime without mentioning the field of reference M Z) L.

DEFINITION (1.24). Let V be an algebraic variety defined over k. Let

/: S p e c £ - * F be a β-valued point. Then f®kK: Spec K = Spec & X

Spec K —» F(x)fcif is a if-valued point. We say that the if-valued point

f®kK is defined over k.

We need the following Proposition which comes from the fact that

the complex number field C is algebraically closed and of infinite trans-

cendence degree over any finitely generated subfield of C

PROPOSITION (1.25). Let V be an algebraic variety defined over C. Let

F be an extension of C. Then the set of points of V®CF defined over C

is dense in V®CF.

Proof. We may assume that Vis affine: V c A£. Let V C A£ is defined

by the ideal / c C[XU X,, , Xn] such that V = Spec C[XU X2, , Xn]/L

We have to show the following. Let A(X) e F[XU X2, , Xn] vanish on

{(xu x2, , xn) e Cn\f(xu x2, ., xn) = 0 for all / e /}. Then A(X) e F K ,

X2> * •> ^n] ^ Let £ C C be a field finitely generated over 0 such that

V czAl is defined over k: let VQ c A? be defined by the ideal Io c £[Xi,

X2, , XJ so that 7 = C[XU X2, , ZJ/ 0 . Let F D L ID k be a finite ex-

tension of k such that A(X) e L[XU X2i , XJ

Since the degree of transcendence of C over k is infinite and C is alge-

braically closed, we can find a point (xu x2, , xn) e Cn with f(xu x2, , xn)
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= 0 for any felo such that tr.d L[XU X2, , Xn]/L[Xu X2, , Xn].I* =

tr.άL[xl9 x2, -'',xn] We have an L-morphism of integral domains φ:

L[XU X2, , Xn]IL[Xu X2, , XJI 0 —• L[x1? JC2, , x j . Since they have the

same transcendence degree over L, ψ is an isomorphism. Since A{xu x2,

•. , xn) = 0, A e L[XU Z2, ., Xn]I0 c F K , X2, , XJJ.

We use the following Lemma (1.26) in §4. The Lemma holds in far

general setting and we need in fact the generalization. Since the gener-

alization is proved by the same method, we give it in a special form.

LEMMA (1.26). Let K be a field containing C and At(Xί9 X2\ Bι(Xu X2)

eK[XuX2] for ί = 1, 2 such that (Xu X2) ~> (AJBu A2/B2) defines an K-

automorphism of the field K(XU X2). Moreover we assume that At and Bt

are relatively prime. Let B be the l.c.m. of Bλ and B2 in K[XU X2], Then

for a general (a, b, c) e C3 the polynomial C = aB + bBAJBί + cBAJB2 is

absolutely irreducible: for any field extension LZ) K the polynomial C e

L[XU X2] is irreducible.

Proof. Let K be an algebraic closure. The vector space KBγB2 +

KBAJB2 + KBAJB2 c K(XU X2) defines on P | a linear system £? free

from fixed components. The linear system ££ is not composite with a

pencil. Therefore by the Theorem of Bertini (Zariski [Z], Theorem (1.6.3),

p. 30). The general cycle is absolutely irreducible. Namely let wo> Wt, u2

be variables over K. Then the polynomial uQB + UίBAι/Bί + u2BA2/B2

with coefficients in K(u0, uu u2) is absolutely irreducible. Geometrically,

if we consider an i£-algebraic variety Wo = {(α0, au α2; bu b2) e A\ X A\\

(aQB + a^BAJB, + a2BAJB2)(bu b2) = 0}, WQ is naturally a subset of A% X

P i . We denote by W the closure Wo c A^ X P2^. The projection A\ X P ^

-> Wo induces p: W-+A)?. The theorem of Bertini says that the generic

fibre of P is reduced and absolutely irreducible (geometriquement integre,

in the language of E.G.A. Chap IV). Since p is generically flat by E.G.A.

Chap IV, §6, Theoreme (6.9.1), Lemma follows from Proposition (1.25) and

from E.G.A. Chap IV, §12, Theoreme (12.2.4).

§2. Permissible operations

We treat sets of meromorphic functions. Very often they are rings

or fields. We have to clarify several points. First of all, we identify a

holomorphic function / on an open set U C G with its restriction f\ V to

an open subset V c U. We shall consider only the following type of sets,
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rings or fields of meromorphic functions if we do not make any particular

assumption: (2.1) a set, a ring or a field of meromorphic functions on a

domain D. The ring or field structure is defined by the usual addition

and product of meromorphic functions.

We consider algebraic varieties defined over a ring R or a field K of

meromorphic functions and morphisms between them. In this case, we

can replace R, K respectively by a ring or field of meromorphic functions

of finite type over C. Therefore in the following discussion, we often as-

sume without making it precise that there exists a domain D such that

the ring R consists of holomorphic functions on D and the field K is the

quotient field of such a ring.

Now given a set S of meromorphic functions on a domain D C C,

what operations are permissible to construct new functions from S? In

other words if we call the set S the set of the known functions, what are

newly known functions from the set S by a reasonable operations?

The operations allowed by Painleve in his famous Stockholm Lessons

[P] are as follows.

(0) Let f(z) e S. Then the derived function f'(z) is a new known

functions.

This operation (O) is of a special nature as we see later. This is the

golden rule which we can not touch.

(PI) If fuf2eS, then the sum /i + f2 and the product fxf2 are new

known functions. Moreover if f2 Φ 0, then the quotient fjf2 is a new

known function too.

(P2) Let au a2, — ,aneS. Then an algebroid function / or any

solution of an algebraic equation fn + ajn~ι + + an = 0, is a new

known function. Notice that here we consider / a s a single valued func-

tion on an appropriate smaller domain.

(P3) Let f(z) e S. Then the quadrature f(z)dz is a new known

function.

(P4) Let au α2, , an e S. Then any solution / of the linear differ-

ential equation dnf/dzn + aι{dn-ιfldzn~ι) + a2(dn-2fldzn-2)+ + α n + 1 / = 0 is

a new known function.

(P5) Let Γ C C n be a lattice such that the quotient Cn/Γ is an

abelian variety or an algebraic torus. Let π: Cn —>Cn/Γ be the projection.

Let /i,/2, - - ,fneS be regular on a domain D and φ be a meromorphic

function on Cn/Γ. Then the function φ ° π o (fu f2, , fn) is a new known
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function if it is not the constant function taking oo.

In all the operations (P2), (P3), (P4) and (P5), we have to choose an

appropriate subdomain Όf such that the solutions are meromorphic and

single valued on D'.

Remark (2.2). In the operation (P5), we had to avoid meromorphic

functions φoπ such that the pole of the meromorphic function φoπ con-

tains the image of D. Similar cases happen in what follows but we do

not repeat this remark.

Given a set S of meromorphic functions on a domain D and an al-

gebraic differential equation E = 0 with coefficients in S, the problem of

integration of the differential equation E = 0 is to know whether start-

ing from the set S and by iterating finite number of times of the permis-

sible operations (O), (Pi), (P2), , (P5), we can express the solutions of

the differential equation E = 0.

LEMMA (2.3). // we admit the operations (0) and (PI) and if S contains

all the constant functions, the permissible operation (P4) is equivalent to

(P4)' Let ai5(z) e S be holomorphic functions (1 <Li, j <J n). Then any

solutions fι(z), f2(z), , fn(z) of the lienar differential equations

fί(z)

fίiz)

are new known functions.

Proof. In fact, assume au α2,

of the differential equation

h

h

•, an e S be given. The solution f(z)

satisfies

f'lz) = /,(*)

f'lz) = flz)

fή-i(z) = - anf:)
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if we put /i(2) = f(z). Therefore (P4) is a special case of (P4') We did

not use the operations (0) and (PI). Conversely let atj e S be given

(1 5S i,j; 5ί n) and let fuf2, • .,/„ be solutions of the differential equation

(2.3.1)

frit)

= (ait(z))

/„(*)
Let K = £,(ai5{z), a/

ij(z)t a^z), •• )i<5i,^n be the field of rational functions

in α</s and their derivatives. Its sufficient to show that for any 1 rg ί <̂j n,

there are aι(l^l <Lm) in K such that ft satisfies the differential equation

(2.3.2) + Λ = 0,

since by the permissible operations (O) and (PI) and by the hypothesis

S 3 C, all the functions in K hence in particular αt's are known functions.

In fact dfi/dz is a linear combinations of the f5 with coefficients in

Cία^X^,^. By induction and (2.3.1), dkfildzk is a linear combination of

the fj with coefficients in K. Since there are n //s there is a non-trivial

ΛMinear relations among (n + l)-elements dkfi/dzk (0 ^ k ^ n),

+ dz«~ι
+ + cnft = 0,

which gives (2.3.2).

The first question that one might have is the following. Are these

operations reasonable? Or in other words, does the rule of the game

above have mathematically a sense? This question is illustrated by the

resolution of algebraic equation by radicals. In the resolution of algebraic

equation, historically or by experience the permissible operations are the

addition, the multiplication, the division in fields and the extraction of

radicals. The Galois theory tells us that in fact allowing these operations

is equivalent to allowing successive cyclic extensions and hence nicely

formulated by the group theory.

As we see below, Painleve's operations (PI), (P2), , (P5) are quite

group theoretic too, despite of their appearance. These operations (PI),

(P2), , (P5) are not only easy operations come into our mind one by

one but also they are related with algebraic groups.

To explain our interpretation of the permissible operations, we need
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some preliminaries.

Let G be a (connected) algebraic group defined over C and we denote

by Q its Lie algebra. The tangent bundle TG of G is trivial and we trivi-

alized it by using right invariant vector fields on G. The trivialization

G χ o = T(G) is done algebraically and canonically. Let F: D -> G be a

holomorphic map of a domain D of C to G (more precisely to the associate

analytic space Gan). The curve F defines a holomorphic vector field X on

F(D). Namely

(2.4) ;w/)

for xe D and for a holomorphic function / around F(x). We have thus a

holomorphic map F: D —> T(G) = G X g. Composing with the projection

A G x ^ 9 , we get a holomorphic map p2° F: D -> g which we denote by

F ' or by dF.

DEFINITION (2.4). We say that F' is the derivative of the curve F and

F is the integral of F'.

EXAMPLE (2.5). (1) The simplest case is the additive group G = Gα

( = C). If we trivialize T(Qa) by using the invariant vector field d/dx with

Ga = Spec C[x], when the function F: D —>G = C is given, F'\ Z)->C is

dF/dz where z is the usual coordinate of D c C.

(2) Let us study the case of the multiplicative group G = Gm ( = C*).

Let us trivialize T(Gm) by using the invariant vector field t(d/dt) with

Gm = Spec C[t, t'1]. Let F: D ->Gm c C be a holomorphic function. Then

F':D-+T(Q is given by z*-»F'(z)(d/dt)FW. To identify Γ ( G J with Gm

X C by using t(d/dt) is to express vector fields by using the translation

invariant base t(d/dt). Hence F: fl->GmXg is z^(F(z\ (F\z)jF(z))

X (t(d/dt))Fω) and dF:D-+C is z>->F'(z)/F(z).

(3) More generally let us study the case G == GLn(C). Its Lie algebra

gln is the Lie algebra of all the raXn-matrices. Let F: £)->GLn(C) be given

by F(z) = (fijiz)). We use as a basis of right invariant vector fields Xij(g)

= Rg^id/dXi^rJ for £ e GLn(C), the translation of 3/3*^ at /n, where xi5

are the natural coordinate system on GLn(C) C Mn(C) and 2^: GLn(C)->

GLn(C) is the multiplication from the right by g. F: D-> T(GLn(Q) c

T(Mn(C)) is given by z^Σkijfij(z)(β/3χij)f(z)' A s i n example (2), we have

to look for a{j(g) such that
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(2.5.a) Σ W ( / - ) = Σ M W ι * ( ( r - ) )> with g = F(z).
us \ dXij /Fω i,j \\ dxtjhJ

Let us calculate Rg*{(dldxi3)Ir) for g = (gkl) e GLn(C).

9 / n \
R, (ΊΓ-)

( Σ Xllcgkm) = Stiglm .

Hence

= Σ
= Σ

3

Therefore (/ί,(*)) = (
Thus F'\ D -> gίn is given by

(4) The case where G is an abelian variety is simple. Let p: Cn —>G

the universal covering of G so that there exists a lattice L c C " with

Cn/L ^ G. Assume that we can lift F to F: D-+ Cn, F is given by

(Λ(*), •••,/»(«)) and hence f ' - > Γ(C») is given by Σ?-i/ί(s)@/9*ι)> i f we

take a usual coordinate system fe, ^2, , zn) of Cn and we use 3/9̂ !, d/dz2,

• , 3/92:n as a basis of translation invariant vector fields on Cn hence on

G. Therefore the map F': D -* g ̂  Cn is given b y ^ (/>

1

/(2), /£(z), . . ., / ^ ) ) .

The derivative of a curve has another interpretation from the alge-

braic geometry. Let U be an afRne open neighbourhood of the unit ele-

ment 1 of the algebraic group G. Let R(D) be the C-algebra of all the

holomorphic functions on D and K{D) the field of all the meromorphic

functions on D.

The group G operates on G by the left multiplication which we

denote by (G, G). Then the curve F defines the vector field Θ(F9 (G, G))

on the if (ZO-algebraic variety G (x)c K(D) by (1.14). We put τ(F) = Θ(F9

(G, G))(l) which is the value of the vector field Θ(F, (G, G)) on G (g)c JSL(D)

at the unit element 1. Namely τ(F) is an element of g (x)c K(D).

On the other hand the derivative Ff: Z) -> g can be regarded as an

element of g ® K(D). In fact, taking a basis {Xu X2i , Zd} of C-vector
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space g, we get an isomorphism g ^ Cd and by this isomorphism F' is a

holomorphic map (/Ί,/2, •••,/<*): Z)—>Cd. Then we consider Σ t = i ^ ® / * e

g (x)c K(D). It is easy to see ΣUiXi®fi is independent of the choice of

basis of g.

PROPOSITION (2.6) With the above canonical identification, we get

Ff = τ(F).

Proof. It follows from the definition that

(2.6.1) XFW - Σ f i ( z ) R F W . X i for a n y fixed z e D .
i = l

Since the Rg*Xu g eG from a basis of the right invariant vector fields on

G, where Rg (g e G) denotes the multiplication by g from the right. It

follows from (2.6.1),

(2.6.2) RFM-I*XF = hflz)Xi if we fix z e D.

Let / be a regular (rational) function in a (Zariski) open neighbourhood

of 1. We operate the derivations in (2.6.2) to /. The left hand side is

for zeD. Therefore RF(g)-i*XF is nothing but θ(F)(ΐ) if we consider z

as a variable. Furthermore if we vary z, J^=ifi(z)Xi becomes Σ$=ifi(z)®Xi

and the Proposition is proved.

Remark (2.7). If we consider the Lie algebra g ~ Cn as an algebraic

variety or if we consider Y = Spec S(g), where S(g) denotes the symmetric

algebra on the vector space g, the above element τ(F) in $(g)K(D) iden-

tified with F': D -> g is nothing but if (D)-valued point P{F') e Y associated

with Ff: D —> F a n = g ^ Cn we had better consider the closed point

P(F') e Y®CK{D) = g®ciί(J9).

In the solution of differential equations it is important to find a small

subfield L of K(D) such that τ{F) e g ® c ̂  More precisely, recalling that

we identify a holomorphic function with its restriction on a subdomain,

we adopt the following

DEFINITION (2.8). Let Df C D be a subdomain of D and L be a sub-

field of the field K(Π) of the meromorphic functions on D\ If there
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exists an element θ e g ®c L such that τ(F) = θ in g (g)c K(D'), we say that

Γ(JF) is L-valued or F'\ Όr —> g is defined over L. Here we consider

g(x)cL C g(x)cif(D0, β ®c K(D) c g <8) if(£>0 by the canonical inclusions

L c if (DO, TO) C if (Z)').

Let if be a field of meromorphic functions on D closed under the

derivation. Let F: D -> G be a if-rational point. Then it follows from

§ 1 that 3F is if-valued.

PROPOSITION (2.9). Let φ: Gx —> G2 fee α morphism of algebraic groups

defined over C and F: D —> Gί be a holomorphic curve. Let φ%: gj —» g2

6e ί/ie morphism of Lie algebras induced by φ. Then we have τ(φ © F) —

^ # ® c K(D)(τ(F)), where φ* ® c ̂ ( D ) : ĉ  (x)c ϋΓφ) -> g2 (x)c ϋΓφ) denotes the

scalor extension of φ*.

Proof. This is a direct consequence of the definition of τ.

We can state Proposition in terms of derivatives.

COROLLARY (2.10). (φ o F); = 9?̂  o F ; .

COROLLARY (2.11). Let C C if C K(D) be a subfield containing C. //

τ(F) e Gi ® c if (D) is contained in & ® c if, then τ(ψλ ° F) is also in g2 ® c if.

Proof. This is an immediate consequence of the Proposition.

The following Lemma is also a direct consequence of the definition.

LEMMA (2.12). Let F: D —> G be an analytic curve and C C K c

6β α subfield of K(D) containing C swcft ί/iαί τ(F) 6 ̂  ® c if. Let g e

G®CK{D) be defined over K. If we denote the adjoint representation

G®CK(D)-^GL{§®CK(D)) by ad, then (adg)(τ(F)) is in &®CK.

Proof. The adjoint representation is defined over C hence over if.

In the sequel it is important to choose a small subfield if such that

LEMMA (2.13). Let F: D -> G be an analytic curve. Let C c if C if(D)

α subfield containing C. 7%β7?, ί/ie following conditions are equivalent.

(1)



40 HIROSHI UMEMURA

(2) For any rational function f on G regular at 1, the derivation

τ(F): OGφcKiD)fί->K(D) maps feOG®cK{D)Λ in K.

(3) There exists a basis {Xu X2, , Xd) of Q such that

F\z) = Σ fi(*)Xi with fix) e K.

(4) For any basis {Xu X2y -, Xd} of g if

£ thenU{z)eK,

Proof. The equivalence of (1), (3) and (4) follows from the proof of

Proposition (2.6). The equivalence of (1) and (2) is deduced from the

definition.

LEMMA (2.14). Let G be an algebraic group defined over C, Q its Lie

algebra and B c C a domain. Let f: D —> g be a holomorphic map.

Then there exists a curve F: D —• G such that f is the derivative of F.

Let H: D -> G be another curve such that ΈLr = /. Then there exists an

element geG such that H = Rg°F, where Rg: G->G is the right multi-

plication of g.

Proof. Let us fix a point x0 e D. Let us look for F: D —> G such

that (a) F(xG) = 1 e G and (b) Ff = /. Then the condition (b) is stated by

differential equations ψ^z) — Φi(φx(z)9 ψ2(z), -,φn(z)) (l<.ί<^ή) and (a) is

equivalent to giving the initial conditions φt(xQ) = 1 l^ί^n. This shows

the existence. As question is local, let us take a local coordinate around

1 e G. Now let geG. Then Rg o F is an integral of /. In fact

X (ω) - Km 1<R,°F(x + h)) - ψ(RgoF(x)) __ R χ ( )

Λ-0 h

Let Du D2, •• , Dn be right invariant vector fields on G and XFix) =

/ i,=i aλxjIJi. l n e n

Σ
i l

Hence Rg°F is an integral of / for any geG. Let now H be another

integral of /. Let g = i/(x0). Then i7(x0) = RgoF by the uniqueness of

the solution of a differential equations satisfying the same initial condi-

tion.
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We want to introduce an operation Q and shall show that the oper-

ations (PI), (P2), , ,(P5) are equivalent to the simple operation Q.

(Q) Let G be an algebraic group of dimension n defined over C and

g be its Lie algebra. Let fuf2, , / β e S be holomorphic over a domain

D. Choose and fix a isomorphism g = Cn of vector space and let f: D->

Cn = g be a holomorphic map. By Lemma (2.14) there exists an integral

F of /. For a rational function φ on G, we get a new function φoF: D

Starting from fu f2, ,fn and an algebraic group G, we get a set of

meromorphic functions {φoF\φ e k(G)}. Notice that the set of meromor-

phic functions {φ o F\ φ e k(G)} is independent of the choice of the integral F

by Lemma (2.14). We set Q(fu /„ . , fn; G)(S) = Q(f; G)(S) = {φoF\φe k(G)}

or we denote it simply by Q(S). We say that an element of Q(f; G)(S)

obtained from S by the operation Q with respect to / and G.

We can formulate the operation Q in a completely algebro-geometric

language.

DEFINITION (2.15). Let if D C be a field of meromorphic functions on

D closed under the differentiation and P: Spec K -• G be a if-valued point

of an algebraic group over C. P define a holomorphic curve F: U -> Gan

such that P(F) = P. Now as we have seen above F gives dF e g ® c K

where g is the Lie algebra of G. Since dF is determined by P: Spec if ->

G, we denote it by dP.

Let S be a set of known meromorphic functions on a domain D.

Let if be the field of meromorphic functions generated over C by the set

S. Let L D C be a field of meromorphic functions on a subdomain of D.

Then the field L consists of new known functions from S by the operation

Q if there exist a L-valued point P: Spec L -> G of an algebraic group

over C such that (1) P induces an isomorphism between the residue field

C(P(Spec L)) and the field L, and such that (2) dP is if-valued.

In fact, let F: Όf -> G be a holomorphic curve such that P(F) = P.

By the hypothesis (2) dF: D' -> g is defined over if. Then L coincides

with K({φoF\φeC(X)}) by (1).

DEFINITION (2.16). We denote by SP (resp. SQ) the set of meromor-

phic functions obtained from S by finite iterations of the permissible

operations (O), (Pi), , (P5) (resp. (O) and (Q)). In what follows, we

always mean by an iteration of the operations a finite iteration.
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Remark (2.17). The sets SP and SQ do not satisfy the condition (2.1).

But a subset of SP (resp. SQ) obtained by a finite iteration of the opera-

tions (0), (PI), ,(P5) (resp. (0), (Q)) satisfies the condition (2.1).

Remark (2.18). The operation Q was considered by Kolchin [Ko],

Chap IV from a different view point. Let K be a differential field of mero-

morphic functions. In his language the differential field L = K(KQ(f; G)>

generated over K by KQ(f; G) is called a G-primitive extension. It follows

from [Ko] that L is a strongly normal extension of K. Conversely by

[Ko] a strongly normal extension of K is obtained by a combination of

G-primitive extensions. Therefore KQ = {/|meromorphic function on a

subdomain of D depending on / such that / is contained in a finite tower

of strongly normal extensions; there exist fields Ko = K C Kx c K2 c

C Kn of meromorphic functions on a subdomain of D such that Kt is

strongly normal over Ki_x for 1 ^ ί ^ n and x e Kn}.

EXAMPLE (2.18). Let us write down explicitly the operation Q for

the algebraic groups in (2.5).

(2.18.1) Take G = Gα ® Ga. Let fu f2 be given functions on D. If we

admit the golden rule (0), then f[ and f'3 axe known functions. Consider

now /: D -> C Θ C = Lie algebra of G defined by z ^ (f[z), f'2(z)). Then

z •-> F(z) = (/i(^), /2(^)) is an integral of /. Let (x, y) be the coordinate on

G α x G α . Then (x + y)oF = /, + /2, (xy)oF^fίfι and if /2 ^ 0, (xfr)of

= Λ//2. Therefore Λ + /2, /t/2, /J^ are obtain from S = {/l5 /2} by the Q-

operation and (0). Namely if we admit (0), the permissible operation

(PI) is a special case of the operation Q.

(2.18.2) Take G = Gα and let / be a given function on a domain D.

An integral F of /: Z)~>C is a quadrature fdz as we saw in example

(2.5.1). Thus in the definition of Q, if we take the coordinate x of Gα.

xoF — F(z) is a newly obtained function by the operation Q. In other

words, the quadrature is a special case of the operation Q.

(2.18.3) Now let us assume G = Gm and a holomorphic function

/: D -» C is given. As we saw in example (2.5.2), an integral is a solu-

tion of the differential equation F\z)lf(z) == /(-ε). Hence if we take the

coordinate x of Gm = Spec(C[x, x"1]) as φ in the definition of the opera-

tion Q, we get x o F = ίX-ε). Therefore for known /, we can solve the

homogeneous linear differential equation y/ = /.y.
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(2.18.4) More generally if take G = GLn(C), then it follows from

example (2.5.3) that for known functions a^iz): D - > C , we can solve the

linear differential equation (y^) = (yij)(atJ(z)).

(2.18.5) Let us now assume that G is an abelian variety as in

example (2.5.4). Let /*: D —*C (1 <* i ^ n) be holomorphic functions. An

integral of (Λ,/2, •••,/„): D -* g ^ CTC is given by

Therefore using the notation of example (1.2.5), if we take a rational

function φ on G, ψopoF is a function obtained by the operation Q. In

particular, let gt: D —> C be given holomorphic functions. If we put

gf. ~ f{ (l <; j <: π), then we can take F = (ft, ft, -,gn). Hence for a

rational function ψ on G φopoF = φ°P°(gι, g2, ,^n) is a new function

obtained by Q. We have proved that the operation (P4) is a special case

of the operation Q if we allow the operation (0).

THEOREM (2.19). Let S be a set of meromorphίc functions on a domain

D c C . Then SP = SQ.

Proof. By the operations (Pi) and (P3) the constant functions are

in SP. For the same reason, examples (2.18.1) and (2.18.2) show that SQ

contains all the constant functions. Therefore we may assume that S

contains the constant functions.

Now the inclusion SP C SQ follows from example (2.18), what we

have just shown above and from the following

LEMMA (2.20). Let a^x), a2(x), , an(x) be a holomorphic functions

on a domain D. Then the algebroid function f(x), or a solution of an

algebraic equation fn + aj71'1 + + an — 0 is a solution of a linear

differential equation dmf[dxm + bι(dm~ιfldxm-i) + + bm = 0 (m ^ 1) such

that bieK= C(αt(x), α2(x), . , αn(x), α((x), cφo\ -,<(*), α'/(x), •), 0 ^ i

^ m; namely bt is rational function of a/s and their derivatives. In par-

ticular, the permissible operation (P2) is a consequence of the operations

(0), (PI), (P4).

Proof of Lemma. Let us fix a point £„ e D such that the equation

Xn + OjfaXX-1 + + αn(«0) = 0



44 HIROSHI UMEMURA

has a simple root α0. Taking a small circle cao centered at a0, we can

express

Lf t
Γ + ax{z,)tn+ι + + αn(2b)

(cf. for example Chap VIII, § 6, [Di]).

Therefore we may assume

t zir-1 + (n -
tn + ax{z)tn'1 + + an(z)

Let us look for a homogeneous linear differential equation satisfied by

f(z) with coefficients in K. We put F = F(z, t) == Γ + afc)?-1 + +

αn(ί). We have

dz 2πi Je.o F(z,tY

where

Ft = — , F2 = — and Ft<z

We work in the polynomial ring K[t], As we may assume the equation

tn + axt
n~x + + an = 0 is irreducible in C(au α2, , an)[t], we have

(jPί, F) = 1. Namely there exists polynomials A(£), JB(£) in K[t] such that

A F + 5 ^ = 1. Let V= {(G/Fm)dt\G e K[x]}, which is a K-vector space

of rational 1-forms on the affine line A^. We need

SUBLEMMA (2.20.1). Let G(t)eK[t] and m be an integer Ξ> 1. Then

there exist a polynomial H such that deg, H ̂  n — 1, (G/Fm)dt — (HjF)dt

is exact: Namely there exist an IeK(t) such that (G/Fm)dt — (H/F)dt =

di (=(dl!dt)dt).

Proof of Sublemma. Let φ e K[i\. Then we have (φΊFm) = ψΊFm +

<p( — m)(F'IFm+1), where the symbol ' means djdt. Therefore

(2.20.2) -^—dt = - ^£^-dt mod (d(K(t))).

Fm Fm+ί

Hence if m ^ 2, we get

G dt = (AF±BnGdt = _^_dt
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d t m o d

By repeating this, we can find a polynomial IeK[t] such that ((G/Fm) —

ljF)dt is exact. Now if we devide / by F, we get

-Q—dt =Ξ(J + —\dt mod

for a suitable polynomials J,HeK[t] with degtH^ n — 1. Since Jcfa is

exact, Sublemma is proved.

Now let us come back to the proof of the lemma. Let us put f(z) =

t(FtjF)dt. Then we have

dίf - -®±-dt with Gt.e K[t].
dz* F i + 1

Therefore by Sumlemma (2.20.1), there exist Ht e K[t] (0 ^ ί ^ n) such

that degί Hi <L n — I and such that

m o

As the dimension of the iί-vector space {H/F\He K\t], άegtH ^ n — 1} is

n, there exists a non-trivial linear relation between n + 1 elements

and we have non-trivial linear relation

(2.20.3) βo(zyξ£- + fr(z)-^L + + )8n(«)/ = 0 mod (d(K(t))),

with βj(z) € iί. The integration r applied on (2.20.3) now gives the
2TΓ£ J c α 0

lemma since for any g e d(K(t)) — - gdt = 0.

2̂ :i J e«0

Now let us prove SP Z) SQ. Let us study the operation Q for a

linear algebraic group G and show that in this case the operation Q is

the resolution of a linear differential equation as in (P5) and hence is a

special case of permissible operations. In fact, we fix a closed immersion

p: G -• GLm(C). Let fuf2, -. ,fneSbe given. Let (Λ,/2, . , / n ) : J5 -> CΛ

^ g be a holomorphic map to the Lie algebra g and F: D -> G be an

integral of (/h/2, ••-,/„). Let us denote by if the composite ^ F : D ->

GLm(C). We decompose the Lie algebra gtw of GLm(C) as the direct sum

of vector spaces gίm = g φ V. Then the derivative H' of H is given by
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(fuL •• ,/»,0, . - . , 0 ) : D - V = β r n .

Thus by the definition of the operation Q for (fu f2, -,/„, 0, , 0)

and G = GLm(C), for any rational function φ on GLm(C), 9? © ίf: Z) ->

GLm(C) •••-» C is a new known functions. Since φo H = φopoF and any

rational function on G is the restriction of a rational function on GLm(C),

we have proved the desired result in example (2.18.4). We have already

seen in (2.18.5) that the operation Q for an abelian variety is equivalent

to (P5) combined with (O).

Let us now study the general case. It is known that their exists a

closed, connected normal linear subgroup H of G such that the quotient

GjH is an abelian variety A:

(2.21) 1 > H - U G -^-> A > 1

(see for example [B]).

We show using this structure theorem that the operation Q for G

reduces to the linear case and the abelian case. Let /i,/2, •• , / ί l e S be

given holomorphic functions on D such that we get / = (/Ί,/2, -,fn)- D

- > C n ^ g . Let F be an integral of / = (Λ,/2, . , / n ) : D -> g. Then

T = poFis an integral of p*of; D -» g —• α by Proposition (2.9), where

we denote by α the Lie algebra of A. Since p*°f: D—> a is written by

using functions in C(fuf2, -,/„), for any rational function φ on A φo T

= φ o (p o F) are known function by the permissible operation (P5). To

make the proof comprehensive, let us first assume that there exists a

rational section s of p: s is a rational map of A to G such that p o s = Id4.

We may assume that s is regular on T(D). Let us put U = s o Γ: D —•

A -* G. Then U has the following properties:

(2.22.1) for any rational function ψ on G, -ψ o U = ψ o (s o J7) = (ψ o s) o 71

is a known function by the operations (0), (Pi), (P5) from S;

(2.22.2) U-λF(z)= U(zYx'F(z) (the - 1 and the multiplication are

taken with respect to the values in G) is contained in H.

SUBLEMMA (2.23). The derivative of UιF: D-+H is given by known

functions obtained from S by permissible operations (O), (PI), , (P5).

Proof of Sublemma. We may assume that U: D—>G factors through

an affine open set X c G. Let X <=—> A1 be an embedding given by x »->

(*,(*), z2(x), -, sz(s)). Then by (2.22.1) each coordinate of U: D->X'=—>
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A1 is a known function by (0), (Pi), and (P5). Thus U'1 = V is also
expressed by known functions since G is an algebraic group over C and
hence also the derivative V. Therefore we may assume replacing D that
there exists a subfield K c SP consisting of meromorphic functions on D
such that τ(V), τ(F)eK®c§ and V defines a if-rational point P(V) of
G ® c K(D).

We show that the derivation τ(VF): 0G®cK{D)Λ -+ K(D) maps feOOΛ

to if. In fact, by definition

= Urn / ( F ( g + h)F{z + hiFjzyWjz)-1) - f(V(z

h

The latter term is equal to τ(V)(f) hence in K by Lemma (2.13). It
is sufficient to show that

lim / h)F{z

is in if. First we show that

(2.24) lim
Λ-0

= lim

To this end it is enough to show

(2.25) f(V(z + h)F(z + h)F(z)-*V(z)-*) - f(V(z + h)V(z)-*)

- f(V(z)F(z + h)F(z)-'V(z)-') + /(I) = U

X (holomorphic function in (z, h) e D X E

where E is a neighbourhood of 0 e C Let us put

, t, h) = f(gV(t)F(t + h)F~Kt)V-\t)) - f(g)

for g i n a small neighbourhood W of 1 e G. φ(g, t, h) is a holomorphic func-
tion in g, t, h. Since φ(g, t, 0) = 0, φ(g, t, h) = hφ(g, t, h) with φ holomor-
phic. The left side of (2.25) is equal to

<p(V(t + h)V(t)-\ t, h) - ψ{\, t9 h) - h(ψ(V(t + h)V{ty\ t, h) - #1, t h)).
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Since

φ( V(t + h) V(t)-\ t, h) - φ(l, t, h) > 0 as h > 0 ,

φ(V(t + h)V(ty\ t, h) - φ(l, t, h)

h

is holomorphic and hence

φ(V(t + h)V(t)-\t,h)-φ(l,t,h)
W

is holomorphic as desired. It remains to show that

lim fWzW* + Vm-'Viz)-1) - AD c K
7ι-0 h

V: D —> G is a if-valued point and τ(F) is in g (g)c K. Therefore

Ad V(z)(τ(F)) is in g ® c K by Lemma (2.12).

/CD

lim fWWl? +

- lim

It follows from the sublemma and from what we have shown for

linear algebraic groups that φ(U~1-F(z)) is a known function by (O), (PI),

• and (P5) for any rational function φ on H hence on G. In particular,

we have shown that if take an affine open set X C G such that X c=—> A1

is given by x *-* (z^x), z2(x), , zt(x)), each coordinates of U"ιF (resp.

Z7"1)' D-^X^—> A1 is given by a known function by the permissible

operations. Since G is an algebraic group, each coordinate of the prod-

uct F — U(U~ιF) is also written by a known function by (PI). Since a

rational function ψ on G is a rational function of 2/s, ψ o F is a rational

function of the (φ o zj's hence known function by (PI).

Let us now treat the most general case where we can not find a ra-

tional section s of p. We know that there exists an irreducible (reduced)

subvariety B of G such that the restriction p \ B: B —> A is finite. Since

the extension k{B)jk{A) is algebraic and since we are allowed to use

operation (P2), for any rational function φ on B, multi-valued function

φo(p\B)~1 o(poF) is a known function by permissible operations. Since

for any rational function ψ on G its restriction on B is a rational func-
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tion on JB, therefore po(jp|JB)-1o(/>oJF
?) is a known function. We have

thus proved that there exists a holomorphic map U: D -> G with the fol-

lowing properties:

(2.26.1) For any rational function ψ on G, ψ o U is a known function

by the operations (O), (PI), , (P5).

(2.26.1) The image of U'ιF: D -> G is contained in if.

Now the argument of the preceding case gives the Theorem.

In view of Theorem (2.19) it is natural to adopt

DEFINITION (2.27). Let C be the set of constant functions on the

plane C. We call an element of C P = CQ a classical function.

The polynomials of one variable, ex, log*, the Weierstassian func-

tions tf, ζ, a, the hypergeometric function, and the Bessel functions are,

for example classical functions.

§ 3. Solvability theorem of Painleve (finite type case)

We need algebraic tools to make the argument rigorous and com-

prehensive. So let us start with preliminary results in the algebraic

geometry. Let R be a C-algebra of hoJomorphic functions on a domain

D in C We are interested in the local properties of holomorphic func-

tions. Hence in the following argument whenever necessary we replace

ΰ by a subdomain of Zλ Let fx(t; xu #2, , xn), /2(ί; xu x2, , xn), ,

fm(t; xu x%y , xn) e R[xu *2, , xn] be polynomials with coefficients in R,

where we denote by x the coordinate on D. We denote by X the ana-

lytic subspace in D X Ac defined by fuf2, ••-,/«*. namely X = {(x zi, z*

•• , 2 j e ΰ X Anc\fi(x; zu z2, , zn) = 0 for 1 < i ^m}. We have a mor-

phism p: X - > D induced by the projection. Replacing D by a small sub-

domain if necessary and adding finitely many polynomials to {/Ί,/2, -,/„}»

we may assume that X is reduced. We denote the fibre p"\x) by Xx for

x € Zλ We say that X is defined over JR.

Let K be the quotient field of R. If an element / of a over field of

K and if / is algebraic over K, then there exist α0, au α2, , aneR such

that α0 ψ 0, αo/
n + aj71-1 + + aj = 0. Therefore / can be considered

as an algebroid function. In particular by iterating operation (P2) and

by arithmetic operations (PI), we get an algebraic closure K from K

(see §42).

We need
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LEMMA (3.1). We keep the notation above. If we replace D by a suita-

ble, subdomaίn D\ there exist a finitely many elements bu b2, -^bteK

and analytic subυarietίes Yu F2, , Ys of Π X A£ defined over R =

R[bu b2y , bt] such that Xx = (Jί-i Yiχ C f l ' x A ; and the Y/s are the

irreducible components of Xx for any x e Π.

Proof. Since only finitely many //s are involved, we may assume that

the ring R is of finte type: R = C[cu e2, , cd] where ci is a holomorphic

function on D. Then Spec R C Ad

c and the holomorphic map φ: D-> Ad

defined by ψ{x) = (c^x), c2(x), , cd(x)) e A£ factors through Spec R c A£

and hence defines φ: D—>-Speci?. It follows from Lemma (1.25) of Part I

that the image φ(D) is not contained in any closed algebraic subvariety of

Spec R except for Spec R itself. Let us now put X — {y e Spec R X Ag =

An

R\flt)yuy2, ,yn) = 0 for 1 < i < m}. Then X= & XSpecRD. Let us

now consider 2£ X R K = 9£R and decompose the variety 2£R over K to the

irreducible components %R = <WX U ̂ 2 U U &s C Aj. Then yl9 y2, , ys

are defined over a certain finite extension Rf = i?[61? 62, , bt] and they

are absolutely irreducible. Therefore there exists a Zariski open subset

φ Φ U of Spec R such that ^ is irreducible and &x = IJLi ^ for any

x 6 U for 1 < Ϊ < S. Now we have R = R[bu 62, , bt] = C[cx, c2,, ,

d̂» î» 2̂, , &z] and bu b2, , &i5 cu c2, , cd are holomorphic functions

over a certain subdomains. As we remarked above, if define φ: Π ->

Spec i?' as for D and i?', the image φf{Df) is not contained in any proper

closed algebraic subvariety of Spec R. In particular φ(Π) ΓΊ Uψ 0 . Hence

if we put Ff = f f X Ό. Spec i?', y satisfies the requirements.

Let R be a C-algebra of holomorphic functions on a domain D in C.

Let F(t; Xo, Xu X2, , Xn) e i?[X0> -XΊ, , Xn\ be a polynomial with coeffi-

cients in R, with dF/3Xn -φ. 0. We consider an algebraic ordinary differ-

ential equation

(3.2) F(t]y{t\y'{t\ ...,y«)(ί)) = 0.

It follows from the argument above that using permissible operations (O),

(PI), , (P5), we may assume that the subvariety Xto = {(z0, zu , zn) e

Ac I F(t0; 20, zl9 -, zn) = 0} of A n is irreducible for any tQe D and F is abso-

lutely irreducible. We denote by X the analytic variety {(£; 20, 2i, , 2;n)

e ΰ X A n | F ( ί ; zo,zu , ^n) = 0}. Let X = {(f; yo,y i, . ., yn) e Spec i?X

Ag|jP(ί;3Ό> JΊ> •••>J/n) = 0}. We have a morphism q: X -> Spec R and as

we have seen above X = X XD Spec i?. We call X the family of alge-
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braic varieties associated to X. We denote by X° the open set {(t; z0, zl9

• , zn) e X\ (dF/dXn)(t; zθ9 zl9 , zn) Φ 0}. Then X° is a complex manifold.

The general solution of the differential equation (3.2) is equivalent to

finding the solution (t; fo(t),/Ί(ί), ,/π(0) = (t\ %o, Xu , xn) of the follow-

ing regular system of Pfaffian equations of corank 1 on 1°;

(3.3) dxt = xί+ιdt (0 < / < n - 1)

dxn = A(t;xO9xl9 ,xn)dt

where

(cf. § 1). The dual to (3.3) is the vector field

(3.4) l 9 J
Γα σΛ 0 σAi σAn_! c?Λn

Namely let y(t) be a solution of the equation (3.2). The integral curve

(t;y(t),y'(t), , ;y(n)(*)) of the Pfaffian system (3.3) defines the vector field

(3.4) and Δ(F) = 0.

Replacing D by a subdomain, we may assume that for any t0 e D,

there exists a ponit (s0, zl9 , zn) e An + 1 with F(t0; zθ9 zl9 , zn) = 0 such

t h a t (dFjdXn)(U\ s 0 , z l 9 , s n ) =£ 0. L e t W = {(s 0, z l 9 9 z n ) e A n + 1 \F(t0; zθ9 z u

• , zn) = 0, (dF/dXn)(t0; so, z1? , sn) ^ 0}. If (z0, «i, , ̂ .) e W c Z ί 0 , then

X is non-singular at (ίo; z0, z1? , zn) and there exists the unique holomor-

phic solution y(tQ; z0, zl9 '-',zn;t) of the differential equation (3.2) with

y { ί ) ( t Q ; z 0 , z l 9 , z n ; t0) = z t f o r 0 < i < n . T h e y{ί)(to; z09 z l 9 > - 9 z n ; t ) a r e

holomorphic with respect to (zθ9 zl9 , zn) e W.

We denote by X (resp. 3F9 Xt) the projectification or the closure of

I c f l x A " (resp. X c Ό X An, Xa C An) in ΰ X P n (resp. Z) X P n , Pπ).

When Df is a connected open subset of D, we denote by X' the fibre

product X XDΠ. lΐ R is an over ring of R, we denote by X' the scheme

X ®R R over #' .

LEMMA (3.5). The following conditions are equivalent.

( i ) There exist a point tQ e D, an open neighbourhood D' of t09 a

non-empty open set V of Xto X D and polynomials Ct(t; xθ9 xu , xn)9

Di(t; x0, xl9 , xn) in x0, xu , xn with coefficients in a ring of holomor-

phic functions on D' such that

(a) if (t; so, zu . , zn) e V, then (3F/dXn)(t,; z0, z,9^ 9zn)φ0 and
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(b) the solution ;y(ί)(£0; 20, zu , zn\ t) is regular at (t; zθ9 zu , zn) e V

(0 < i < ri) and such that

(c) y{i)(t0; zθ9 zl9 - ,zn;t) = (Ct(t; zθ9 zl9 , zn))/(Dt(t; *0, zί9 , sn)) /or

αrcy (ί; 20> zl9 9 zn)eV and for all 0 < ί < n.

( i i ) There exists a point t0 e A ατι qpβλi neighbourhood D' of £0, α non-

empty open set V of Xt0 X D and polynomial C(t; xQ, xί9 , x j , £)(£; xo> %ι,

• , xn) in x0, Xi, - • , xn yoith coefficients in a ring of holomorphic functions

on Π such that (a) if (t; zQ, zl9 , zn) e V, then (dFldXn)(t^; z<>9 zl9 , zn) Φ 0,

(b) the solution y(t0; z0, z l 5 , zn; t) is regular at (t; z*9 zu - 9zn)eV and

such that (c) y(tQ; zQ) zu . >9zn;t) = (C(t; zQ9 zί9 -, zn))/(D(t; z09 zu 9zn))

for any (t; z09 zί9 ,zn)e V.

(iii) There exist a point t0 e D, an open neighbourhood Π of t0 such that

if we denote by Z the set {(t; x09 xl9 , xn,y(t0; x09 xu , xn; ί), y^fa; xQ9 xl9

• , χn; t), - , y w ) ( ί 0 ; χo, *,•••,*»; 0) e {U x xt0) x ^ X'KdF/dXM; x0, xu

-• ,Xn)φO9 y 0 ( ίo; Xo, Xi, , xn; 0 is regular at (xQ, xl9 > 9xn;t)eXto X ΰ '}

ίΛe Zariski closude Z a (D' X XtQ) X D. X' c D' X X ίo X X7 de^^es α 27-

bimeromorphic correspondence of Π X X ί 0 α/irf X ' (α bίmeromorphic map

commuting with the projections onto D and inducing a bimeromorphic cor-

respondence between the fibres as in Part I, § 1).

Proof, (ii) is a special case of (i). By differentiating with respect to

t} (ii) implies (i). Therefore (i) and (ii) are equivalent. We may assume

that the ring R which contains the coefficients of the differential equa-

tion (3.2) is of finite type over C If the condition (i) is satisfied, then

denoting by R' the ring obtained by the adjunction of the coefficients of

C/s and Dt's to R, we get a rational map Φ: XtQ X Spec Rf • X ®R R

= X' over Spec R\ We show that Φ"1 is also rational. Let 2 C Xt X

Speci?' Xspeci*'^ C Xt0 X Speci?' X f be the graph of Φ. We have to

show that the projection p = p 3 : ^ —• $£' is birational. Let (xQ, xu , xn)

e Xί0 with (dF/dXn)(t0; x09 xίf , jcn) Φ 0. Then around (ίo; x0, xu , x«) 6 X

for the usual topology, the solution y(ί0, x91), yω(tΰ, x,t), , y(7l)(ί0> x, 0 or

Φ gives local analytic isomorphism between X and Xίo X Zλ Therefore

the map p : .2Γ ~> # is dominant by Lemma (1.25) of Part I. It is sufficient

to show that p is finite and of degree 1. To this end, it is sufficient to

show that there exists an open set U of Xίo X Spec R such that for a gen-

eral point zetF' we have Φ~\z) Γ) U consists of one point. Since X c f

is not contained in any proper Zariski closed subset of X by Lemma

(1.25) of Part I, it is also sufficient to check this for a dense subset of X.
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L e t (MO, u u , u n ; U) e X c A n + 1 X Π w i t h QF/dXJfo; u 0 , u u •--, u n ) Φ 0

and D%(U\ Wo» uu , un) Φ 0 for 0 < i < n. Let us put Ϊ7 = {(x, s) e Xto X

S p e c i f D t ( s ; xl9 *„, , *«) =£ 0 and (dF/dXn)(s; x0, x l5 , x j Φ 0}. Let

(x, sO = (x0, *i, , *»; S!>, (2, s2) = (z0, Zi, , *»; ̂ ) € U with Φ(x, Sj) = Φ(z9 s2)

= (w, t) e X Then 5t = s2 = ^. We notice that since

Dai; w0, wl9 ", ιυn)

on an open set V. Therefore if for (vo,vuv2, , vn) e Xto9 we have (1)

Difo; ϋ0, ΪΛ, , v«) Φ 0, 0 < i < n and (2) (3F/dXn)(t0; ι;0, i;lf , vn) ̂  0,

then it follows from the unicity of the solution of (3.2) that

y(1)fo; uo, ^ , ̂  0 = ^ / ^ ^ ^ ^ H , o < i < Λ .

By the uniqueness of the solution of the differential equation F = 0 at

t = ίj with initial conditions M0, UU , wn, we have y(ί)(tΰ, x, ί) = y(ί)(ί0, z, t)

around t = ^ hence for any te D'. Therefore if we put £ = tQ, we get

x = z. Hence 3Γ c (Zίo X Spec J?0 x f is a birational correspondence.

Now (iii) is obtained by taking the fibre product with respect to the map

jy -> Spec R'.

Assume now that the condition (iii) is satisfied. We denote Π by D

again. Since Z c f l x ^ x X c f l x P ^ x P " 1 , we may assume by

the relative G.A.G.A. (cf. [Gl]) that Z is defined by polynomials Fx(t\ U, V),

F&; U,V), - -, FN(t; U, V) homogeneous in ί / = (E70, Uί9 , Un+ί) and

V = (VQ, Vl9 - - , Vn+1) with holomorphic coefficients. Let R be the ring

extension of R by the adjunction of coefficients of Ft (1 < i < N). Hence

Rf is of finite type over R, We can thus define the scheme ϋΓ —> Spec R

associated to Z. We have a inclusion i : f - > P n + 1 x P K + 1 X Spec R. The

projection pn: Pn+ί X Pn+1 X Spec i?' -• P w + 1 X Spec R onto the product

of the first and the third factors defines pl3°ί: ^ —>Pn+ί X Spec R which

factors through XtQ <g)c R C P m + 1 X Speci?'. Hence we have a Spec R-

morphism /: iF -> Xίo ® c R of algebraic varieties over C. The restriction

of / to D -» Spec JS; is the projection Z-+D.

> Spec R
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The hypothesis shows that the fibre f~\x) consists of one point if x is

in a non-empty open set for the usual topology of Xto (x) D which is not

contained in no Zariski closed set of the algebraic variety XtQ (x)c R

by Lemma (1.25). Therefore it follows (for example from [M]) that the

degree of/ is equal to 1; / i s birational. Let Kf be the quotient field

of R. The rational function field C(iΓ) of the algebraic variety ^ is

K'(uJuQ, ujuo, , un+1/u0, υJvQi v2/vQ, -,υnJvQ), where ut/u0, Vj/v0 are re-

strictions of rational functions UJUθ9 Vj/V0 on R X P n + 1 X Pn + 1 to 3T.

The rational function field of the algebraic variety 2£ %R R over C is

K'(x0, xu - , xn) where xQ, xu , xn are the restrictions of the coordinates

on An + 1. We have shown that the map

(X X , , ,
u0 uQ u0

is an isomorphism of the field. Therefore vjvo,v2/vo, '' 9vn+jυo can be

expressed as quotients of polynomials in xo> Xu * > χn with coefficients in

R. I n p a r t i c u l a r y(tQ; xQ, xu , xn; t), ya)(t0; xΌ9 Xi, , xn; t), yin)(t0; x0, xl9

• , xn t) axe of this type and the condition (i) is satisfied.

The proof of the Lemma shows

COROLLARY (3.6). The conditions (i), (ii) ααnd (iii) are equivalent to

the following.

(iii)7 There exists a point t0 e D, an open neighbourhood Π of t0, a

meromorphic map Φ: Dr X Xto -> X' making the diagram

D'χXtQ + Z'

Pl \ /

u
commutative such that Φ coincides with the set Z of the condition (iii) on

a non-empty open set of (Df X Xto) XDX;.

COROLLARY (3.7). Assume that the equivalent conditions (i), (ii) (iii),

(iii)7 are satisfied. Let K' be the quotient field of R. Then 2£ ®R. Kf c

(Xt0 ® c R) χ Λ / <Γ) ®Λ/ K
f = (Xt0 ® c R ®R, Kf) X κ. T ®R, K' defines a Kf-

birational isomorphism of K'-algebraic varieties Xto ® c K
f and 2£' ®R, K''.
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It follows from the Lemma the following Corollary which explain the

geometric meaning of the Lemma.

COROLLARY (3.8). If the equivalent conditions of Lemma (3.5) are sat-

isfied, then there exists a subdomain Df of D such that the solution

y(t0; x0, xl9 - , xn; t) of the differential equation (3.2) defines birational corre-

spondences between the fibres over Df of X. Namely, let φa<b: Xa •-» Xb be

defined by φa>b(x0, xu , xn) = (y(a; x0, xl9 , xn; b), yw(a; x09 xl9 , xn; b),

• , yin)(a; xθ9 xu , xn b) e Xb for xQ, xl9 , xn e Xa. Then φa,b is bira-

tional for a, b e H.

Df

Proof. Z induces bimeromorphic isomorphism φtQt: Xt0 - •+ Xt by (iii)

for any t e Π. By G.A.G.A. φtQt is an birational isomorphism of XtQ and

Xt. By the unicity of the solution of the differential equation we have

(3.8.1) y(a; x0, xl9 , xn; b) = y(t0; φJ^Xo, xu ,

o> χu ' ' > zn) ̂  Xa and the condition (ii) is satisfied.

for a general

PROPOSITION (3.9). If the equivalent conditions (i), (ii), (iii) and (iii)'

are satisfied, then for any point tγ e U and the neighbourhood Π of tx the

conditions (i), (ii), (iii) and (iii)' are satisfied.

Proof. This is a consequence of (3.8.1) in the Proof of Corollary (3.8).

Now we can state

DEFINITION (3.10). When the equivalent conditions of the Lemma

are satisfied, we say that the general solution of the differential equation

(3.2) depends rationally on the initial conditions.

It follows from Proposition (3.9), the conditions (i), (ii), (iii) and (iii)7

are independent of the point t0. Therefore we sometimes do not make

the reference point tQ clear and we can replace D by any subdomain

without loosing the conditions (i), (ii), (iii) and (iii)7.
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Painleve's theorem states that starting from the ring R by the per-

missible operations of § 1, we can solve the differential equation (3.2) if

the general solution depends rationally on the initial condition, where

we denote by R the ring generated over C be the coefficients of the

polynomial F (Corollary (4.6)). Before we prove this theorem of consider-

able depth, we prove a special case which is a direct consequence of

Theorem (2.19).

Let X = Spec C[zu z2, •• , 2 j be an affine algebraic variety over C,

D C C a domain and K a field of meromorphic functions on D. Let

θeΏerκ(K(X®cK), K(X®CK)). Then we can associate the system of

Pfaffian differential equations Pf (θ) on D X X as in § 1. Namely let θ be

given by

M L 5 ^ ^ for 1 < i < n .θ(Zi) ^

Gi(t; zu 22, , zn)

We consider a system of Pfaffian differential equations

(3.11) dzt = l^^li^-^λ2^-dt on D X X.
Gi(t; zu z2, - - , zn)

Replacing D be a subdomain if necessary we may assume that the coeffi-

cients of the Fi and Gt are regular on D. Replacing D by an appropri-

ate subdomain, we may assume that for any toeD, F(t0; Zu Z2, -- ,Zn)

is not constantly equally 0 on X. We look for solutions of (3.11), t ->

(*; yi(t),yt(t), -,yn(t)) 6 D x X c D X An, where X c An is defined by

C[ZU Z 2 , , Zn] -• C f o , 2 2 , , z n ] w i t h Zt -> z t . L e t toeD a n d ( z u z 2 ,

- , zn) e X be a non-singular point with Gt{U\ zu z2ί , zn) Φ 0. Then

there is the unique holomorphic solution ΰ - > ΰ χ l , / —> (t; yx(t), y2(i),

--,yn(t)), with yM = zi for 1 < i <n. We denote yt(t) by yt(to; zίf z2,

- , zn; t), which is holomorphic with respect to (zu z2, , zn) e l

LEMMA (3.12). The following conditions are equivalent.

( i ) There exist a point tQe D, a subdomain D' of D containing t09 a

non-empty open set V of X (for the usual topology) consisting of non-

singular points and polynomials Ct(t; Zu Z2, , Zn), Dt(t; Zu Z2, , Zn) in

Zu Z2, '--,Zn with coefficients in a ring of holomorphic functions on Π

such that (a) if (zu z2, , zn) e V, then Gi(t0; zu z2, , zn) Φ 0 for 1 < i < n

and such that (b) for (zu z2y , zn) e V,
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Π x An

/ u
jΓ)' > D' x X 11 > ( t ' ' 0? ' ' * ' ? n) - - - n^ ' 0? u '''' n) )

V ' Dx(t; z 0 , * , , . . . , * „ ) ' ? D n ( t ; z 0 , z u . - . , * * ) /

is ί/ie solution of (3.11) α iί/i

(ii) Lei X be a completion of X: a complete variety containing X as

a Zariski open set. There exist a point t0 e D, a subdomain U d D con-

taining t0 such that if we denote by Z the set {(t; z0, z2, , zn9 yι(t0; zl9 z2,

• -,zn; f), y2(t0; zl9 zl9 , zn; t), , yn(t0; zu z2, , zn; t)) e Π x X χD, X\

Gi(tQ, zl9 z2, , zn) Φ 0, (zu z2, , zn)eX is a smooth point}, the Zariski clo-

sure Z C (H X X) X Ώ, X C D' X X X X defines a D-bimeromorphίc corre-

spondence of Df X X with itself (c/. Part I).

(iii) There exists a point t0 e D, a subdomain Π C D containing tQ

and a morphism F: Df -+ Bim X of functors such that (a) F(Q = Id z and

(b) θ = Θ(F) when extended to K(D;)-derivations of K(Π)(X®CK(D')) (cf.

§ 1), where K(D') is the field of the meromorphίc functions on D'.

Proof. The equivalent of (i) and (ii) is proved by the same method

as in the Proof of Lemma (3.5) and hence we omit the proof. Assume

now that the equivalent conditions (i) and (ii) are satisfied. We choose

t0 and D; satisfying the two conditions (i) and (ii). Then it follows from

(ii) that we have a morphism F: Df —> Bim X of functors. By Lemma

(1.27) of Part I, we may assume that there exist an algebraic variety Z,

a morphism g: Z-^BiτX of functors and a holomorphic map /: U —> Z*-n

such that the image f{Df) is dense in the algebraic variety Z and such

that F = g&no f Let us use the notation of § 1. Then by (ii) around t0,

t ,_> (t9 g(t)x) is the solution of Pf (0). Therefore as in § 1 θ = Θ(F). Con-

versely if the condition (iii) is satisfied as we see in § 1, for x e Xo the

solution around (t0, x) 6 U X X of the system Pf(F) is given by ί π

(t, g(t)-x). As the morphism g gives a rational map Z X X •-> X, each

coordinate of the point g(t)-x is rational with respect to x and the con-

dition (ii) is satisfied.

DEFINITION (3.13). When the equivalent condition (3.12) is satisfied,

we say that the general solution of the system (3.11) of Pfaffian differ-

ential equations depends rationally on the initial conditions.
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By the same argument as in the Proof of Corollary (3.8), we can

show that if the equivalent conditions (i), (ii) and (iii) of Lemma (3.12)

are satisfied, then for any point tx e D' and the neighbourhood Ό' of tx

the conditions (i), (ii) and (iii) are satisfied. Therefore we can replace D

by any subdomain of D; without loosing the conditions (i), (ii) and (iii).

DEFINITION (3.14). In general for an algebraic variety Y over C and

a system of Pfaffian differential equations defined by a θ 6 Der^ (C( Y) (x)c K,

QΎ(x)cif)) as in §1, we say that the general solution of the system

Pf (θ) of Pfaffian differential equation associated with θ depends rationally

on the initial condition if there exists an affine model X of Y such that

Pf (θ) on D X Y satisfies the equivalent conditions of Lemma (3.12).

If there exists an affine model Y over which Pf(#) satisfies the equiv-

alent conditions of Lemma (3.12), then for any affine model Z of Y Pf(#)

satisfies the equivalent conditions of Lemma (3.12). Namely we can say

that the definition is independent of the choice of affine model.

Remark (3.15.1). Assume that the equivalent conditions (i), (ii) and

^iii) of Lemma (3.12) are satisfied. Then the condition (iii) gives a mor-

phism F(θ): Π —>BimX of functors on the category of analytic spaces.

It follows from Proposition (1.7) that denoting by L the field of meromor-

phic functions generated over C by the coefficients of the polynomials

Ct, A we get the L-valued point P(θ) == P(F(β)): Spec L -> Bir X or the

L-birational automorphism of L-algebraic variety X (x)c L.

(3.15.2). Suppose that the equivalent conditions (i), (ii) and (iii) of

Lemma (3.12) are satisfied. We get a meromorphic map

^n\t\ Z(), Zu , Zn)r \/ X I i > ( I ki(^> £p, Zl9 - -, Zn)

\ ' A(ί; Zo, zu , zn) ' Dn(t; z09 zl9

Composing this with the projection p2: U X X-+ X, we get a meromorphic

map

f. γ\r . v f / ^ i ( * j ZQ9 Zχ9 ' ' ' , Zn) ^ ̂  ̂  (^nyty %0i %u ' ' ' 9 Zn)

\ Dtit; z0, zl9 , zn) ' ' Dn(t; zθ9 zl9 , zn).

for a general (zQ9 zl9 , zn). Replacing U by a suitable subdomain,

we may assume that / is holomorphic. Then the associated point P(f)

to / is an L-valued point. P(f): Spec L -> X is just the composite
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Spec L —-> Spec L x Spec C > Spec L X X-?-+ X,

where the first map is (Id, canonical map induced by the inclusion L Z) C)

and the second map is (Id, Spec C —> z e X). (cf. 2).

PROPOSITION (3.16). Let us consider the algebraic differential equation

(3.2) with coefficients in a ring R of holomorphic functions on D such that

the general solution y(t0; x0, xu , xn; t) = y(t) depends rationally on the

initial conditions. Then there exist a field K' D C of meromorphίc func-

tions obtained from R by finite iterations of the permissible operations (O),

(PI), (P2), , (P5) and a K-derίυatίon θ e D3r/sΓ (K(Xt0 (x)c K% K(Xt0 ® c Kf))

such that the general solution t »-* (t; vQ, υu , vn) of the Pfaffian system

Pf (θ) associated with θ depends rationally on the initial condition and such

that (R[y])P = (R[vQ, vu , vn])P, where WP means the set of meromorphίc

functions obtained from W by a finite times of iterations of the permissible

operations in § 2 (see Definition (2.16)).

In other words, finding a general solution of (3.2) is equivalent to

finding a general solution of P£(θ) by permissible operations.

Proof. Let K be the quotient field of R. It follows from Corollary

(3.7) that there exists an extension K' of the field K such that Xto ® c Kf

is birational to 2£ ®κ K''. Therefore by Proposition (1.25) we may assume

that Kf is a finite algebraic extension of K. Hence Kr is obtained from

R by finite iterations of the permissible operations (0), (Pi), , (P5).

We may assume that the birational isomorphism between Xt0 ® c K' and

«3Γ ®κ Kf is defined over a ring Rf of finite type over R and R consists

of holomorphic function on a subdomain Π of D. Taking a system of

generators such that Rf = C[/Ί,/2, ,/J, we get a holomorphic map Π ->

Spec R!. We have a bimeromorphic correspondence ψ: XtQ X ΰ ' ^ f

induced by Ψ. Therefore the system of Pfaffian differential equations

(3.3) is translated by ψ on a system of Pfaffian differential equations on

Xto X Π. And this translation is done by rational functions in Xo, Xu

• , Xn with coefficients in the quotient field of R hence permissible.

Since ψ commute with the projection, ψ*t = t and the Pfaffian system

(3.3) is transformed to (3.11) and the Proposition is proved.

By Proposition (3.16), the general solution of the differential equation

(3.2) whose general solution depends rationally on the initial conditions
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is reduced to that of the systems of Pfaffian differential equations (3.11)

such that the coefficients of Ft(t; Z), G*(ί; Z) are known from R by per-

missible operations and the general solution of (3.11) depends rationally

on the initial conditions.

DEFINITION (3.17). If there exists an analytic subgroup G of Bim X

such that the morphism F: D -> Bim X factors through G C Bim X, then

we say that the system (Pf (F)) of Pfaffian differential equations is of finite

type.

THEOREM (3.18). // the general solution of the system (3.11) of Pfaffian

differential equations with coefficients in R 3 C depends rationally on the

initial conditions and if the system is of finite type, then the general solu-

tion of (3.11) is in QR (i.e. there exists a non-empty Zariski open set U of

X such that any solution with initial conditions in U is in QR), where

QR is the set of meromorphic functions obtained from R operating the per-

missible operation Q for one time. In particular the general solution is

obtained by a finite iteration of the permissible operations (0), (PI), , (P5)

from R.

Proof. It follows from Corollary (1.33) that there exist an algebraic

subgroup H c Bir X such that ψ: Π -» Bim X factors through Han -> Bim X:

ψ(D') c H&n c Bim(Xan). Let us denote the morphism Π -> H&n by φ. We

show that dφ: U -> Lie H = ή is given by known functions (cf. Definition

(2.4)). Namely let hu h2, , ht be a basis of the Lie algebra ζ and

hence the h'j9 are derivations at 1 e H. Using the notation of § 2, we have

XφU) = γjj=, a j i φ i t y R φ ^ i h j ) w i t h a^φit)) e K f o r t e Π w h e r e K i s t h e

quotient field of R. In fact anyhow we can write

(3.18.1) Xφit) = Σ a3(φ{t))Rψ{t)*{hό)
. 7 = 1

with a3(φ(t)) holomorphic function on D\ (3.18.1) is the identity of the

vector fields on the curve φiU) in ί ί a n . Let us apply R9W-U to (3.18.1)

and we get

(3.18.2) i^(o->Λ(o = RΨω

= Σ
l
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(3.18.2) is the identity of the vector fields at 1 e H. Let us denote by e:

H -> Bir (X) the inclusion.

The morphism c of functors on the category of C-schemes induces cκ:

H®cK-± Biτκ(X®cK) when we restrict the functors H, Bir(X) on the

category of if(Z)C)-schemes. ικ induces a morphism tκ*\ Lie (H®c K) ->

Ue(Birκ(X®cK)) of K-IAe algebras. We know Lie (H®c K) = ϊj <g)c K,

Ue(Biγκ(X®cK)) = Ώerκ(K(X®cK), K(X®CK)). Hence we get ικ*\

3f<S)cK->Όerκ(K(X(g)cK), K(X®CK)). Since ικ* is functional in Ky

ικ^ — ̂ c<s (g) i ί : the diagram

ζ (g) K. > Derc

(3.18.3)

DercWXΘcίΓ), #(X®c

is commutative. Therefore we have

(3.18.4) cAh)(f)eC(X) for any he HP and feC(X).

Therefore we denote cκ* simply by c*. If we apply 1% to (3.18.2), we get

(3.18.5) α ^ ω - Λ ω ) = <* [fj «

= Σσ,ι
7 = 1

Recall that we have C(X) = C(e0, ^1, , ̂ Λ)
Applying the derivations in (3.18.5) to the 2/s, we get

1

(3.18.6) t*(RφU)-1tXψ(n)(zi) = ξ] cijiφifyi^ih^iZi)

for 1 < i < n. c*(Rψ{t)-HXψU))(z) is in K(X®CK) hence a rational function on

X®CK. Let us calculate the value of the rational function c*(Rψ{t)-uXψ{t))(zτ)

at a general point zeX®cK defined over C.

cJR.n>-iJLm)(z*)te) = lim

For let p: D' X X ••-> D' X X, (t, z) ̂  (ί; (i4,(ί; «))/(B,(ί; «)), (i4,(ί; *))/

(B2(^; •2)), • , (An(ί; z))l(Bn(t; z))) be the birational transformation denned

by the solution of (3.11) such that At(t; Z,, Z2, , ZJ = At(t; Z), Bt(t\ Zu
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Zo, , Zn) = Bi(t Z) are polynomials with holomorphic coefficients as

above. Let us briefly denote (At{t, z))l(Bi(t, z)) = Ct{t\ z), 1 < ί < m or more

simply (ί, *)->(*; Q(ί 2), C2(ί *),-••, Cm(ί 2)) = (ί C(ί *)). Since by Pro-

position (1.7) this correspondence is M-birational automorphism of X®c M

where Mis the extension of if by the adjunction of the coefficients of At and

Bu 1 < ί < n. We have the inverse transformation g fl'xX ^ f l ' x X ,

(ί, «) ^ (ί A(*; «), A(<; «),••-, ^n(^; *)) = (ί, 2)(ί «)) so that C(t; D(t; x)) =

x, ί)(ί; C(ί; x)) = x. We choose a point s e D and fix it.

On the one hand since £>-*(£; C(£; 2) is a solution, we have

(3.18.7)

for 1 < i < n and for a general point z' of X. We can substitute D(s; z)

for 2̂ . Then (3.18.7) becomes

(3.18.8) dCt(t; D(s; z)) =
Uf,D(s;z))

Therefore at t = s

(3.18.9) ΛC&\ D(s' *))
dt

This is what we had to prove.

We have thus proved the commutativity of the following diagram:

(3.18.10) \ l «
Derc(C(X), C(X)),

where the map D^Όerc (C(X), C(X)) is given by t .-> ΣS-i (Fi(t; 2»/(G4(ί; 2))

(3/3Zί). Next we want to show that r(?>)eϊjΘ.K (cf. Lemma (2.13)). Let

F be an extension of the field M such that τ(φ) ef)® M. It follows from

(3.18.10) that c*®cF(τ(φ)) e Derc(C(Z), C(X))®F is in the image of

Derc(C(X), C(X)) ® K. Since c* is injective, r({£>) e ^ ® i ί by the following

sublemma.

SUBLEMMA (3.18.11). Let k be a field Vu V2 be k-vector spaces and

W, C V,, Wi C F2 6e subspaces. Then
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where the vector spaces above are identified with their canonical images in

V, <g> V2.

Proof. Since the inclusion C is evident, it is sufficient to show Z).

Let x e W, ®k V2 Γ) Vι ®W2. Then x = Σ ; β < α, ®bux= Σ U ^ ® ^ «* e W,

6i e V2> Cj £ Vj, dj e W2. Therefore we may assume that Vu V2 are of finite

dimension. The Sublemma is proved by taking a basis eu e2, , βri, eri+i,

• , er (resp. /1?/2, , /βl,/,1+1, •••,/,) of Vi (resp. of V2) such that e^ e2,

. , βri (resp. /;,/,, ,/Sl) span Wi (resp. W2).

Therefore dψ : D' —• Lie i ϊ = ΐ) is written using known functions from

K by the operation Q. Therefore for any rational function / o n H, foφ

is a new known function by the permissible operation Q. It follows from

Proposition (1.6) of Part I that the inclusion H C Bir X is given by an

algebraic pseudo-operation (H, p, X). For a general point zeX, we denote

by Hz the Zariski closure {φ((h9 z))\heH, p: Hx X-->X is^regular at (Λ, z)}.

We have thus a dominant rational map p : H^HZ. For a general z, t H-»

(t,φ(f)z) is the solution of (3.11) with initial condition φ(to)z = z. We

consider the composite rational map H••** i ί , -^ A1. Therefore (ziop)oφ(t)

= (At(t; z))l(Bi(t; z)) is a known function by the permissible operation Q

applied for i?, dψ and i7. The last assertion follows from Theorem (2.19).

Remark (3.19). In the last part of the proof, we can argue in an

intrisic manner. In fact, let N be the field obtained from R by the oper-

ation Q with respect to dψ and H. It is sufficient to show that the point

P(y(z))eX associated with the general solution y(z) : D' ->D' X X, ί ^

(t; Ci(ί; z)ID.it; z), , Cn(t; z)jDnit\ z)) is iV-rational. The point Piφ) e H

associated with φ : Ώf ~>H is Λ^-rational and ^ e Z i s C-rational in partic-

ular iV-rational. Therefore Piψ)z e X is iV-rational by § 1. We have further

Piψ)z - P(y(z)).

DEFINITION (3.20). Let D c C be a domain, R a ring of holomorphic

functions and K the quotient field of R. Let X be an algebraic variety

over C. Let θ e ΌerκiKiX(g>cK), KiX®cK)). For any algebraic variety

Y birationally equivalent to X, θ defines the system of Pfaffian differential

equations on D X Y. If there exists a complete, non-singular model Y of

X over C such that θ is a regular vector field of Y ® c K, then we say that

we can compactify the space of initial conditions of Pf(0) on D X X.

In the language of differential equation, if we can compactify the space

of initial conditions, there exists a subdomain Ώf such that Pf(#) defines
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a regular system of Pfaffian differential of corank 1 on U X Y.

THEOREM (3.21). The system of Pfaffian differential equations Pf(0) on

D X Y is of finite type if and only if we can compactify the space of initial

conditions.

Proof. Assume that the system is of finite type, let ψ : D -> Bim(X)

factor through an algebraic group φ : D ->H C Bir X and H c Bir X is

defined by an algebraic pseudo-operation (H, p, X). Then by [U2], we can

find a non-singular projective model Y of X such that H operates regularly

on Y. Now the solutions of Pf(0) o n ΰ x Y are orbits {φ(t) z\zeY} and

the vector field Θ on D X Y is given as in § 1. Hence Θ = Θ(φ, (G, Y)) and

regular on Y® c K. Conversely if we can compactify the space of initial

conditions, then by G.A.G.A. [Gl] the solution depends rationally on the

initial conditions and ψ' : D -> Bim Y factors through Aut° Y c Bir Y and

Aut°Y is an algebraic group ([G2]).

§ 4. Solbavility theorem of Painleve (general case)

We prove a more general solvability theorem than in § 3. Some

special cases of the theorem was proved by Painleve and Picard (cf.

Painleve [P], p. 393). Let us begin by some preliminary results on differ-

ential fields.

We consider ordinary differential rings (i.e. commutative rings with

a differentiation) of characteristic 0 such as rings of meromorphic functions

on a domain of C with the usual differentiation. We often denote by

/ , / ' , , y(l) the differentiations of y, / , , y(l~1}. Let if be a differential

field, k a differential subfield of K and yί9 y2, , yn e K. Then we denote

by k{yuy2< — -,yn} the differential subring of K generated over k by yl9 y2,

• , yn: the ^-algebra generated by the yt and their derivations D*{yd over

k (1 <̂  i ^ n, 1 ^y). We denote by k(yu y2i , yn) the differential subfield

of K generated over k by yuy2, -,yn.

Our differential rings are considered in a big differential field, which

often we do not mention if there is no danger of confusion.

Let H e a differential field and the Ytj (1 <I i <I n, 1 ^ j) variables over

k. Then extending the derivation D of k by D(Ytj) = D(Y i i+1), we get a

differential ring k[Yis]x^^nΛ^ which we denote by k{Yu Y2) •••, Yn}. We

call k{Yu Y2, , Yn) the differential polynomial ring of n-variables over k.

The quotient field of k{Yu Y2, , Yn) is denoted by k(Yu Y2, , Yn). Let
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S be a set of elements of a differential ring A. The differential ideal

(ideal of A closed under the differentiation) generated by S is denoted by

[S], If / is a differential ideal, then A/1 is a differential ring. We recall

the following well-known fact.

LEMMA (4.1). Let k be a differential field. Let k(y} be an extension.

Let F(Y)ek{Y} be a non-zero polynomial with F(y>y',y", . ..,/'>) = () of

minimum order (there is no non-zero polynomial G(Y, Yu Y2, , Yι^) e k{Y}

such that G(y,yr,y", ,y{l~l)) = 0 and of minimum degree in YU). Then

the ring k(y} is k-isomorphic to the quotient field of the localization (k{Y}l

[F])H where H = dFjdY,.

Proof. It follows from F(y, y', y", , y{l)) = 0 that y{l) is algebraic

over k(y,y',y", •• ,/ ί - 1 ) Let

(4.1.1) F(y ,/ , - j ( ί ) ) = aJίyvy + α ^ ) " 1 + + an

with a,i ek[y, / , , yu"1}]9 α0 Φ 0. Then y, y', , yil-1} are transcendental

over k and the field k(y,y\ • .,/*>) is £-isomorphic to k(Y, Yu , Y^dlZ]/

(a0Z
n + a,Zn-1 + - + αn) by the choice of F. Differentiating (4.1.1), we get

(4.1.2) αo '(/")n + a&yv)*-1 + . . . + < + i/(y, /,-••, y<'>)yi+l> = 0 .

By the choice of F, na,(y{l))n~ι + (n - l)α,(;y(I>)n-2 + + an^ Φ 0 and

hence y(l + 1) is in k(y9y\ , yil)). The above isomorphism gives the disered

isomorphism (cf. Exercise 1, (b), p. 163, [Ko]).

LEMMA (4.2). Let ax(t), a2(t), , at(t)9 b^t), bt(t\ , bm(t\ φ\ cz(t),

cn(t) be homomorphic functions on a domain D C C (I, n ^ 0, m >̂ 1). If

one of the bt is transcendental over C(au α2, , α,) (bt satisfies no non-

trivial algebraic equations with coefficients in C(au α2, , aty), then there

exist a subdomaίn U of D, a domain A c C , a point s0 e A and holo-

morphίc functions Bt(t, s), Cj(t, s) (1 ̂  i ^ m, 1 <Lj; <* ή) such that (1) bt{t)

= JBt(ί, s0) ( l ^ ί ^ m), c/ί) = C/ί, So) (1 ^ i ^ n) for t e D\ (2) at least one

of the Bi(t,s) depends effectively on s or dBJds\8=8o ̂  0 and such that we

have an isomorphism of C{ax(i), a2(t), , a^ty-dίfferential algebraίs

, at(t), bM 6,(ί), , bjt\ φ), φ\ , cn(ί)}f d/Λ) =t (Qα

, B,(t9 s), B2(t, β), . , 5 m α s), C,(ί, 5), Q(ί, s), , Cn(t, s), d/dt) by bt(t)

U a), φ) -> Cjit, s).

Proof. Let bk be transcendental over C{αl5 α2, , α j with minimum k.

By enlarging {au α2, , α j to {au a^, , ah bu , fe^J and {cj, c2, , cn)
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to {δj +i, bk+2, , bmf cx , cn), we may assume that m = 1. We denote bx by

ό. First we treat the case n = 0. We put k = C<αl5 α2, , αt>. If 6 satisfies

no algebraic differential equations with coefficients in k or b, b\ bh',

are algebraically independent over &, then we take D/ =- D, A = C s0 = 0

and B(£, s) = s + &(£)• Therefore let us assume that b satisfies an algebraic

differential equation. Let 0 φ F(Y) e C{au α2, , αJ{Y} with F(&, b\ ,

5<p>) = 0 of minimal order p and of minimal degree in Yp. Let F(Y, Yl9 , Yp)

= A0(Ypr + A1Y»-1+ . . . + A* with Λ e Q α . α , , . . . , α J [ F , 7,, . . . ,F,_ 1 ]

0 ^ i ^ N, Ao φ 0. It follows from the choice of F that (dFldYp){b, b', ,

J(P-D) -^ o hence there exists a point t,eD such that (dF/dYp)(b, b', , 6 ( p ))U ί o

^ 0. Let ô = b(t0), βλ = ^(ίo), , j3p_! = 6^-^(0. Then there exist an open

neighbourhood U of (βϋ9 βu , βp^) e Cp an open neighbourhood D7 of tQ

and a holomorphic function G(t, ZQ, Zu , Zp.x) on Df X U such that the

differential equation F(y,/9 -,y(p)) = 0 with initial condition (y(to)9y(tQ),

--, y^'^iQ) eU is equivalent to y(p) = G(ί, y, / , , y^'1)). Therefore we

can parametrize the solutions by the initial conditions at tQ. There are

thus p :> 1 parameters. In particular replacing Π by a smaller open set

we can find a domain A c C and a holomorphic function B(t, s) on 27 X D1

such that (1) dBjds ^ 0, F(£, 3J3/3ί, , dpBldtp) = 0. Therefore we have

/Mnorphism of differential algebras ψ : (̂ {ίr}/[i7'])Jff ->(C<α1? α2> , αz){ΰ},

9/3ί), Yι->S(ί, s). 9 is injective since specialization at s = s0, Ft->S(ί, s0)

is injective by Lemma (4.1). We have therefore a /^-isomorphism of the

quotient field of {k{Y}l\F])H onto ( C ^ , α2, , αt, S>, 3/3ί). It follows from

Lemma (4.1) that we have an injective £-morphism of C{au a2, '-'9alfb}

-^k(b) c$ q u o t i e n t field of (k{Y}l[F])H ~z C(aί9 (h, - - -,al9 B) i n d u c i n g iso-

morphism C{aί9 a2, , αi5 b] ^ C{al9 a2, , au B). This proves the lemma

for n = 0. Let us assume that we have a ^-isomorphism φ : C{au a2, ,

au b] -•C{α1, α2, , au E). We want to find new D\ D1 and a holomorphic

function Cx to extend 9 to an isomorphism C{al9 α2, , au 6, c j —>C{αt, α2)

• > , at, B, Cj}. The case where Cj satisfies no algebraic differential equation

with coefficients in &<ό> is the easiest. We may use D', Dx for b and

C(t, s) — c(t). The next extreme case is cx is algebraic over k{b). Let F = 0

be a defining equation of C! over C{αi, α2, , αι? 6}. Let F be a corre-

sponding polynomial with coefficients in C{al9 α2, , au B}. Choosing

sufficiently small new U and D so that the algebroid function of two

variables (t, s) with FiC^ = 0 is one valued, we can construct differential

isomorphism C{au α2, , αt, 6, c j ^ C{au α2, , au B, CJ. Since the re-
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duction of φ : C{au α2, , al9 b] >̂ C{au α2, , au B) at s = s0 is also an

isomorphism, we may assume that soe D and Cx{t, s0) = c^t). If cx is not

algebraic over k{b) and satisfies an algebraic differential equation over

k{b), let 0 Φ F(Y) e C{αlf α2, , σn, b}{Y} be a polynomial with F(cu cί, c'/,

- -, cίp)) = 0 of minimum order p ^ 1 and of minimum degree in Yp. Let

&r(Y)eC{aί9a2, , αn, B}{Y} be the polynomial obtained from F by the

isomorphism C{aί9 α2, , αn, 6} ~ C{au α2, , αα, JB}. Let D', Dx and ί0 be

chosen when we determined B. Let F(Y) = A0Yp + ΛYp"1 + + AN

with Ao Φ 0, A< e C{α1? α2, , α^ 6}[Y, Yi, Y2, , Yp_i]. By the choice of

F, (3F/dYp)(cu c'l9 cί', - , cίp)) Φ 0. Therefore there exist tx e Ό! such that

(dF/dYp)(cu cί, cί', , c?%mtl Φ 0. Let At = Λ(α; 6; Y, Y1? Y2, . , Y,.,) =

^tfe, α2, , at; b; Yu Y2, , Yp_λ). Then

(4.2.1) ^(Y) = ΛY^ + Λ Y^"1 + + AN ,

where A^ = A{(a; b; Y, Y1? Y2, , Yp_i) which are polynomials with holo-

morphic coefficients on Π X A Since B(£, s0) = 6(ί), (a^/aYp)(α; B;cu cί,

• , c{p))|ί=ίi,β=β0 ̂  0, there exists a holomorphic function ^ ( ί , s; zOΐ zu •••,

^P-I) regular on a neighbourhood of (^, so; Cj^), cίft), , c[p~l){U)) e Cp+2

such that the differential equation (4.2.1) is equivalent to a partial differ-

ential equation

v dt* \ dt dt*

near (tί9 so; c^U), cί(^), , c{p"1)(ί1)). And c t(0 is a holomorphic solution of

ESo with initial conditions at ^ ( c ^ ) , cί(^), , cίp"1)(ί1)). Therefore c^ί) can

be extended to a holomorphic solution C^t, s) of Z?s with (Cx{tu s0), •••,

(V-^Jdt'-^fo, so)) = foft), cί(O, , cp-^ft)), Q(t, s0) = Cl(ί). The same
argument as above shows that we have an isomorphism C{au α2, , au b, c j

>̂ C{au α2, , au B, CJ. Repeating this argument, we can construct

C{α1? α2, , αt, 6, cl5 , cn} ^ C{au ok, , αt, JB, Cl5 C2, , Cn} required in

Lemma.

More generally we can prove the following theorem. The theorem

was proved by Painleve ([P], pp. 368-373) when X is the 2-dimensional

affine space.

THEOREM (4.3). We keep the notation of § 3. // the general solution

of the system (3.11) of Pfaffian differential equations with coefficients in a

ring R depends rationally on the initial conditions. Then the general solu-

tion is obtained from R by the permissible operations (O), (PI), (P2), , (P5).
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Proof. Let us first treat the case n = 1. Let X be a non-singular

protective model of X. Then it follows from Corollary (1.30) of Part I

that D->Bim X factors through algebraic group Aut° X C Bir X. Therefore

the system (3.11) of Pfaffian differential equations is of finite type and

the theorem follows from Theorem (3.18).

Now we show the theorem for X rational and next for X with ir-

regularity q(X) = 0, where X is a non-singular projective model of X and

q(X) = dimϋΓCX, 0%) which is a birational invariant of X. The ]ast step

is to explain how we can treat the general case.

So let us assume first that X is rational. We may assume that

X = An so that C(X) = C(zlf ^2, , zn). As the following argument shows,

it is enough to treat the case n = 2. The idea of the following proof is

due to Painleve [P]. Let D-+DX A\

(4.3.1) t >-> (t,
Ax(t\ x) A2(t;xY

B1(t;x)9 B2(t;x),

with x = (xu x2) e A2 = C2 be the general solution as in Lemma (3.12).

Namely A^t; Z), B^t; Z) are polynomials of two variables Zu Z2 with holo-

morphic coefficients. Let K be the quotient field of R and L be the

extension of K generated by the coefficients of the polynomials Al9 A2,

Bu B2. Then our assumption implies that

(4.3.2) (xu x2)
A2(t;xux2);xux2)\

; xu x2) It\ xl9 x2) B2(t;

defines a birational automorphism of A | (see Lemma (3.12) and Proposi-

tion (1.7)).

Let {uu ud - ( ^ ( / ; u- "»> y / ; *> ^ ) with Ct(t, Ulf U2\ D& Ul9 U2)
\ A 0 ; Mi, u2) D2(t; uu u2) I

eL[U19 U2] be the inverse transformation. We take Ct and Dt are rela-

tively prime in L[Ulf U2]. We have to show that each coefficients of

Al9 A2, B19 B2 are in RQ. To this end it is sufficient to show that each

coefficients of Cί9 C2, Du D2 is in RQ: namely the birational automorphism

(4.3.2) of A\ is defined over a subfield of RQ. By Lemma (1.26) we can

find aiy bi9 ct e C (1 <; i ^ 3) such that det b2 C2 Φ 0 and such that the

polynomials aj) + biDCJDi + CiDCJDi are absolutely irreducible, where

D = l.c.m(A> A ) in L[Uί9 U2]. Thus we can choose a homogeneous co-

ordinate system on Pc such that C19 C2, D19 D2 are absolutely irreducible
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(i.e. irreducible) in L[U19 U2]) and Dx = D2. From now on we assume that

CΊ, C2, Du D2 are absolutely irreducible and Dx = Z)2 = £. Let us put to

simplify the notation /•(£; *) = (A^t; x))/(!}&; x)) for / = 1, 2. Then

(4 3 3) ^i(^> /i(^? ^)> fvJ'\ x)) __ ^

( 4" 3 ' 4 ) Eit flt xXm x)) = *2

for a general (xlt x2) e C2 (cf. Proposition (1.25)). Now differentiating (4.3.3)

with respect to t, we get

d

dt\E{t;fuU)

Therefore

dU2 dt
(4.3.5)

+

Since t^(t,fuf2) is the solution of (3.11), we have

(4.3.6)

Substituting (4.3.6) in (4.3.5), we get

v ' V at dut σ, aί/2 G,/ Λ a« at/, σ, at/2 G,

(«;/„/.) = o.
Mutiplying GiG2, we get from (4.3.7)
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Applying Proposition (1.25) for Ac, we may replace fuf2 by variables:

we have a polynomial identity

(β,l + G^F, + G
( 4 . ω )

 s u

δί 9C/j dU2 /

in Ht/j, ί72]. Since the polynomials Cί and .E are relatively prime in

L[UU U2] there exists a polynomial λx(t; Ul9 U2)eL[Uu U2] such that

which is an equality in the polynomial ring L[UU U2]. Similarly there

exists a polynomial λ2(t; Ulf U2) e L[Ul9 U2] such that

G l G 2 ^ + GiF™ + GΛJg- = λ2E.
dt dU1 dϋ2

It follows from (4.3.9) that (λt — λ^C^ = 0 hence λλ — λ2 = λ since (uu u2)

^ ( C ^ u» ^ ) 9 C2(t; uu u2) \ i g b i r a t i o n a L L e t u s g e t > t o sim piif y the
\ E(t; uί9 u2) E(t; uu u2) I

notat ion Lx = GλG2, L2 = G2FU L3 = GXF2, Then Lu L2, L3 e R[UU U2] or

their coefficients are known functions. Therefore Cu EeL[Uu U2] are C-

linearly independent, relatively prime and absolutely irreducible solutions

of linear differential equation

(4.3.10) L^ + L™ + ™
t d

+ L + L λB Q.
at duι aU2

By the same argument, we can show that C2 also satisfies the differential

equation (4.3.10). C1? C2, E e L[UU U2] are absolutely irreducible and rela-

tively prime solutions of (4.3.10). Thus the theorem for X = A2 follows

from (4.3.10) if we can show that the coefficients of the polynomial

λ(t; Uu U2)eRQ. But this is not ture. We have to normalize λ. Since

Lj Φθ, there exists (uu u2)eC by Proposition (1.25) such that Lx{t\ ul9 u2)

Φ 0. Therefore we may further assume L^t, 0, 0) Φ 0. Let g(t) be a holo-

morphic function on a subdomain of D. Let us calculate the differential

equation satisfied by gCu gC2, gD.

at
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On the other hand

at

C,(ί; /„

Cίί Λ.

Therefore we have

(4.3.11) L t-^L(i; t/,, C/2) + U^φ-{t; Ult U2) + L3^^(t; L\, Ut)
ot dU1 o Uz

The polynomials gC2 and gE satisfy the same equation (4.3.11) too. Thus

we can choose g so that Lx{t, 0, 0)g~1(dgldt) — λ{t, 0, 0) = 0. Therefore we

may assume that for λ in (4.3.10), we have Λ(ί;0,0) = 0. Under this

hypothesis we show that every coefficient of the polynomial λ(t; Uu U2)

is algebraic over the differential field F generated by the coefficients of

Lu L2, L3 over C hence in RQ. Assume now that some of the coefficients

of the polynomial λ(t; Uu U2) is not algebraic over F. We apply Lemma

(4.2): we take for the set {a19 a2i •• ,α ί} the set coefficients of the poly-

nomials Lu L2, L3, for the set {bl9 b2, , bm] the set of coefficients of the

polynomial λ(t; Uu U2) and for the set {c1? c2, , cn] the set of coefficients
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of the polynomials C^t; Ul9 U2), E(t; Ul9 U2). The lemma shows that we

can ceform λ and the solutions Cx and E of the differential equation (4.3.10).

Namely we can find a subdomain D' of D, a domain DίC.C and a point

s0 e Dx such that the differential equation (4.3.10) and the solutions

Cι(t; UX9 U2), E(t; Ul9 U2) are parametrized by Dx\

(4.3.11)' L,M + L™ + L 3 ig- - l(8)B = 0
at dux oU2

where λ(s) = λ(t, s; Ul9 U2) is a polynomial with holomorphic coefficients

over U X D1 and Λ(ί, so; Ul9 U2) = λ(t; Ul9 U2), l(t9 s; 0, 0) = 0 since we de-

form only non-zero coefficients. The differential equation (4.3.11)' has

solutions Ci(£,s; Ul9 U2) and E(t,s; Ul9 U2) which are polynomial in Ul9 U2

with coefficients holomorphic over D; X Dx and Cx(t9 sϋ; Ul9 U2) = Cx{t; Ul9 C72),

E(t, sQ; Uίy U2) = E(t; Ul9 U2). Moreover we may assume that λ(s) is effec-

tively parametrized (i.e. if sl9 s2 e Dλ be different points, then i(8ί)φi(82))>

Let So be the ring of holomorphic functions on Df generated over C by

the coefficients of the polynomials d( ί ; Uί9 U2), E(t; Ul9 U2) and S be the

ring of holomorphic functions on D' X D generated over C by the co-

efficients of the polynomials Cx{t, s; Uu U2), E(t, s; Uu U2). It follows from

Lemma (4.2) that the morphism S -> So of substitution s = s0 is an iso-

morphism. Therefore the polynomials Cx{t9 s; Ul9 U2) and E(t, s; Ul9 U2) are

absolutely irreducible over the quotient field of S' and relatively prime. We

have (d/dt)(CJE)(t, s fct; x), f2(t, x)) = 0 since (dCJdt)(t9 s; fu f2) = XCx(t\ fu Λ),

(dE/3t)(t, s;fu f2) = ΪE(t9 s;fu f2) by the differential equation (3.11). Namely

if we fix s e Du then (CχlE)(t9 s; Uu ί72) is a first integral of the system (3.11)

of Pfaffian differential equations. Therefore there exists a holomorphic

function φ, of 2-variables such that (CJE)(t9 s;UlyU2) = φ9({CxIE){t\ Ul9 U2),

(C2/E)(t; Uί9 U2)) in a neighbourhood W of (ί<>, so) ^ w e substitute Ux =

(AJBJit; x)9 U2 = (A2/Bz)(t; x) for a general (xu xz) e A2

C = C2 (cf. Proposition

(1.25)), we get (CJE)(t, s; AJBl9 A2/B2) = φ9((CJE)(t; AJBU A2jB2\ (C2E)(t;

AJBί9 A2jB2)) = φ£xl9 x2). If we put t = tQ, we get (CJE)(t0, s; xί9 x2) = φs(xu xj.

Therefore putting I(s; Uί9 U2) = Cfa, s; Ul9 U2) and J(s; Ul9 U2) = E(t0, s;

Uu U2)9 we have

(4.3.12a) ί(t, s; U» U2) = L(s; -§-( ί ; Uu U2), -§-(ί; Uu

and
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; Xu X2) \ _ I
E \ B\{t\ Λu Λ2) n2(t, Λu Λ2) /

Recall that (Ul9 U2) t-+(CJE9 CJE) is the birational automorphism of A2

L.

Let N be the field of meromorphic functions on D X Dι generated over L

by the coefficients of polynomials J(s, t; Ul9 C/2), J(s, t; Uί9 U2). L and N

are subfields of the field Ω of all the meromorphic functions on Π X A

We denote by i? an algebraic closure of Ω. We denote by Φ the birational

automorphism of P | defined by (Λ:1? X2) •-> ((AJB1)(xu x2), (A1/S2)(JC1) X2)) Let

Z C P | X P | be the graph of the birational correspondence Φ. For a curve

Γ on P | , we denote p2(pΓ1rΠZ) (resp. Aίpi-^ΠZ)) by Φ*r (resp. Φ ; 1 ^ where

Pi: P 2 X P 2 - > P 2 is the projection (i = 1, 2); namely Φ* (resp. Φ;1) is the

morphism of the group of 1-cycles to itself defined by the correspondence

Φ (resp. Φ-1)- It follows from (4.3.12a) that the zero locus V(CX) of Cί is an

irreducible component of Φ^ViΓfiUΦ*1 (polar divisors of J) = the proper

transform of V(I)u{some curves ϊ c A\\ΦJj) = OjUΦi1 (polar divisors

of J) . Since the polar divisor of J is the line at infinity, the curve Φj1 (the

polar divisor of J) is defined over L. Since Φ is defined over L, we get

(4.3.13) V(C^ is an irreducible component of (the proper transform of

V(I)) U(cruves defined on L). Now we study two cases: (4.3.14) the curve

ViCd is defined over L; (4.3.15) the curve V(Cί) is an irreducible component

of the proper transform of V(I). We show that we are always in case

(4.3.15). In the first case (4.3.14), there exists a polynomial C'{UU U2) e

L[Ul9 C/J such that Cj = aC\Uu U2) with aeΏ. Comparing the coefficients,

a = a(s, t) e N. Since the coefficients of Cx is holomorphic at s = s0 and

Ct(t9 sQ; Uί9 U2) = Ci(t; Ul9 U2), a is holomorphic at s = s0. We may therefore

assume that C = 0,(1; Uu U2) and C^s, t; Ul9 U2) = a(s, t)C,(t\ Uu U2). It

follows from (4.3.10) and (4.3.11) that

0 = x^p + 2 ^ + 3 § ,
ot du1 3U3

(da dCΛ τ dCt , τ dCi * n

dU dU

p + L 2 ^

da n , dC
at at

= 1^ — 0, + aλC, - λccQ.
dt

Hence L1—— + αΛ — ^α = 0. Consequently, —— = 0 since the constant
dt dt
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terms of the polynomials λ, λ are 0 and that of Lx is not zero. Therefore

a(s, t) = a(s) is a function of s. Then

0 = Lx^^- + U °a^ + U a^ - λaC,
dt dux 3U2

= a(λC, - λC,)

= aCx(λ - λ)

by (4.3.10) and (4.3.11). Hence λ = λ this contradicts the choice of λ.

Hence we assume that we are in case (4.3.15). We choose an integer n

such that ϊ(s; 70, Yi, Yi) = Y", I(s; YJYQ9 YJYQ) is a polynomial. By the

same argument using (4.3.12b) as in (4.3.13), V(ϊ) is contained in (the proper

transform of V(CX)) U (curves defined over L and hence at most one com-

ponent V(ϊ(s, E(t; Uu U2), CΊ(ί; Uu U2), C2(t; Uu U2)) is not defined over L.

It follows from the hypotheses (4.3.15) and (4.3.13) that there exist μ e Ω

and a polynomial Q Φ 0 in L[UU U2] such that

(4.3.16) ϊ(s, E(Ult U2), Cx(t: Ul9 U2), C2(t; Ul9 U2))

Comparing the constant terms, we know μ(t, s) e N. We substitute [7, =

/i(ί; xlt x2), ί72 = /2(ί; xu x2) in (4.3.13) and take djdtlog.

The left hand side is equal to

^ 7 _ d ^ dϊ dCt , 3Ϊ
dE dt + 3C, dί + l Q

= (degree of the homogeneous polynomial I) λLϊ1(t;f1,f2).

The right handside is equal to

at

= μ-'^-it, s) + Q-'(MΛ(t;fuf2) + λ(t, S Λ.
9ί \ at /

We get thus

(4.3.17) ( d e g / H L Γ W ^ ) = / Γ 1 ^ (ί, s) + Q^(J9
dt \ at
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Thus we get

at
(4.3.18)

ot

In particular LίQ~ί~^-(t;f1,f2)~Ψ(t;fuf2) is a polynomial in fγ and f2.dt
Therefore by Proposition (1.25), we get a polynomial identity in Ux and U2

λ(U s; Uu U2) = (degϊ)λ(t; Uu U2) - Ψ(t; Uu U2)

( 4 3 1 9 ) -Ut U
at

We compare the constant terms in (4.3.19) and get

(4.3.20) 0 = - Ψ(t; 0, 0) - L&; 0, O)μ~^(t, s)
ot

since λ(t, s; 0, 0) = λ{t; 0, 0) = 0. As Lx(t\ 0, 0) ψ 0, (4.3.20) shows that

μ~ι-JL(t, s) does not depend on s. Hence in the equality (4.3.19), the right
dt

hand side is independent of 8 and consequently λ(t, s; Uu U2) is independent
of 5. This contradicts the choice of λ which is effectively parametrized

by s € A .
Now we study the case q(X) — 0. We take a non-singular projective

model X of X. Since q = 0, the Pi card functor Pic (X/C) on the category
of C-sch ernes is representable by a finitely generated commutative discrete
group G. Let gug2, ,gt be a system of generators of G. There exists
a non-empty af&ne open set of X on which the restrictions of the generators
gι>g2> '-'ygi are the trivial line bundle. We take as X this af&ne open

set. Therefore the Picard group Pic X/C(C) = 0, namely the coordinate

ring C[X] of the affine variety X is U.F.D. Let K 3 C be a field extension.

Then Pic X(g)cK/K is representable by if-algebraic group G. Hence PicX

®cKjK(K) = G and G is generated by the divisors defined over C and

whose supports are in (X — X)(8)CK. We have thus ~PieX®ck(K) = 0, or

the coordinate ring K[X®CK] of the algebraic variety X0cK defined over

K is U.F.D. We have shown that (i) X®cKjK is smooth and (ii) its co-

ordinate ring is U.F.D. In the proof of the Theorem for A2, we used only

these two particular properties (i), (ii) of A2. Therefore the proof for A2

works without any modification also for X.

Now it remains to treat the general case. We have so far proved
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the theorem for two cases (i) d i m X = l and (ii) q(X) = 0. We show

below that

(4.4) if q(X) > 0, then the solution of the system (3.11) of Pfaffian

differential equations is reduced to by the permissible operations that of a

system of Pfaffian differential equations

(4.5) dw, = Jfowuw* '->wι) dt l ^ K / o n a n algebraic variety
K t ( t ; w u w 2 , -"yWj)

Y such that dim Y < dim X, the Jt and the Kt are polynomials with known

functions by the permissible operations in § 2 from R and such that

solution of (4.5) depends rationally on the initial conditions. This combined

with the special cases (i) and (ii) proves the Theorem by induction on

the dimension of X.

Let us therefore prove (4.4). The proof is similar to the latter part

of the proof of Theorem (2.19). In fact, if we choose a non-singular pro-

jective model X and we take as X a non-empty Zariski open set of X, then

we have a morphism / : X —> Alb X. Since Alb X is birational invariant,

we have a morphism of group functors ψ: BirX-» Aut(AlbX) on the

category of C-schemes.

Let L be a field extension of K such that we have an L-rational point

F: D-+BirX of BirX defining a general solution of the system (3.11) of

Pfaffian differential equations (cf. § 3). Note that the Lie algebra of the

group functor BirX on the category of C-schemes is the C-vector space

Derc(C(X), C(X)) of the C-derivations. We consider the composite φ o F: D

-» Aut(Alb X). Since we may assume that there exists a point tQ e D such

that F(Q = ϊdXi φ o F(D) c Aut°(Alb X) = Alb X, where Aut° denote the

component of 1 and Alb X acts on Alb X through the addition, φ o F: D

->Aut° (AlbX) defines a vector field Θ(φoF) on (AlbZ)(g)cL as in § 1 or

a system Pf (φ o F) of Pfaffian differential equations of rank dim Alb X on

D X Alb X with coefficients in L. It follows from the Proof of Proposition

(2.9) that Θ(φoF) = φ*(θ(F)) and the vector field Θ(φoF) is defined over

the quotient field K of R. Hence the coefficients of the system Vί(φoF)

of Pfaffian differential equations are in K. Therefore ψ o F: D -> Alb X is

a i r rat ional point where Kx = K({foφoF\f is a rational function on the

abelian variety Alb X}) and by the operation (Q) Kλ consists of known

functions.

Therefore we get a ^-rational point ψt: Spec Kt -> Alb X and this

point is the image of an L-rational point ψ2 Spec L -> Bir X: ψ1 (Spec Kx)

= ψ o ψ2 (Spec L), where L is an extension of C of finite type. Since ψ2 is
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defined over a ring S of finite type over C, we get a morphism ψs: Spec S
-+ Bir X such that φ o ψ3 (the generic point of Spec S) = ^ (Spec iQ.

Spec S - ^ - > Alb X

Spec iξ

Therefore there exist a finite algebraic extension iζ> of Kx and a irrational
point Z : Spec K2 -> S such that we have a commutative diagram

Spec S-^+ Alb X

Spec if2 > Spec K,

where the second horizontal arrow is the morphism induced by the inclusion
if! C K2. We get finally iζj-rational point Spec K2 -^> Bir X such that
φoφ3oχ(Spec K2) = ψi (SpeciQ. It follows from Proposition (1.7) that we
get a iζrrational point F: D -> Bim X (here we replace D by an appro-
priate subdomain if necessary) such that φ o F = φ o F. By the operation
(P2) the field K2 also consists of known functions. Now for any teD,
FF~\t) = FiήFit)-1 e Bir X respects the fibration φ : X-+ Alb X. Therefore
the system of PfafEian differential equations associated with FF~ι\D->
Bir X are defined over each fibre of <p. Therefore a general solution of
the system Pf(FF-1) of Pfaffian differential equations associated with FF1

is a general solution of the system of Pfaffian differential equations over
a fibre Y of φ. Therefore dim Y < dim X. Since the question is local, we
may take an irreducible component of Y. Now we show that the system
Vί(Θ(F~ιF)) of Pfaffian differential equations is defined over K% which
consists of known functions. In fact let / be a rational function on X
and let us put F~ι = W.

Θ(WF)f(x) is equal to, by definition, l i m f(WF(t+h)(WF)-KQx)-fto ,
Λ-0 h

The latter is equal to

lim f(W(t + h)F(t + h)F(tYιW(tyιx) - f(W(t + h)W{tYιx)
h

= lim
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It follows from the Proof of Lemma (2.12) that the first term

iim_f(W(t)F(t + h)F(ty>w(ty>x) - f(x) _ (adW(t)-ί)mF)W)

Λ-»0 k

is in K2. Therefore Θ(WF)f(x) is in K2. It follows from induction that

there exists an extension Kz consisting of known functions such that

WF: D -> Bir V is ^-rational. Since F = F(F-ψ) = F(WF), the general

solution that we have chosen is F(WF)-orbit or if3-rational point. Namely

we can express it by using the permissible operations.

COROLLARY (4.6). Let R be α ring of holomorphic functions on α domain

D and F(t; Yo, Yu , Yn) e R[Y0, Yl9 , YJ. If the general solution of an

algebraic differential equationF(t;y(t),/(£), .,yn )(ί)) = 0 depends rationally

on the initial condition, then the general solution is obtained by a finite

iteration of the permissible operations (O), (P1),.(P2), , (P5).

Proof. This is a consequence of Theorem (2.19), Proposition (3.16)

and Theorem (4.3).

Concluding remark (4.7). In § 1 we introduced the operation Q. Let

F: D —> Gan be an analytic map of a domain D to an algebraic group G.

Then F defines dF: D ~> Lie G. The operation Q is to recover F from the

derivative dF.

More generally let F: D —> Bim X be a morphism of functors of a

domain D c C . We can consider as if BimX = (BirZ) a n (cf. Part I). We

can associate to F a rational vector field θ(F) on X®CK as in § 1. We

can consider Θ(F) as a map Θ(F): D-»Derc(C(X), C(X)) = Lie(Bir X) (cf.

Proposition (2.6)). Theorem (4.3) says that when Θ(F) is given, we can

recover F by using the operation Q. We notice here that in general Bir X

is of infinite dimensional (see [U2]). In this formulation the irreducibility

theorem should take the following form: there exist a Lie pseudo-group

G of infinite dimension and a holomorphic map F: D -> G such that we

can not reconstruct F from 3F: D —• Lie G by using only the operation Q.

This will be discussed in our future work.
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Footnote (1). As it is not clear that «2Γ is birational at η — (h(p), x)

for a general point x e X, we give here a complete proof. The following

argument was suggested by Hiroshi Saito. We denote by q': Zv ->U X X

the restriction to Zv of the projection p 1 2 : U X X X X-> Ux X. The

diagram

UX X- >(sf X X)an

is cartesian in the category of the analytic spaces. In particular there

exists the unique point 'ξe& lying over η: q{η) = ξ. We show that q is

biregular in the algebraic sense at ξ: Θ^xx>v ^ 0StV We denote by ξ' the

unique point of Zn lying over rj = (p, x). The morphism q is proper and

dominant by Lemma (1.25). Since the question is local we may assume

that q is finite and of degree 1 by Lemma (1.25) and by (3.17) Proposition

of [M]. We set Θx = G^x^ Θ, = 0,,e, Θx - Θ^xX^ Θ2 = (P%% Θz = ΘUxxW,

0, = φZtξ, and let m< c Θt (ί = 1, 2) m,- c Θj (j = 1, 2, 3, 4) be the maximal

ideals so that we have mίΘ1 = m^ We have a commutative diagram
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I ί
of local morphisms of the local rings. Since of diagram (i) is cartesian

and qf is isomorphic at ξ', Θjxhx ~ 03m3 ^ 04/τn3d54 Ξ> Θ2lmxΦ2 ~ Θ2\mxΘxΘ2 ==

dt/mA Since Θ2 is faithfully flat over Θ2, we have mxΘ2 f) Φ2 = &&•

Therefore we get a commutative diagram

mι > tfί/mA = Θ%jmA Π

Hence q induces an isomorphism

(ii) 6Jml

We denote by φ the morphism Θx -> <̂ 2 induced by q. We have an exact

sequence of (^-modules

(iii) O-»N->0 1 -*0 2 -*M->O,

where iV = Ker φ, M = Coker 9. Tensoring the exact sequence with

ΘilxdiΘu we get an exact sequence

Hence Mjxΐijή = 0 by (ii) and consequently M = 0 by Nakayama's Lemma.

Now the exact sequence (iii) becomes

(iv) O - ^ i V - ^ - y ^ - ^ O .

Tensoring the exact sequence (iv) with the quotient field Kx of Φx (the

scheme stf is irreducible and reduced), we get

0 ->N®KX -+K, -> Θ2® Kx ~>0 .

Since q is of degree 1, Kx ~ Φ2 ® Ĵ i and iV® ifj = 0. Since 0x is a domain,

the submodule N <Z6X should be 0 and 0x ^ Θ2 as required.
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