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BIRATIONAL AUTOMORPHISM GROUPS AND
DIFFERENTIAL EQUATIONS

HIROSHI UMEMURA

Painlevé studied the differential equations " = R(y/,y, x) without
moving critical point, where R is a rational function of y’, vy, x. Most of
them are integrated by the so far known functions. There are 6 equations
called Painlevé’s equations which seem to be irreducible or seem to define
new transcendental functions. The simplest one among them is »” = 6y
4 x. Painlevé declared on Comptes Rendus in 1902-03 that y” = 6y* + «x
is irreducible. It seems that R. Liouville pointed out an error in his
argument. In fact there are discussions on this subject between Painlevé
and Liouville on Comptes Rendus in 1902-03. In 1915 J. Drach published
a new proof of the irreducibility of the differential equation y”’ = 6y* + x.
The both proofs depend on the differential Galois theory developed by
Drach. But the differential Galois theory of Drach contains errors and
gaps and it is not easy to understand their proofs. One of our contem-
poraries writes in his book: the differential equation y” = 6y* 4 x seems
to be irreducible dans un sens que on ne peut pas songer & préciser. This
opinion illustrates well the general attitude of the nowadays mathema-
ticians toward the irreducibility of the differential equation y” = 6y* 4 x.
Therefore the irreducibility of the differential equation y”’ = 6y* 4+ «x
remains to be proved. We consider that to give a rigorous proof of the
irreducibility of the differential equation y” = 6y* 4 x is one of the most
important problem in the theory of differential equations.

In this paper we begin by clarifying the works of Painlevé [P] since
they are not clear and it is indispensable to make them rigorous to prove
the irreducibility. In part I we give another proof of the following
theorem due to Painlevé: any analytic subgroup G of the birational
automorphism group Bir X of an algebraic variety X is contained in an
algebraic subgroup of the group Bir X (Corollary (1.33) in Part I). We
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proved this in [U2] by constructing a projective model X of X on which
the group G operates regularly. Our proof in this paper is more direct.
In §2 of Part I, we characterize the permissible operations, so far known
functions or the classical functions. We show that the permissible oper-
ations discovered by experience is quite uniform and related with algebraic
groups (Theorem (2.19)). In §3 and §4 of Part II, we prove the following
solvability theorem more or less due to Painlevé. Let F(y™, y®-b ...,
y, x) = 0 be an algebraic differential equation such that the general solu-
tion y depends rationally on the initial conditions. Then the general
solution ¥ can be constructed from the coeflicients of F' by the permissible
operations.

We treat differential equations but we use the language of the algebraic
geometry particularly that of E.G.A. which is very effective. For this
reason we tried to explain our tools for the non-algebraists.

This research was done when the author stayed at Strasbourg Uni-
versity in 1984/85. He wants to express his hearty thanks to Prof. R.
Gérard. Without his constant interest in author’s work and encourage-
ment, this work would not certainly have been done.

Added in October 1989. We expected for long time that this paper
was to be published in the Proceeding of the Franco-Japanese conference
on Differential Equations held at Strasbourg 1985. But recently it comes
out that troubles with publishers make the publication of the Proceeding
impossible. This paper is the first attempt of understanding systematically
Painlevé’s Lecons de Stockholm [P], using the language of algebraic
geormetry but we find it in a strange situation. In fact, starting from
this paper, the following three papers improved parts of this paper:

Nishioka, K.: General solutions depending rationally on arbitrary constants.
Nagoya Math. J., 113, 1-6 (1989);
Differential algebraic function fields depending rationally on
arbitrary constants. Nagoya Math. J., 113, 173-179 (1989);
Umemura, H.: Second proof of the irreducibility of the first differential
equation of Painlevé, Nagoya Math. J., 117, 125-171 (1990).

We also notice that the very important paper of Nishioka
A note on the transcendency of Painlevé’s first transcendent,
Nagoya Math. J., 109, 63-67 (1988)

is written in the same spirit as this paper. On this subject we quote our
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paper;
Umemura, H.: On the irreducibility of the first differential equation,

Algebraic Geometry and Commutative Algebra in Honor of Masayoshi
NAGATA, 771-789, Tokyo: Kinokuniya 1987.

Part I. Birational automorphism groups

§1. Analytic subgroups and algebraic subgroups of the birational
automorphism group of an algebraic variety

The aim of this section is to give a direct proof to the assertion of
Painlevé: any analytic subgroup of the birational automorphism group
Bir X of an algebraic variety X is contained in an algebraic subgroup of
Bir X. In fact, this was proved in our preceding paper [U2]. The idea of
the proof was as follows. Let G be an analytic subgroup of Bir X. Then
we can find a projective model X of X on which G operates regularly.
Thus the group G is contained in the biregular automorphism group
Aut X, which is algebraic by G.A.G.A. [G1] and by [G2].

Painlevé states this in his Stockholm Lessons, Quinziéme lecons p. 260.
His idea of the proof given there may be interesting but there are several
subtle problems if we want to complete his proof in a rigorous way.

Therefore the following 2 points are particularly important.

(1) To give the strict definitions of several basic notions; for example
algebraic subgroups or an analytic subgroups in a birational automorphism
group.

(2) The resulting theorem according to the adopted definitions should
be useful as Painlevé applied his assertion to the integration of non-linear
differential equations.

For these reasons as in our preceding papers, we have to begin with
some unpleasant definitions. We apply our theorem to the integration of
non-linear differential equations in Part II, §4. We have considerably
simplified this part by our theorems (3.18) and (4.3) in Part IIL.

For the convenience of the reader, we recall as briefly as possible the
definitions and results in our papers.

In this section every algebraic variety, scheme and morphisms between
them are defined over the field C of complex numbers and by a general
point of X, we mean any point of a certain non-empty Zariski open set of X.
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Let X be a smooth algebraic variety defined over C. In the study of
the algebraic structure of the birational automorphism Bir X, the most
natural way is to consider Bir X as a group functor on the category of
schemes over C ([D]). For an algebraic variety T over C the value of
the group functor Bir X (denoted Autbirat in [U1]) at 7" is given by Bir
X(T) = {birational automorphism f: X X T--> X X T|f commutes with the
projection p,: X X T— T, ie. p,of = p, and f defines a biregular iso-
morphism between open sets U, VC X X Twith UN X Xt+ g, VN X X
t+ @ for any point i€ T}/~. (An open subset W of X X T such that
WNXxt= @ for any point te T is called T-open set.) Two birational
automorphism of X X T are identified if they coinside on an dense T-open
set. Intuitively the value Bir X(T') is the set of birational automorphisms
of X parametrized by 7. If T is a C-scheme, then in the above definition
of Bir X(T'), the birational automorphism should be replaced by its gene-
ralization pseudo-automorphism in E.G.A. Chap. IV

Let Y be a C-scheme. A morphism Y—Bir X is a morphism of functors
hy — Bir X on the category of C-schemes.

Let us recall the definition of an algebraic group germ.

DErFINITION (1.1). An algebraic group germ is a system (G, 1, 4, m)
satisfying the following conditions:

(1) @G is an (irreducible) algebraic variety;

(ii) 1 is a point of G;

(iii) 6 is a rational map of G to G which is regular in a neighbour-
hood of 1;

(iv) m is a rational map of G X G to G regular on an open set
@ #+ 2 of GXG;

(v) forany ge G, we have (1,8)e2,(g, )e 2, m1,8) =m(g, 1) = g;

(vi) for any ge G such that 6(g) is defined, we have (6(g), g), g) e
and m(g, 6(g)) = m(6(g), 8) = 1;

(vii) for any g, h, ke G satisfying (g, h)e 2, (h, k) € 2, (m(g, h), k) € 2,
(g, m(h, k) e 2, we have m(m(g, h), h) = m(g, m(h, k)).

We denote m(g, h) by gh or by g-h and 6(g) by g-'. We often denote
(G, 1, 6, m) simply by G.

See §2 [U1].

DerFiNiTION (1.2). Let G be an algebraic group germ and X an alge-
braic variety. An algebraic pseudo-operation (G, v, X) is a rational map



BIRATIONAL AUTOMORPHISM GROUPS AND DIFFERENTIAL EQUATIONS 5

¢: G X X-> X satisfying the following conditions:
(i) the rational map G X X-» G X X (g, x) — (g, (g, x)) is dominant;
(i) the following diagram is commutative;

f1

GXxXGxX . —GEx X
fzs 50
¥ v

where fi((g,, &, x)) = (8182 ), (g1, &, %) = (&, So(gz, x)) by definition for
general g, g,€ G, xe X

DeriniTION (1.3). Let (G, ¥, X;) be an algebraic pseudo-operation
(i=1,2). A morphism (p, f): (G,, X;) —(G,, X;) of algebraic pseudo-opera-
tions consists of a morphisms ¢: G, > G, of algebraic group germs (see
[U1l]) and a dominant rational map f: X, --» X, such that the diagram
below is commutative:

V1

G1 X ‘Xl e
oxf o f

v v

Gz X Xz ce s> XZ
We say that (G, X,) and (G,, X;) are isomorphic if there exist morph-
isms (501, f): (G, X)) — (G,, X;) and (S029 f): (G, X;) — (Gy, X)) such that ProPe
and ¢, ¢, are identity around 1 and f,of, and f,of, are equivalent to the

identities 1y, 14,

DEeFinNITION (1.4). An algebraic subgroup of Bir X is a group subfunctor
of Bir X representable by an algebraic group.

The following proposition is very useful ([D]).

ProposITION (1.5). Let ¢: G — Bir X be a morphism of group functors
of an algebraic group G to Bir X. Then the Ker ¢ is representable by a
closed subgroup of G. In particular there exists an algebraic subgroup
G’ =— Bir X such that ¢ factors through G’ =—— Bir X:

¢t BirX

NS
.

ProrosiTiON (1.6). For an algebraic group G and smooth algebraic
variety X, there is a 1-1 correspondence between the following:
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(i) the set of the morphism of group functors Hom,, (G, Bir X) and
(ii) the set of algebraic pseudo-operations (G, X).
Here in the set of (ii) we have to identify isomorphic algebraic pseudo-
operations.

See Demazure [D] and [U1].
It is convenient to slightly generalize this result. To this end we need.

DeriNiTION (1.7). Let G be an algebraic group germ. A morphism ¢:
G — Bir X of algebraic group germ functors on the category of C-schemes
is a morphism ¢: h, = U— Bir X of functors of an open neighborhood U
of 1e G to Bir X such that the diagram

U x U5 Bir X x Bir X
|
Uu Bir X
is commutative, where the vertical arrows are the composition laws
(namely, the diagram is commutative on a non-empty open set of U X U).
We identify two morphisms when they coincide on a neighbourhood of

1e U. The set of morphisms of algebraic group germ functors of G modulo
above identification to Bir X is denoted Hom,, (G, Bir X).

The argument of the proof of Proposition (1.5) gives us

LEmmMA (1.8). Let G be an algebraic group germ. There is a 1-1
correspondence between the following:

(i) the set Hom,, (G, Bir X) of the morphisms of algebraic group germ
functors;

(ii) the set of algebraic pseudo-operations (G, X).

By the same sprit as in the proof of Proposition (1.6), we can show

Lemma (1.9). Let X be a smooth algebraic variety and Y an algebraic
variety. Then there is a 1-1 correspondence between the following:

(i) the set Hom (Y, Bir X) of the morphisms of functors;

) {f1f: YXX--»Y x X birational inducing a isomorphism of
Zariski open sets U, V such that y X XN U,y X XN V= @ for any ye Y,
f commutes with the projection YX X5 Y; Yx X-7> Y X X is commuta-

1’1\‘ 1

tive}| ~, where we identify two birational automorphisms if they coincide
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on a dense Y-open set of Y X X.

We shall call an element of the set in (i) Y-birational automorphism
of Y X X.

Remark (1.10). Lemma (1.9) is generalized to the case where Y is a
scheme. In this case, we take in (ii) Y-pseudo-automorphisms of Y X X
(cf. [D] and E.G.A. IV).

Remark (1.11). In our paper ([U1l], Definition 2.6), we adopted another
definition of algebraic pseudo-operation. But they are equivalent. In fact,
let G be an algebraic group germ, X an algebraic variety and ¢: G X X
> X be a rational map. Then ¢ is an algebraic pseudo-operation if and
only if it satisfies the following conditions:

(a) for a general point xe X, ¢ is regular at (1,x) and ¢(1, x) = x
(in particular ¢ is dominant);

(b) the diagram

GXGxX--»GxX
v v
GX X ...» X

in Definition (1.2) is commutative.

Let us prove this. Assume that ¢ is an algebraic pseudo-operation. As
GXX—>GxXX (gx) (g, gx) is dominant, G Xx X -G X X, (g, x) —
(g7, gx) is dominant. Therefore for general g€ G and xe X, ¢ is regular
at (g7, gx) and we can define g-%(gx). Consequently a rational map G X
X—->GX X, (g, X) > (g}, g7%(gx)) is dominant and thus G X X -G X X,
(g, x) — (g, £ '(gx)) is dominant. Therefore we can define g(g~(gx)). On the
other hand for general A, k, j e G and x € X we have h(k '(jx)) = (hk )(jx)
by condition (2) of Definition (1.1). Hence ¢ is regular at (gg~!, gx) and
1(gx) = (g8 ))gx = g(g'(gx)). By the same argument, for general A, k, j
€eG and xe X we have h(k'(jx)) = (hk~Y)x. Therefore ¢ is regular at
(8, g7(gx)) and g(g '(gx)) = gx. Hence 1(gx) = gx for general ge G, xe
X As GXX—->G XX, (g x)— (g gx) is dominant, G X X-> X, (g, x) —
gx is also dominant. Hence gx is a general point in X. This shows that
the condition (a) is satisfied. Conversely if the conditions (a), (b) are
satisfied. Then rational map G X X-» X, (g, x) — gx is dominant. For
general g, A€ G and x¢ X, we have g '(hx) = (g 'h)x by (b). (g7'g)x = 1.
x by (a). Therefore ¢ is regular at (g7, gx) and we have g '(gx) = (g7'g)x
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= x. If we denote (g, x) = gx, (g, x) = g 'x, we can define o+, and
Ygoyr; = Id. By the same argument v, o+, = Id. Namely 4, is birational.

We define similarly analytic group germ as in Definition (1.1). For
the precise definition see Definition 1.1 in [U1].

But as we explained in [U2], even if we adopt an analogous definition
in the analytic case, subtle problems arise in the definition of the birational
automorphism group functor on the category of analytic spaces or in the
definition of analytic subgroups in Bir X. The difference between the
algebraic case and the analytic case comes from the existence of essential
singularities in the latter case. First of all it is convenient to recall the
definition of a meromorphic map between analytic sets ([K]).

DErFiNITION (1.12). Let X be an analytic space. We say that a closed
subset A is rare if the restriction map I'(U, Ox) — I'(U — A, Oy) is injec-
tive for any open set U.

DeriniTION (1.13). Let X, Y be analytic spaces. A meromorphic map
f: X.-»Y is a closed analytic set ', C X X Y satisfying the following
conditions:

(1) the restriction p of the projection p,: X X Y— X to I, is proper,

(2) there exist a closed analytic subset A of X such that (i) A and

p~'A are rare and p induces a biholomorphic isomorphism I — p~'A =~ X
— A.

DeriniTION (1.14). Let X be a complete algebraic variety. Bim X or
Bim X*®** is a group functor on the category of analytic spaces defined by:

BimX(T) = {f: TX X--»T x X|f is a bimeromorphic map (f and f~*
are meromorphic) commuting with the projection p;: TX X — T, i.e. p,o
f = p, such that there exists an open set U with t Xx XN U+ @ for any
te T on which f induces an isomorphism}/~, where by the equivalence
relation ~ we identify meromorphic maps which coincide on a dense 7-
open set of T X X (i.e. the complement is rare).

Notice that the functor Bim X is independent of the choice of a
complete model of X. Therefore for an algebraic variety V, we denote by
Bim V the group functor Bim V for a complete model V of V. When we
consider Bim X for a complete variety X, we may assume by Hironaka’s
theorem that X is projective and non-singular.

An analytic version of pseudo-operation is defined analogously but
carefully.
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DeriNiTiON (1.15). Let G be an analytic group germ and X a complete
algebraic variety. A rational pseudo-operation (G, ¢, X) of the analytic
group germ G on X** is a meromorphic map ¢: G X X**..> X** satisfying
the conditions (1). (2) of Definition (1.2). When there is no danger of
confusion, we denote X** by the same letter X.

Proposition (1.15) is generalized to

ProrosiTiON (1.16). Let G be an analytic group and X a complete
algebraic variety. Then there is a 1-1 correspondence between the following:
(i) the set Hom,, (G, Bim X) of morphisms of group functors;
(i1) the set of rational pseudo-operations (G, X).
Here in (ii) we have to identify isomorphic rational pseudo-operations.

We define a morphism of rational pseudo-operations similarly as in
Definition (1.3).

DEerFINITION (1.17). Let (G, ¥, Xi) T = 1, 2 be rational pseudo-operations.
A morphism (g, f): (G, X;) >(G,, X;) consists of a morphism ¢: G, — G,
of analytic group germs and a dominant meromorphic map f: X, .- X,
such that the diagram below is commutative:

C;1 X Xl ...... > X1
2 . S
G, X X, s X,

We say that (G,, X,) and (G,, X;) are isomorphic if there exist morph-
isms (¢, f): (G, X)) = (G,, X,) and (o2 f2): (Go, Xy) = (G,, X)) such that ¢, 0 ¢,
and ¢,0¢, are identity around 1 and f,of, and f,of, are equivalent to the
identities 1y,, 1y,.

DerFINITION (1.18). Let G be an analytic group germ. A morphism
¢: G —Bim X of analytic group germ functors on the category of analytic
spaces is a morphism ¢: U— Bim X of functors of an open neighbourhood
U of 1eG to Bir X such that the diagram

v ¥
Uu —» Bim X

is commutative, where the vertical arrows are the composition laws.
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The same spirit of the proof of Proposition (1.6) leads us to

ProposiTiON (1.19). Let G be an analytic group germ and X be a
complete algebraic variety. There is a 1-1 correspondence between the fol-
lowing:

(i) the set Hom,, (G, Bim X) of morphisms of analytic group germ
functors (we identify two morphisms if they coincide in a neighborhood of
1);

(ii) open neighbourhoods U of 1e G and rational pseudo-operations
U, X).

Here in (ii) we have to identify isomorphic rational pseudo-operations.
We have an analogue of Proposition (1.5).

PropositioN (1.20). Let X be a complete algebraic variety and ¢: G —
Bim X*" is a morphism of group functors of an analytic group G to Bim X.
Then Ker ¢ is a closed analytic subgroup of G.

DerFINITION (1.21). An analytic subgroup Bim X*"1is a group subfunctor
of Bim X*" representable by an analytic space.

DEeriNITION (1.22). Let X be an algebraic variety, G an algebraic
group germ and (G, X) an algebraic pseudo-operation. We can associate
to G an analytic group germ G**. If X is complete, then algebraic pseudo-
operation G X X -~ X is defined by the graph ' € G X X x X. If we con-
sider the associated analytic structure [I'*® C G*® X X** X X**, then it
defines a rational speudo-operation (G®®, X®**) = (G, X)**. We call (G**, X*»)
the rational pseudo-operation associated to (G, X). If X is not complete,
then we take a completion X and we get an algebraic pseudo-operation
(G, X) from (G, X). Then we denote by (G, X)* or by (G*», X*") the as-
sociated rational operation (G, X)*.

The definition is justified since (G, X)** is determined up to iso-
morphism.

Let now G be an algebraic group and X be an algebraic variety. Let
¢:G—Bir X be a morphism of group functors on the category of C-
schemes. Then ¢ is given by an algebraic pseudo-operation (G, X) by Propo-
sition (1.6), namely by a rational map v : GX X -> X. Let X be a completion
of X. Then + induces a rational map GXX-»X which we denote also
by + hence an algebraic pseudo-operation (G, X). Then the graph I, C
(G x X)x X of ¢ is a meromorphic map ¢** : G** X X**..» X*», Therefore a
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morphism ¢** : G*" — Bim X** of group functors on the category of analytic
spaces by Proposition (1.16). Tt follows from the definition that ¢** is
independent of the choice of complete model X of X. When G is an
algebraic subgroup of Bir X, then G** — Bim(X*") is an analytic subgroup
by Propositions (1.20).

More generally by the same argument as above we can show

LeMMma (1.23). Let X be a complete algebraic variety and Y an analytic
space. Then there is a 1-1 correspondence between the following:

(1) the set Hom(Y, Bim X) of the morphism of functors;

(ii) {f:YX X-> Y X X|f bimeromorphic inducing an isomorphism of
Zariski open sets U, V of Y X X such that y X XNU, y X XNV & and f

commutes with the projection Y X X% Y; namely the diagram Y X {-* Al}XX
F4o m

Y
is commutative}/ ~, where we identify by ~ two bimeromorphic maps in (ii)
if they coincide on a dense T-Zariski open set of Y X X.

Let X now be a smooth but not necessarily complete algebraic variety
and Y an algebraic variety. Let f: Y— Bir X be a morphism of functors.
It follows from Lemma (1.9) that the morphism f is given by a Y-birational
automorphism +: Y X X-> Y X X. Let us take a complete model X of X.
 induces a Y-birational automorphism v :Y x X-» Y X X. Let I';CY
XXXy YXX=YXXXXCYXXXYXX be the graph of V. Then
I'; defines a Y*"-pseudo-automorphism of the analytic space (Y X X).os
(Y X X)* and hence a morphism Y**— Bim X** of functors.

DEFINITION (1.24). We denote this morphism Y*" — Bim X** by f*.
The following trivial remark will be useful.

LemMaA (1.25). Let R be a ring of holomorphic functions over an domain
D c C*. Assume that the ring R is of finite type over C: there exist finitely
may holomorphic functions f,, fu, - - -, f» over D such that R = C[f,, f;, - - -, fal.
Let ¢ : D— Spec R C A" be defined by ¢(x) = (fi(x), fx), - -+, [a(x)) € A" for
xeD. Then the image ¢(D) is not contained in any closed algebraic sub-
variety of Spec R except for Spec R itself.

Proof. Let F(x, x,, ---, x,) € Clx;, x,, - -+, x,] be a polynomial. If
F(fl(x), fz(x), Y fn(x» =0 fOI' any xeD, then F(fl;fZ’ .t ’fn) =0 in R

Remark (1.26). In other words, by letting K be the quotient field of
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R, the K-valued point (f,,f;, - - -, f.) € Spec R C A" is the generic point of
the scheme Spec R.

LemMmA (1.27). Let A be an analytic manifold, X an algebraic variety
(defined over C) and f: A — Bim X a morphism of functors. Then, for any
point p € A, there exist an open neighborhood U of p, an algebraic variety
B, a morphism of functors f’ : B— Bir X and a holomorphic map g : U — B*™
such that (1) the image g(U) is Zariski dense in the algebraic variety B
and (2) f*og ={.

U__._g._>Ban

NI

Bim X

Proof. We may assume that X is non-singular and projective. Let
f: A —Bim X be difined by a correspondence A X X X X D Z (see Lemma
(1.9)). The closed analytic subset Z has the following property:
(1.27.1) The projection p;, : A X X X X—-> A X X induces Z— A X X which
is an isomorphism outside of analytic subsets. As X is projective, p,: A
X XX X— A is contained in a projective fibration A X P¥ —- A for a
certain integer N. It follows from the relative G.A.G.A. [G1] that the
A-analytic subspace ZC A X X X X C A X P? is locally defined by some
homogeneous polynomials with holomorphic coefficients with respect to A.
More precisely there exist a neighbourhood U of p, a ring R of finite
type over C consisting of holomorphic functions over U and homogeneous
polynomials Fya; X, X,, ---, X,) = Fi(a,X) € R[X;, X}, -+, Xy] 1<i<n,
a € A such that Z={(a,x) € A X P¥|Fya,x) =0 for 1<i< n} over U.
The homogeneous polynomials Fya; x) 1 < i < n define a R-scheme & C P;.
We put ./ = Spec R. Then we have an inclusion 2 C &/ X X X X C &/
X P¥ and the projection p;, : o/ X X X X — o/ X X induces q: % — .o X X.
We have also a natural analytic map ¢ : U— Spec R = .« by Lemma (1.25).
The diagram of natural maps

ZycUxXxX Zm (g X XX Xy

NSNS

U > Man
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is a fibre product by construction, where we put Z, = ZN UX X X X.
It follows from (1.27.1) that for any point a € A, there exists an open set
V., C X such that ¢ 'a, x) consists of one point for (a, x) ea X V,. Since
by Lemma (1.25) the subset ¢(U) C .« is not contained in any proper closed
algebraic subvariety of o7, it follows from [M] that the proper morphism
q:% — X X is birational. By the same argument we can show that
the projection p;; : &/ X X X X — &/ X X is birational. Namely & C & X
XX, o XX=9oX XXX defines a birational automorphism of &/ X X
commuting with the projection.

Since the diagram is cartesian, the birational automorphism % of
A X X is biregular at (g’(p), x) for a general point x € X*. Thus we may
assume that the correspondence Z gives an element of Bir X(«/) and the
Lemma 1is proved.

We proved the following Lemma in [U2].

LemMma (1.28). ([U2]), Lemma (1.8)). Let X be a non-singular algebraic
variety and S an algebraic variety. Let ¢:S — Bir X be a morphism of
functors on the category of C-schemes. For any point s € S, there exist an
open neighbourhood S’ of s, an algebraic variety T and a morphism ¢ : S’
— T such that ¢ and ¢’ define the same equivalence relation on S’ in the
category of the algebraic varieties over C. Here the last phrase that ¢ and
¢’ define the same equivalence relation on S’ in the category of the algebraic
varieties over C means that for any algebraic variety Z (defined over C),
¢ :S8"(Z)—T(Z) and S(Z)=—> S(Z) > Bir X define the same equivalence
relation on the set S'(Z)=Hom(Z, S’), i.e., the subset W = {(a, b) € S'(Z) X
S(Z)|¢'(a) = ¢'(b)} of S(Z) X S'(Z) coincides with the subset W'{(a, b) e
S(Z) x S"(Z)|¢(a) = ¢(b)}.

Lemma (1.29). Let B be an algebraic variety, X a smooth algebraic
variety over C and f': B— Bir X be a morphism of functors on the category
of C-schemes. Then there exist a non-empty Zariski open set B’ of B, an
algebraic variety C, a morphism h:C — Bir X of functors on the category
of C-schemes and a surjective morphism q:B — C of algebraic varieties
such that (1) the restriction of h on the category of the algebraic varieties
is injective and (2) f' = hoq.

Proof. Tt follows from Lemma (1.28) that there exist a non-empty
Zariski open set W of B, an algebraic variety T and a morphism ¢’ : W
— T such that f’ and ¢’ define the same equivalence relation on W on
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the category of the algebraic varieties. Then there exist a (not necessarily
closed) algebraic subvariety C of 7' and a non-empty open set U of W
such that U and C are non-singular and ¢’|U is smooth so that U X, U
is a union of algebraic varieties.

On the other hand since ¢’'|U = q : U— C is faithful flat, the sequence

3 Bir X(U X, U),

py
is exact or Im g* = {x € Bir X(U)|p¥x = p¥x} by [U2], Lemma (1.9.2), where
p.: UX,U—U is the i-th projection. Let ye Bir X(U) defines f'|U: U
—Bir X. Then pfy = pfy by the definition of ¢’ : W—T. Thus we get
an element z e Bir X(C) such that ¢*2=1y. h:C—Bir X defined by z¢
Bir X(C) satisfies the condition.

(1.28.1) Bir X(C) - Bir X(U)

The combination of Lemma (1.25) and (1.27) gives

CororLLARY (1.30). Let A, X,f and p be as in Lemma (1.27). Then
there exist an open set U of A, an algebraic variety B, a morphism of
functors f’ : B — Bir X on the category of C-schemes and a holomorphic map
g: U— B*™ such that (1) the image g(U) is Zariski dense in the algebraic
variety B, (2) f**og =f, (3) U is dense in a neighbourhood of p and (4)
the restriction of f’ on the category of algebraic varieties is injective.

The following lemma shows the birational unicity of U in the corollary

Lemma (1.31). Let A, X, f and f' be as in Lemma (1.27). Let U be an
open set of A, B an algebraic variety, f’:B—»BirX be a morphism of
functors on the category of C-schemes and g : U — B®™ such that (1) the image
3(U) is Zariski dense in the algebraic variety B, (2) fog=f, (3) U is
dense in a neighbourhood of p and (4) the restriction of f on the category
of algebraic varieties is injective. Then there exists an birational map
h: B> B between B of Corollary (1.31) and B making the following diagram
commutative:

B->Birx

h..’x A'

~

B

Namely we mean by the commutativity that the diagram above is
commutative on the open set of B on which A is regular.
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Proof. Since U and U are dense at p, W= UnN U is a non-empty
open set. The holomorphic maps g and g define W — B** and W — B'*
and g(W) and g(W) are dense respectively in B and B’. Hence we may
assume U = U. Therefore we have

B_ .,

o N
Bir X|(al
>*C1§)/f' ir X|(alg) ,

where (alg) denotes the category of the algebraic varieties over C. It
follows from [D] that the fibre product

U

1
.
Bx B> BirX
is representable by a closed subscheme of B X B where ¢ is defined hy
o(s, t) = f(s)(F()* € Bir X for (s, t) € B X B. Therefore the fibre product
B X g x El(alg) is representable by a closed subvariety C € B X B. The
projections B X B— B defines a morphism g:C— B of algebraic sub-
varieties, which is injective since B and B are subfunctors of Bir X | (alg).
The variety C = B Xy, B contains the subset g(U) X g(U)(U = U) and its
image q(g(U) X g(U)) = g(U) in B is Zariski dense. In particular the
subvariety C C B is Zariski dense and hence g : C — B is birational. The
same argument shows that the projection B X B — B induces a birational
map C —B.

Now we are ready to prove

THEOREM (1.32). Let G be an analytic group germ, X a complete algebraic
variety and (G, X) a rational pseudo-operation. Then there exist an algebraic
group H and an algebraic pseudo-operation (H, X) and a morphism of
rational pseudo-operations (G, X) — (H, X)* inducing the identity on X.

Before we start the proof, we had better introduce a notion of algebraic
pseudo-group.

DeriNiTION (1.33). An algebraic pseudo-group is a system (G, m) satis-
fying the following condition:

(1) G is an algebraic variety;

(ii) m:G X G-~> @G is a rational map;

(iii) the rational map G X G-» G X G, (x,y) — (x, m(x, y)) is dominant;
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(iv) the diagram

GXGXGmX1‘>GXG
§1><m m
v
GX G e > G
m

1s commutative.

DeriniTION (1.34). Let G, and G, be two algebraic pseudo-group. We
say that G, and G, are birationally equivalent or equivalent if there exists
a birational map ¢ : G, --> G, such that my(e(x), o(¥)) = ¢(m,(x, y)), where m,
is the composition law of G, (i = 1, 2).

THEOREM (1.35) [W]. Every algebraic pseudo-group is equivalent to an
algebraic group.

DerinITION (1.36). Let G be an algebraic pseudo-group and X be an
algebraic variety. An algebraic pseudo-operation (G, y, X) is a rational map
¢ : G X X.» X satisfying the condition of Definition (1.2). The equivalence
of algebraic pseudo-operations is defined as in Definition (1.3).

TeEOREM (1.37) [W]. Let (G, X) be an algebraic pseudo-operation of an
algebraic pseudo-group G. Then there exist an algebraic group G and an
algebraic operation (G, X) equivalent to (G, X).

Proof of the Theorem. The pseudo-rational operation (G, X) defines a
morphism of functors X of an open neighbourhood U of 1€ G to Bim X
by Proposition (1.19). Since the question is local, we may assume that
the pseudo rational operation (G, X) defines a morphism f:G — Bim X.
We apply Corollary (1.30) for A = G, p = 1eG and f: G—Bim X. There
exist an open set U of G dense in a neighbourhood of 1, an algebraic
variety H, a morphism of functors f': H-— Bir X and a holomorphic map
g: U— H** such that (1) the image g(U) is Zariski dense in the algebraic
variety H, (2) f*og = f, (3) the restriction of f' on the category of the
algebraic varieties is injective.

U-25 fen
N
Bim X

We show that H C Bir X|(Alg) has a natural structure of algebraic pseudo-
group, Let us define a composition law on H. We may assume that the
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following commutative diagram exists

G x ¢ X% Bim X x Bim X

(1.38)
v
¢—' > Bimx,

where the vertical arrows are composition laws. The diagram (1.38) gives

Ux U-2285 g» « H*® —> Bim X X Bim X

|, N

U ———— H™ —— BimX.

We want to show that there exist a rational map ¢: H X H -~ H such that
o*" defines AH*" X H** —Bim X. In fact, if we denote by A: H X H— Bir X
the composite of the morphism f’ X f’: H X H—Bir X X Bir X and the
composition law Bir X X Bir X — Bir X, then it follows from Lemma (1.29)
that there exist a Zariski open set W of the algebraic variety H X H, an
algebraic variety K, a morphism A’: K — Bir X of the functors on the
category of C-schemes and a morphism j: W-— K of algebraic varieties
such that (1) the image j(W) is Zariski dense in the algebraic variety K,
(2) Woj=h and (3) the restriction of &’ on the category of algebraic
varieties is injective.

The composite ¢,: U X U— H®*» of g: U— H* and the composition
law U x U-> U has the following properties.

(a) The image ¢, (U X U) is dense in the algebraic variety H by
Lemma (1.25).

() U X U is dense in a neighbourhood of (1,1)e G X G.

On the other hand, if we put U=(gx g)'W and denote the composite
map Us=— U X USWS K by ¢, then we have the following properties.

(a) The image gpz(ﬁ) is dense in the algebraic variety K since the
Zariski open set W is dense in H X H.

(b) U is dense in a neighbourhood of (1,1) e G X G.

It follows from Lemma (1.31) that the inclusion H =—» Bir X|(alg) and
K =—> Bir X|(alg) give birational correspondence of H and K. Therefore
there exist a rational map ¢: H X H-> H such that the diagrams

H x H¥Z% Bir X x Bir X
e :

¥ y’ _i
H —— Bir X
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and
U X U—>H*™ X H“—»BimXx Bim X
(1.39) g i
v ¥ v
Uu — H»  — Bim X
are commutative, where the right vertical arrows are the composition laws
of Bir X and Bim X.

Since g(U) is dense in H, it follows from (1.39) and the proof of
Lemma (1.25) that ¢: H X H-~ H is dominant. It follows from (1.39) that
H is an algebraic pseudo-group and we have a dominant rational map
H x X-» H x X, which we denote by (h, x) — (h, u(h, x)). We have more-
over a commutative diagram

Hx Hx X5 Hx x
Loxp L
v
Hx X - — X
ll

Namely the algebraic pseudo-group H pseudo-operates on X. It follows
from Theorem (1.37) that there exist an algebraic group H and an algebraic
operation (ﬁ, X’) equivalent to (H, X). In other words we have an equi-
valence a: H-> H of algebraic pseudo-group and a morphism f: H-BirX
of group functors by Proposition (1.6) such that the diagram below is
commutative:

H—f-'—> Bir X

a: /
Y

H

We thus get a morphism of an open subset U’ dense in a neighbourhood
of 1 of U to H; 7: U’ — H such that 7(x)r(y) = r(xy) since g(U) is dense
in H (cf. Lemma (1.25)). Since for a general x, ye U’ we have 7(x) =
7(xy,y™) = 1r(xy)7(y™Y), 7 can be extended to a regular map at 1eG.
Therefore we may assume that U’ is a neighbourhood of 1€ G and 7: U’
— H with 7(x, y) = r(x)r(v) for general x,ye U’ X U’. (H, X) satisfies our
requirement.

The following result is due to Painlevé [P].

CoOROLLARY (1.40). Let ¢: G—Bim X be a morphism of group functors
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of a (connected) analytic group G to Bim X. Then there exist an algebraic
subgroup i: H=— Bir X and a morphism ¢': G — H* of analytic groups
such that ¢ = i*"o ¢’

Proof. Let ¢: G —Bim X be defined by a rational pseudo-operation
(G, X) by Proposition (1.16). Then by Theorem (1.32), we can find an al-
gebraic group H, an algebraic pseudo-operation (G, X) a local morphism
7: G— H of Lie groups such that (7, 15): (G, X) — (H, X)*® is a morphism
of rational pseudo-operations; G--» H** — Bim X. Therefore if we take the
universal covering group G of G, we get a morphism 7: G — H™ of Lie
groups locally equivalent to r. Let H’ be an algebraic subgroup of Bir X
such that the morphism H — Bir X factors through H’ C Bir X (cf. Pro-
position (1.5)):

H—>Bir X
NS
H’

Therefore we get aoi: G — H=—>BimX. Hence ao7 factors through
0 G — Bim X.

G—> H™ —>BimX
l /
[=
G
The algebraic subgroup H’ satisfies the conditions of Corollary (1.40).

Part II. Algebraic differential equations

§1. Preliminaries

In the study of algebraic differential equations, algebraic varieties
defined over not necessarily algebraically closed fields appear. We are
always in characteristic 0 but the algebraic non-closedness often makes
the argument delicate. The analyst may naively imagine with an algebraic
variety a set of the common zeros of certain polynomials. But we have
to clarify the definition.

DerFiniTION (1.1). Let K be a field. An algebraic variety over K or
K-algebraic variety is an irreducible and reduced K-scheme of finite type
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over Spec K.

We work always in characteristic 0. Even under this assumption for
a field extension L D K and a K-algebraic variety X, the base change
X®y L is not always an L-algebraic variety. We know that in charac-
teristic 0, each irreducible component of X ®, L is an L-algebraic variety
for sufficiently big L (see for example, E.G.A. IV, 4.3.).

DeriNiTION (1.2). Let X be an algebraic variety over a field K. We
say that X is absolutely irreducible (in E.G.A. géométriquement intégre)
if for any field extension L D K, X®, L is an algebraic variety over L.

We know (cf. E.G.A. Chap IV, 4.5).

ProprosiTioN (1.3). Let X be an algebraic variety defined over K. Then
X is absolutely irreducible if and only if there exists an algebraically closed
extension L D K such that X®, L is an algebraic variety.

As we heavily use the algebro-geometric language in the following
discussion, it would be useful to explain certain basic conventions so
that the paper is accessible for analysts. Let V be an algebraic variety
defined over k or we say sometimes that V is a k-algebraic variety. All
the ring we consider are commutative with the unit element. Let R be
a ring containing the field .. An R-rational point or R-valued point of
V is a morphism Spec R —» V of k-schemes. In particular a k-valued point
Spec £ — V is determined by its image and hence we say that the image
xe V of Speck is a k-valued point. More generally, for a field K Dk
since Spec K consists of a point, the image Spec K— V of a K-valued
point is sometimes called by abuse of language a K-valued point; if x is
the image of Spec K, K is an extension of the residue field k(x). Let
SO R be a over ring. Then the inclusion S D R defines the morphism
Spec S — Spec R and hence we have an S-valued point Spec S— V by
the composition of the above two morphisms. For this reason an R-valued
point is naturally considered as an S-valued point for S D R. Let now
f: V— W be a morphism of k-algebraic variety and g: Spec R — V an R-
valued point. Then we get an R-valued point fog: Spec R— W. Let
(G, ¢, X), ¢: G X, X —X be a k-algebraic operation of a k-algebraic group
G over k-algebraic variety X. For ge G, x € X, we denote by gx the image
o(g, x) (cf. Part I). Let f: Spec R — G be an R-valued point and x € X be
a k-valued point. Therefore we get an R-valued point
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Spec R5>G X, X—2>X of X.
a—> (f(a), x)

This rather trivial remark is useful when we try to integrate differential
equations.

Let D ¢ C be a domain, R a ring of holomorphic functions and K
the quotient field of R. In the following sections, we consider field ex-
tensions L which is not necessary of finite type over K. But L is the
quotient field of a ring S of holomorphic functions on a subdomain D, of
D.

A typical example of such L is a finite algebraic extension of K. In
fact let L D K be a finite algebraic extension. Then L is a simple exten-
sion: L = K(x). Let « satisfy an irreducible algebraic equation a® + g,a™"*
4+ - 4a,+0 a,e KA<i<n) lLet DV CD be a subdomain such that
the a, are regular on I). Let f be a multivalued function on D’ satisfying

f*+af"'+ - +a,=0

Namely f is an algebroid function. If we take a subdomain D, < D’ such
that f decomposes into n-single valued functions, then by letting f be a
branch of fon D,, we get that L = K(«) is K-isomorphic to K(f;). Therefore
K(f) is the quotient field of Rla,, a,, - -, a,, fil. The latter is a ring of
holomorphic functions on D,.

We identify a holomorphic function on D with its restriction on a
sub-domain D,. Therefore often we do not make the subdomain D, precise.
It is convenient to use an algebraic closure K of K in the following
discussions but we should be careful because this field is not of the above
type. Hence we have to justify this usage. In fact, every time we use
K, it is sufficient to consider a sufficiently big finite algebraic extension
of K and this field is of above type as we saw above.

A typical example is as follows. Let V C A% be an K-affine algebraic
variety. Let us decompose V®, K into the union of irreducible varieties
(hence absolutely irreducible varieties) over K. As every component of
V ®x K is defined over a finite algebraic extension of K, the decomposition
is done over a finite algebraic extension of K.

For this reason, we may use the algebraic closure K in such situations
as in the above examples.

Let V be an algebraic variety defined over C and D a domain of C.
When there is no danger of confusion, we denote the analytic space V&°
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associated with V also by V. For example a holomorphic map or a
holomorphic curve F: D — V** with be simply denoted by F: D — V. Let
us now assume V to be affine so that we have an embedding V C A% =
A", Let F: D— V C A" be defined by holomorphic functions (fi, f;, - -+, f)
on D: F@t) = (1,(t), f,(t), -- -, f.(®)) e VC A" for te D. Two interpretations
are possible. The first one is given above: F: D— V is a holomorphic
curve on an algebraic variety V. The second one is algebro-geometric.
Let K be the field C(f,,f,, - - -, f.) of meromorphic functions on D.

The map F defines a homomorphism C[X,, X,, - - -, X,] = Clf. fos - -, ]
= R of C-algebras. Therefore a morphism f: Spec C[f, f;, -, [.] —
Spec C[X,, X;, - - -, X,] = A% of C-algebraic varieties. This morphism factors
through V C AZ giving an R-valued point Spec R — V. Since K D R, we
get an K-valued point Spec K — V, which we denote by P(F) and call the
K-valued point associated with F. We say also that F: D— Vis a K-
valued point. Conversely given a K-valued point @ = (g,(?), g(t), - - -, £.(2))
e V®cK with g,()e K, 1< i< n. Then there is a subdomain D, C D
such that the g,(f) (1 £i<n) are regular on D, and hence defines a
holomorphic curve G: D, — V. If the variety V is not affine, using an
affine covering we define the K-valued point P(F) for a holomorphic
curve F: D— V.

Let D, C D, be domains of C and F,;: D, — V be a holomorphic curve
(i=1,2). We say that F, is equivalent to F, and write F, ~ F, if F, is
the restriction of F, onto D,. We have proved

Proposition (1.4). Let L D C be a field of meromorphic functions on
a domain D. Let V be an algebraic variety over C. Then there is a 1-1
correspondence between the following.

(i) {F: D' — V|F is a holomorphic curve on a subdomain D’ C D
depending on F such that P(F) is a L-valued point}|equivalence relation
generated by ~.

(i1) L-valued points of V.

Remark (1.5). In Proposition (1.4), we do not assume V to be affine,
since the question is local and hence reduced to the affine case discussed
above.

DerinNiTION (1.6). Let p: Spec L—V be an L-valued point. The
corresponding holomorphic curve F: D' — V is denoted by F(P). For an
algebraic variety V, we have seen in Proposition (1.4) a nice 1-1 corre-
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spondence between the holomorphic curves F: D' —> V®* and L-rational
points of V. A similar correspondence exists between morphisms F: D/
— Bim V** and morphisms Spec L — Bir V. Since Bim V** and Bir V are
functors, we should argue carefully. In fact, let V be a projective algebraic
variety defined over C and D be a domain of C.

Let R be a C-algebra. R-rational point of Bir V is a morphism
Spec R — Bir V of functors. Let F: D — Bim V** be a morphism of func-
tors on the category of the complex analytic spaces. Replacing D by a
subdomain if necessary, we may assume by Lemma (1.27) that there exist
an algebraic variety W a morphism f’: B — Bir V and a holomorphic map
g: D — B* such that (1) the image g(D) is Zariski dense in the algebraic
variety W and (2) f*"og = F. It follows from the argument above that g
determines a K-valued point Spec K — B hence a K-valued point Spec K
— B — Bir V, where K is an appropriate field of meromorphic functions
on D. We denote this K-valued point on the functor Bir V by P(F) and
call the associated K-valued point to F. We say also that F: D— Bim V*»
is a K-valued point. Conversely let L be a field of meromorphic functions
on a domain D and Spec L — Bir V be a L-valued point. The L-valued
point Spec L — Bir V is given by an L-birational automorphism of V®, L,
or by its graph I' C (VL) X (V®:L) = (V X V) ®¢ L (cf. Lemma (1.9)).
Therefore there exists a C-algebra of finite type R such that the graph [”
is defined over R: there exists an algebraic subvariety ', C (V X V) ®,
Spec R such that I'= 1", ®; K. We may further assume that I', C
(VX V)®¢ Spec R defines an Spec R-birational automorphism of Spec R
®c V. Thus we get a morphism Spec R — Bir V. Let R = CI[f,,fs, -, fx].
We get finally D — (Spec R)* — Bim V*»,

Let D, © D, be domains of C and F;: D, — Bim V be a morphism of
functors. We say that F, is equivalent to F, and write F, ~ F} if F| is the
restriction of F, onto D,. Leaving the reader the detail because it is only
a formal checking, we have thus proved

ProrositionN (1.7). Let V be an algebraic variety over C, L D C be a
field of meromorphic functions. Then there is a 1-1 correspondence between
the following.

(i) {F: D' — Bim V|F is a morphism of functors of a subdomain
D’ < D depending on F such that P(F) is L-rational} [ equivalence relation
generated by ~.
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(1) L-rational points of Bir V.

DEerinITION (1.8). Let p: Spec L — Bir V be an L-rational point. Then
the corresponding morphism D’ — Bim V is denoted by F(P).

The first statements in Propositions (1.4) and (1.7) are analytic na-
ture and the second statements are algebraic. The conditions on a dif-
ferential equation is given in the analytic language. In our study of the
differential equations, we translate them by Propositions (1.4) and (1.7)
into the algebro-geometric language. Using the technique of algebraic
geometry, we study the properties of the differential equation and finally
we translate the results into the analytic language by Propositions (1.4)
and (1.7).

We shall study systems of Pfaffian differential equations over manifolds.
We need only the simplest systems.

DerFiNniTION (1.9). Let M be a (complex) analytic manifold. We de-
note by T the tangent bundle of M and by @, the sheaf of its sections.
But we do not distinguish strictly a vector bundle and the locally free
sheaf of its sections. A regular system of Pfaffian differential equations
of corank 1 or of rank dim M — 1 over M is a subbundle L of rank 1 of the
tangent bundle T, so that we have an exact sequence

(1.10) 0—L—T,—Ty/L—>0 with T'/L

locally free O,-module. Considering the dual Q% of T}, we can show this
is equivalent to giving a locally free subsheaf & of rank dim M — 1 such
that 2%,/& is an invertible sheaf:

(1.11) 0—> & 5 0Y 5> 04/ —>0.

Let F: D — M be a holomorphic curve of a domain D < C. We say
that F' is a solution of the system of Pfaffian differential equations if the
composite map F*(S"T;F*Q}u — 0% 1s 0, where F*Q% — Q% is the natural
map. When & is generated by 1-forms, w,, w,, ---, w,, we call (1.10) or
(1.11), a system of Pfaffian differential equations w, = 0, w, =0, - --, w, = 0.

We had better generalized Definition (1.9).

DerFinITION (1.12). A system of Pfaffian differential equation of corank
1, or of rank dim M — 1 is a coherent subsheaf (1.13) 0 — L — T, such that
there exists a non-empty open set M° C M over which the injection (1.13)
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induces a regular system of Pfaffian differential equations of corank 1. By
duality a coherent subsheaf 0 — & — 02!, such that & is locally free of rank
dim M — 1 over a non-empty open set defines a system of Pfaffian differential
equations of corank 1. If there is no danger of confusion, we do not
make the open set M° precise.

A simple but important example of such a Pfaffian system arises when
we consider a group operation. Let G be a algebraic group, X a non-
singular algebraic variety and (G, ¢, X), ¢: G X X— X be an algebraic
operation over C. We denote ¢(g, x) by g-x or by gx for ge G, xe X. Let
F: D— G be a holomorphic curve whose associated point P(F) is K-
valued for a certain field K of meromorphic functions. By enlarging K,
let us assume that if f(f) e K, then the derived function f'({) e K. Then
we can define a K-vector field O(F, (G, X)) = O(F) on X®. K or an element
of H{X®c K, Oxg x/x)- In fact we construct O(F) locally. Let U C X be
an affine open set. Let U= Spec A with 4 = C|z, 2, -, 2,]. We con-
sider Uc A™ by ClZ2,2, - --,Z,)—>Clzn2, -+, 2,.), Z,— 2z AZiZ m).
For fe H(U, Oy) and te D, we put

(1.14) O(F)(f(x)) = lim [EC + h)F};‘(h)x) — %)
h—0

considering t € D as a variable. Then O(F): HY(U, O,) - H(U ®. K, Oug,x)
is a C-derivation. ILet us check that O(F) (f(x)) is in fact in H(U®; K,
Ovg.x)- Let ¢ = 0. Then for an analytic function a(t) e K a(t + ¢) = a(?)
+ d'(t)e € K[e] since a/(¢) is in K. Let F: D — G be given locally by ¢~
(i@, @, -, fo®)e Uc A™. On a suitable subdomain D’ c D, F defines
Fit+h): DG, t—(fit + h),E+ h), -, fult + k) for he C near the
0. If we consider F(t 4+ h) mod h®. We get a morphism P(F(t + h):
Spec K[e] - G. We have a natural map ¢: Spec K[¢] — Spec K. We thus
get a map (Id, q): Spec K[e] — Spec K[¢] ®cSpec K. Composing with

Spec K[e] ® Spec K PE( + h)PEF) G i( G -G, (a, b) — ab-!
we get a morpbism +: Spec K[¢] — G and therefore we get

o, SpeCK[e] XcX-)G XC.X—-;X.
~—

Since set-theoretically r..q: Spec K[e]..s = Spec K — G,., = G factors through
1, for the open set U above, we get ay: Spec K[¢] X U— U. Then
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f(F@ + RF-(Hx) mod A* is equal to «ff and hence O(F)(i(x)) = the co-
efficients of eterm of a¥fe H° (Spec K[e] Xc U, O) = A®. K + AR Ke.
Therefore O(F)(#(x)) is in A ®. Spec K. O(F) is evidently C-linear and we
can check directly O(F)(fg) = OF)(f).g + f.0(F)g) for f,ye H (U, Op).
Extending the derivation O(F): H(U, O,) — H(U®. K, OU®CK) to HY(U, Oy)
®c K = H(U®c¢ K, Oy x) = H(U®c K, Opg_x) by sending 1® K to 0.
We get a K-derivation HY(U ®¢ K, OU®c <) which we again denote by O(F).
We call O(F) the vector field associated with F. Another interpretation
of the formula (1.14) is: O(F) is a vector field on D X X if we put &(F)(f(x))
= lim, ., (f(F( + h)F(h)x) — f(x))/h for any holomorphic function on D’
X U where I is a subdomain of D. Therefore we get a non-vanishing
vector field 9/ot + 6(F) on D X X and

(PE(F)) 0 onxx(—aat- + @(F)) o> Thex

is a regular system of Pfaffian differential equations of rank dim X. It
follows from the definition that the holomorphic curve H: D - D X X, t—
(¢, F(t)x) is a solution of the system of Pfaffian differential equations
(Pf(F)) for any point x e X. Jn fact the holomorphic curve H defines a
vector field X, riyme = lim,_, (p(t 4+ h, F(t 4+ h)x) — o(t, F(H)x))/h at (t, F(H)x),
for a holomorphic function ¢ at (¢, F(f)x). We have X, rynt = 1. Let ¢
be a holomorphic function on a neighbourhood of F(f)x = ye X. Then
X rine = lim,_, (o(F(t + h)x) — o(F@®)x)/h = lim,_, (p(F (¢t + HF®)y) —
o(¥)|h = O(F)y)¢). Hence H defines the vector field 3/ot + O(F) and H
is a solution. The above argument shows that any solution D —D X X,
t > (¢, a(t)) of the system Pf(4) is given by H varying xec X.

We call Pf(F) the system of Pfaffian differential equation associated
with F and (G, X).

DeriniTION (1.15). If there exist a subfield L D C of K and a vector
field # on X®.L or 6 e H(X® L, @X®CL,L) such that §®,; Ke H(X®.K,
C] 1@ x,x) coincides with O(F), then we say that the system Pf (F) of Pfaffian
differential equations are defined over L or the coefficients of the system
P{(F) are in L.

A particular case of the above example is given by the operation
(G, G) of an algebraic group G on itself from the left. This appears in §2.

In our study of differential equations, the following situation appears
very often. Let X = Spec C[x,, x,, - -+, x,] be an affine algebraic variety,
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D c C a domain and K a field of meromorphic functions on D containing
all the constant functions. We denote by X, the set of the non-singular
points of X. The coordinate on D is denoted by ¢. Let 4 be a rational
vector field on the algebraic variety X®¢ K over K, namely a K-derivation
6: quotient field of Clx, x,, - -, x,] ®c K — quotient field of C[x,, x,, - - -,
x,) K. 6 is given by 6(x) = (Fit; x;, 24y - - -, X N(Gilt; %, %oy - - -, X))
with F,(t; X, X, -+, X,), Gi(¢; X, X, -+, X,) e K[X,, X,, - - -, X,] such that
Gt; 2, %, -+, %,) #0 for 1<i< n. Therefore the vector field 9/t +
Sua(Ft X, -, XING(E, X, - -+, X)) X 3/6X, on an open set of D X A"
defines a vector field § on an open set of D X X, C D X A", where
(Xieg ©)X=—> A" is defined by x, x5, - - -, x,.

Therefore there exists an open set U D X X,,, such that
(1.16) 0 — 0,0 — T, defines a regular system of Pfaffitan differential
equations of corank 1 on U.

DeriNITION (1.17). We say that the system (1.16) of Pfaffian differential
equations is defined by 6 over K or (1.16) is associated with §. We denote
the system (1.16) by Pf(d). We do not make the open set U precise and
we say simply that Pf(f) is a system of Pfaffian differential equations on
D x X

The dual form to (1.16) is given by the set of 1-forms dx, —
(Fult; 1, %oy -y X D(Gilts 20, 25, -+, %)) dt (1< i< n):

03" o,,<dx1 _ ﬂdt) N
izt G,

DeFINITION (1.18). If the exists a subfield L © C of K and a deriva-
tion 6, € Der, (I(X ®¢ L), L(X;®;L)) such that § = §, ®, K, then we say
that the system Pf(d) of Pfaffian differential equations is defined over L
or the coefficients of the system Pf(6) is in L.

The most important case is the follows. Let F: D —-BimX be a
morphism of functors. Let F be K-valued for a field K of meromorphic
functions such that K is closed by differentiation. We put

OF)(f(2) = lim [FC+ Z)F ®72)  for f(2)e C(X).

By the same argument as in the case of algebraic operation, we can show
O(F)(f(z)) e K(X®:K) and O(F): C(X) - K(X®.K) is a C-derivation.
Therefore we can extend 6(F) by sending 1® K to 0 to a K-derivation
K(X®:K) > K(X®:K) which we denote also by O(F). O(F) therefore
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defines a system of Pfaffian differential equations Pf(O(F)) on X X D.

DerFiNtTION (1.19). We call Pf(O(F)) the system of Pfaffian differential
equations associated with the morphism F: D — Bim X of functors. We
denote it by Pf(F).

It follows from Lemma (1.27) Part I that if we replace D by an ap-
propriate subdomain I’ there exists an algebraic variety Z, a morphism
f: Z—Bir X of functors and a holomorphic map g: I/ — Z** such that the
image g(I)) is dense in the algebraic variety Z and

fanog:__F.

The morphism g: Z — Bir X is given by a family of birational automorph-
isms g: ZX X->ZX X as in Lemma (1.9). Let y: ZX X5 ZxXB X
be the composite rational map. Let us write (2, x) = zx for a general
point (z, x) e Z X X. Therefore for general t e D’ and x € X, g(t)x is defined.
We may write g(t)x = F(f)x. Then as in the case of algebraic operation,
we can show that if we put for x e X, D” = {t € D"|V is regular at (g(2), x)},
then D” — D" X X, t—(t, g(t)x)} is a solution of the system Pf(F). If
there exists a point ¢ eI’ such that F(f,) = Idy, let X, = {xe X|y is
regular at (g(¢), x)}. Then X, is a non-empty Zariski open set of X and
any solution ¢+ (¢, s(t)) € D X X of the system Pf (F) is given by the above
form by the unicity of the solution at a regular point.

Remark (1.20). Let K be a field of meromorphic functions on a domain
D. Let deDery (K(X®cK), K(X®;K)). We consider the system Pf(6)
of Pfaffian differential equations on D X X. We are interested how we
can construct the general solution of Pf(d) starting from K. Namely we
are concerned with the extension L over K generated by the coordinates
of the general solution D' — D' X X, t—(t,s(): L = K({so¢p|peC(X)
(algebraic) rational function on X}). Therefore if D, € D be a subdomain,
we identify the systems on D X X and on D, X X defined by 6 since by
the restriction the fields involved are isomorphic. As we are interested
in the general solution, if Y is birationally isomorphic to X, then
K(X®:K) = K(Y®cK) and by this isomorpbism @ is considered as an
element of Der, (K(Y®:K), K(Y®;K)) and the general solutions on
XX D and on Y X D’ are identified by the birational isomorphism be-
tween X and Y. Therefore we identify also the system Pf(§) on D' X X
and the system on D’X Y.
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We need following

LEmMMA (1.21). Let K be a field and X, Y be absolutely irreducible
algebraic varieties defined over K. If there exist a field extension L D K
such that X®y L and Y®, L are L-birationally isomorphic, then there exists
a finite algebraic extension M DO K such that X®x M and Y®; M are M-
birationally isomorphic.

Proof. Let f: X®i L > Y®;L be L-birational isomorphism. Since X
and Y are algebraic varieties, we may assume that L is of finite type over
K. Or there exist an integral domain S = K|x,, x,, - - -, x,] C L such that
the correspondence I', C (X X Y)®x L is defined over Spec S: namely there
exists /' C (X X Y) ®, Spec S such that I', = I'®s L C (X X Y) ®4 Spec S)
®cL. If we go to the algebraic closure K, then I'®K c (X X Y)®,Spec S)
® K is a family of correspondences between X®, K and Y®; K para-
metrized by Spec S®; K. Let p: I'®x K — X X Spec S®x K (vesp. q: I
®x K — Y® Spec S®, K) be the restriction to I ®, K of the projection

'@, KcC XX YxXSpecS®,K = (XX Spec S®; K) X Spec S®, K
(Y X Spec S®; K) — X X Spec S® K (resp. Y X Spec S®, K) .

We have two natural K-morphisms a: X ®, Spec S®, K — Spec S®, K
and B: ' ®; K —Spec S®, K so that the following diagram is commutative:

'®:K-2>X®,Spec S®, K
/9 o
Spec S®x K

The morphisms p and g of algebraic varieties over K are birational.
Therefore there exists a Zariski open sets W,V of '®,K and of X X
Spec S®y K isomorphic by p. It follows from (2.31) Proposition of [M]
that there exists a Zariski open set U of Spec S®; K such that there
a(W) = B(V) D U. For any closed point s e U, p® K(s) gives K-birational
morphism of "R K®zK(s) to X X SpecS®; KRQzK(s) = X®; K. By
the same argument for ¢ we may assume that g ® K(s) gives K-birational
morphism of " ®; K ®zK(s) to Y — Spec S®;x X KQRzK(s) = Y®, K for
any closed point s € U. Therefore X®; K and Y®, K are K-birationally
equivalent. Since they are algebraic varieties, they are birationally iso-
morphic over a certain finite algebraic extension of K.
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Let X be an algebraic variety and G be an algebraic group over a
field K. Let ¢: G — Bir(X) be a K-morphism of group functors. Then ¢
induces a morphism G(K|e]) — Bir X(K[e]), where K[e] is the ring of dual
numbers: & = 0. Let K — K|[¢] be the canonical inclusion, then we get a
commutative diagram

G(K[e]) —> Bir X(K[e])

1 4
G(K) — Bir X(K).
Therefore we get a map

¢s: Keri—> Ker¢.

Ker i is the Lie algebra of G (see Borel [B]) and Ker ¢ is identified with
the Lie algebra of K-derivations of the function field K(X) and ¢, is a
morphism of Lie algebras (see [D]).

DerFINITION (1.22). Let K be a field and F(X,, X, -, X,) e K[X,, X,,
..+, X,]. We say that the polynomial F is absolutely irreducible if for any
extension L D K, F is irreducible in the unique fectorization domain
LIX, X,, -+, X,]. This is equivalent to saying that V(F) C A% is irre-
ducible.

It follows from Proposition (1.3) that to see whether F is absolutely
irreducible or not it is sufficient to check it for an algebraic closed ex-
tension of K.

Lemma (1.23). Let L be a field (of characteristic 0) and M DL be a
field extension. Let F(X), G(X) e L[X,, X,, - -+, X,] be relatively prime in the
unique factorization domain (= U.F.D.) L{X,, X,, ---, X,]. Then F(X) and
G(X) are relatively prime in M[X,, X,, - - -, X,].

Proof. As we see below, it is sufficient to assume that L is perfect.
Assume that F(X) and G(X) are not relatively prime in M[X,, X,, - - -, X,].
There exists an H(X) e M[X,, X, - - -, X,] which is not constant and divides
F(X) and G(X). Geometrically V(H) C V(F) and V(H) CcV(G) in A,.
Therefore the zero locus V(H) is a component of V(F) and V(G) on A,.
Therefore the subvariety V(H) C A, is defined over an algebraic closure
L since F,GeL[X,, X,, ---,X,]. Or F and G have a non-trivial common
factor in L[X,, X,, - - -, X,]. Thus we may assume H(X) e L[X,, X, - - -, X,].
Let ND L be a finite Galois extension such that H(X) e N[X,, X, - - -, X,]
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and % be the Galois group of N/L. The Galois group % operates on
N[X,, X,, - - -, X,] through the coefficients. Let # = {ge ¢|H*(X) = H(X)}.
Since V(F), V(G) in A% are G-invariant, V(H¢) C V(F), V(G) for any
g € G: the Galois group ¢ operates on A% by (x,, %y, - - -, x,) —> (8%, 8%, - - -,
gx,) for (x,, %y, - - -, x,) € A%, g € 4. Therefore if we put I(X) = [] cqrn H(X),
then I(X) e L[X,, X,, - - -, X,] and V(I(X)) C V(F(X)) and V(I(X)) C V(G(X))
on A%, V(F(x)) and V(G(X)) have a common component in A% and
hence they are not relatively prime in L[X, X, - -, X,].

By Lemma (1.23) we can say that the polynomials F' and G are rela-
tively prime without mentioning the field of reference M D L.

DerFINITION (1.24). Let V be an algebraic variety defined over k. Let
f: Speck — V be a k-valued point. Then f®, K: Spec K = Spec k X,
Spec K — V®, K is a K-valued point. We say that the K-valued point
[®, K is defined over k.

We need the following Proposition which comes from the fact that
the complex number field C is algebraically closed and of infinite trans-
cendence degree over any finitely generated subfield of C.

ProrositioN (1.25). Let V be an algebraic variety defined over C. Let
F be an extension of C. Then the set of points of V®.F defined over C
is dense in V®F.

Proof. We may assume that Vis affine: V. A% Let V C A% is defined
by the ideal I ¢ C[X,, X,, - - -, X,] such that V = Spec C[X,, X,, - - -, X,]/L.
We have to show the following. ILet A(X)e F[X, X,, ---, X,] vanish on
{(2y, 2oy -+ -, x,) € CY f(2y, 23y -+, %,) = 0 for all felI}. Then A(X)e F[X,
X, -, X,]-1. Let R C be a field finitely generated over O such that
V < A% is defined over k: let V, C A? be defined by the ideal I, C k[X],
X,, -+, X,] so that I = C[X,, X;, - -+, X,]I,, Let FO L Dk be a finite ex-
tension of k such that A(X)eL[X,, X;, ---, X,].

F
g,
\,

Since the degree of transcendence of C over % is infinite and C is alge-
braically closed, we can find a point (x,, x,, - - -, x,) € C* with f(x,, x5, - - -, x,,)
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=0 for any fel, such that tr.d L[X, X,, ---, X,J/L[X, X, ---, X,).I, =
tr.d L{x,, 2, - -+, x,]. We have an L-morphism of integral domains ¢:
LIX, X,, -+, X,J/LIX,, X, - - -, X,JI, = L[x,, x,, - - -, x,]. Since they have the
same transcendence degree over L, ¢ is an isomorphism. Since A(x,, x,,
%) =0, AeL[X, X,, -+, X,]L C FIX, X;, - -+, XL

We use the following Lemma (1.26) in §4. The Lemma holds in far
general setting and we need in fact the generalization. Since the gener-
alization is proved.by the same method, we give it in a special form.

LEMMA (1.26). Let K be a field containing C and A(X,, X;), B,(X,, X;)
e K[X,, X;] for i = 1,2 such that (X,, X;) —(A,/B,, A,/B,) defines an K-
automorphism of the field K(X,, X;). Moreover we assume that A, and B,
are relatively prime. Let B be the l.e.m. of B, and B, in K[X,, X;]. Then
for a general (a, b,c) e C* the polynomial C = aB + bBA,/B, + ¢BA,/B, is
absolutely irreducible: for any field extension L D K the polynomial Ce
L[X,, X;] is irreducible.

Proof. Let K be an algebraic closure. The vector space KB,B, +
KBA,|B, + KBA,/B, c K(X,, X,) defines on P% a linear system % free
from fixed components. The linear system ¥ is not composite with a
pencil. Therefore by the Theorem of Bertini (Zariski [Z], Theorem (I.6.3),
p. 30). The general cycle is absolutely irreducible. Namely let w,, w,, u,
be variables over K. Then the polynomial u,B + U,BA, B, + u,BA4,/B,
with coefficients in K(u, w,, u,) is absolutely irreducible. Geometrically,
if we consider an K-algebraic variety W, = {(a,, a,, a;; by, b)) € A% X A%]
(ayB + a,BA,/B, + a,BA,[B))(b, b,) = 0}, W, is naturally a subset of A% X
P%. We denote by W the closure W, © A% X P%. The projection A% X P%
— W, induces p: W— A%. The theorem of Bertini says that the generic
fibre of P is reduced and absolutely irreducible (géométriquement intégre,
in the language of E.G.A. Chap IV). Since p is generically flat by E.G.A.
Chap IV, §6, Théoreme (6.9.1), Lemma follows from Proposition (1.25) and
from E.G.A. Chap IV, §12, Théoréme (12.2.4).

§ 2. Permissible operations

We treat sets of meromorphic functions. Very often they are rings
or fields. We have to clarify several points. First of all, we identify a
holomorphic function f on an open set U C C with its restriction f|V to
an open subset VC U. We shall consider only the following type of sets,
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rings or fields of meromorphic functions if we do not make any particular
assumption: (2.1) a set, a ring or a field of meromorphic functions on a
domain D. The ring or field structure is defined by the usual addition
and product of meromorphic functions.

We consider algebraic varieties defined over a ring R or a field K of
meromorphic functions and morphisms between them. In this case, we
can replace R, K respectively by a ring or field of meromorphic functions
of finite type over C. Therefore in the following discussion, we often as-
sume without making it precise that there exists a domain D such that
the ring R consists of holomorphic functions on D and the field K is the
quotient field of such a ring.

Now given a set S of meromorphic functions on a domain D C C,
what operations are permissible to construct new functions from S? In
other words if we call the set S the set of the known functions, what are
newly known functions from the set S by a reasonable operations?

The operations allowed by Painlevé in his famous Stockholm Lessons
[P] are as follows.

(O) Let f(2)€S. Then the derived function f’(z) is a new known
functions.

This operation (O) is of a special nature as we see later. This is the
golden rule which we can not touch.

(P1) If f,,f,e S, then the sum f; + f, and the product f,f; are new

known functions. Moreover if f, # 0, then the quotient f,/f; is a new
known function too.

(P2) Let a,a, ---,a,eS. Then an algebroid function f or any
solution of an algebraic equation f* 4+ a,f* '+ --- +a, =0, is a new
known function. Notice that here we consider f as a single valued func-
tion on an appropriate smaller domain.

(P3) Let f(2)eS. Then the quadrature ff(z)dz is a new known

function.

(P4) Let a;, a5, --+,a,eS. Then any solution f of the linear differ-

ential equation d*f/dz" + a,(d*"fldz""") + a,(d""*f/dz" )+ - - +a,,,f =0 is
a new known function.

(P5) Let I' © C* be a lattice such that the quotient C*/I" is an
abelian variety or an algebraic torus. Let z: C* — C*/I" be the projection.
Let fi,fs, -+ +,f. €8S be regular on a domain D and ¢ be a meromorphic
function on C*/I". Then the function gono(f, f,, -+, f,) is a new known
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function if it is not the constant function taking oo.
D-Cr s erfsc
a > (fl(z)y fz(z), Tt fn(z))

In all the operations (P2), (P3), (P4) and (P5), we have to choose an
appropriate subdomain D’ such that the solutions are meromorphic and
single valued on D.

Remark (2.2). In the operation (P5), we had to avoid meromorphic
functions goz such that the pole of the meromorphic function ¢ox con-
tains the image of D. Similar cases happen in what follows but we do
not repeat this remark.

" Given a set S of meromorphic functions on a domain D and an al-
gebraic differential equation E = 0 with coeflicients in S, the problem of
integration of the differential equation E = 0 is to know whether start-
ing from the set S and by iterating finite number of times of the permis-
sible operations (0), (P1), (P2), ---, (P5), we can express the solutions of
the differential equation E = 0.

LemMA (2.3). If we admit the operations (O) and (P1) and if S contains
all the constant functions, the permissible operation (P4) is equivalent to
(P4) Let a,(z) € S be holomorphic functions (1 <1, j < n). Then any

solutions fi(2), [y(2), - - -, [.(z) of the lienar differential equations
fi(z) [ fi
FO |~ (ayian |
Lfi2) J l .

are new known functions.

Proof. In fact, assume a, a,, ---, @, € S be given. The solution f(2)
of the differential equation

dnf dn—lf
e 7 - J=0
dz" T & dz"-! + +a.f

satisfies

@) = fu(2)
fi2) = f(2)

1 (2) = — (@fas + Gefses + -+ Qnf)
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if we put fi(2) = f(2). Therefore (P4) is a special case of (P4’). We did
not use the operations (0) and (P1). Conversely let a,, €S be given

(1<i,j<n) and let f,f, ---,f. be solutions of the differential equation
12 (fi(@
(2.3.1) fZ(z) = (a,(2)) fz(z) .

[ (2) fn(Z)J
Let K = C(ay(2), aiy(2), a/(2), - - )i1<i,;< be the field of rational functions
in a;/s and their derivatives. Its sufficient to show that for any 1 <i < n,
there are @, (1 £!< m) in K such that f; satisfies the differential equation

m m -1
Cho o I pafi=0,

2.3.2
( ) dz dzm-1

since by the permissible operations (O) and (P1) and by the hypothesis
S D C, all the functions in K hence in particular a,’s are known functions.
In fact df;/dz is a linear combinations of the f, with coefficients in
C(@sh<s,j<n- By induction and (2.3.1), d*;/dz* is a linear combination of
the f; with coeflicients in K. Since there are n f;’s there is a non-trivial
K-linear relations among (n + 1)-elements d*f;/dz* (0 < k < n),

n n -1

which gives (2.3.2).

The first question that one might have is the following. Are these
operations reasonable? Or in other words, does the rule of the game
above have mathematically a sense? This question is illustrated by the
resolution of algebraic equation by radicals. In the resolution of algebraic
equation, historically or by experience the permissible operations are the
addition. the multiplication, the division in fields and the extraction of
radicals. The Galois theory tells us that in fact allowing these operations
is equivalent to allowing successive cyclic extensions and hence nicely
formulated by the group theory.

As we see below, Painlevé’s operations (P1), (P2), - - -, (P5) are quite
group theoretic too, despite of their appearance. These operations (P1),
(P2), .-+, (P5) are not only easy operations come into our mind one by
one but also they are related with algebraic groups.

To explain our interpretation of the permissible operations, we need
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some preliminaries.

Let G be a (connected) algebraic group defined over C and we denote
by g its Lie algebra. The tangent bundle 7, of G is trivial and we trivi-
alized it by using right invariant vector fields on G. The trivialization
G X g = T(G) is done algebraically and canonically. Let F: D — G be a
holomorphic map of a domain D of C to G (more precisely to the associate
analytic space G**). The curve F defines a holomorphic vector field X on
F(D). Namely

(2.4) Xoo(f) = lim [FE + 1) = fF()
“ =0 h

for x € D and for a holomorphic function f around F(x). We have thus a
holomorphic map F: D — T(G) =~ G X g. Composing with the projection
p. G X g—g, we get a holomorphic map p,o F:D— g which we denote by
F’ or by oF.

DerFINITION (2.4). We say that F’ is the derivative of the curve F and
F is the integral of F”.

ExampLE (2.5). (1) The simplest case is the additive group G = G,
(= C). If we trivialize T(G,) by using the invariant vector field d/dx with
G, = Spec C[x], when the function F: D -G = C is given, F': D - C is
dF/dz where z is the usual coordinate of D C C.

(2) Let us study the case of the multiplicative group G = G,, (= C*).
Let us trivialize T(G™) by using the invariant vector field #d/df) with
G, = Spec C[t, t"!]. Let F: D -G, C C be a holomorphic function. Then
F': D — T(C) is given by z — F'(2)(d/dt)r.,. To identify T(G,) with G,
X C by using #(d/dt) is to express vector fields by using the translation
invariant base t(d/df). Hence F: DG, X g is z— (F(2), (F/(2)/F(2))
X (((d/dt))ry) and 8F: D — C is z — F'(2)/F(2).

(8) More generally let us study the case G = GL,(C). Its Lie algebra
gl, is the Lie algebra of all the n X n-matrices. Let F: D— GL,(C) be given
by F(2) = (fi(2)). We use as a basis of right invariant vector fields X;,(g)
= R ((0/0x,y),,) for ge GL,(C), the translation of 3/dx;, at I, where x,,
are the natural coordinate system on GL,(C) € M,(C) and R,: GL,(C)—
GL,(C) is the multiplication from the right by g. F: D— T(GL,C)) C
T(M(C)) is given by z— >, fi(2)(@/0x,,)f(z). As in example (2), we have
to look for a,(g) such that
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(2.5.8) §fgj(z)< 9 )mz): Z,a“(F(z))Rg*« az )1) with g = F(z).

ax“ ¥ 14

Let us calculate R,.((9/dx;,);,) for g = (&) € GL,(C).

() o=

x“

i
0
0%y

(Zk: X1x8im) = 0:518im

Hence

S auF@EA (), )

%,/ 1

= zZ} @, (F(2)0:,8m
= Z]: @, (F(2)8g;m -

Therefore (f7;(2)) = (a;(F(2)))F(2).
Thus F’': D —gl, is given by

F'(z) = (a0,i(F(2))) = (f,,()F ()" .

(4) The case where G is an abelian variety is simple. Let p: C*—G
the universal covering of G so that there exists a lattice L C C* with
C"/L = G. Assume that we can lift F to F: D—»C" F is given by
(fi(2), -+ -, f.(2)) and hence F - T(C™ is given by > 7, fi(2)08/0z;), if we
take a usual coordinate system (z,, z, - - -, 2,) of C, and we use 9/6z,, 0/02,,
-.-,0/0z, as a basis of translation invariant vector fields on C" hence on
G. Therefore the map F': D —g=C" is given by z — (f{(2), fX2), - - -, [1(2)).

The derivative of a curve has another interpretation from the alge-
braic geometry. Let U be an affine open neighbourhood of the unit ele-
ment 1 of the algebraic group G. Let R(D) be the C-algebra of all the
holomorphic functions on D and K(D) the field of all the meromorphic
functions on D.

The group G operates on G by the left multiplication which we
denote by (G, G). Then the curve F defines the vector field &(F, (G, G))
on the K(D)-algebraic variety G ®¢ K(D) by (1.14). We put «(F) = O(F,
(G, G))(1) which is the value of the vector field O(F, (G, () on G Rc K(D)
at the unit element 1. Namely z(F) is an element of g ®. K(D).

On the other hand the derivative F’: D —g can be regarded as an
element of ¢ @ K(D). In fact, taking a basis {X), X;, - - -, X} of C-vector
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space g, we get an isomorphism ¢ = C? and by this isomorphism F’ is a
holomorphic map (f,, f;, - -+, fs): D — C¢ Then we consider >, X, ®f, e
g ®c K(D). It is easy to see > 7, X, ®f; is independent of the choice of
basis of g.

ProrosiTiON (2.6) With the above canonical identification, we get
F' = «(F).

Proof. It follows from the definition that

d
(2.6.1) Xewy = 2 fi(@Rp o X; for any fixed ze D).
1=1

Since the R..X,, g € G from a basis of the right invariant vector fields on
G, where R, (g€ () denotes the multiplication by g from the right. It
follows from (2.6.1),

(2.6.2) RF(Z)“l*XF = ifi(Z)Xz if we ﬁX rAS D.
i=1

Let f be a regular (rational) function in a (Zariski) open neighbourhood
of 1. We operate the derivations in (2.6.2) to f. The left hand side is

. —1 —
Recy-1sXe(f) = Xe(REryf) = lim f(F(z+h)Fliz) ) f(l),
for ze D. Therefore Ry,-xXr is nothing but 6(F)(1) if we consider z
as a variable. Furthermore if we vary z, > 7., fi(2)X, becomes > ¢, f(2)® X,
and the Proposition is proved.

Remark (2.7). If we consider the Lie algebra g = C" as an algebraic
variety or if we consider Y = Spec S(g), where S(g) denotes the symmetric
algebra on the vector space g, the above element (F) in g¢® K(D) iden-
tified with F’: D — g is nothing but K(D)-valued point P(F’) € Y associated
with F’: D— Y*® =g = C"; we had better consider the closed point
P(F') e Y®cK(D) = g®cK(D).

In the solution of differential equations it is important to find a small
subfield L of K(D) such that 7(F)e g ®;L. More precisely, recalling that
we identify a holomorphic function with its restriction on a subdomain,
we adopt the following

DeriNITION (2.8). Let D’ C D be a subdomain of D and L be a sub-
field of the field K(D’) of the meromorphic functions on D’. If there
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exists an element € g ®. L such that «(F) = 6 in g Q; K(D’), we say that
o(F) is L-valued or F’: D' — g is defined over L. Here we consider
g®cL C g®:K(D), gQ:K(D) C g&® K(I) by the canonical inclusions
L c K(D), K(D) c K(D).

Let K be a field of meromorphic functions on D closed under the
derivation. Let F: D — G be a K-rational point. Then it follows from
§ 1 that 9F is K-valued.

ProprosrTioN (2.9). Let ¢: G, — G, be a morphism of algebraic groups
defined over C and F: D — G, be a holomorphic curve. Let ¢y: g —> g,
be the morphism of Lie algebras induced by ¢. Then we have t(poF) =
0% Qc K(D)(z(F)), where ¢, @c K(D): g, @c K(D) — g, ®c K(D) denotes the
scalor extension of .

Proof. This is a direct consequence of the definition of r.
We can state Proposition in terms of derivatives.

COROLLARY (2.10). (poF) = @40 F’.

F
D——g,

<¢=oF)'\ l%

g

CoroLLARY (2.11). Let CC K C K(D) be a subfield containing C. If
(F) e g ®c K(D) is contained in ¢, Q¢ K, then (¢, o F) is also in g, Q¢ K.

Proof. This is an immediate consequence of the Proposition.
The following Lemma is also a direct consequence of the definition.

LemmMA (2.12). Let F: D — G be an analytic curve and C C K C K(D)
be a subfield of K(D) containing C such that «(F)eg, ®: K. Let ge
G®cK(D) be defined over K. If we denote the adjoint representation
G ®.K(D) - GL(g ®c K(D)) by ad, then (ad g)(z(F)) is in ¢ Q¢ K.

Proof. The adjoint representation is defined over C hence over K.

In the sequel it is important to choose a small subfield K such that
(F)e g Qc K.

LEmMA (2.13). Let F: D — G be an analytic curve. Let C C K C K(D)
be a subfield containing C. Then the following conditions are equivalent.
1) «(F)eg®cK.
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(2) For any rational function f on G regular at 1, the derivation
f(F): OG®CK(D),1 —> K(D) mapS fe OG@CK(D),I in K.
(8) There exists a basis {X;, X, - -, X} of g such that

Fi(z) = él f(DX,  with f(z) e K.
(4) For any basis {X,, X, -+, Xy} of g if
F(2) = 3.f(X, then f(2) e K.

Proof. The equivalence of (1), (3) and (4) follows from the proof of
Proposition (2.6). The equivalence of (1) and (2) is deduced from the
definition.

LEMMA (2.14). Let G be an algebraic group defined over C, g its Lie
algebra and D C C a domain. Let f: D—g be a holomorphic map.
Then there exists a curve F: D — G such that f is the derivative of F.
Let H: D — G be another curve such that H' = f. Then there exists an
element g€ G such that H= R, o F, where R,: G — G is the right multi-
plication of g.

Proof. Let us fix a point x,€D. Let us look for F: D — G such
that (a) F(x,) = 1€ G and (b) F' = f. Then the condition (b) is stated by
differential equations ¢{(2) = @,(¢,(2), s(2), - - -, ¢.(2)) (1<i<n) and (a) is
equivalent to giving the initial conditions ¢,(x,) = 1 1<i<n. This shows
the existence. As question is local, let us take a local coordinate around
1eG. Now let ge G. Then R,oF is an integral of f. In fact

(RyoFx + 1) — 9(RoF@) _ p x. ()
h s F(x *

Xygralp) = lim £

Let D, D,, ---,D, be right invariant vector fields on G and X, =
2it-1a{x)D;. Then

RyXpw = Bp 3, a®)Ds = 3 al®)RpD; = z a x)D, .

Hence R,oF is an integral of f for any ge G. Let now H be another
integral of f. Let g = H(x,). Then H(x,) = R,oF by the uniqueness of
the solution of a differential equations satisfying the same initial condi-
tion.
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We want to introduce an operation @ and shall show that the oper-
ations (P1), (P2), - - -, ,(P5) are equivalent to the simple operation Q.

(Q) Let G be an algebraic group of dimension n defined over C and
g be its Lie algebra. Let f,,f,, ---,f. €S be holomorphic over a domain
D. Choose and fix a isomorphism g = C* of vector space and let f: D —
C™ = g be a holomorphic map. By Lemma (2.14) there exists an integral
F of f. For a rational function ¢ on G, we get a new function ¢oF: D

Starting from f, f;, - - -, f. and an algebraic group G, we get a set of
meromorphic functions {po F|p € k(G)}. Notice that the set of meromor-
phic functions {p o F|¢ € k(G)} is independent of the choice of the integral F
by Lemma (2.14). We set Q(f,,fo, - - -, fu3 G)(S) = Q(f; G)(S) = {p= Flp € (G)}
or we denote it simply by Q(S). We say that an element of Q(f; G)(S)
obtained from S by the operation @ with respect to f and G.

We can formulate the operation @ in a completely algebro-geometric
language.

DerINITION (2.15). Let K D C be a field of meromorphic functions on
D closed under the differentiation and P: Spec K — G be a K-valued point
of an algebraic group over C. P define a holomorphic curve F: D/ — G*®
such that P(F) = P. Now as we have seen above F gives 0Feg®.K
where g is the Lie algebra of G. Since oF is determined by P: Spec K —
G, we denote it by oP.

Let S be a set of known meromorphic functions on a domain D.
Let K be the field of meromorphic functions generated over C by the set
S. Let L D C be a field of meromorphic functions on a subdomain of D.
Then the field L consists of new known functions from S by the operation
Q if there exist a L-valued point P: Spec L — G of an algebraic group
over C such that (1) P induces an isomorphism between the residue field
C(P(Spec L)) and the field L, and such that (2) 9P is K-valued.

In fact, let F: D' — G be a holomorphic curve such that P(F) = P.
By the hypothesis (2) oF: D' — g is defined over K. Then L coincides
with K({po F|p e C(X)}) by (1).

DEerFINITION (2.16). We denote by SP (resp. SQ) the set of meromor-
phic functions obtained from S by finite iterations of the permissible
operations (0), (P1), - .-, (P5) (resp. (O) and (Q)). In what follows, we
always mean by an iteration of the operations a finite iteration.
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Remark (2.17). The sets SP and S do not satisfy the condition (2.1).
But a subset of SP (resp. SQ) obtained by a finite iteration of the opera-
tions (0), (P1), - - -, (P5) (resp. (0), (Q)) satisfies the condition (2.1).

Remark (2.18). The operation @ was considered by Kolchin [Ko],
Chap IV from a different view point. Let K be a differential field of mero-
morphic functions. In his language the differential field L = K(KQ(f; G))
generated over K by KQ(f; G) is called a G-primitive extension. It follows
from [Ko] that L is a strongly normal extension of K. Conversely by
[Ko] a strongly normal extension of K is obtained by a combination of
G-primitive extensions. Therefore K@ = {f|meromorphic function on a
subdomain of D depending on f such that f is contained in a finite tower
of strongly normal extensions; there exist fields K=K c K, Cc K, C ---
C K, of meromorphic functions on a subdomain of D such that K, is
strongly normal over K, ; for 1 £ i< n and xe K,}.

ExampLE (2.18). Let us write down explicitly the operation @ for
the algebraic groups in (2.5).

(2.18.1) Take G = G, ®G,. Let f,, [, be given functions on D. If we
admit the golden rule (O), then f] and f, are known functions. Consider
now f: D —-C@C = Lie algebra of G defined by z — (fiz), fi2)). Then
2z — F(2) = (fi(2), fi(2)) is an integral of f. Let (x,y) be the coordinate on
Gy X G,. Then (x +y)oF=f +f, (xy)o F=Fff, and if f, 0, (x/y)o F
= filf,. Therefore f, + f,, fif;, fi/f, are obtain from S = {f,,f,} by the Q-
operation and (O). Namely if we admit (O), the permissible operation
(P1) is a special case of the operation Q.

(2.18.2) Take G = G, and let f be a given function on a domain D.
An integral F of f: D — C is a quadrature f fdz as we saw in example

(2.5.1). Thus in the definition of @, if we take the coordinate x of G,.
xoF = F(2) is a newly obtained function by the operation @. In other
words, the quadrature is a special case of the operation Q.

(2.18.3) Now let us assume G = G, and a holomorphic function
f: D—C is given. As we saw in example (2.5.2), an integral is a solu-
tion of the differential equation F’(2)/f(2) = f(2). Hence if we take the
coordinate x of G,, = Spec(C[x, x7']) as ¢ in the definition of the opera-
tion @, we get xoF = F(z). Therefore for known f, we can solve the
homogeneous linear differential equation y’ = fy.
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(2.18.4) More generally if take G = GL,(C), then it follows from
example (2.5.3) that for known functions a,(2): D — C, we can solve the
linear differential equation (y},) = (¥.;)(a:;(2)).

(2.185) Let us now assume that G is an abelian variety as in
example (2.5.4). Let f;: D - C (1 £ i < n) be holomorphic functions. An
integral of (fi,f,, -+, fu): D —g = C" is given by

(Ifldzy _[fde, e, andz): D —Cr.

Therefore using the notation of example (1.2.5), if we take a rational
function ¢ on G, popoF is a function obtained by the operation . In
particular, let g,: D — C be given holomorphic functions. If we put
g'=f 1<i<n), then we can take F = (g, &, ---,g,). Hence for a
rational function ¢ on G popoF = popo(g, &, -, g,) is a new function
obtained by . We have proved that the operation (P4) is a special case
of the operation @ if we allow the operation (O).

THEOREM (2.19). Let S be a set of meromorphic functions on a domain
D c C. Then SP= SQ.

Proof. By the operations (P1) and (P3) the constant functions are
in SP. For the same reason, examples (2.18.1) and (2.18.2) show that S@
contains all the constant functions. Therefore we may assume that S
contains the constant functions.

Now the inclusion SP < S@ follows from example (2.18), what we
have just shown above and from the following

LEMMA (2.20). Let a,(x), axx), -+ -, a,(x) be a holomorphic functions
on a domain D. Then the algebroid function f(x), or a solution of an
algebraic equation f* + a,f* '+ --- +a, =0 is a solution of a linear
differential equation d™fldx™ 4+ b(d™ f/dx™"") + -+ + b, = 0(m = 1) such
that b;e K = Clay(x), ay(%), - - -, a,(x), ai(%), as(x), - - -, an(x), ai'(x), -+ -), 0= 1
< m; namely b, is rational function of a,’s and their derivatives. In par-
ticular, the permissible operation (P2) is a consequence of the operations
(0), (P1), (P4).

Proof of Lemma. Let us fix a point z,e D such that the equation

X" + a(2)X ' 4 - 4+ a,(2) =0
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has a simple root @, Taking a small circle ¢,, centered at «, we can
express

1 t (tn + al(’zo)tn_x + tt + an(zo))/ dt
271'1: Cap " + al(zo)tl’”l + -0+ an(zo)

oy =

(cf. for example Chap VIII, §6, [Di]).
Therefore we may assume

1 nt"' + (n — Da,@t"* + - 4+ a,4(2)
= ¢ dt.
f@) 2ri jcao "+ a@t" 4 - 4 a,(2)

Let us look for a homogeneous linear differential equation satisfied by
f(z) with coefficients in K. We put F= F(z,t) =t" + a,(2)}t"* + --- +
a,(t). We have

d _ 1 ( ,F.F-FF,

dt,
dz 27t J eao F(z, 1)
where
F=F p _0F .4 p OF
ot 0z 0toz

We work in the polynomial ring K[t]. As we may assume the equation
" +at*'+ - +a,=0 is irreducible in C(a, a, ---, a,)[t], we have
(F,, F) = 1. Namely there exists polynomials A(f), B(f) in K[t] such that
AF + BF, =1. Let V= {(G/F™)dt|G e K[x]}, which is a K-vector space
of rational 1-forms on the affine line Ak. We need

SuBLEMMA (2.20.1). Let G(f)e K[t] and m be an integer = 1. Then
there exist a polynomial H such that deg, H < n — 1, (G/F™)dt — (H/F)dt
is exact: Namely there exist an Ic K(f) such that (G/F™dt — (H/F)dt =
dI (= (aI/at)dt).

Proof of Sublemma. Let ¢e K[t]. Then we have (¢'/F™) = ¢/[F™ +
o(—m)(F’|F™*"), where the symbol ' means 9/0¢. Therefore

(2.20.9) £t = — "1t mod (dK()).

Hence if m > 2, we get

G di = (AF+BF’)G\dt___ A

BF'G
at
F™ Fm Fm

Fm

—dt +
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_ A g1 (BGY

= Frr o dtmod (d(K(1) by (2.20.2).

By repeating this, we can find a polynomial Ie K[f] such that (G/F™) —
I/F)dt is exact. Now if we devide I by F, we get

= (7 + L)t mod @K ()
for a suitable polynomials J, He K[t] with deg, H < n — 1. Since Jdt is
exact, Sublemma is proved.
Now let us come back to the proof of the lemma. Let us put f(2) =
(F,/F)dt. Then we have
df _ G

= pirdt with Gie K14,
¥4

Therefore by Sumlemma (2.20.1), there exist H,e K[f] (0 < i < n) such
that deg, H, < n — 1 and such that

df _ G g Higiooq ik
dzi F'H»l - F mo (( ()))

As the dimension of the K-vector space {H/F|He K][t], deg, H< n — 1} is
n, there exists a non-trivial linear relation between n + 1 elements H,/F
and we have non-trivial linear relation

Tl 4 o) Z;lf

@203 A&

+ - + B.(2)f = 0mod (A(K(2))),

with B,(2) ¢ K. The integration

21. J applied on (2.20.3) now gives the
Tl Jeap

lemma since for any ge d(K(t))2—1‘—.[ gdt = 0.
Tl Cag

Now let us prove SP D SQ. Let us study the operation @ for a
linear algebraic group G and show that in this case the operation @ is
the resolution of a linear differential equation as in (P5) and hence is a
special case of permissible operations. In fact, we fix a closed immersion
p: G—GL,(C). Let f,f,, ---,fa€S be given. Let (f,f,, ---,f): D—>C"
= g be a holomorphic map to the Lie algebra g and F: D — G be an
integral of (f.,f, ---,f.). Let us denote by H the composite po F: D —
GL,(C). We decompose the Lie algebra g{, of GL,(C) as the direct sum
of vector spaces gl,, = ¢@® V. Then the derivative H’ of H is given by
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(flaf% "',fmoa "‘:0): D — V= grn'

Thus by the definition of the operation @ for (f,f, -+, fs 0, -+, 0)
and G = GL,(C), for any rational function ¢ on GL,(C), oo H: D —
GL,(C) > C is a new known functions. Since ¢oH = ¢opoF and any
rational function on @G is the restriction of a rational function on GL,(C),
we have proved the desired result in example (2.18.4). We have already
seen in (2.18.5) that the operation @ for an abelian variety is equivalent
to (P5) combined with (O).

Let us now study the general case. It is known that their exists a
closed, connected normal linear subgroup H of G such that the quotient
G/H is an abelian variety A:

(2.21) 1—H5 G- 5451

(see for example [B])).
We show using this structure theorem that the operation @ for G

reduces to the linear case and the abelian case. Let f,f;, ---,f.€S be
given holomorphic functions on D such that we get f= (fi,fs, -+ -, fa): D
—Cr=gq. Let F be an integral of f= (f,f, - -+,fn): D—g. Then

T =poF is an integral of pyof: D —g— a by Proposition (2.9), where
we denote by a the Lie algebra of A. Since pyof: D — a is written by
using functions in C(f,, f,, - - -, f,), for any rational function ¢ on A ¢oT
= go(poF) are known function by the permissible operation (P5). To
make the proof comprehensive, let us first assume that there exists a
rational section s of p: s is a rational map of A to G such that pos = Id,.
We may assume that s is regular on T(D). Let us put U=38.T: D —

A G. Then U has the following properties:

(2.22.1) for any rational functionon G, yro U = ro(soT) = (fros)e T
is a known function by the operations (0), (P1), (P5) from S;

(2.22.2) U'F(2) = U(z)"'-F(2) (the —1 and the multiplication are
taken with respect to the values in G) is contained in H.

SuBLEMMA (2.23). The derivative of U'F: D — H is given by known
functions obtained from S by permissible operations (0O), (P1), - - -, (P5).

Proof of Sublemma. We may assume that U: D — G factors through
an affine open set X C G. Let X =— A'® be an embedding given by x —
(z,(x), zo(x), - - -, z(x)). Then by (2.22.1) each coordinate of U: D - X=—
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A is a known function by (0), (P1), --- and (P5). Thus U-' = V is also
expressed by known functions since G is an algebraic group over C and
hence also the derivative V’. Therefore we may assume replacing D that
there exists a subfield K C SP consisting of meromorphic functions on D
such that «(V), «(F)e K®;g and V defines a K-rational point P(V) of
G ®c K(D).

We show that the derivation «(VF): Oggexpy,s — K(D) maps fe Og,
to K. In fact, by definition

«(VFXf) = lim [VFGE + D(VEE)™ — fQ)
h~0 h

f(V(z + WF(z + WF(2) V(@)™ — f(V(z + hV(2)™)

= lim

s h
4 fV+ WV(E) — Q1)
h

The latter term is equal to «(V)(f) hence in K by Lemma (2.13). It
is sufficient to show that

im J(V(E+ WFE+ DFE)V(E)™) - (Ve + V()™
h—0 h

is in K. First we show that

220 lim fVE+WFG+ DFE"VE™) — AV + HVE™)
h—0 h

— i JVRF (2 + h)F;Lz)“V(Z)‘I) —f)

To this end it is enough to show

(2.25) f(V(z + WF(z + WF(2)'V(2)™") — f(V(z + m)V(2)™")
— [(V@F(z + WF(@) V()™ + (D) =h
X (holomorphic function in (2, h)e D X E

where E is a neighbourhood of 0 e C. Let us put
olg, t, ) = (gVOFEt + MF V) — f(g)

for g in a small neighbourhood Wof 1e G. ¢(g,t, k) is a holomorphic func-
tion in g, ¢ h. Since o(g,t, 0) =0, o(g, ¢, h) = hé(g, t, h) with ¢ holomor-
phic. The left side of (2.25) is equal to

oVt + V), t, h) — (1,8, h) = KAV (E+ V)", t, h) — (1,8 h)).
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Since

Vit + vt h) —¢QQ,t,h) —>0 as h—>0,
h

is holomorphic and hence

oVt + VO™t h) — 1,8 h)
h2

is holomorphic as desired. It remains to show that

lim f(V@F(z + F@)V()™) — f1) . g
s h

V: D—- G is a K-valued point and =(F) is in g®cK. Therefore
Ad V(2)(z(F)) is in ¢ ®c K by Lemma (2.12).

f(V(@F(z + WF(2)"'V(2)™) — f(1)

Him 3
— lim JV@F(z + V() V@RF(2) V()™ — f(1)
P h

= Ad V(@)(«(F)) e K.

It follows from the sublemma and from what we have shown for
linear algebraic groups that o(U-'-F(2)) is a known function by (0), (P1),
- and (P5) for any rational function ¢ on H hence on G. In particular,
we have shown that if take an affine open set X C G such that X =— A’
is given by x — (z,(x), z,(x), - - -, 2,(x)), each coordinates of U-'F (resp.
UY: D—-X<=—>A! is given by a known function by the permissible
operations. Since G is an algebraic group, each coordinate of the prod-
uct F = U(U-'F) is also written by a known function by (P1). Since a
rational function 4 on G is a rational function of z,’s, 4o F' is a rational
function of the (po2z;)’s hence known function by (P1).

Let us now treat the most general case where we can not find a ra-
tional section s of p. We know that there exists an irreducible (reduced)
subvariety B of G such that the restriction p|B: B — A is finite. Since
the extension k(B)/k(A) is algebraic and since we are allowed to use
operation (P2), for any rational function ¢ on B, multi-valued function
po(p|B)'o(poF) is a known function by permissible operations. Since
for any rational function ¢ on G its restriction on B is a rational func-
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tion on B, therefore po(p|B)'o(poF) is a known function. We have
thus proved that there exists a holomorphic map U: D — G with the fol-
lowing properties:

(2.26.1) For any rational function v on G, o U is a known function
by the operations (0), (P1), -- -, (P5).

(2.26.1) The image of U-'F: D — G is contained in H.

Now the argument of the preceding case gives the Theorem.

In view of Theorem (2.19) it is natural to adopt

DerFiniTiON (2.27). Let C be the set of constant functions on the
plane C. We call an element of CP = CQ a classical function.

The polynomials of one variable, e’, log x, the Weierstassian func-
tions ¢, ¢, o, the hypergeometric function, and the Bessel functions are,
for example classical functions.

§3. Solvability theorem of Painlevé (finite type case)

We need algebraic tools to make the argument rigorous and com-
prehensive. So let us start with preliminary results in the algebraic
geometry. Let R be a C-algebra of holomorphic functions on a domain
D in C. We are interested in the local properties of holomorphic func-
tions. Hence in the following argument whenever necessary we replace
D by a subdomain of D. Let fi(t;x, Xo « -, Xu)y foll; X1, oy -+ o3 %), - *s
fult; %y, %y, - - -, x,) € R[x,, x,, - - -, x,] be polynomials with coefficients in R,
where we denote by x the coordinate on D. We denote by X the ana-
lytic subspace in D X A2 defined by f,f;, -, f.: namely X = {(x; 2, 2,
o zneD X Ablfix; 2, 2, -, 2,) =0 for 1 <i<m}. We have a mor-
phism p: X — D induced by the projection. Replacing D by a small sub-
domain if necessary and adding finitely many polynomials to {fi, fo, - -, fa}s
we may assume that X is reduced. We denote the fibre p~'(x) by X, for
xeD. We say that X is defined over R.

Let K be the quotient field of R. If an element f of a over field of
K and if f is algebraic over K, then there exist a, a, @, - - -, @, € B such
that @, £ 0, aof* + a.f*' + --- + a,f = 0. Therefore f can be considered
as an algebroid function. In particular by iterating operation (P2) and
by arithmetic operations (P1), we get an algebraic closure K from K
(see §2).

We need
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LeEmMA (3.1). We keep the notation above. If we replace D by a suita-
ble, subdomain D', there exist a finitely many elements b, b,, ---,b,e¢ K
and analytic subvarieties Y, Y, ---, Y, of D X A% defined over R =
R[b,, by, - - -, b] such that X, =\ Ji., Y, C D X A" and the Y’s are the
irreducible components of X, for any xe D',

Proof. Since only finitely many f,’s are involved, we may assume that
the ring R is of finte type: R = Clc, ¢, - - -, ¢;] Where ¢, is a holomorphic
function on D. Then Spec R C A% and the holomorphic map ¢: D — A?
defined by ¢(x) = (c)(x), cx(%), - - -, co(x)) € AL factors through Spec R C A%
and hence defines ¢: D — Spec R. It follows from Lemma (1.25) of Part I
that the image ¢(D) is not contained in any closed algebraic subvariety of
Spec R except for Spec R itself. Let us now put & = {y e Spec R X A% =
AL ft; 3,92 -, ¥) =0 for 1<i<m}. Then X =& Xgper D Let us
now consider & X, K = # and decompose the variety ' over K to the
irreducible components £z =%, U%, U--- U %, C A% Then y,y, ---, 5,
are defined over a certain finite extension R’ = R[b,, b,, - -+, b;] and they
are absolutely irreducible. Therefore there exists a Zariski open subset
é #+ U of Spec R’ such that %, is irreducible and &, = | J‘_, %,, for any
xeU for 1<i<S. Now we have R' = R[b,, b,, ---,b] = Cle, ¢, - - -,
Cqy b1, by, -+, b] and b, by, ---, b, ¢, ¢, -+, ¢ are holomorphic functions
over a certain subdomains. As we remarked above, if define ¢': D' —
Spec R’ as for D and R’, the image ¢'(D’) is not contained in any proper
closed algebraic subvariety of Spec R’. In particular ¢(D') N U+ @. Hence
if we put Y, = %, X ,.Spec R/, Y satisfies the requirements.

Let R be a C-algebra of holomorphic functions on a domain D in C.
Let F(t; X,, X,, X;, - - -, X,) e R[X,, X, - -+, X,] be a polynomial with coeffi-
cients in R, with 0F/0X, == 0. We consider an algebraic ordinary differ-
ential equation

(3.2) F(t; 5@, 5'®, -+, y™(@®) = 0.

It follows from the argument above that using permissible operations (O),
(P1), - - -, (P5), we may assume that the subvariety X, = {(2), 2, - -+, 2,) €
AL|F(ty; 20, 21, -+ -, 2,) = 0} of A" is irreducible for any ¢, € D and F is abso-
lutely irreducible. We denote by X the analytic variety {(¢; 2, 2, - - -, 2)
eD X A"F(t; 2,2, -+, 2,) = 0}. Let & = {(¢; Y, 1, -+, ¥a) € Spec RX
AZ|F(t; ¥, 1 - > ¥) = 0. We have a morphism ¢q: & — Spec R and as

we have seen above X = & X ,Spec R. We call & the family of alge-
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braic varieties associated to X. We denote by X° the open set {(¢; 2, 2,
<, 2,) € X|@F 60X, )(t; 2, 2y, - -+, 2,) # 0}. Then X° is a complex manifold.
The general solution of the differential equation (3.2) is equivalent to
finding the solution (¢; fy(?), fi(®), - - -, f»®) = (¢; %o, x4, - - -, x,) of the follow-
ing regular system of Pfaffian equations of corank 1 on X°;

(3.3) dx, = x,;,,dt o<<i<n-—-1)
dxn = A(t; Xoy X1y * 0y xn)dt

oF | & oF oF
At; ) y Tty Ay) = — <_ i— _—)/<—‘)
(&; %5, %, X,) 5 +x e d

(cf. §1). The dual to (3.3) is the vector field

where

2 9 ) 3 3
3.4 4=24+x-% +x-% + ...+ X, A )
34) o + '5X, P oX, + 0X,_, + oX,

Namely let y(f) be a solution of the equation (3.2). The integral curve
&; y@®), ¥'(@®), - - -, y™()) of the Pfaffian system (3.3) defines the vector field
(3.4) and 4(F) = 0.

Replacing D by a subdomain, we may assume that for any ¢ € D,
there exists a ponit (2, 2z, - - -, 2,) € A"*! with F(t; 2, 21, - -+, 2,) = 0 such
that 0F/0X,)(ty; 20, 21y -+ -, 2,) 0. Let W= {(zy, 2, - - -, 2,) € A" | F(t,y; 2,, 2,
v 2,) = 0, OF[0X,)(t; 20, 24, - -+, 2,) £ 0L If (2, 2y, -+, 2,) € WC X, then
X is non-singular at (¢; 2,, 2, - - -, 2,) and there exists the unique holomor-
phic solution y(; 2, 2;, -+ -, 2,;t) of the differential equation (3.2) with
YOty 20, 21, - -y 255 b)) = 2, for 0< i< n. The y®(; 2, 2, -+ -, 2,;t) are
holomorphic with respect to (2, z;, - - -, 2,) € W.

We denote by X (resp. 7, X,) the projectification or the closure of
XcDx A" (resp. < DX A", X, C A") in D X P* (resp. D x Pr, Pn).

When D' is a connected open subset of D, we denote by X’ the fibre
product X X, D’. If R’ is an over ring of R, we denote by £’ the scheme
% Rz R over R’.

LEMMA (3.5). The following conditions are equivalent.

(1) There exist a point t,€ D, an open neighbourhood D' of t, a
non-empty open set V of X, X D and polynomials Cy(t; x,, %, -« -, Xy),
D,(t; xy, %1y + -+, X,) IR Xy, Xy, - -+, X, WIth coefficients in a ring of holomor-
phic functions on D’ such that

() if #;20, 2, -+, 2,)€ V, then OF/0X,)ty; 20, 2, - -+, 2,) + 0 and
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(b) the solution y¥(t;; 2y, 2y, -+ -, 2, t) 18 regular at (t;2,2, ---,2,)eV
(0 < i< n) and such that
(© YOt 20 21, + -+, 203 ©) = (CilE; 20, 21, + -, 2(Dy(E; 20, 21, -+ -, 2)) for

any (¢; 20,2, -+, 2,)€ Vand for all 0 <i < n.
(i) There exists a point t, € D, an open neighbourhood D’ of t,, a non-

empty open set V of X, X D and polynomial C(t; x,, x,, - - -, x,,), D(t; x,, x4,
ce, X, I X, Xy, - -+, X, WIth coefficients in a ring of holomorphic functions
on D’ such that (a) if (¢; 2,2, -+ +,2,) €V, then QF[0X,)(ty; 20,2, -+ +,2,) 0,
(b) the solution y(t,; 2y, 2,, - -+, 2,; t) is regular at (t; 2,2, --+,2,)€V and
such that (c) y(ty; 2,21, -+, 203 8) = (C(t: 20, 21, - -+, 2)/(D(E; 20, 210, <+ -5 22))
for any (¢; 2,2, -++,2,)€e V.
(iii) There exist a point t, € D, an open neighbourhood D’ of t, such that
if we denote by Z the set {(t; %y, %y, = -+, Xy Y(bo3 Xoy X1y« + =, X3 1)y YO(bo; %oy %y,
ey Xy )y e Y s Xy Xy e, X B) € (D X Xto) X pr X' | (0F[0X,)(ty; %o, X,
ce X)) F 0, YOy Xy, Xy, - -, X3 8) TS regular at (xg, x,, - - -, X, 8) € X,, X D'}

the Zariski closude Z C (D' X X,) X X' C D' X X,, X X' defines a D'-
bimeromorphic correspondence of D' X X,, and X' (a bimeromorphic map
commuting with the projections onto D and inducing a bimeromorphic cor-
respondence between the fibres as in Part 1, § 1).

Proof. (ii) is a special case of (i). By differentiating with respect to
t, (i) implies (1). Therefore (i) and (ii) are equivalent. We may assume
that the ring R which contains the coefficients of the differential equa-
tion (3.2) is of finite type over C. If the condition (i) is satisfied, then
denoting by R’ the ring obtained by the adjunction of the coefficients of
C/’s and D,’s to R, we get a rational map @: X,, X Spec R’ -+ - - % Q@ R’
= &’ over Spec R’. We show that ®-! is also rational. Let Z C X, X
Spec R’ Xspoerr Z C X, X Spec R* X # be the graph of ¢. We have to
show that the projection p = p,: & — Z’ is birational. Let (x,, x,, - - -, x,,)
e X,, with (0F/0X,)(ty; %o, X, - - -, x,) = 0. Then around (&; x,, %y, - -+, X,) € X
for the usual topology, the solution (4, x, t), Y&, x, ), - - -, y™(&,, x, t) or
@ gives local analytic isomorphism between X and X, X D. Therefore
the map p: & — & is dominant by Lemma (1.25) of Part I. It is sufficient
to show that p is finite and of degree 1. To this end, it is sufficient to
show that there exists an open set U of X,, X Spec R’ such that for a gen-
eral point ze &’ we have @-(2) N U consists of one point. Since X C &’
is not contained in any proper Zariski closed subset of # by Lemma
(1.25) of Part I, it is also sufficient to check this for a dense subset of X.
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Let (uOs Upy * 0y Un; ti) eXC An+l X D’ with (aF/aXn)(tl; Ugy Uy, =+ 0y un) * 0
and D,(t; uo, wy, -+, U,) =0 for 0 < i< n. Let us put U= {(x,5) e X,, X
Spec R'|Dy(s; x;, %y, -+, x,) += 0 and (0F/0X,)(s; %y, %y, + -+, %,) #+ 0}. Let
(x, 81) = (x(b Xy * 0ty Xns sl)y (2, 82) = (207 21ty Ry 82) € U With @(x’ sl) = @(Z, 82)
= (u,t)e X. Then s, = s, =t. We notice that since
C,(t; wy, wy, - -+, w,)
(i)t;w,w,,,,,wn;t: i\Ys 0 1y ’ n
Y (o ’ ' ) D‘l(t;wl), Wy, "'ywn)
on an open set V. Therefore if for (v, v, vy, -+, v,) €X,, we have (1)

Dity; v, vy, -+, 0) #0,0<i<n and (2) @F/0X,)t; vy, Uy, -+, V,) #= 0,
then it follows from the unicity of the solution of (3.2) that

Ci(t; vy, Uy, -+ -, Up)
Dy(t; g, sy + -+, V)
By the uniqueness of the solution of the differential equation F =0 at
t = t, with initial conditions u,, u,, - - -, u,, we have y©(%, x, t) = y(t,, 2, t)
around ¢ =t hence for any te D’. Therefore if we put ¢t =1, we get
x =2 Hence Z C (X, X Spec R') X Z is a birational correspondence.
Now (iii) is obtained by taking the fibre product with respect to the map
D’ — Spec R’.

Assume now that the condition (iii) is satisfied. We denote D’ by D
again. Since ZC D X X,, X X C D X P**' X P**!, we may assume by
the relative G.A.G.A. (cf. {G1]) that Z is defined by polynomials Fi(¢; U, V),
Fz(t' U, V), ---, Fy(t; U, V) homogeneous in U= (U,U, ---, U,,,) and

= (V, Vi, - -+, V,.,) with holomorphic coefficients. Let R’ be the ring
extension of R by the adjunction of coefficients of F; (1 < i < N). Hence
R’ is of finite type over R. We can thus define the scheme % — Spec R’
associated to Z. We have a inclusion i: & — P"*' X P**! X Spec R’. The
projection p;;: P**' X P**! X Spec R’ — P**! X Spec R’ onto the product
of the first and the third factors defines p,oi: & — P"*! X Spec R’ which
factors through X, ®:; R’ < P™*! x Spec R’. Hence we have a Spec R'-
morphism f: Z — X, ®¢ R’ of algebraic varieties over C. The restriction
of f to D— Spec R’ is the projection Z — D.

y(i)(to;vmvl:”'svn;t): Oéi_<_n"

Z—> X, XD 53’—->X s ®c R

NN

D—— > Spec R
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The hypothesis shows that the fibre f~(x) consists of one point if x is
in a non-empty open set for the usual topology of X, ® D which is not
contained in no Zariski closed set of the algebraic variety X, ®¢ R’
by Lemma (1.25). Therefore it follows (for example from [M]) that the
degree of f is equal to 1; f is birational. Let K’ be the quotient field
of R’. The rational function field C(%) of the algebraic variety Z is
K'(uyfug, Usfthy, - -+, U1/ Ug, UV, UafUy, - -+, Uyin/Uy), Where u,/u,, v,/v, are re-
strictions of rational functions U,/U, V,/V, on R X P**' X P**' to Z.
The rational function field of the algebraic variety & ®, R’ over C is
K'(xy, x,, - - -, x,) Where x,, x,, - - -, X, are the restrictions of the coordinates
on A", We have shown that the map

’ f U U Uy U Uy Un 1
K(xo,xl""yxn) ;K<*‘,77""—HL’__’”—""1L ’
Uy Uy Uy Uy, Uy Uy

(%o, %, x)_><i U L)
Uy Uy U,
is an isomorphism of the field. Therefore v,/v,, vs/Uy, - -+, U,,1/U, can be
expressed as quotients of polynomials in x,, %, - - -, 2, With coeflicients in
R’. In particular y(&; x,, xi, - -, X5 8), YOty X0, X1y -+ -, X5 8), Y™y X, X4,
-+, X,; t) are of this type and the condition (i) is satisfied.

The proof of the Lemma shows

COROLLARY (3.6). The conditions (1), (i) aand (iii) are equivalent to
the following.

(iii)) There exists a point t,e D, an open neighbourhood D’ of t, a
meromorphic map @: D' X X,, ---> X' making the diagram

DI

commutative such that @ coincides with the set Z of the condition (iii) on
a non-empty open set of (D' X X,) X, X'.

COROLLARY (3.7). Assume that the equivalent conditions (i), (i1) (iii),
(iii) are satisfied. Let K’ be the quotient field of R'. Then ¥ ®z K' C
(Xiy ®c R) X ) Qp K' = (X,, Q¢ R’ Qp. K') X oo &' Qp K’ defines a K'-
birational isomorphism of K'-algebraic varieties X, ¢ K’ and &' @z K'.
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It follows from the Lemma the following Corollary which explain the
geometric meaning of the Lemma.

CoROLLARY (3.8). If the equivalent conditions of Lemma (3.5) are sat-
isfied, then there exists a subdomain D' of D such that the solution

Y(to; %o, Xy, - - -, X3 t) Of the differential equation (3.2) defines birational corre-
spondences between the fibres over D' of X. Namely, let ¢, ,: X, ---> X, be
deﬁned by §0a,b(x0, Xiy 0y xn) = (y((l, Xos Xyy 00y X5 b)7 y(l)(a; Koy Xyy 00y X3 b)’
Y (e Xy, Xy, e, X, 0) e X, for x, xy, -, %x,€X,. Then ¢,, is bira-
tional for a,be D .
/—\i
XI
/‘\
/
a b D

Proof. Z induces bimeromorphic isomorphism ¢,,: X,, ---» X, by (iii)
for any teD. By G.A.G.A. ¢, is an birational isomorphism of X, and
X,. By the unicity of the solution of the differential equation we have

(3.8.1) ¥a; %, %y, -+ -, X3 b) = Y(bo; @ru(Xo, X1, -+, x,); b) for a general
(%, %1, - -+, 2,) € X, and the condition (ii) is satisfied.

ProPoOSITION (3.9). If the equivalent conditions (i), (i), (iii) end (iii)’
are satisfied, then for any point t, e D' and the neighbourhood D' of i, the
conditions (1), (ii), (iil) aend (iil) are satisfied.

Proof. This is a consequence of (3.8.1) in the Proof of Corollary (3.8).
Now we can state

DerINITION (3.10). When the equivalent conditions of the Lemma
are satisfied, we say that the general solution of the differential equation
(3.2) depends rationally on the initial conditions.

It follows from Proposition (3.9), the conditions (i), (ii), (iii) and (iii)
are independent of the point #. Therefore we sometimes do not make
the reference point #, clear and we can replace D by any subdomain
without loosing the conditions (i), (ii), (iii) and (iii)'.
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Painlevé’s theorem states that starting from the ring R by the per-
missible operations of §1, we can solve the differential equation (8.2) if
the general solution depends rationally on the initial condition, where
we denote by R the ring generated over C be the coefficients of the
polynomial F (Corollary (4.6)). Before we prove this theorem of consider-
able depth, we prove a special case which is a direct consequence of
Theorem (2.19).

Let X = SpecClz, 2, ---, 2,] be an affine algebraic variety over C,
DcC a domain and K a field of meromorphic functions on D. Let
g eDer, (K(X®cK), K(X®;K)). Then we can associate the system of
Pfaffian differential equations Pf(§) on D X X as in §1. Namely let 4 be
given by

z) = Filli2nzn 02) g <o,
Gi(t; 2y Rgy 0y Zn)

We consider a system of Pfaffian differential equations

(3.11) de, = Flbzv 2 20 g0 on Dy x.
Gt; 2,2, -, 2,
Replacing D be a subdomain if necessary we may assume that the coeffi-
cients of the F, and G, are regular on D. Replacing D by an appropri-
ate subdomain, we may assume that for any ¢,e D, F(t; Z,, Z,, -+ -, Z,)
is not constantly equally 0 on X. We look for solutions of (3.11), ¢t —
; 1@, y:(0), -+, ¥.®) e DX X D X A", where X C A" is defined by
ClZz,2,, --+,Z,] - Cla, 2, -+, 2,] with Z, —» z,. Let t,e D and (z, 2,
..+, z)eX be a non-singular point with G,(t; 2, 2, -+, 2,) = 0. Then
there is the unique holomorphic solution D — D X X, t— (¢; y.(2), y:(%),
o y,(®), with y,(t) = 2, for 1 <i<n. We denote y,(t) by y.(t; 2, 2,
-+, 2,; 1), which is holomorphic with respect to (2, 2z, -+, 2,) e X.

LEmmaA (3.12). The following conditions are equivalent.

(i) There exist a point t,€ D, a subdomain D’ of D containing t, a
non-empty open set V of X (for the usual topology) consisting of non-
singular points and polynomials C,t; 2, Z,, ---,Z,), D,(t; Z\, Z,, - -+, Z,) in
Z, 2y, -+, Z, with coefficients in a ring of holomorphic functions on D’
such that (a) if (2,2, -+, 2,)€ V, then G(ty; 2,25, - -+, 2,) 0 for 1 <i<n
and such that (b) for (2,2, ---,2,)€ V,
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D x A"
4 )
D—D X X t—> (t, Gz, 2, -0, 20) e, Cult; 20,21, -+ -, 24 )
Dl(t; 2y, 2y 0t ',zn) Dn(t; 2y 2y 0 "zn)
is the solution of (3.11) with
Ci(to; 2y Ryttt zn) = 2z, .
Di(to; 20y 21yttt zn)

(ii) Let X be a completion of X: a complete variety containing X as
a Zariski open set. There exist a point t,€ D, a subdomain D' C D con-

taining 1, such that if we denote by Z the set {(t; 2y, 2, « * -, 24, Yi(lo; 21, 22,
crty Zay t)’ yz(to§ Ry Ryt 0y By, t)) A yn(to; iy &gyt ty Rps t)) € D/ X X ><D' Xl
Gty 2,2, -+, 2,) =0, (2, 2, - -+, 2,) € X is a smooth point}, the Zariski clo-

sure Zc (D' X X) X, XC D' X X X X defines a D-bimeromorphic corre-
spondence of D' X X with itself (cf. Part I).

(iii) There exists a point t,€ D, a subdomain D’ C D containing t,
and a morphism F: D' — Bim X of functors such that (a) F(t,) = Idy and
(b) 8 = O(F) when extended to K(D')-derivations of K(D')X ®. K(D')) (cf.
§ 1), where K(D') is the field of the meromorphic functions on D'

Proof. The equivalent of (i) and (ii) is proved by the same method
as in the Proof of Lemma (3.5) and hence we omit the proof. Assume
now that the equivalent conditions (i) and (ii) are satisfied. We choose
t, and D’ satisfying the two conditions (i) and (ii). Then it follows from
(i) that we have a morphism F: D' — Bim X of functors. By Lemma
(1.27) of Part I, we may assume that there exist an algebraic variety Z,
a morphism g: Z — Bir X of functors and a holomorphic map f: D’ — Z*®
such that the image f(D’) is dense in the algebraic variety Z and such
that F' = g*"of. Let us use the notation of §1. Then by (i) around ¢,
t — (¢, g()x) is the solution of Pf(d). Therefore as in §1 § = O(F). Con-
versely if the condition (iii) is satisfied as we see in §1, for x e X; the
solution around (¢, x)e D’ X X of the system Pf(F) is given by ¢~
(t, g()-x). As the morphism g gives a rational map Z X X -..> X, each
coordinate of the point g(¢)-x is rational with respect to x and the con-
dition (ii) is satisfied.

DErFINITION (3.13). When the equivalent condition (3.12) is satisfied,
we say that the general solution of the system (3.11) of Pfaffian differ-
ential equations depends rationally on the initial conditions.
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By the same argument as in the Proof of Corollary (3.8), we can
show that if the equivalent conditions (i), (i1) and (iil) of Lemma (3.12)
are satisfied, then for any point ¢, € D’ and the neighbourhood D’ of ¢
the conditions (i), (ii) and (iii) are satisfied. Therefore we can replace D
by any subdomain of D’ without loosing the conditions (i), (ii) and (iii).

DErFiNITION (3.14). In general for an algebraic variety Y over C and
a system of Pfaffian differential equations defined by a 6 € Der, (C(Y) ®¢ K,
C(Y®:K)) as in §1, we say that the general solution of the system
Pf (6) of Pfaffian differential equation associated with § depends rationally
on the initial condition if there exists an affine model X of Y such that
Pf(6) on D X Y satisfies the equivalent conditions of Lemma (3.12).

If there exists an affine model Y over which Pf (§) satisfies the equiv-
alent conditions of Lemma (3.12), then for any affine model Z of Y Pf(6)
satisfies the equivalent conditions of Lemma (3.12). Namely we can say
that the definition is independent of the choice of affine model.

Remark (3.15.1). Assume that the equivalent conditions (i), (i) and
(ii1) of Lemma (8.12) are satisfied. Then the condition (iii) gives a mor-
phism F(f): D' — Bim X of functors on the category of analytic spaces.
It follows from Proposition (1.7) that denoting by L the field of meromor-
phic functions generated over C by the coefficients of the polynomials
C,, D, we get the L-valued point P(§) = P(F()): Spec L — Bir X or the
L-birational automorphism of L-algebraic variety X ® L.

(3.15.2). Suppose that the equivalent conditions (i), (i1) and (iii) of
Lemma (3.12) are satisfied. We get a meromorphic map

D’ D X X, t (t, Cl(t; 2 Ry v, Z'rz) e, Q@(Vt;,z_"’,z};_ ) Zn) ) .
Dl(t; R0y Ryy t vty Zn) Dn(t; 20y Ry vy zn)

Composing this with the projection p,: D' X X — X, we get a meromorphic
map

f: D/ 3 X , tr < Cl(t; 20y 21y %) Zn) e Cn(t; 2y, z}_’ ) zn) )
D:(t;zo, 2y v ')Zn) Dn(t; 2py 1y vy Rg
for a general (z, 2z, ---,2,). Replacing D’ by a suitable subdomain,

we may assume that f is holomorphic. Then the associated point P(f)
to f is an L-valued point. P(f): Spec L — X 1is just the composite
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where the first map is (Id, canonical map induced by the inclusion L O C)
and the second map is (Id, Spec C — z e X). (cf. 2).

ProrosiTiON (3.16). Let us consider the algebraic differential equation
(3.2) with coefficients in a ring R of holomorphic functions on D such that
the general solution y(t,; x,, x,, - - -, X,; t) = ¥(t) depends rationally on the
initial conditions. Then there exist a field K’ D C of meromorphic func-
tions obtained from R by finite iterations of the permissible operations (O),
(P1), (P2), - - -, (P5) and a K-derivation 6 € Der, (K(X,, ®¢ K’), K(X,,®c K’))

such that the general solution tw— (t; v, vy, -+, Vv,) of the Pfaffian system
Pf (6) associated with 6 depends rationally on the initial condition and such
that (R[y])P = (R[vy, vy, - - -, U,])P, where WP means the set of meromorphic

functions obtained from W by a finite times of iterations of the permissible
operations in § 2 (see Definition (2.16)).

In other words, finding a general solution of (3.2) is equivalent to
finding a general solution of Pf(6) by permissible operations.

Proof. Let K be the quotient field of R. It follows from Corollary
(3.7) that there exists an extension K’ of the field K such that X, ®¢ K’
is birational to & ® K’. Therefore by Proposition (1.25) we may assume
that K’ is a finite algebraic extension of K. Hence K’ is obtained from
R by finite iterations of the permissible operations (O), (P1), - - -, (P5).
We may assume that the birational isomorphism between X, ®. K’ and
Z ®x K’ is defined over a ring R’ of finite type over R and R’ consists
of holomorphic function on a subdomain D’ of D. Taking a system of
generators such that R' = C[f,, f,, - - -, f,], we get a holomorphic map D' —
Spec . We have a bimeromorphic correspondence : X,, X DV --.> &’
induced by ¥. Therefore the system of Pfaffian differential equations
(8.3) is translated by + on a system of Pfaffian differential equations on
X,, X D'. And this translation is done by rational functions in X, X,
..., X, with coefficients in the quotient field of R’ hence permissible.
Since v commute with the projection, *t = ¢ and the Pfaffian system
(8.3) is transformed to (3.11) and the Proposition is proved.

By Proposition (3.16), the general solution of the differential equation
(3.2) whose general solution depends rationally on the initial conditions
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is reduced to that of the systems of Pfaffian differential equations (3.11)
such that the coefficients of F,(¢; Z), G,(t; Z) are known from R by per-
missible operations and the general solution of (3.11) depends rationally
on the initial conditions.

DerFiNITION (3.17). If there exists an analytic subgroup G of Bim X
such that the morphism F: D — Bim X factors through G  Bim X, then
we say that the system (Pf (F)) of Pfaffian differential equations is of finite
type.

THEOREM (3.18). If the general solution of the system (3.11) of Pfaffian
differential equations with coefficients in R D C depends rationally on the
initial conditions and if the system is of finite type, then the general solu-
tion of (3.11) is in QR (i.e. there exists a non-empty Zariski open set U of
X such that any solution with initial conditions in U is in QR), where
QR is the set of meromorphic functions obtained from R operating the per-
missible operation @ for one time. In particular the general solution is
obtained by a finite iteration of the permissible operations (0), (P1), - - -, (P5)
from R.

Proof. It follows from Corollary (1.33) that there exist an algebraic
subgroup H C Bir X such that : I — Bim X factors through H** — Bim X:
WD) € H* C Bim (X*). Let us denote the morphism D' — H*» by ¢. We
show that dp: I — Lie H = ) is given by known functions (cf. Definition
(2.4)). Namely let hy, h,, ---,h, be a basis of the Lie algebra § and
hence the 7}, are derivations at 1€ H. Using the notation of § 2, we have
X,y = Dhor af@@)R, (k) with afe(t)) e K for te D’ where K is the
quotient field of R. In fact anyhow we can write

(3.18.1) Xy = 3 4o Ryl

with a,(¢()) holomorphic function on IV. (3.18.1) is the identity of the
vector fields on the curve ¢(I)) in H**. Let us apply R,-. to (3.18.1)
and we get

15
(3.18.2) R,y-1Xo0y = Rw)-u(; GJ(SD(t))R«p(m(hj))
l
= ]2 a (@R, 0y -1By re(hy)

= 2 apdh;.
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(3.18.2) is the identity of the vector fields at 1 e H. Let us denote by ::
H — Bir (X) the inclusion.

The morphism ¢ of functors on the category of C-schemes induces ¢4 :
H®¢ K - Bir,(X®; K) when we restrict the functors H, Bir (X) on the
category of K(DC)-schemes. ¢, induces a morphism ¢,.: Lie (H ®¢ K) —
Lie (Birg (X ®c K)) of K-Lie algebras. We know Lie (H®. K) = §®¢ K,
Lie (Birg (X ®¢ K)) = Dery (K(X®¢ K), K(X®; K)). Hence we get y.:
# Qc K — Dery (K(X®: K), K(X®;K)). Since ¢4 is functional in K,
tes = tex ® K. the diagram

5@ K—<2% , Der, (C(X), CX) @ K

(3.18.3) )\ 1

Der. (K(X Q. K), K(X ®c K))
is commutative. Therefore we have
(3.18.4) teR)(f) e C(X) for any he# and feC(X).

Therefore we denote ¢y simply by ¢,. If we apply ¢, to (3.18.2), we get

(3.185) Ry Xow) = | 2] OO |

n
j=1
a

-

1

L@ ex(hy)) -

Recall that we have C(X) = C(2y, z,, - -+, 2)-
Applying the derivations in (3.18.5) to the z’s, we get

(3.18.6) xRy -1 X, ) (20) = _,2; a(o@®)(*(h))(2)

for 1<i<n. tu(Ry)-1uX,w)(2) is in K(X®K) hence a rational function on
X®cK. Letus calculate the value of the rational function ¢, (R, -.X, ,)(2.)
at a general point z€ X®. K defined over C.

3By Xy) (2)(2) = lim 242+ h”’,‘f)”z) — 242)

_ F(t:z2
Gft:2)
For let p: D' X X-»D' X X, (¢t 2) = (t; (A(t; 2)/(Bi(t; 2)), (Adt; 2))/
(By(t; 2)), - - -, (A,(t; 2))/(B,(t; 2))) be the birational transformation defined
by the solution of (3.11) such that A(¢; Z,, Z,, - -+, Z,) = A(t; Z), B(t; Z,,
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Zo, -+, Z,) = B(t; Z) are polynomials with holomorphic coefficients as
above. Let us briefly denote (A,(, 2))/(B,(t, 2)) = C(t; z), 1 <i < m or more
simply (¢, 2) — (t; Ci(t; 2), Cy(t; 2), - - -, C,(t; 2)) = (t; C(t; 2)). Since by Pro-
position (1.7) this correspondence is M-birational automorphism of X® M
where M is the extension of K by the adjunction of the coefficients of A; and
B, 1<i<n. We have the inverse transformation g:D' X X-» D' X X,
(&, 2) — (t; D(t; 2), Dy(t; 2), -- -, D,(¢; 2)) = (¢, D(t; 2)) so that C(¢; D(¢; x)) =
x, D(t; C(t; x)) = x. We choose a point s€ D and fix it.
On the one hand since t— (¢; C(¢; 2) is a solution, we have

VN C(; 2)
(3.18.7) 40 2) = i Gy ¥

for 1 < i< n and for a general point 2’ of X. We can substitute D(s; 2)
for 2. Then (3.18.7) becomes
F(t; D(s; 2))

(3.18.8) dCdt; Ds:2) = 6 DG 2)

Therefore at t = s

dCi(t; D(s; 2))
dt

_ Fis;2)
= Gs;2)

(3.18.9)

This is what we had to prove.
We have thus proved the commutativity of the following diagram:

D ifi b
(3.18.10) o
Dlér.;(C(X), CX)),

where the map D — Der (C(X), C(X)) is given by ¢+ > .7, (F.(t; 2)/(G.(¢; 2))
(8/0Z,). Next we want to show that z(p) e ) ® K (cf. Lemma (2.13)). Let
F be an extension of the field M such that z(p) e )@ M. It follows from
(3.18.10) that ¢y ®c F(z(p)) € Dero(C(X),C(X))® F is in the image of
Der(C(X), C(X))® K. Since ¢, is injective, z(p) e )® K by the following
sublemma.

SuBLEMMA (3.18.11). Let k be a field V., V, be k-vector spaces and
W, cV, W,CV, be subspaces. Then

vvl®kvvz= VV1®hvzm K@m’
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where the vector spaces above are identified with their canonical images in
Vi® V.

Proof. Since the inclusion C is evident, it is sufficient to show DO.
Let xe W,®, V,NV,®W,. Thenx= >} ,a,®b,x=>",¢,8d; a,e W,
b;e V,,c;eV,d;e W,. Therefore we may assume that V,, V; are of finite
dimension. The Sublemma is proved by taking a basis e, e, -- -, e, e, .1,
oy e, (xesp. fi,fo s fo forer, oo f5) of Vi (resp. of V,) such that e, e,

-, e, (vesp. fi, fy, -+, f,,) span W, (resp. W,).

Therefore 5+ : D' — Lie H = §) is written using known functions from
K by the operation . Therefore for any rational function f on H, foo
is a new known function by the permissible operation @. It follows from
Proposition (1.6) of Part I that the inclusion H C Bir X is given by an
algebraic pseudo-operation (H, p, X). For a general point z € X, we denote
by H, the Zariski closure {o((h, 2))|h e H, p: H X X-> X is regular at (A, 2)}.
We have thus a dominant rational map p: H-> H,. For a general z, t—
(t, p(t)2) is the solution of (3.11) with initial condition ¢(t)z = z. We
consider the composite rational map H-> H,-> A'. Therefore (z;°p) o ¢(f)

= (A(¢; 2))/(B(t; 2)) is a known function by the permissible operation
applied for R, 9y and H. The last assertion follows from Theorem (2.19).

Remark (3.19). In the last part of the proof, we can argue in an
intrisic manner. In fact, let N be the field obtained from R by the oper-
ation @ with respect to 9y and H. It is sufficient to show that the point
P(y(2)) e X associated with the general solution y(2): D' — D' X X, t—
@¢; Ci(¢; 2/Dy(2; 2), - - -, C,(¢; 2)/D,(t; 2)) is N-rational. The point P(p)e H
associated with ¢ : ' — H is N-rational and ze€ X is C-rational in partic-
ular N-rational. Therefore P(p)z e X is N-rational by § 1. We have further
P(p)z = P(y(2)).

DErFINITION (3.20). Let D C C be a domain, R a ring of holomorphic
functions and K the quotient field of R. Let X be an algebraic variety
over C. Let e Der (K(X®.K), K(X®;K)). For any algebraic variety
Y birationally equivalent to X, 6 defines the system of Pfaffian differential
equations on D X Y. If there exists a complete, non-singular model Y of
X over C such that 6 is a regular vector field of Y®¢ K, then we say that
we can compactify the space of initial conditions of Pf(f) on D X X.

In the language of differential equation, if we can compactify the space
of initial conditions, there exists a subdomain I such that Pf(§) defines
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a regular system of Pfaffian differential of corank 1 on D’ X Y.

THEOREM (3.21). The system of Pfaffian differential equations Pf(6) on
D X Y is of finite type if and only if we can compactify the space of initial
conditions.

Proof. Assume that the system is of finite type, let  : D — Bim(X)
factor through an algebraic group ¢:D—>HCBirX and HC Bir X is
defined by an algebraic pseudo-operation (H, p, X). Then by [U2], we can
find a non-singular projective model Y of X such that H operates regularly
on Y. Now the solutions of Pf(f) on D X Y are orbits {¢(¢)-z|ze Y} and
the vector field § on D X Y is given as in §1. Hence 6 = 0(p, (G, Y)) and
regular on Y®: K. Conversely if we can compactify the space of initial
conditions, then by G.A.G.A. [G1] the solution depends rationally on the
initial conditions and + : D — Bim Y factors through Aut’Y C Bir Y and
Aut’Y is an algebraic group ([G2)).

§4. Solbavility theorem of Painlevé (general case)

We prove a more general solvability theorem than in §3. Some
special cases of the theorem was proved by Painlevé and Picard (cf.
Painlevé [P], p. 393). Let us begin by some preliminary results on differ-
ential fields.

We consider ordinary differential rings (i.e. commutative rings with
a differentiation) of characteristic 0 such as rings of meromorphic functions
on a domain of C with the usual differentiation. We often denote by
v,y”, -, y® the differentiations of y, y’, - - -, y*~. Let K be a differential
field, £ a differential subfield of K and y,, y,, -+, ¥, € K. Then we denote
by k{3, ¥». - - -, ¥} the differential subring of K generated over k& by y,, y,,
-+, ¥,: the k-algebra generated by the y, and their derivations D'(y,) over
k(1=i<n 1<)). We denote by k(¥ ¥, - - -, ¥.» the differential subfield
of K generated over & by v, ¥:, -+, Yu-

Our differential rings are considered in a big differential field, which
often we do not mention if there is no danger of confusion.

Let k be a differential field and the Y,, (1 £i £ n, 1 < j) variables over
k. Then extending the derivation D of k by D(Y,,) = D(Y,,,,), we get a
differential ring %2[Y]c;c.,.c; Which we denote by k{Y,, Y, ---, Y,}. We
call #{Y,, Y,, - - -, Y,} the differential polynomial ring of n-variables over k.
The quotient field of £{Y,, Y,, - - -, Y,} is denoted by k(Y,, Y,, ---, Y,)>. Let
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S be a set of elements of a differential ring A. The differential ideal
(ideal of A closed under the differentiation) generated by S is denoted by
[S]. If I is a differential ideal, then A/I is a differential ring. We recall
the following well-known fact.

LemmaA (4.1). Let k be a differential field. Let k{(y) be an extension.
Let F(Y)ek{Y} be a non-zero polynomial with F(y,y,y", ---,y?) =0 of
minimum order (there is no non-zero polynomial G(Y, Y, Y,, - --, Y,_;) € k{Y}
such that G(y,y,y", -+, y* ") = 0 and of minimum degree in Y. Then
the ring k(y) is k-isomorphic to the quotient field of the localization (k{Y}/
[F1)y where H = 3F[3Y,.

Proof. It follows from F(y,y,y"”, -+, y%) =0 that y® is algebraic
over k(y,y,y”, ---,»“""). Let

(4.1.1) F(y,y, 9 = a(y)" + a,(y")" ' + -+ + a,
with a; e k[y,y, -,y V], ag#0. Theny,y, ---, y¢ " are transcendental
over k and the field k(y, ¥/, - - -, y¥) is k-isomorphic to k(Y, Y, - -+, Y,_)[Z]/

(2™ + a,Z™" '+ - - - + a,) by the choice of F. Differentiating (4.1.1), we get

(4.1.2)  a(y®)" + al(y)* "+ o e+ Hy, Y, y0)y 0 = 0.

By the choice of F, na(y“)* '+ (n — Da,(y)"*+ -+ +a,.,+0 and
hence y*“*V is in k(y,y’, - - -, y¥). The above isomorphism gives the disered
isomorphism (cf. Exercise 1, (b), p. 163, [Ko]).

LemMA (4.2). Let a,(2), a,(), - - -, a,(t), b:(2), b,(2), - - -, b.(2), c(®), cx(®), - - -,
c.(t) be homomorphic functions on a domain DCC(,n=0,m=1). If
one of the b, is transcendental over Cla,, a,, - -+, ;> (b, satisfies no non-
trivial algebraic equations with coefficients in Clay, a,, - - -, @,)), then there
exist a subdomain D' of D, a domain D, C C, a point s,e D, and holo-
morphic functions B,(t,s), C(t,s) 1<i<m,1<j< n) such that (1) by(?)
=B(t,8) 1Zi<m),ct) =Cyt,s) 1<j<n)for te D', (2) at least one
of the B,(t, s) depends effectively on s or 9B,[0s|,_,, 5 0 and such that we
have an isomorphism of Cla,(t), ax)(t), - - -, a,()}-differential algebrais (C{a,(t),
a(t), -+, alt), bi(t), by(t), - - -, ba(®), &r(®), (D), - - -, ca(®)}, dfdt) = (Clay(D), ax(d),
o+, a(8), By(t, 8), By(t, 8), - - -, Bu(t, 8), Ci(t, 8), Cu(t, ), - - -, Cult, 8), 3/0t) by by(t)
— By(2, ), c,(t) — C,(, s).

Proof. Let b, be transcendental over C{a,, a,, - - -, @;} with minimum k.
By enlarging {aly (22T al} to {ah Qyy -+, Ay, bl, Tty bk—l} and {clv Coy = v 0,y cn}
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t0 {byi1, bivss v 0y Oy €1 -+, €}, We may assume that m = 1. We denote b, by
b. First we treat the case n = 0. We put & = Cla,, @, - - -, a,). If b satisfies
no algebraic differential equations with coefficients in k& or b, b, 6", - - -
are algebraically independent over k, then we take I’ = D, D, = C s, = 0
and B(t,s) = s + b(t). Therefore let us assume that b satisfies an algebraic
differential equation. Let 0 F(Y)e Clay, a, - - -, @ }{Y} with F(b, ¥, ---,
b®) =0 of minimal order p and of minimal degree in Y,. Let F(Y, Y, ---,Y},)
=A(Y)" + A Y+ ... 4+ Ay with A, eC{ay, a5 -, a}[Y, Y, -+, Y]
0<i<N, A #+0. It follows from the choice of F that GF/3Y,)(b, ¥/, - - -,
b®-Y) £ 0 hence there exists a point ¢, € D such that F/aY,)(b, b, - - -, bD)|,,,
# 0. Let 8, = b(t), i = b'(ty), - - -, Bp_s = b®V(L,). Then there exist an open
neighbourhood U of (8, 8, - - -, B,-1) € C* an open neighbourhood D’ of ¢,
and a holomorphic function G(¢, Z,, Z,, - - -, Z,.,) on D’ X U such that the
differential equation F(y, y’, - - -, y®) = 0 with initial condition (y(#), y'(%,),

<,y () e U is equivalent to y® = G(t,y,y, ---,y? V). Therefore we
can parametrize the solutions by the initial conditions at f,. There are
thus p > 1 parameters. In particular replacing D’ by a smaller open set
we can find a domain D, C C and a holomorphic function B(t, s) on D’ X D,
such that (1) oB/ds =0, F(B,dB/at, - --,3*BJot’) = 0. Therefore we have
k-morphism of differential algebras ¢ : (B{Y}/[Fx — (CLay, @y, - - -, a,>{B},
dfat), Y— B(t, s). ¢ is injective since specialization at s = s, Y+ B(t, s,)
is injective by Lemma (4.1). We have therefore a k-isomorphism of the
quotient field of (k{Y}/[F])gz onto (C{a,, as, - - -, a,, B), 3/at). It follows from
Lemma (4.1) that we have an injective k-morphism of Cfa,, @, - - -, a;, b}
— k(b)Y =5 quotient field of (R{Y}/[FDy = Clay, a,, - -+, a;, BY inducing iso-
morphism C{a,, a,, - - -, a,, b} = C{a,, a,, - - -, a;,, B}. This proves the lemma
for n = 0. Let us assume that we have a k-isomorphism ¢ : Cla,, a,, - -,
a,, b} > Clay, a;, - - -, a,, Bl. We want to find new D', D, and a holomorphic
function C, to extend ¢ to an isomorphism Cla,, a,, - -, a,, b, ¢;} — Cla,, a,,
-+, a,, B, C;}. The case where c, satisfies no algebraic differential equation
with coefficients in k(b) is the easiest. We may use D’, D, for b and
C(t, s) = c(t). The next extreme case is ¢, is algebraic over k{b}. Let F=0
be a defining equation of ¢, over C{a, a,, - -, a;,, b}. Let F be a corre-
sponding polynomial with coefficients in Cla,, a,, -- -, a;, B}. Choosing
sufficiently small new I and D so that the algebroid function of two
variables (¢, s) with F(C,) = 0 is one valued, we can construct differential
isomorphism C{ay, @y, - -+, @, b, ¢,} 3 Clay, @y, - -+, @, B, C;}. Since the re-
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duction of ¢:C{a,, a,, -+, a;, b} 5 Clay, a5 - -+, 0, B} at s =5, is also an
isomorphism, we may assume that s,e D and Ci(t, s,) = ¢,(¢). If ¢, is not
algebraic over k{b} and satisfies an algebraic differential equation over
k{b}, let 0 = F(Y)e C{a,, @y, - - -, a,, b}{Y} be a polynomial with F(c, cf, ¢/,
<+, ¢{?) = 0 of minimum order p > 1 and of minimum degree in Y,. Let
F(Y)eCla,, ay, - -+, a,, BH{Y} be the polynomial obtained from F by the
isomorphism C{a,, as, - - -, @,, b} = C{a,, a,, - - -, a,, B}. Let D', D, and ¢, be
chosen when we determined B. Let F(Y) = A, YY + A YV 4+ ... + Ay
with A, #0, A, eCla,, a, - -+, a, b}[Y, Y, Y,, ---, Y,,]. By the choice of
F, @F[aY,)(c;, ¢, ciy - -+, ci?) = 0. Therefore there exist ¢, € D' such that
(OF[aY,)(cy, ci, ¢’y -, ¢P)|oyy 0. Let A, = Aa; 0, Y, Y, Y,, -, Y,) =
Afay, @y - ,0,50; Y, Y, -+, Y,_). Then

(4.2.1) FY) =AYV + A YV '+ .. 4+ Ay,

where A, = A(a; b; Y, Y, Y, - - -, Y,_,) which are polynomials with holo-
morphic coefficients on D’ X D,. Since B(t, s,) = b(t), 0F[0Y,)(a; B; ¢, c,
coy CP)]ycisms # 0, there exists a holomorphic function #(,s; 2. 2, - - -,
z,.,) regular on a neighbourhood of (%, sy; ci(%), ci(ty), - - -, cP~V(2,)) € C?**
such that the differential equation (4.2.1) is equivalent to a partial differ-
ential equation

(Es) msjf(t,s;c, a_C’ ...,ﬂ)

at? ot otr-!
near (&, So; ¢i(ty), ci(ty), - - -, ¢~ (¢)). And c,(¢) is a holomorphic solution of
E,, with initial conditions at t,(¢,(t,), ci(2), - - -, ¢?~V(¢,)). Therefore c,(¢) can

be extended to a holomorphic solution Ci(¢,s) of E, with (C(¢,s,), - - -,
(0771C,1[3tP= ") (81, 80) = (ci(t), ci(t), - - -, cP7V(L)), Ci(t, s)) = c(f). The same
argument as above shows that we have an isomorphism C{a,, a,, - - -, a;, b, ¢}
= Clay, @, -+, @, B, C}. Repeating this argument, we can construct
Clay, @y -+, 0, 0,0, -+, c,} 3Clay, @y -+, 0, B, Cy, Gy, - - -, C,} required in
Lemma.

More generally we can prove the following theorem. The theorem
was proved by Painlevé ([P], pp. 368-373) when X is the 2-dimensional
affine space.

THEOREM (4.3). We keep the notation of §3. If the general solution
of the system (3.11) of Pfaffian differential equations with coefficients in a
ring R depends rationally on the initial conditions. Then the general solu-
tion is obtained from R by the permissible operations (0), (P1), (P2), - - -, (P5).
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Proof. Let us first treat the case n = 1. Let X be a non-singular
projective model of X. Then it follows from Corollary (1.30) of Part I
that D—Bim X factors through algebraic group Aut’ X c Bir X. Therefore
the system (3.11) of Pfaffian differential equations is of finite type and
the theorem follows from Theorem (3.18).

Now we show the theorem for X rational and next for X with ir-
regularity q(X) = 0, where X is a non-singular projective model of X and
"~ ¢(X) = dim HY(X, Oz) which is a birational invariant of X. The last step
is to explain how we can treat the general case.

So let us assume first that X is rational. We may assume that
X = A" so that C(X) = C(z2,,2, - -, 2,). As the following argument shows,
it is enough to treat the case n = 2. The idea of the following proof is
due to Painlevé [P]. Let D — D x A%

o At; x) Ayt x)
(4.3.1) ¢ (t’ B(t; x)’ Bz(t;x)>

with x = (x,, x,) € A? = C* be the general solution as in Lemma (3.12).
Namely A,(t; Z), B,(t; Z) are polynomials of two variables Z,, Z, with holo-
morphic coefficients. Let K be the quotient field of R and L be the
extension of K generated by the coefficients of the polynomials A,, A,,
B,, B,., Then our assumption implies that

A(t; %y, %) Aqt; x4, X3)
4.3.2 , H( ) )
( ) (1, %) By(t; x,, ;) By(t; x4, %)

defines a birational automorphism of A% (see Lemma (8.12) and Proposi-
tion (1.7)).

Ci(t; uy, u))  Colt; uy, Uy) ) .
Let (1, H( i , th C.t U, U,), Dyt, U, U,
ot (3, ta) Dit; w, ) Doty w) ) {6 U T, D, U, U

e LIU,, U,] be the inverse transformation. We take C, and D, are rela-
tively prime in L[U, U,]. We have to show that each coefficients of
A,, A,, B, B; are in RE. To this end it is sufficient to show that each
coeflicients of C,, C,, D,, D, is in RQ: namely the birational automorphism
(4.3.2) of A% is defined over a subfield of RQ. By Lemma (1.26) we can
a, b, ¢,
a b c
a; by ¢
polynomials a,D + b,DC,/D, + ¢,DC,/D, are absolutely irreducible, where
D = lem(D,, D;) in L{U,, U,]. Thus we can choose a homogeneous co-
ordinate system on P% such that C,, C,, D,, D, are absolutely irreducible

find a,, b,, ¢, e C (1 £i < 3) such that det # 0 and such that the
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(i.e. irreducible) in L{U,, U,]) and D, = D,. From now on we assume that
C,, G, D,, D, are absolutely irreducible and D, = D, = E. Let us put to
simplify the notation f(¢; x) = (A,;(¢; x))/(B,(t; x)) for i = 1,2. Then

Ci(t; fi(t; %), fo(2; x))
4.3.3 =
(4.33) EGt; 5 9, At )

E(t; fi(t; %), fo(t; x))

for a general (x,, x,) € C* (cf. Proposition (1.25)). Now differentiating (4.3.3)
with respect to ¢, we get

S -0

Therefore

( 9 i h ) + "’"C' ;£ f) f*(t %, 1)

aCl
"o,

—c,<t;n,f2( Ghaf) + 25 9E f.,fz)df‘ (t; %, %)

t: fu fo) df? (t; 2, x»)E(t fuf)
(4.3.5)

aUZ 9E i)Y dﬂ (t: %, %)) = 0.

Since ¢ — (¢, f,, ;) is the solution of (3.11), we have
dfl (t Xy, xz) — F(t fhf2

G\(¢; fi,

(4.3.6) (& 1 o)
dfz s s xy — BGLS)

G2(t f27f2

Substituting (4.3.6) in (4.3.5), we get
oC oC, F, oC, F, oD oD, F oD, F,

137 (% LG S g (8D D h 2
( ) at+aU1G,+aU2G2 t_*-aUlGihidaUzG2

(t:fi, ) =0.
Mutiplying G,G,, we get from (4.3.7)

aC aC oC )
G ! G L F, G, LR \E
[(G 2+ 6l R+ 6 I F,

oD oD oD
—C<GG L4+ 6,9 F 4 g F)]t £)=0.
s + i + T t; fi 1)

(4.3.8)
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Applying Proposition (1.25) for A%, we may replace f,, f; by variables:
we have a polynomial identity

<Gle aCl + G2 801 F + G aC1 E)E

ot U U
(4.3.9) ’ laE aEz oF
—cl(GGZ +GzaUF+GaUF2)—0

in L[U,, U;]. Since the polynomials C, and E are relatively prime in
L{U, U,] there exists a polynomial A,(¢; U, U,) € L[U,, U,] such that

= 2,C,

oC oC aC
G,G,—= G.F,— + G, F,—
U + ’ aU + : aUZ

which is an equality in the polynomial ring L[U,, U,]. Similarly there
exists a polynomial A4,(¢; U, U,) € L[U,, U,] such that

ok oE
8 U Ug

= LK.

G, G2T + G,F,

It follows from (4.3.9) that (1, — 2,)C,E = 0 hence 1, = 2, = 1 since (u,, U)
. ( G u, uy)  GlE; uy, uy)

E(t; uy )~ E(; uy, uy)
notation L, = G\G,, L, = G,F,, L, = G,F,. Then L, L,, L, e R[U,, U;] or
their coefficients are known functions. Therefore C,, E e L[U,, U,] are C-
linearly independent, relatively prime and absolutely irreducible solutions

) is birational. Let us set, to simplify the

of linear differential equation

9B 9B L 9B _,p_y.

4.3.10 9=
( ) "ot U, aU,

By the same argument, we can show that C, also satisfies the differential
equation (4.3.10). C,, C,, Ee L[U,, U,] are absolutely irreducible and rela-
tively prime solutions of (4.3.10). Thus the theorem for X = A? follows
from (4.3.10) if we can show that the coefficients of the polynomial
A(t; U, Uy e RQ. But this is not ture. We have to normalize 2. Since
L, # 0, there exists (u,, u,) e C by Proposition (1.25) such that L,(¢; u,, u,)
#+ 0. Therefore we may further assume L,(,0,0) == 0. Let g(f) be a holo-
morphic function on a subdomain of D. Let us calculate the differential
equation satisfied by gC,, gC,, gD.

d ot )
L:‘E(gcl(t, fit; x), f2(t; x))
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0gC, . 2gC, df, agC, dfz)
=L1< t: 15 —_
@ f o) + oU, dt + olU, dt

0gC, , 0gC, F, , agC, F)
L( = t: f,
at+am G1+aUsz(f‘f2

8g01 £,98% L1, 8g02>t
= (L5 + L%+ L)1 ).

On the other hand
L, -(%(gcl(z; £t; 0, f(t; )

- Llifiicmt;ﬂ,m + ng—d— Ct: i f)

dag (aC, oC, df, oC, df2>
"“L Ct 1 Ll t 1
g (@& [ f) + Lig (ffZ)+”Udt+aU2dt

=L it f) + ng( 0 (i f) + G F‘ TG

dt au,
aC, F, )
t; fi,
* o Gz( fis 1)
dg < aC, aC, ac>
= L, 22 C(t; f, L+ L t;fi,
& fuf) + 8 + aU2+LaU(ff2)

_ ﬂé_‘ .
- (Ll e+ gzc,)a,f,,fz).

Therefore we have

0gC, .. 0gC, .. 08C; (1. 11
4.3.11) L,==2(t; U, U, L t; U, U, L, t; U, U,
( ) E ( D + L, U, ( )+ o0, ( 2)
= (L.g7'g" + »gC(t; U, U,).

The polynomials gC, and gFE satisfy the same equation (4.3.11) too. Thus
we can choose g so that L, 0,0)g (dg/dt) — 2(t,0,0) = 0. Therefore we
may assume that for 2 in (4.3.10), we have 1(¢;0,0) = 0. Under this
hypothesis we show that every coefficient of the polynomial A(z; U, U,)
is algebraic over the differential field F generated by the coefficients of
L,, L,, L, over C hence in RQ. Assume now that some of the coeflicients
of the polynomial A(¢; U,, U,) is not algebraic over F. We apply Lemma
(4.2): we take for the set {a,, @, - - -, @} the set coefficients of the poly-
nomials L,, L,, L,, for the set {b, by, - -+, b,,} the set of coefficients of the
polynomial A(¢; U,, U;) and for the set {c,, ¢, - - -, c,} the set of coefficients



72 HIROSHI UMEMURA

of the polynomials C(¢; U, U,), E(t; U,, U,). The lemma shows that we
can ceform 2 and the solutions C, and E of the differential equation (4.3.10).
Namely we can find a subdomain D’ of D, a domain D, C C and a point
s, € D; such that the differential equation (4.3.10) and the solutions
C(t; U, Uy), E(t; U, U,) are parametrized by D,:

(4.3.11) L,%’i + Lz_g% + Lgai% —i(s)B=0

where 1(s) = i(t, s; U,, U,) is a polynomial with holomorphic coefficients
over I X D' and (¢, s,; U, Uy) = A(¢; U, Uy), A(¢, 5;0,0) = 0 since we de-
form only non-zero coefficients. The differential equation (4.3.11) has
solutions C~'1(t, s; U, U,) and E'(t, s; U,, U;) which are polynomial in U, U,
with coeflicients holomorphic over D’ X D, and é,(t, s; U, Up) = Ci(t; Uy, Uy),
E¢, s,; U, U,) = E@; U, U,). Moreover we may assume that A(s) is effec-
tively parametrized (i.e. if s,, s, € D, be different points, then i(s,)#A4(sy).
Let S, be the ring of holomorphic functions on D’ generated over C by
the coefficients of the polynomials C,(¢; U, U,), E(t; U, U,) and S be the
ring of holomorphic functions on D’ X D generated over C by the co-
efficients of the polynomials C‘l(t, s; U, Uy, E@, s; U, U,). It follows from
Lemma (4.2) that the morphism S-S, of substitution s = s, is an iso-
morphism. Therefore the polynomials Ci¢, s; U, U,) and E(t, s; U, U,) are
absolutely irreducible over the quotient field of S’ and relatively prime. We
have (9/a)(C,/E)(t, s; (t; %), fi(t, %)) = 0 since @C,/a0)(¢, s; f,, f2) = ICi(t; i, o),
@E[at) (¢, s; f,, f2) = AE(X, s; f,, f,) by the differential equation (3.11). Namely
if we fix s € D,, then (C’;/E)(t, s; U, U,) is a first integral of the system (3.11)
of Pfaffian differential equations. Therefore there exists a holomorphic
function ¢, of 2-variables such that (C',/E)(t, s; U, Uy) = ¢,((C/EX(; U, Uy),
(G/E)Y(®; U, Uy)) in a neighbourhood W of (4, s,). If we substitute U, =
(A,/B)(t; x), U, = (A,/B,)(¢t; x) for a general (x;, x,) € AZ = C* (cf. Proposition
(1.25)), we get (C/E)(, 5; AJB,, Ai/B) = p.(C/E)(; AJJB,, AiBy), (GE)(E;
Ai[B,, Ay By)) = p,(%;, %,). If we put t =14, we get (CIE)ty, 55 %, ) = 0o, X2).
Therefore putting I(s; U,, U,) = C\(t, s; U,, U;) and J(s; U, U,) = E(t,, s;
U, U,), we have

I

(4.3.122) %(t, s; U, Uy) = 7(s; %(t; U, Uy, %(t; U, U»)

and
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G A X, X)) A XL X)) L.
(4.3.12b) T(t, SR B Xz)) = Lsix,x).
Recall that (U,, Uy) — (C,/E, C,/E) is the birational automorphism of AZ.
Let N be the field of meromorphic functions on D X D, generated over L
by the coefficients of polynomials I(s, t; U, U,), J(s,t; U, U;). L and N
are subfields of the field 2 of all the meromorphic functions on D’ X D,.
We denote by @ an algebraic closure of 2. We denote by @ the birational
automorphism of P% defined by (x,, x,) — ((A,/B)) (x,, x,), (A,/By)(x,, x,)). Let
Z C P% x P} be the graph of the birational correspondence @®. For a curve
7 on P%, we denote p,(p;7'r N Z) (resp. p,(p;'r N Z)) by @*1 (resp. P3'7) where
p,: PP X P? - P? is the projection (i = 1, 2); namely @, (resp. @;') is the
morphism of the group of 1l-cycles to itself defined by the correspondence
@ (resp. @-Y). It follows from (4.3.12a) that the zero locus V(C",) of C~'1 is an
irreducible component of @;(V(I)) Ud3;' (polar divisors of J) = the proper
transform of V(I)U{some curves 7 & A}|D,(r) = 0}Ud;! (polar divisors
of J). Since the polar divisor of </ is the line at infinity, the curve @3;' (the
polar divisor of J) is defined over L. Since @ is defined over L, we get

(4.3.18) V(C) is an irreducible component of (the proper transform of
V(D)) U(cruves defined on L). Now we study two cases: (4.3.14) the curve
V(él) is defined over L; (4.3.15) the curve V(él) is an irreducible component
of the proper transform of V(I). We show that we are always in case
(4.3.15). In the first case (4.3.14), there exists a polynomial C'(U,, U,) e
LU, U] such that 6’1 = aC'(U,, U,) with « € . Comparing the coefficients,
« = a(s, ) e N. Since the coefficients of C, is holomorphic at s = s, and
é,(t, so; U, Uy) = Ci(t; Uy, U,), o is holomorphic at s = s, We may therefore
assume that C’' = Cy(t; U, U;) and Ci(s, ¢; U, U) = a(s, ) Cy(¢; Uy, Uy). It
follows from (4.3.10) and (4.3.11) that

ac oC oC, A
0=1L23% 4+ 1,% 41, —iC
' Th aU, + aU, '
oa . 0C, 5C aC, 5
~ I ( C, ) al, 99 4 o1, 9% _ .
o aC aC aC, "
= Ll_Cl (L ! L ! L ) 1
-+ Yy + U + ol iaC

—La“C+azC—zaC

Hence L,—-— + @A — da = 0. Consequently, %‘ti = 0 since the constant
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terms of the polynomials 2, 1 are 0 and that of L, is not zero. Therefore
a(s, t) = a(s) is a function of s. Then

at "o, U,
ac aC aC,
= of1,9% +1,9% L1, zc,)
“( Thog T
= a(AC, — IC)

by (4.3.10) and (4.3.11). Hence 1 = i this contradicts the choice of 1.
Hence we assume that we are in case (4.3.15). We choose an integer n
such that I(s; Y, Y, Yy) = Y7, I(s; Y,/Y, Y,/Y,) is a polynomial. By the
same argument using (4.3.12b) as in (4.3.13), V(I) is contained in (the proper
transform of V(C’I))U(curves defined over L and hence at most one com-
ponent V(I(s, E(t; U, U,), Cit; U,, U,), Cyt; U,, Uy)) is not defined over L.
It follows from the hypotheses (4.3.15) and (4.3.13) that there exist pe Q
and a polynomial @ = 0 in L[U,, U,] such that

(4.3.16) I(s, E(U,, Uy, Ci(t: U, Uy, Cu(t; Uy, Uy))
= [‘t(t: S)Q(t7 Ul) UZ)Cl(t, S; l]b UZ) g
Comparing the constant terms, we know x(f,s) e N. We substitute U, =

fit; %1, x0), Uy = fi(t; x,, x5) in (4.3.13) and take d/dtlog.
The left hand side is equal to
( ol dE n ol dC, ol dc,

oE dt aC, dt +a02 dt

) 1)

- of of
. <_2E >t |
e +acxc+ SR

= (degree of the homogeneous polynomial ) AL;'(¢t; f., f.).
The right handside is equal to

(269 + @ (L) s+ 6 Cowsrfo

=i 20,9 + (D)@ hh) + 20,83 LD
We get thus
(4317 (deg D-2Li'G f ) = /f‘%% s+ Q ( % )“ fi )

+ AL 1) -
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Thus we get

At 3 i £) = (deg DAt fi ) — LIQH%‘;?—(t;f,,fz)
(4.3.18)
- L,(t;f,,ﬂ)y“‘g—’;(t, 5.

In particular LlQ"w%%(t;ﬂ,fZ) = U(t;f, f,) 1s a polynomial in f; and f;.
Therefore by Proposition (1.25), we get a polynomial identity in U, and U,

At 53 U, Uy = (deg Dat; Uy, U) — ¥(@t; U, Un)
(4.3.19) — L(t; U, U2)y“%fti(t, s).

We compare the constant terms in (4.3.19) and get
(4.3.20) 0= — ¥ 0,0) — Lt; 0, 0) w%‘(t, 5)

since (¢, 8;0,0) = (¢;0,0) = 0. As Lt 0,0) 0, (4.3.20) shows that
ﬂ“%‘(t, 8) does not depend on s. Hence in the equality (4.3.19), the right

hand side is independent of s and consequently i(t, s; U, U,) is independent
of s. This contradicts the choice of 1 which is effectively parametrized
by se D,.

Now we study the case ¢(X) = 0. We take a non-singular projective
model X of X. Since q = 0, the Picard functor Pic (X/C) on the category
of C-schemes is representable by a finitely generated commutative discrete
group G. Let g, &, ---,g, be a system of generators of G. There exists
a non-empty affine open set of X on which the restrictions of the generators
&1, 8, - -+, 8 are the trivial line bundle. We take as X this affine open
set. Therefore the Picard group Pic X/C(C) = 0, namely the coordinate
ring C[X] of the affine variety X is U.F.D. Let K o C be a field extension.
Then Pic X®.K/K is representable by K-algebraic group G. Hence Pic X
®cK/K(K) = G and G is generated by the divisors defined over C and
whose supports are in (X — X)®;K. We have thus Pic X®:k(K) = 0, or
the coordinate ring K[X®.K] of the algebraic variety X®; K defined over
K is U.F.D. We have shown that (i) X®.K/K is smooth and (ii) its co-
ordinate ring is U.F.D. 1In the proof of the Theorem for A’ we used only
these two particular properties (i), (i1) of A’ Therefore the proof for A’
works without any modification also for X.

Now it remains to treat the general case. We have so far proved
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the theorem for two cases (i) dimX =1 and (ii) ¢(X) =0. We show
below that

(4.4) if q(X)> 0, then the solution of the system (3.11) of Pfaffian
differential equations is reduced to by the permissible operations that of a
system of Pfaffian differential equations

4.5) dw, = St Wy, Wy, -+, W) dt 1<i<! on an algebraic variety
Kt wy, w,, -+, w,

Y such that dim Y < dim X, the J, and the K, are polynomials with known
functions by the permissible operations in §2 from R and such that
solution of (4.5) depends rationally on the initial conditions. This combined
with the special cases (i) and (ii) proves the Theorem by induction on
the dimension of X.

Let us therefore prove (4.4). The proof is similar to the latter part
of the proof of Theorem (2.19). In fact, if we choose a non-singular pro-
jective model X and we take as X a non-empty Zariski open set of X, then
we have a morphism f: X —Alb X. Since Alb X is birational invariant,
we have a morphism of group functors ¢:Bir X — Aut(AlbX) on the
category of C-schemes.

Let L be a field extension of K such that we have an L-rational point
F:D —BirX of Bir X defining a general solution of the system (3.11) of
Pfaffian differential equations (cf. §3). Note that the Lie algebra of the
group functor Bir X on the category of C-schemes is the C-vector space
Dero(C(X), C(X)) of the C-derivations. We consider the composite oo F': D
— Aut(Alb X). Since we may assume that there exists a point ¢, & D such
that F(t,) = Idy, ¢ o F(D) C Aut’(Alb X) = Alb X, where Aut’ denote the
component of 1 and Alb X acts on Alb X through the addition. ¢oF:D
— Aut® (Alb X) defines a vector field O(po F) on (Alb X)®.L as in §1 or
a system Pf(poF) of Pfaffian differential equations of rank dim Alb X on
D x Alb X with coefficients in L. It follows from the Proof of Proposition
(2.9) that O(po F) = ¢(O(F)) and the vector field O(po F) is defined over
the quotient field K of R. Hence the coefficients of the system Pf(po F)
of Pfaffian differential equations are in K. Therefore poF: D — Alb X is
a K,-rational point where K, = K({fopo F|f is a rational function on the
abelian variety Alb X}) and by the operation (Q) K, consists of known
functions.

Therefore we get a K, -rational point 4 :Spec K; — Alb X and this
point is the image of an L-rational point +, : Spec L — Bir X : 4, (Spec K,)
= o, (Spec L), where L is an extension of C of finite type. Since 4, is
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defined over a ring S of finite type over C, we get a morphism v : Spec S
— Bir X such that ¢o+, (the generic point of Spec S) = +, (Spec K)).

Spec S -5 Alb X

Spec K,

Therefore there exist a finite algebraic extension K, of K, and a K,-rational
point X: Spec K, — S such that we have a commutative diagram

Spec S 25 Alb X

X
Spec K, ——> Spec K,

where the second horizontal arrow is the morphism induced by the inclusion
K, C K,, We get finally K,-rational point Spec K, 2> Bir X such that
©op,0 X(Spec K;) = +, (Spec K,). It follows from Proposition (1.7) that we
get a K,-rational point F: D — Bim X (here we replace D by an appro-
priate subdomain if necessary) such that gooﬁ‘ = ¢o F. By the operation
(P2) the field K, also consists of known functions. Now for any e D,
FF-'(#) = F()F(t)-* ¢ Bir X respects the fibration ¢:X—>AlbX. Therefore
the system of Pfaffiian differential equations associated with FF-':D —
Bir X are defined over each fibre of ¢. Therefore a general solution of
the system Pf(FF’ -1 of Pfaffian differential equations associated with FF-
is a general solution of the system of Pfaffian differential equations over
a fibre Y of ¢. Therefore dim Y < dim X. Since the question is local, we
may take an irreducible component of Y. Now we show that the system
Pf(@(ﬁ‘"‘F)) of Pfaffian differential equations is defined over K, which
consists of known functions. In fact let f be a rational function on X
and let us put F-' = W.

O(WF)f(x) is equal to, by definition, Ihln(’)l f(WE (t+h)(Vi;lF)“(t)x)-—f () )

The latter is equal to
lim f(WiE + RF@E + RF@)W(@)x) — f(W(E + h)W(t)'x)
R0 h
4 fW@E + W@ 'x) — f(x)
h

— tm FVOFC £ DFQUWO™) = £0) ¢ gy 1
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It follows from the Proof of Lemma (2.12) that the first term

lim f(WROF@ + h)F(Z)“W(t)"‘x) —f® _ (@adW©® " HOF)(f)

is in K,. Therefore O(WF)f(x) is in K,. It follows from induction that
there exists an extension K, consisting of known functions such that
WF:D —Bir V is Ky rational. Since F = F(F-'F) = F(WF), the general
solution that we have chosen is F(WF)-orbit or K,-rational point. Namely
we can express it by using the permissible operations.

COROLLARY (4.6). Let R be a ring of holomorphic functions on a domain
Dand F(t;Y,, Y,, ---, Y,)eR[Y, Y, ---, Y,]. If the general solution of an
algebraic differential equation F(t; y(t), y'(t), - - -, y™(£))=0 depends rationally
on the initial condition, then the general solution is obtained by a finite
iteration of the permissible operations (0), (P1), (P2), - - -, (P5).

Proof. This is a consequence of Theorem (2.19), Proposition (3.16)
and Theorem (4.3).

Concluding remark (4.7). In §1 we introduced the operation . Let
F:D— G* be an analytic map of a domain D to an algebraic group G.
Then F defines 6F: D —Lie G. The operation @ is to recover F from the
derivative dF.

More generally let F': D —Bim X be a morphism of functors of a
domain D C C. We can consider as if Bim X = (Bir X)** (cf. Part I). We
can associate to F a rational vector field O(F) on X® K as in §1. We
can consider O(F) as a map O(F): D — Der(C(X), C(X)) = Lie(Bir X) (cf.
Proposition (2.6)). Theorem (4.3) says that when O(F) is given, we can
recover F by using the operation . We notice here that in general Bir X
is of infinite dimensional (see [U2]). In this formulation the irreducibility
theorem should take the following form: there exist a Lie pseudo-group
G of infinite dimension and a holomorphic map F: D — G such that we
can not reconstruct F from 9F: D — Lie G by using only the operation @.
This will be discussed in our future work.
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Footnote (1). As it is not clear that 2 is birational at 5 = (h(p), x)
for a general point x ¢ X, we give here a complete proof. The following
argument was suggested by Hiroshi Saito. We denote by ¢’: Z, - U X X
the restriction to Z, of the projection p,: UX XX X— U X X. The
diagram

’

ZU > gun
( i ) ! Q&

A
AE)( 3 VM X)an
hX 1, (o X

q
U X
is cartesian in the category of the analytic spaces. In particular there
exists the unique point & e & lying over 7:q(p) = & We show that q is
biregular in the algebraic sense at &:0,.x,, > 0,.. We denote by & the
unique point of Z, lying over 5/ = (p, x). The morphism g is proper and
dominant by Lemma (1.25). Since the question is local we may assume
that ¢ is finite and of degree 1 by Lemma (1.25) and by (3.17) Proposition
of [M]. We set 0, = O, x.,, Oo= 0y, O, = O x.,, O, =02, O,= 0Oy,
O,=0,. and let m; C0O, (1 =1,2) M, C 0, (j=1,2,3,4) be the maximal
ideals so that we have m,0, = m,. We have a commutative diagram
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™

1 € Oy «—

[

—>
SD—> D

-

SI—> D

S

D S < (4

of local morphisms of the local rings. Since of diagram (i) is cartesian
and ¢’ is isomorphic at &, 0,/i, =~ O,im, = 0,/M,0, = 0,/i,0, ~ O,/m,0,0, =
@,/m,0, Since @, is faithfully flat over @, we have m,@, N O, = 0,0,
Therefore we get a commutative diagram

ofm = ama,
k
O, /my, —> O;/m, 0, = O/m,0;N 0O, .
Hence ¢ induces an isomorphism
(i) 0/m, = O/m0,.

We denote by ¢ the morphism @, — @, induced by q. We have an exact
sequence of @,-modules

(i) 0->N—->O, -0, —->M-—0,

where N = Ker¢y, M = Coker ¢. Tensoring the exact sequence with
0,/m,0,, we get an exact sequence

0,/m, 0, — Oyf 1,0y — M[m,M — 0.

Hence M/m,M = 0 by (ii) and consequently M = 0 by Nakayama’s Lemma.
Now the exact sequence (iii) becomes

iv) 0 >N—->0, —>0,—-0.

Tensoring the exact sequence (iv) with the quotient field K, of @, (the
scheme 7 is irreducible and reduced), we get

0>-NQK, - K, -0,K,—0.

Since q is of degree 1, K, ~ 0, ® K, and N® K, = 0. Since 0, is a domain,
the submodule N C 0, should be 0 and ¢, = @, as required.
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