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CONGRUENCES OF ANKENY-ARTIN-CHOWLA TYPE
FOR PURE QUARTIC AND SECTIC FIELDS

MASATO KAMEI

§0. Introduction

Ankeny, Artin and Chowla [1] showed that there are congruences
between class numbers of real quadratic fields and generalized Bernoulli
numbers. Recently, Ito [3] has extended their results to the case of pure
cubic fields using generalized Hurwitz numbers of Lichtenbaum [4]. In
his paper, he suggested that similar results would be obtained for pure
quartic and sectic fields. In this paper, we carry out this by following
his idea. To give a congruence in an exact form, we need an idea due
to Matthews [5]. As the argument in the sectic case is quite parallel
to that in the quartic case, we shall discuss the former case briefly in
the last two sections.

We will explain our result in the quartic case more exactly. Let
K =QW-=1), L =Q(¥m), and F = Q(y/m), where m is a positive integer
prime to 6. For an arbitrary algebraic number field 7, we denote its
class number, ring of integers, group of units, regulator by A,, O Er,
R, respectively. Let 5 be an element of E, for which Ker [N,,,: E, — E]
= {+1, 7> holds. We may assume 7 >1, by replacing 5 by —z or
+1/y if necessary. Let 7, =7} or 7 according as |[E: (£l ¢, p)|=1
or 2. Here ¢ is the fundamental unit of F. Write 5. as 5, =s -t ¥m
uym + v {m’® with rational numbers s, ¢, v and v. Let M =L-K and p
the character of Gal(M/K) of order 4 defined by the quartic residue symbol

(-nl>. We denote the conductor of p by (f). Take a prime number z in
4

K which is prime to 2 and devides m exactly once, and let & = (¢ — 1)/4,
where ¢ = Nz = Ngjr. We may assume = = 1 mod (1 + i)°, by replacing
x by —r or =+irx if necessary. We decompose p into a product of char-
acters p;, p, so that the conductor of p, is (), and that of p. is (f/z). Let
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Giooer Garooyr be the generalized Hurwitz numbers defined in Lichtenbaum
[4]. In these notations, we can state our results as

THEOREM 1. Let ) be a prime of Q lying above (z). Then one has;
1) (hilhp)st = Gy, ,,,/§ mod O,
i) (h/hp)(Bsv — tu) = Gy, /6 mod L.

Here & is a quartic root of —m/r.

In the above theorem, there is left the ambiguity in the determina-
tion of & which arises from the gap between the local theory and the
global theory (cf. Remark 3). Generally, it seems difficult to determine &
explicitly. However, when m is a rational prime which remains prime
in K, we can determine it in Section 2 studying values of the Weierstrass
#-function. We shall give this result as Theorem 10. A few numerical
examples will be given.

§1. The quartic case

We use the notations introduced in Section 0. In this section, we
shall prove Theorem 1. Since the proof proceeds in the same way as in
Ito [3], sometimes the details will be omitted. Usually we follow the
notations in Ito [3].

Decompose m as m = ab’c®, where a, b, ¢ are square-free integers and
prime to each other. Then the conductor (f) of p is given as follows:

abc ifm=1 mod 8,
f = {2abc ifm=5 mod 8,
4abc if m=3,7 mod 8.

Let % be the character of Gal(L/F) of order 2. Then we have
L(s, p, M|K) = L(s, %, L|F)

and consequently

(1.1) L, p, M/IK) = L'(0, %, L/F).

A direct computation shows
L0, %, LIF) = (hy/he) log ..

On the other hand, L'(0, p, M/K) can be expressed by elliptic units in
the following way.
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For a non zero integer o of K, let K, be the maximal ray class
field modulo « of K, and Cl(«x) the ray class group of K modulo «. For
CeCl(f), let ¢,(C) denote the Ramachandra invariant (cf. Ramachandra
[6]). For a ey, let C, be the class of («) in Cl(f). We choose 7 ey
which satisfies p(C;) = —1. Then we have

(0, p, M/K) = 6if 1og | Noe, uh (C)/6,(C)]

(1.2) .

= 1 O)- (O +p3(ENY
TG }

Now we take the f-th power root of L/(0, p, M/K) by Robert’s unit
(cf. Robert [7]). Let E be the elliptic curve given by »* = 4x* — 4x and
let % be the period lattice associated with the differential form dx/y on
E. Then & = Q2 with some 2eR, (R, ={acR|a>0}). For aecDy,
we introduce the elliptic function for # defined by

He @) = U@ T (2@ — 2@

where #(z) is the Weierstrass Z-function for .#, 4(4) is the delta-function
for the lattice 4 in C, Na = Ny, and the product [[’ is extended to
all over «'Z|¥Z except the class of #. Choose a finite index set J and
B; €Ok, m;e Z (jeJ) which satisfy the following conditions:

Ni—1+4 3 m(Ng, — 1) =0,
o(Cs) =1, and (B, 6f) = 1.

We can take such set and numbers (cf. Robert [7]). For ¢ = Qff, define
7 by the equation

N = ¢(T9 T) H ¢(T’ ABJ')mj :
Jjed
It is known that 7 is a unit in K, and satisfies

NKf/MUf = NKf/M¢f(Cr)/¢f(Cl) .

Hence we have
L0, p, MIK) = - log 7.

So we get the next relation as an exponential form of (1.1):

(1.3) néQhL/hF — NKf/JIm?/ .
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Here, 7 is the complex conjugate of 7, which satisfies
7=¢@,7) I ¢z, B)™.
Jjed

Let us recall the definition of generalized Hurwitz numbers. Decom-
pose 7 in such a way as ¢ =1, + 7, mod .#, where r, is a r-division point
of & and 7, is a f/z-division point of #. For an integer k2 and a char-
acter X == p, or p;', let Gy,.,. be the generalized Hurwitz number as in
Lichtenbaum [4]. We denote it by Gy,,, and the conductor of X (= fx)
by f;- Then we can prove the next assertions.

ProPOSITION 2. i) Gy, Gippr € K,

1) Gi,pl ¥/Myy Grppr] ¥my* € K(W'2), where m, = m/x.

iii) If m is a rational prime p such that p = 3mod 4, then G,,,/vV 2,
Gk,,,z—l/ﬁ € Q

Proof. Only iii) is the essentially new situation compared with Ito
[3]. In this case, we have f = 4p, 7 = —p (Recall that = = 1 mod (1 + i)*),
fi=—4, = —(1/9)2mod &, and p, = p;'. As p, is a non trivial even
character, we know
l -1 Z'(2) _ s G k-1
5 i Y7 50— Fae) 2, G2

(a,f2) =1

(cf. Lichtenbaum [4]). Calculation of the values of py(z), Z(ar;) (x-coor-
dinate of a 4-division point of y* = 4x® — 4x) gives the next formula:
1 1

_’; Gy, 2" = 2/ 2 P/(2) P 1 — 2 + P L1 2

’ 1 - 1
(resp. 2¢/ 2 7(2) (@) —1)F — 2 (P + 17" —2 )

if p = 3mod 8 (resp. p = 7Tmod 8). Thus iii) holds.

Let us recall the definition of Kummer’s logarithmic derivatives.
Let S/R be a totally ramified extension of p-adic fields. Choose a prime
element 4 of S. Let O, O be the ring of p-adic integers and myg, mg
the valuation ideals respectively. For uel 4 mg we can take f,(T)e
Or[[T]] which satisfies f,(4) = u. Then for k, 1 < k < #(Orp/mz) — 1, the
k-th Kummer’s logarithmic derivative ¢, = ¢, ,: 1 + mg— Og/m, is defined
as
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o(u) = (the coefficient of T in Ta% log f,(T) mod mR>.

We extend this to S* in the usual way.

Now we will calculate ¢.(;). To carry out this, we embed @ into
C,, the completion of the algebraic closure of @, For aeOy, let K(E,)
be the field generated by the coordinates of w-division points of E over
K. We know that K(E,) is a cyclic extension of degree ¢ — 1 (g = Nn)
with the conductor (z(1 + i)’). Note that (x) totally ramifies in K(E,),
and is unramified in K(E,).

Choose a prime ideal & of K(E,) over (z) and embed K(E,) into C,,
so that & is contained in the valuation ideal of C,. Put q = QN K(E,),
B =QNK(E,), p = QNK = (x), and denote the completions of K, K(E,),
K(E,,, K(E,) in C, through this embedding by K,, K;, K,, K,, and let O,
Oy, O,, Oy be the rings of p-adic integers, m,, my, m, m, the valuation
idelas of those fields respectively.

Now consider the following three formal groups over O,: G,, the
formal additive group, £ the formal group of kernel of reduction mod p,
& the basic Lubin-Tate group. These three formal groups are isomorphic
over K, to each other. We denote these isomorphisms by

s: G,—E $(z2) = —2%(2)|P?'(2) == z + (higher terms),
w: E—¢& w(t) = t + (higher terms).

Especially, w is an isomorphism over O, Put 1= —2%(r,)/%#'(z,) and
A = w(2). Then they satisfy the equations [r]3(1) = 0 and [z](4) = 0. So
A and / are prime elements of Ky, and satisfy the equation 1 = 4 mod mj.
From now on, using this 4 and taking K. /K, or Ky/K, as S/R, we define
Kummer’s logarithmic derivatives ¢, as ¢, ,: K¥ —O,/m,, or its restriction
ér,a0 Ki — 9O, /m,. (Note that /A is also a prime element of Kg.)

Remark 3. Once we fix the embedding K(E;) —C,, 2 can be seen as
an element of C,, and so the corresponding /A can be determined uniquely
as an element of C,. But if we think 4 merely as an element of @
which satisfies 4! + 7 = 0, we can not determine which root we have
to take. In fact, determining the root is equivalent to choosing the prime
ideal of K(E,, y,-;, "'/ —x) lying above Q. This is the reason why the
ambiguity of theorem 1 appears. We shall consider this problem for a
special case in the next section.
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Take uc1 + my and choose f,(7) e Q,[[T]] which satisfies f,(4) = u.

Let g.(2) = f,(wos(2)) € K [[2]] be the pull back of f,(T) by the isomor-
phisms s, w. Then we have

ProprositioN 4 (Coates-Wiles [2]).

$(w) = the coefficient of 2" in zdi log g.(2) mod m,
z
for 1<k<qg-—2

The Kummer’s logarithmic derivatives ¢, , are easier to calculate
than ¢, but elliptic units are “expressed” by 2. This proposition fills
this gap.

We will calculate ¢.(y) by considering 7 as an element of K;. What
we have to do is to choose f,(T') € O,[[T]] which satisfies f,(4) = 5, and to
take logarithmic derivatives of g,(2) = f(w°s(2)). As p=¢(z, ) [] ¢(z, )™,
it is sufficient to calculate ¢,(¢(z, 6)) for each de{r}U{B,;|jeJ}. Now
#(z, 0) = 0%A(L) " [1hes-10s0 (P(2) — P(B))°, so we might expect that
#(z + 15, ) is a formal power series which is a pull back by s of some
[s0(t), a power series expanding ¢(z, ) by 2. The next proposition shows
that this is actually true if f, = L.

ProposITION 5. Assume f, + 1. Let e {11U{B,}, 1 € (Ox/fpiOx)*. Then
the following assertions hold.
1) ¢(r, + pr, 0) € OF.
i) @z + pe, 3) € K,JI21).
iii) Define h(t) € K [[t]] by h(s(2)) = ¢(z + prs, 9), then h(t) € O,[[t]].
iv) AQ) = ¢(z; + pry, 0).

Proof. We prove iii) and iv). For the proof of i) and ii), see Ito [3].
Put

Fw) = 34 1 (= = 2 + (2700 ) — o(9)

e K(x,y).

We get é(z, + pr,, 6) = F(P(z), #'(r,)) as an element of K,. Now 1=
—2%P(1))[#'(r)) is a prime element of Ky, and it is easily shown that
P(zy) = P(s' )]sy P'(7) = Z'(s7'(D))|,~, are elements of K. Here P(s (1))
= a@®)[t}, P (s'(})) = —2a(t)/t* for some a(f) el + tZ[[f]]. So, considering
h(t) = F(#(s~'(t)), #(s"'(t))) as a power series of ¢, we get
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hs(2) = ¢(z + pm,, ),
h(2) = ¢(z; + pr, 9).
This is iv).

Next we want to show iii). As (3, n) = (fi, ©) = 1, §, P(ucy), 7' (uz),
#(B) are units of K,. Thus we see F(Z(s7'(t)), #Z'(s7'(t))) e t*QO,[[¢]]. On
the other hand, we have ¢(z + pr., d) € K [[z]], so A(f) has no terms of
negative power of {£. This is iii).

Remark 6. In the above arguments, we regard ¢(z + um, §) as an
element of K [[z]], which need not converge in C.

Due to Proposition 5, we obtain the next proposition.
ProposiTION 7. Let X = p, or p;'. Then

T Ue ¢z, + pr, 6)) = 12(NG — 6"%(0))Gy,, mod Q.

#€ (BK/f2)*

With these data, we can take Kummer’s logarithmic derivatives of
Ny, 7 following the manner of Ito [3]. The result in this case is as
follows.

THEOREM 8. The following assertions hold.
1) ¢ue(Ng, 7)) = —3Gh,,,, mod Q.
1) ore Vi, my) = —303,60,,,51 mod L.
i)  ¢u(Ng,u)) = 0mod Q, for k + k, 3k, 1 <k <q — 2.

Now take a prime ideal Q' of K’ = K(E,, pt,.,, ‘¥ —x) lying above
&, and consider 4 as an element of K’ as we have referred in Remark
3. Let & = ¥m/A*, so & is a quartic root of —m, and is contained in
K’. Considering K’ to be a subfield of K,, we can take Kummer’s
logarithmic derivatives of 7, by using the function

FilT) = s + t8T* 4 ugT* 4 vg'T™.

Taking Kummer’s logarithmic derivatives of each side of (1.3), we get
the desired congruences in Theorem 1.

§2. Determination of & mod £’ in special cases

Theorem 1 involves a quartic root and we did not determine it (or
rather its value modulo L) exactly. In case that m is a prime number
p which is congruent to 3 modulo 4 and = = —p, we can determine it.
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The method we use is to combine 2 and 4 in K’ through the values of
Z-function (associated to 29;) at division points.

2

By the definition, ¢ = p*. We can easily show that

o -
11 @(—-.Q) =77,
a€ (Lg/m)* w

and
I @/(ﬁ.c)) — (—Bd) TP

a€ (Rg/x)x b
So we get

ofen)

n - - = _pllen
we@x/mx  gf & 1+ 0!
=0
7(39)

(Note that this is a real negative number.)

We introduce a forth-set according to Matthews [5]. A representative
set of (Og/r)*[p (e = {£1, £1}) in (Ok/r)* is called a forth-set. If S is
a forth-set, (Og/7)* is decomposed into four disjoint subsets S, —S, iS,

—1iS. Define
o - 1 (-2r(29)/(29))

As H(iz) = — 2(2) and P/(iz) = i7'(2), G(3S) = (_ﬁ_) G(S) for all 8 e (Dxlr) .
/4
Therefore
G(S) = Y=pIBT = Yp2e e

for some ¢ € p,. Define a(S) € (O/n)* as a(S) = [[ses B Then G(S) depends
only on «(S). In fact, if we consider a(S) as an element of K’ through
the natural map (Og/n)* — OF, then G(S)/a(S) is defined as an element
of K’ independently of S.

Now we make a special choise of S, and determine G(S) and «(S).
Let S,={eeN|1<aeZ(p—-1D)2}, S,=1i8, S, ={e+bicO2=5a
(p —1)/2, 0<b<a}and S. = S, (complex conjugate). Then S = S, US,
US, US_ (disjoint union) is a forth-set. Put 7, = (1/p)2. We know that
PE) = P(2), P'(Z) = #(2), and that —2P(ar)/P(at) e R, if ae S, and
—2P(aty) [P (ary) e LR, if € S,. So we get

G(S) = ¢fp-vr 4/;/2(11—!%.
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Next we have to determine «S). Let F, be the finite field with [
elements. The norm map N: FY—FX is a surjection, and N~-(x) con-
sists of (p + 1) elements for any xeFX. As N(u) = {1}, the restriction
of N to S is also a surjection, and each fibre of it consists of (p + 1)/4
elements.

If p=3mod8, N(e¢+ ai) =2¢" is not contained in (F;)’, and so
N; S;US,—Fy is a bijection. Thus we obtain

Ma=( I ao(]] Na)={(=D*>51 4+ )* " mod =.
a€S e S+

aeS1US2

If p="Tmod8, N(a + ai) = 24° is contained in (F)). So if xe (F)),
N-'(x)'S, consists of (p — 7)/8 elements, and if not, (p 4 1)/8 elements.
Thus we obtain

Ma=C [T ([ Na)= (=D + > mod =,

a€sS a€S1US2 a

Now we want to relate 49"V to G(S) and «S). We have defined
2, Ae K as 2 = —2P(r)[P(r), A a root of T? !+ x =0 which satisfies
A= Amod & Observing the action of Gal (K’/K), we see

2.1) —2P(vr)] P (vr,) = &, A mod O,

for all ve (Dg/x)*, where &, ep,., ¢, =vmodL/. By the definition, we
know that 7 = —p hence f = 4p, 4r, = r;mod . Multiplying (2.1) for
all v in S, we obtain

G(—47'8) = a(S) A0/ mod L/a-bri+t,

As (i) - (i) =1, G(—4-'8) = G(S). After all, we get
4 4

T w
PROPOSITION 9.
g= ¥p A9 = ¥ pa(S)G(S) mod T/
—+/220-9 mod L, if p=38,7mod 16,
v/ 2209/ mod L, if P=11,15mod 16.

By this proposition, we can rewrite Theorem 1 in this case in the
following exact form.

TueorEM 10. Let L = Q( ¥ p), where p is a rational prime and p =
3mod 4. Put k, = (p* — 1)/4. Then
1) (hylhp)st = 2094G, [V 2 X e mod p,
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where e =1 if p=3,15mod 16, and ¢ = —1 if p = 7,11 mod 16.
i) (Ao /hp)(Bsv — tu) = 27 V4G, [V 2 X e mod p,
where e =1 if p=11,15mo0d 16, and ¢ = —1 if p = 3, 7mod 186.

ExampLE 11. Let p=7, L=Q(¥7), F= Q7). Then we have

m=13+8¥T +5yT + 34T hy=43+26¥7T + 167 +10¥7*, hy
=1, h, = 2. So in this case, (A /hz)st = 3mod 7 and (h./h;)(3sv — tu) =
5mod 7. On the other hand, we have

Gy =2 X 11232/25 = v/ 2 mod 7,
Gisoo = ¥ 2 X 1447788874210204192/127679296875 = 44/ 2 mod 7.

So we see

20 VAG, V2 X (—1) = 3mod 7,
20VAG, V2 X (—1) = 5mod 7.

This gives a numerical example of Theorem 10.

§3. The sectic case

Let a, b, ¢, d, e be square free integers such that a #+ 1 and ¢, b, ¢, d,

e, 6 are prime to each other. Let m = ab’c’d‘¢’. For m, put L = Q( ¥/m),
F=Q(¥m), N=@Q(m), K= Q) (vw=¢""), M=K-L. Let p be the
character or Gal(M/K) corresponding to the sectic residue symbol (zn_)
[

through the Artin map. Then we have
L(s, p, MIK) = C1(8)Co(s)/Cx(8)Cx(S)
and consequently we have
L', o, MIK) = (ho/hyhp)(R./RyRy).

It is easy to see that h;/hyh, is an integer.

Let ey, ¢ be the fundamental units of N, F respectively, and 7, a
generator of Ker[N.,y: E, — E,JNKer[N,,-: E,—~E;]. We may assume
m > 1. Then E, = {(+£1, ey, e, n» is of finite index in E, and the index
devides 6. A simple calculation shows

RL/R,\'RF = (6/[EL: Eo]) log i
so we have

(3.1) L0, p, M/K) = (h.[hyhr)6/E.: E]) log .
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We will express L/(0, p, M/K) by elliptic units as in the quartic case.
In this case, we use the elliptic curve y* = 4x° — 1, instead of y* = 4x°
— 4x, and we use the same notations for the corresponding object. For
example, E is the elliptic curve y* = 4x° — 1, ¥ the associated lattice,
#,(C) the Ramachandra invariant with C a ideal class modulo (f).

Let (f) be the conductor of p, and let 7_,, 7,, 7_, be elements of O,

prime to 6 which satisfy o(C,_ ) = —1, p(C;) = o, p(C;_,) = —w. Then
we have
(3.2) L0, p, MIK) = LNy, $(C8,(Cr )

6f 17 g (Cr_ ) (C)

Take a finite index set J, 8,€ O, and m;e Z (jeJ) which satisfy the
following conditions:

(Nr, — 1)+ N7y, —1) —(Nr_, — 1) + ZJ} m(NB;, —1) =0,
o(Cs) =1,  (8,6f)=1.
Let - = Q/f (ReR,, 20, = &) and define 7 by
7= ¢z, T(z, T_)g(e, T_) [T 6 g)™ .
Then 7 is a unit in K, and satisfies

N oY = N, ,$14C)8,(C)
7/ (77) 713 ¢f(C,,_w)¢f(Cl)

Combining this with (3.1) and (3.2), we obtain
(3.3) Ny ,yulop) = pfeca/nx i /L Bod)

Take a prime factor = of @ in K. We assume that z = ((z)), where
is the grossencharacter associated to E. We consider K(E,), K(E,),
K(E,), K to be subfields of C, so that r is contained in the valuation
ideal, and denote the completions of those fields by K,, K, K;, K, res-
pectively. We also define Q, O, iy and so on as in the quartic case.
Take the prime element /4 of K, such that

A= —n, A= -—222 mod mig,
and define ¢, as ¢, = ¢, ,: K5 —O,/m, Here 7, is a z-division point of

& defined from z as in Section 1. Calculating Kummer’s logarithmic
derivatives of each sides of (3.3), we obtain the next theorem.
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THEOREM 12. Let ky = (Nz — 1)/6 and Q' be the prime ideal of K’
= K(E;, Cyeer, (—a)/¥=Y) lying above . Embed K’ into K. so that
£/ Cmy, and consider A as an element of K. Letn, =s+t{ym 4+ uym
+vym + w¥m* + x Ym® with s, t,u,v,w,xc Q. Then we have;

) (hi/hyhp)6[[E.: E)t = G,,,,,/§ mod L,

1)  (hplhyhy)6/[E.: E)(Bx — tw) = GS,CD‘,,Z?-I/E5 mod £,
where & is the sectic root of —m|r defined by the equation {/m = &A™, p,
the flx-part of p, and Gy, = Gy y.., X = p, or p;') the generalized Hurwitz
number.

§4. Determination of £ mod £’ in the sectic case

Let #(z) be the Weierstrass function associated to E: y* = 4x° — 1.
Take a rational prime number p such that p = —1mod9, p = 1 mod 4,
and consider the case when m = p and = = p. Then we have

[1" (e =a*,

/7
a mod =

and
[N 2(a/n)2) = —27W==Dlig=3,

« mod n

Let S (C(Dg/n)*) be a sixth-set, and define G(S), «(S) by the following
equation:

G(S) = T[] (—22((a/m)D) 7" («/r)2)),

a€S

«(S) =] «.

a€S

Then it holds G(S)® = p (16/27)" -V, Now consider «(S) to be an element
of K’ through the canonical map (Og/r)* — K%. As elements of K/, we
see the next relation between 4 and G(S):

A= = G(S)[a(S) mod QT

To determine G(S)/a(S), we choose the sixth-set S = S, US,US,US_ as
follows:

S, ={zeO,NR, |0 <|z| <=2},
S, = {2 DxNiR, |0 <|z| <+ 3x/2},
S, = {ze0x|0 <argz <*“z”/6, Re z <r/2},
Here “n” = 8.14... = the usual number n. We use this
(number only here. 7 in other places mean the factor of a.)
S_ = S, (complex conjugate).
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Observing the argument of #(z), #'(2) for each z¢ S, we see that G(S)
is a negative real number if p = 1mod 8, and is a positive real number
if p = 5mod8. Thus we have

G(S) = p"(16/27)"=-V7 x ¢,

where e = —1 if p=1mod8, and ¢ =1 if p=5mod8. On the other
hand, counting the number of elements of each fibre of the norm map
N: S, —>F%, we see afS)=3"""modr. After all we see that &=
1mod £’ in this case, and the theorem can be refined into the following
exact form.

THEOREM 13. Let L =Q( ¥ p), where p= —1mod 9 and p = 1 mod 4.
Then we have;

1) (hp/hyhe)6/[E,: Et = G(p‘l—l)/s mod p,

i1)  (hy/hyhe)6/[E,: E])(Ex — tw) = Gs(pz—x)/s mod p.

ExampLE 14. Let L = Q( ¥17). In this case we have;
ey =4 + V17,
er = 324 + 126 V17 + 49 ¥V1T*,

7= T1/3 + 14 Y17 + (22/3) ¥1T + 4v17 + (8/3) ¥V1T* + 2 V17,
h,=hy=hy,=1, [E,: E]=68.

So the left hand side of Theorem 13, i) is 14. On the other hand,
G = 939/10469809348083296575 X 47 = 14 mod 17 .

This gives a numerical example of Theorem 13, i).
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