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TOWARD THE CONSTRUCTION OF
BIG COHEN-MACAULAY MODULES

YUJI YOSHINO

§0. Introduction

What we call the homological conjectures on commutative Noetherian
local rings were first collected and partially settled by C. Peskine and L.
Szpiro [PS,]. The subsequent remarkable progress was made by M. Hochster
[H]] who conjectured the existence of big Cohen-Macaulay modules and
solved it in the affirmative for equicharacteristic local rings. It is, however,
still open in general setting.

If every local ring has a big Cohen-Macaulay module, then all the
homological conjectures will be automatically proved as argued in [H,].
This makes us feel that it should be big Cohen-Macaulay modules that we
must preferentially consider. It would be also desirable to build a charac-
teristic free way to the homological conjectures. In fact, though there
exist various other papers concerning the homological conjectures such as
[H,], [Hy], [H], [H], [F], [, [PS.], [R], [R.], [Y] etc., one finds that most
of their argument heavily depend on the characteristic of local rings.

The main purpose of the present paper is to provide several new tools
for the conjecture which seem to meet our demands. Principal results are
stated in Theorem (3.6) and Theorem (3.11). Roughly speaking Theorem (3.6)
reduces the existence problem of big Cohen-Macaulay modules to a problem
for Artinian local rings, and Theorem (3.11) shows that if big Cohen-
Macaulay modules always exist, then there are “universal” ones in some
sense.

The idea of the proof of Theorem (3.6) is the following: Let (R, m)
be a local ring and let {q;|i € N} be a descending sequence of m-primary
ideals such that R = lim R/q,. Assume that M, is given as an R/q,-module
for each i e IN. If each M, is “good enough”, and if they form an inverse
system of R-modules, then lim M, will be a “good enough” R-module again,
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which might be possibly Cohen-Macaulay. However it often happens that
M; has no relation with M, if i = j. In this case how can one construct
an R-module which may be reasonably considered as a limit of the M,?
If such construction of limit is always possible, then the existence of “good”
modules over R/q, (I e N) will automatically imply the existence of cor-
responding “good” ones over R including big Cohen-Macaulay modules.

In Section 1 we develope the method of constructing limit of modules
which enables us to realize the above idea. We refer to such a limit as
a separated ultraproduct because of its resemblance to ultraproduct. Main
fact concerning it is the Exactness Theorem (1.18). It will make it possible
to compute various examples of separated ultraproducts.

Section 2 is mainly concerned with the problem for Artinian local rings
which corresponds, by the reduction in the above idea, to the existence
problem of big Cohen-Macaulay modules for local rings of high dimension.
An important role will be played by those algebras which the author names
rich algebras and poor algebras. The reader should pay attention to the
existence of generic poor algebras (2.10), where he will notice that the au-
thor was much inspired by the method of Hochster’s in [H,].

Section 1 and Section 2 can be read independently.

In Section 3 we prove the main theorems (3.6) and (3.11), whose proofs
are the core of this paper.

Although he could not settle the existence problem of big Cohen-
Macaulay modules, the author believes that the raison d’étre of this paper
lies in providing several new concepts and methods in the theory of com-
mutative algebras.

§1. Separated ultraproducts

We first recall some fundamental concepts about ultrafilters.

Let N be an infinite set of indices, which is in many cases the set of
natural numbers N. A filter on N is a nonempty family § of subsets of
N satisfying (1) ¢e @, (1) if A, Be® then ANBe§ and (iil) if AeF and
ACBCN then Be$. A filter § on N is principal if there is an ae N
such that §={B|a € BC N}, otherwise it is called nonprincipal. The Fréchet
filter on N is a filter consisting of cofinite subsets of N, i.e. {A|N — A is finite}.

An ultrafilter § on N is a filter on N which is maximal with respect
to inclusion in the class of all filters on N. It is clear from Zorn’s lemma
that for any filter & there exists an ultrafilter on NV which contains §. It is
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also easy to see the following lemmas.
(1.1) For a filter § on N, the following conditions are equivalent.
(1) $ is an ultrafilter.
(ii) AeF implies N—A €.
i) IfyUr, A, e for A, CN (i=1,2,---,n), then one of the A, is
an element of .
(1.2) For an ultrafilter § on N, the following conditions are equi-
valent.
(i) @ is nonprincipal.
(ii) § contains the Fréchet filter on N.
(1i1) No finite subset of N belongs to .
In particular there always exists a nonprincipal ultrafilter on N.
An ultrafilter § on N is said to be w-incomplete if there are A, e §
(i € IN) such that My 4: 2 F.
(1.3) For an ultrafilter ¥ the following are equivalent.
(i) § is w-incomplete.
(i1) There is a countable set {B, e §|i € N} such that B,,,CB, (i ¢ N)
and (Nen B; = ¢.
(ili) There is a mapping f:N— I such that {ie N|f(})) =j}eg for
any j e N.
By this lemma we easily see the following.
(1.4) An w-incomplete ultrafilter § on N is always nonprincipal. If
N is a countable set, then the converse is also true.
A usual argument using Zorn’s lemma leads us to the following.
(1.5) If A is an infinite subset of N, then there is an w-incomplete
ultrafilter § such that A € §. In particular there always exists an w-in-
complete ultrafilter on N.
In the rest of this paper we always assume that § is an w-incomplete
(hence nonprincipal) ultrafilter on N.
For the simplicity of notation, we make the following
(1.6) DEerFINITION. Let {P(i)|i € N} be a family of propositions indexed
by N. We say that P(i) holds for almost all ;e N with respect to §¥
(abbreviation; P(i) for a.a. i e N) if {i e N|P(i) is true} € §. Note that if
P(i) holds for a.a. i ¢ N then P(i) actually holds for infinitely many i e V.
(See (1.1) and (1.2).) However the converse is not true in general.
Let {R;|i € N} be a set of local rings indexed by N and let m, be the
maximal ideal of R, for each i ¢ N. In this section we shall be concerned
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exclusively with the separated ultraproducts of modules over R, which is
defined by the following

(1.7) DerINITION. Let M, be an R,-module for each ie N. Then we
set

ﬁ M;:=T] M/~

iEN 1EN
where ~ is the relation defined as follows: (@,);cx~(b).cx if and only
if, for any integer n, a,—b, e m} M, for a.a. ie N. [[;ex M, is called the
separated ultraproduct of the M,. We denote by (a,);zx the class of (a,);cx
in [Jiex M.

Note that if all R, are fields, then this notion coincides with the usual
ultraproduct of vector spaces.

(1.8) Remark. (i) It is easy to see that R: = ]ﬁ[ie » R; forms a ring
by putting (a)iey + (b)ier = (@; + b)ien and (@)ien(b)icn = (ajbi):eN' Note
that (0);.y (resp. (1);zy) is a null element (resp. a unity) of R. Also note
that R is a quasi-local ring with the maximal ideal m: = {(a)ien]a; e m,
for a.a. ie N}. In fact if (a,);cy ¢ @ then @, ¢ m; for a.a. i ¢ N by (1.1) and
hence there exist b, € R, (i € N) such that a,b, = 1 for such i. This shows
that (a);ex(b)ier = Wjen in R. This proves that # is the unique maximal
ideal of R. Remark that R/ = [[%,(R,/m,) where [[%, stands for the
usual ultraproduct of fields.

(ii) M: = [Jieny M, is an R-module by defining the R-action as follows;
(@)ien(®)ien = (@x)iey for @, e R, and x, € M, (ie N). If f, is an R;-module
homomorphism of M, to M, for all i e N, then we naturally obtain the
R-module homomorphism 7: [J;cx M; — [Jien M, by setting f((x)iex) =
(fi(x)ien-

@iil) If x; is an element of M, for a.a. i € N (not necessarily for all
ieN), then we can give the element (x,);.y of [[i.cx M; without any
ambiguity.

(iv) [liex M, is trivial if and only if m,M, = M, for a.a. i e N.

(v) Let (R}, m)) — (R, m,;) be a local homomorphism for each ie N.
Assume that there is an integer n such that m?Cm/R,; for a.a. te N. Then
by definition the separated ultraproduct of the M, as R;-modules coincides
with the one as Rj-modules.

(1.9) DerinNiTION. A family of local rings {R;|i € N} is said to be good
if there exists an integer n such that the maximal ideal m,; is generated
by at most n elements in R, for a.a. ie N.
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In most cases we restrict ourselves to consider a good family of local
rings. A reasonable ground to do so lies in the following

(1.10) Lemma. Let {R;|i c N} be a good family of local rings and let M,
be an R,-module for each i ¢ N. For an integer j, if x, e mi{M, for a.a. i e N,
then it holds that (x,)ey € M’ M.

In fact since {R,} is good, there is an integer n such that m/ is generated
by n elements, say m] = (a,(1), a,(2) - - -, a(n)R,, for a.a. ic N. Then x,
= > Ry k) (y(BeM,k=1,2 ---,n) for aa. ie N. Thus by defi-
nition one sees that (x)icy = 23%-1(a:(R)icn(y:i(R))icw € ) M.

Note that this is not true unless {R;} is good. For instance let N =
N and R, = M, = K[[x,, x,, - - -, x;]] a formal power series ring over a field
K for all ie N where char(K) 2. If we take elements y,: = x? + x2 +
.+« + x2e R, (i eN), then obviously y, e m? for all i e N, however we can
see that (y);ewgm:. In fact if (y)7y €™ then there would be finite
elements (2,(R);en, WiR)ien in @ (B=1,2,---,7) such that (y)in =
> (Z(R))zen(wi(B))iex, hence it holds that y, = >3;_; z,(R)w,(k) mod m? for
a.a.ie€N. In particular this equality would hold for some i > 2r, then

2x,, = 3y,[0x;, € (2/1), 242), - - -, 2/r), w(1), W(2), - - -, w(r))

in R, for k=1,2,.---,1, therefore (x,, x,, - - -, x,)R; = (2:1), 2(2), - - -, 2(r),
w,(1), w,(2), - - -, w(r)R, for char(K) # 2. This contradicts i > 2r.
The following proposition is essentially due to [BDLD; § 1 (iii)].

(1.11) PropositioN. If {R;|ie N} is a good family of local rings and
if M, is an R,-module for i e N, then M: = ﬁie ~ M, is complete and sepa-
rated with respect to the fi-adic topology.

Proof. We first prove the separatedness of M. Take any (x)7ey in
ﬂ;‘;ltﬁ"l\l For any integer n, (x,)7zy may be written in the form

3 @iy (i)iex
where
(@(Niew e @, (ier € M, j =12, -+,
Then by definition one sees that

Xy — Zl a(7)y.(J) € miM,
i=
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for a.a.ie N, hence x;, e miM, for a.a.ie N. This shows that (x,);.y =0
in M.

Next we prove the completeness of M. Let {x(j) = (x,(j))x ~lJ € N} be
a sequence in M satisfying x(j + 1) — x(j) e m'M for any j e N. We would
like to show the existence of z e M which satisfies (*) z — x(j) e WM for
any jeN. By (1.3) we have a mapping f: N— N such that, for any j ¢
N, f@) =j for a.a.i e N. On the other hand it follows by definition that
there are A, e (kelN) such that =x,(k) — x,(j)e miM, for ic A, and
1 <j<k, where we may choose A, = N. Define a mapping g:N —
NU{eo} by g(i): = sup{ke N|i_,A,;5i}. Note that ie A, for all j < g(i)
and that, for any jeIN, g(i) = j for a.a.i e N. Hence if we denote h(}):=
inf{f (i), g@®)} for i e N, then A is a mapping of N to N and it satisfies that
i€ A,y and that, for any je N, h(}) = j for a.a. i e N. Now set z, = x,(h())
and z = (2,);.y € M. We prove that this z satisfies (*). Let j be an arbitrary
positive integer. Then by the above there exists B, € § such thatie A,
and h(i) =>j if i e B,. Thisimplies that z, — x,(j) e m{M, for i € B,, whence
by (1.10) we see that z — x(j) e ' M.

(1.12) ProposrTioN. If {R;|i € N} is a good family of local rings, then
R = [lien R, is a complete Noetherian local ring. Moreover if there is an
integer r such that emb(R,) = r for a.a.ie N, then emb(R) = r.

Proof. Since R is a complete and separated quasi-local ring by (1.11),
in order to prove that R is Noetherian it is sufficient to show the finite-
ness of emb(R). (See [Ma; (28. P) Corollary 1].) Since {R,} is a good family,
there is an integer r such that m, is generated by r elements for a.a.ie V.
Denote m; = (x,(1), x,2), - - -, x,(r))R; for those ie N and x(k) = (x,(k));n
(k=1,2,--.,r). It is easy to see that fit is actually generated by x(1),
x(2), - - -, x(r).

Conversely assume that fit is generated by r elements, i.e. M = (x(1),
x(2), - - -, x(r))R where x(k) = (x,(k));zy, £ = 1,2, - - -, 7. Let I, be an ideal of
R, generated by x,(1), x,(2), - - -, x,(r). We prove that m;, = I, for a.a.i € N,
hence that m, is generated by r elements for a.a.i € N. Suppose that this
is not true. Then by (1.1) I, 4+ m? = m, for a.a.i e N and thus we can find
elements y, e m;, — (I; + m?) for those i € N. It obviously follows that (y,);ex
¢ (x(1), x(2), - - -, x(r))R = 11, and hence y, ¢ m, for a.a.ie N. This contra-
diction proves the proposition.

Note that the example after (1.10) shows that Propositions (1.11) and
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(1.12) fail unless {R,} is good.

Next we consider the dimension of R. For this, denote A(R):=
inf{n € N|m" is contained in a parameter ideal of R} for a local ring (R, m).
The following result is proved by C. Mattescu and D. Popescu.

(1.13) ProposrTioN. ([MP; (2.7)]). Let {R,} be a good family of local
rings. Assume that

(1) there is an integer d such that dim(R,) = d for a.a.ie N,

(i1) there is an integer h such that h(R,) < h for a.a.ie N.
Then dim(R) = d.

Proof. Let A = {ieN|dim(R,) =d, h(R) < h}e. For any ic A we
may choose a system of parameters x,(1), x,(2), - - -, x,(d) for R, satisfying
mrC(x,(1), x,2), - - -, x(d))R;. Denote x(k) = (x,(B)ex(k = 1,2, -..,d). Then
by definition it follows that m*C(x(1), x(2), ..., 2(d)R, and this proves
dim(R) < d. Next assume that m"C(z(1), 2(2), - - -, 2()R for some n and
telN and z(k) = (z;(B));ew (B=1,2,---,1). It is sufficient to show that
t > d. By definition it holds that m}C(z,(1), 2,2), - - -, 2,(O)R; + m;*! for
a.a. i € N, hence for these i ¢ N, m?C(2,(1), 2,2), - - -, 2,())R,. Since dim(R,)
= d for a.a.ie N, we obtain that ¢t = d. This completes the proof.

(1.14) Comorrary. If {R;} is a good family of regular local rings
satisfying dim(R,) = d for a.a.i€ N, then R = [Tiex BR: is also a regular
local ring of dimension d.

Proof. Since R, is a regular local ring for each ie N, one has the
equality dim(R,) = emb(R;) = d for a.a.ie N. Then it is obtained from
(1.12) and (1.13) that dim(R) = emb(R) = d.

In many cases the dimension of ﬁie ~ R; 1s much different from each
dim(R)).

(1.15) LeEmMA. Let (R, m) be a local ring and {I,|i e N} be a family
of ideals of R indexed by N and denote R, = R/I, (i€ N). Assume that for
any neN, I,cm? for a.a.i>N. Then [],.y R, is isomorphic to [];cy R.

Proof. Define a mapping f: ﬁ iexB— ﬁieNRi by f((x.)7ex) =(x; mod I)7c v
This is obviously surjective. Assume that f((x,)7z») = 0. Then it follows
by definition that for any ne N x;, eI, + m? for a.a. i€ N. Hence by the
assumption x, € m? for a.a.ie N. This shows (x);zy = 0.

(1.16) CoroLLARY. Let (R, m) be a local ring and let N = IN. Then
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(@) [liex R/ = [Jien R, and (i) [Tien R = [Jiex R = [Ticx R* where R (resp.
R™) denotes the completion (resp. henselization) of R.

Proof. (i) is immediate from (1.15). (ii) is the direct consequence of
(i) and the fact; R/m*= R/m'R = R*/m‘R" for any ic I,

This result (1.16) (i) will be generalized in (1.19).

Next we would like to prove an exactness criterion concerning sepa-
rated ultraproducts. For this purpose we need some additional notation.

(1.17) DerFiNITION. Let (R, m) be a local ring and let NC M be R-
modules. Then we denote ap(N, M) = inf{re Njm"MNN = m*"(m"MNN)
for all » >r} and refer to it as the Artin-Rees number of NC M.

The following theorem is one of the main results of this section, and
is quite useful in computing separated ultraproducts.

(1.18) TaroreMm (Exactness Theorem). Let {R,|i € N} be a good family
of local rings indexed by N and let

0 > M > M, > M/ —>0
fa 9:

be an exact sequence of R,-modules for ie N. Assume that there is an
integer r such that ap(f(M}),(M))<r for a.a.ic N. Then one gets the
exact sequence of [,y Ri-modules;
0—> [ M,—> [] M,— [] M} —>0.
€N 7 ien 7 jew

Proof. Recall that f ((xD7ew) = (flx))iex and g((x)ien) = (8:(x))iey for
(Diew € [Tiew Mi, (x)7en € [lsex M,. Thus it is obvious that gf=0and g
is surjective. We prove the injectivity of f. Assume that f((x));zy) =0
for (x));ey € [liew M. Then it follows by definition that, for any integer
n, it holds that f(x}) e m:M, for a.a.ieN. Hence if n>r then f(x)) e
wiM N (M) = w7 (i M, N f(MD)) i~ f(M7) = fu(mi~"M) for those ie N.
Since f, is injective, it follows that x; e m?~"M/ for a.a.ie N. Hence we
have (x));zy = 0. This proves the injectivity of f.

Next we prove that Ker(g) Cf([Jsew M}). For this, assume that
8((x)ex) = 0 ((x)7ew € [Tien M)). Then we have that, for any integer n,
g(x,) e m*M/ for a.a. i e N. This means that x, e m?M, + f,(M?) for a.a. i ¢ N.
Thus for any integer n, we can find elements y,(n)ecf(M)) for a.a.ie N
such that x, — y,(n) e m?M, for those ic N. Note that this implies that
x)rey — i(M)iey € T” [Jiew M; by (1.10). Also note that, for m >n>r,
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ym) — y,(n) e miM, N f(M)Cmf(M)) for a.a.ie N. Thus if we denote
y(n) = (y{(n));er then {y(n)|n e N} forms a Cauchy sequence in f([T;c M.
Note that f(ﬁie ~ M}) is a complete module by (1.11) and by the injectivity
of f. Thus there is an element z of f([];cx M/) to which y(n) converges.
Therefore, for any integer m, there is an integer n satisfying z — (x,)5ay =
(z — y(n) — (x)7ew — y(M) e M"[[,cx M,. Since [[,cxM, is a separated
module by (1.11), it follows that (x)iy = 2z € f([Ticx M).

Remark that the Exactness Theorem (1.18) fails without the condition
of the uniform finiteness of Artin-Rees numbers. See Example (1.25).
The following generalizes (1.6).

(1.19) CororrarY. If {R;|ie N} is a good family of local rings, then
ﬂieA’Ri = ﬁieNRi = ﬁieNR?-

Proof. We only prove the first isomorphism. Note that a(R;, R) =0.
Hence by the Exactness Theorem (1.18) we have the following exact sequ-
ence:

7 ZA?Z—> ﬁ Iéi/Ri—>0

0—> ﬁ R, —>
€ ieN

icN i€

=3

Remark that ]:],.e th’i in this sequence is not a separated ultraproduct
of 1%2 as Ri-modules but as R,-modules. However the both ones coincide
with each other in this case since mlﬁi =1, for all ie N. Thus it is
sufficient to show that [J. NRi/Ri = 0. This is, however, obvious from the
fact that, for any x; ¢ I%Z and for any integer n, x,¢ R, + m?ﬁi.

As a consequence of (1.19) we get the following example which gene-
ralizes [BDLD; Lemma (3.4) and Lemma (3.5)].

(1.20) Exampre. Let K, be local rings with maximal ideal m, and
R, =K[X, X, -, Xn](mi,Xl,Xg,---,X'n) (or R, =KJ[[X, X, ---,X,]]) for ieN.
Then we have

1R =KIX, X, -, X,]]
1EN

where K denotes ﬂie + K.

Proof. By virtue of (1.19) we may assume that R, = K,[[X,, X, - - -, X,]]
where K, (i e N) are all complete local rings. Define a mapping f: [Jicv R
- K[[X, X, ---,X,]1 by the following: For (P X)ien € [Ticy R: where
Pi(@z Zme N7 az(m)?_f” (a(m) e K,), we set f((pi(?_()):eN 1= ime N"(ai(m)):eN‘_X_m'
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Note that f gives a well defined ring homomorphism.

For any element ¢(X) = X ncxn(afm)icxX™ ¢ RIXIL p :=(Znem alm)
-X™ien € [lien R: satisfies that f(p) = g(X), hence f is surjective.

To prove the injectivity of f assume that f((p(X));cx) =0 for p(X)
= Y menn@(m)X™ e R,. Then by definition (a,(m));cy = 0 for any me N~
hence for any integer k it holds that a,(m)e m? for |m| < k and for a.a.
ieN. This implies that p(X)e (m,;, X,, X, - - -, X,)* for those ie N, hence
(PX))iey = 0.

(1.21) NoraTioN. Let R be a local ring. We call [J,cy R the sepa-
rated ultrapower of R on N and denote it by R" (or simply R if it causes
no confusion). In the same way the separated ultrapower of R-module M
on N is defined as [];ey M and is denoted by MY (or M).

Note that there is a natural ring homomorphism of R to R by placing
an element of R in a diagonal line, i.e. x — (x)7x-

(1.22) ProposiTiION. Let R be a local ring. Assume that R = S/1
where S is a regular local ring and I is an ideal of S. (Note that it is
always possible to describe R in this manner by Cohen’s theorem.) Then it
holds that R = S/IS.

Here we should notice that S is also'a regular local ring by (1.14).

Proof. By virtue of (1.19) we may assume that R = S/I. In the exact
sequence; 0 - I — S— R — 0, it is trivial that a4(I, S) is constant for i € V.
Hence by the Exactness Theorem (1.18) we have an equality B = S/I. It
remains to prove that I = IS. Note that I is the ideal of S consisting of
those elements (a,);y € S such that a,e1 for all ie N. Thus it is obvious
that IS c I. Assume that (x,)7y e I. If I is generated by f(1), (), - - -, f(k)
then each x, can be written as 3.7, a,(j)f(j) for some a,j)eS. Hence
)iy = 23 (@(N)iea(F(D)iew € IS, which proves IS O 1.

(1.23) CororrLaRY. Let R be a local ring such that R has a coefficient
field K. Then there is an isomorphism of rings;

R=R®K
where K is the separated ultrapower of K and &, denotes the complete

tensor product over K.

Proof. By the assumption it can be written that R = K X, X, ---,
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X, J1/I for some integer n and some ideal I of K[[X,, X,, ---, X,]]. Then by
(1.22) and (1.20) we see that

}:é E [[le XZy Y Xn]]N/IK[[XU XZ) MY Xn]]~
K[[X, X, oo XIK(X, X, - - -, X,]]
R

h

e m

This corollary shows that R is a faithfully flat R-module under the
assumption that R contains a field. We next prove this fact in general.

(1.24) TueorREM. If R is a local ring, then R is a faithfully flat R-
algebra.

Proof. Notice that if 0 = M’ - M — M” — 0 is an exact sequence of
finitely generated R-modules, then 0 — M’ — M — M” —0 is an exact
sequence of R-modules. In fact since M is finitely generated it follows
by Artin-Rees lemma that a(M’, M) is finite, hence the Exactness Theorem
(1.18) gives the exactness of the sequence; 0 — M’ — M — M” — 0. This
shows that the operation ~ is an exact additive functor from the category
of finitely generated R-modules to the category of R-modules. Since it
trivially holds that M=MQ » R for a finitely generated free R-module M,
the usual argument on functors shows that there is a natural isomorphism
M= M®,R for any finitely generated R-module M. This concludes that
R is flat over R.

We close this section by giving an example.

(1.25) ExamprLE. Let R, = K[[X, Y]I/(X*® 4+ Y?) for i ¢ N where K, are
fields. Then we have

1 R = RIX, YI(XY)

where K denotes Hle »K,. To prove this fact we set S, = K[[X, Y]],
S = ]_]“5]N S, = K[[X Y]] and I, = (X* + Y?)S,. It is easily observed that
as,(I;, S;) =2 for all i e IN. Hence it follows by the Exactness Theorem (1. 18)
that [],cn R; = S/I where I is generated by a single element (X* + Y., €
Since, for any nelN, Yiem? for aa.ie N, we know that (Y9)x, =
Hence I is generated by X?e S.

This example shows that the Exactness Theorem (1.18) fails when there
is no bound on Artin-Rees numbers. For instance consider an exact
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sequence;

0— R, X\Ri > R,/ XR, —> 0

for all e N. In this case the following sequence is not exact:

0—> [1 R, >ﬂRi > [] R/XR,—> 0.
X  iew ieN

tEN

Note that a,(XR,,R;) =i — 1 for all ie N.

§2. Rich algebras and poor algebras over Artinian local rings

In this section we mainly concentrate our attention on the following

(2.1) ProBLEM. Let T be a Noetherian ring and let R be a T-algebra.
Under what condition does there exist a non-trivial R-module which is
injective as a T-module? (To simplify the notation we shall call such a
module a T-injective R-module. Note that under this name we only con-
sider non-trivial ones.)

The problem is reduced to the case that T is an Artinian local ring
by the following

(2.2) LemMA. Let T and R be as above. Then the following conditions
are equivalent.

(1) There exists a T-injective R-module.

(i1) There is a minimal prime ideal p of T such that there exists a

T,-injective R,-module.

Before proceeding to the proof we note the following fact: Let A be
a local ring with maximal ideal m and let E be the injective envelope of
A/m over A. For an A-module M, M is a flat (resp. injective, non-trivial)
A-module if and only if Hom (M, E) is an injective (resp. flat, non-trivial)
A-module.

Proof of (2.2). (i1) = (i). If M is a T,-injective R,-module, then M itself
is an R-module and is an injective T-module.

(1) = (ii). Assume that M is a T-injective R-module. Let g be a
prime ideal of T such that q has the minimum height among Ass,(M).
Since M is T-injective, we see that M, is a direct sum of copies of
E;((T|q),) as T, module. (See [M].) Denote N: = Hom,(M,, E;(T]g),).
Then it is easily verified that N is a direct product of copies of (T))",
hence is flat over T,. If we take a minimal prime ideal p of T contained in
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g, then we see that N, is a non-trivial T,-flat R, -module. It follows from
the above remark that Hom,(N,, E,((T/p),)) is a T,injective R,-module.

(2.3) Remark. By the fact remarked before the above proof one sees
that if T is a local ring, then there is a T-injective R-module if and only
if there is a T-flat R-module.

By virtue of (2.2) we may restrict ourselves to consider the case that
T is an Artinian local ring. Thus in the rest of this section T always
denotes an Artinian local ring with maximal ideal m and k = T/m. We
make the following definition in this case.

(2.4) DeriNiTION. We say that a T-algebra R is a rich T-algebra if
there is a T-injective R-module, otherwise we call it a poor T-algebra.
We exhibit some formal results in the following.

(2.5) LemmA. (a) Consider the following commutative diagram of rings;

T —R

|

T'— K =T ®, R

where T and T’ are Artinian local rings.

(a-1) If R is a rich T-algebra, then R’ is a rich T’-algebra.

(a-2) If T’ is flat over T, then the converse of (a-1) is also valid.

(b) Consider ring homomorphisms T — R — S.

(b-1) If S is a rich T-algebra, then R is also a rich T-algebra.

(b-2) Assume that R is also an Artinian local ring. 1If S is a rich R-algebra
and if R is a rich T-algebra, then S is a rich T-algebra.

Proof. (a-1) Let M be a T-injective R-module. Setting
M’ = Hom(T", M),

we see that M’ is an R’-module by the action; ((r ®)f)(¥) = rf(tt’) for
r@teRF =RQT', t'eT’ and fe M'. It is well known that M’ is an
injective module as a 7T’-module. Since T is Artinian local and M is
injective, we have M’ s 0.

(a-2) If R’ is a rich T’-algebra, then by (2.2) there is a T'-flat R’-module
M’. Since T” is a flat T-algebra, M’ is also flat over 7. Hence by (2.2)
we see that R is a rich T-algebra.

(b-1) Trivial.
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(b-2) Let M be an R-injective S-module and let N be a T-flat R-module.
If we denote L = Hom.(N, M), then L is obviously an S-module by the
action; (rf)(n) = r(f(n)) for re S, neN and fe L. Note that there is an
isomorphism of functors; Hom,( ,L) = Homy( ®,N, M) and hence this
is an exact functor. This shows that L is an injective module as a 7-
module.

We next give some information about ring theoretic properties of rich
alegbras.

(2.6) ProposiTioN. (i) If a ring homomorphism T — R has a ring
retraction, then R is a rich T-algebra.

(ii) If R is a flat T-algebra, then R is a rich T-algebra.

(i) If R is a rich T-algebra, then T is a direct summand of R as a
T-module. In particular, the natural ring homomorphism T — R is pure.

Proof. (i) is clear from the fact that, in this case, every T-module
is naturally an R-module.

(i1) is immediate from (2.3).

(ii1) Let M be a T-injective R-module. We know by [M] that M is a
direct sum of copies of E where E denotes the injective envelope of %k as
a T-module. In particular there is an embedding E — M as a T-module.
Taking the dual of it we have a map;

f:Hom,(M, E) - Hom(E, E) = T.
(See [M] for the last equality.) Since f is surjective, there is an element
x of Hom,(M, E) such that f(x) = 1. We define an R-module homomorphism
g:R—Hom,(M, E) by sending 1 to x and define h: =f.g. It is easily
seen that A is a T-module homomorphism of R to T satisfying A(1) = 1.
This proves (iii).

In general the converse of this proposition fails.

(2.7) ExampLE. (i) Let %k be a field and let T = k[[x, w]]/(x* w*) and
R = E[[x, 5, 2z, w]]/[(«*, W', xw — yz, 8z — ¥°, yw® — 2%, x2® — y'w) where T is
naturally a subring of R. One can show that T'— R has no ring retraction
and R is not flat over 7. However we will see later that R is indeed a
rich T-algebra. This will be immediate from Theorem (3.6).

(i) Let V be a discrete valuation ring with a prime element ¢ and
let T = V/t*V and R = T[X]/(tX, X* 4+ t). One can easily verify that T is
naturally a subring of R. Since T is a Gorenstein ring of dimension 0, T
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is a direct summand of R as a T-module. It will be proved in (2.11) that
R is a poor T-algebra.

One of the purposes of this section is to construct the generic poor
algebras. We first give a concrete description of those algebras, and after-
ward we will verify that they satisfy the necessary properties to be generic.

(2.8) DerFintTiON OF u,(T). Let (T, m, k) be an Artinian local ring as
above. Denote a minimal free resolution of & as a T-module by the follow-
ing;

e T > T'¢ >T —>k—>0
x

A = [a,)] x =

Xq

where A is a d’ X d-matrix whose components are in T and x, € m. Notice
that both d and d’ are uniquely determined by 7. We prepare a number
of variables over 7. For any integer n and j (1 <j < n), consider the
following matrices;

[yiP- -y 0 0 -

Y, =|: = d X oco-matrix,
Y@y 0 0 -
Er

Z,, = = d’ X d-matrix, and
L2 - - 2]

W, =[w®, -, wP] =1 X d-matrix,

where all y{?, 2{3” and w{™ are indeterminates over 7. We also denote

e yw o x 0 -
(Y, x)=| - = d X co-matrix,
YR ym xg 0 e

and E=[1,0,0, ---] =1 X co-matrix. Under these notation we define the
T-algebra u,(T) for an integer [ as follows:

u(T’). _— T[Ylv Y27 ) YLsZni(lénél_—l'léién)» W1~ WQ‘ "'yWI]
L T n [ N
(4%, 4¥.. - 5 2,(¥, 91 S n <l =D, E— WY, )
=1 =

where T[Y,, Y,,---,Y,Z,1<n<l-1,1Zj<n), W, W,, ---, W] denotes
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the polynomial ring over T with the variables which appear in those
matrices Y, Y, -+, Y, Z,, (1< n<l—-1,1<j<n) and W, W,, ---, W,
and the ideal described in the denominator expresses the ideal generated
by the elements which appear in those matrices AY,, - - -, ete.

It can be easily verified that there is a natural isomorphism;
u(DY, Z,,, 1 <j <1 = 1), WiulT) = u, (1),
hence there is a sequence of surjective T-algebra maps;
i U (T — u;, (T) —>- - - —> u(T) —> u(T) .

(2.9) Remark. The T-algebra u,(T) does not depend on the choice of
minimal free resolution of 2 In fact if

T 3 T —T—>k—0
/]

is another minimal free resolution, then it is observed that there are
invertible matrices C and D which satisfy AC = DB and Cy = x. Then by
the change of variables; Y, —~ C'Y,, Z,,— D'Z,,C, W, — W,C, we easily
see that both T-algebras constructed from (4, x) and (B, y) are isomorphic
to each other.

One of the main results of this section is the following

(2.10) TueoreM (Existence of generic poor algebras). A T-algebra R

is a poor T-algebra if and only if it contains a specialization of u,(T) as a
T-algebra for some integer l.

Before proceeding to the proof of this theorem we give some examples.
(2.11) ExampLE. (i) Under the notation as in (2.8),

u(T) = T[Y,, W,J[(AY,, E — W(Y,, x))

where
y, 0 0-.-..
v=|i
and W, = [w,, w,, ---, w,]. Since A contains the Koszul relation of x, it

holds that x,y, = x;,y, 1 <i,j < d) in u(T). Therefore x;, = x; 2 {_, w,y;
=>4 wx,y, =0 in u(T). Thus we conclude that
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ul(T) = u,(T)/mu,(T) = k[yb Yos ot 0y Nas Wy, Wy, - -+, WL — Zyzwz) .

(i) Let V be a discrete valuation ring with a prime element ¢ and
let T = V/t*V. In this case

""——)T'_t*_)T t’T k rO

gives a minimal free resolution of k. (i.e. 4 = (f) and x = ¢ in (2.8).) Hence

we have
u(T) = kly, wl/1 — yw) = kly, 571,
u‘z(T) = T[Yh Yz, Zlu VVD VVZ]/(tYu th - Zu(Yn t),
E - WI(YI’ t) - W7Z(Y2, t)) )
and
ua(D = T[Yl’ Yz’ Ya’ Z,, Zy, Loy, W, W2, Wa]/I
where I is generated by tY,, tY, — Z,(Y,, t), tY, — Z,,(Y,, 1) — Z,(Y,, ) and

E — W(Y,t) — WY, t) — WYy, ).
If we denote R = T[X]/(tX, X* + ¢) as in (2.7), then we see that R is
obtained from u,(T) by the following specialization;

Yl'_—)(— X,0,0, )’ YZ"—)(lyoyoy )7 YaF—*-)(0,0,X,O, )
Z, L’_"’(Xv), Z,, —>(0), Z, —>(0),
Wll—)(o)a WZ'_')(l)a W3+—->(X)‘

Hence Theorem (2.10) asserts that R is a poor T-algebra. (See (2.7).)

Roughly speaking, the proof of Theorem (2.10) is done in the following
course: First we construct a universal R-module which is possibly T-
injective if it is non-trivial. One can see that this construction is the
same one as in the proof of the existence of injective envelopes in [CE;
Theorem (3.3)]. Next we verify that the constructed module is non-trivial
if and only if R contains a specialization of some u,(T). The reader will
notice that, on the whole, our method is similar to the one used in [H,;
§ 41.

For this purpose we begin with the following

(2.12) DerFiNiTION. Let (T, m, k) be an Artinian local ring as above
and let R be a T-algebra. For an R-module L and a T-homomorphism f
of m to L, we define
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L® = L® RIY (f(2), DR

zE€m

and call L® the first modification of L with respect to f. Note that L® is
an R-module and there is a natural R-homomorphism of L to L®. In
general, we may have a sequence

L > LM L® > L™

in which L%V is the first modification of L with respect to some f, e
Hom,(m, L®). Then we say that L is an (r-th) modification of L. Denote
by IM(R) the set of all the modifications of R. We can prove that IN(R)
forms an inductive system of R-modules by those natural homomorphisms.
In fact to prove this it suffices to see the following: If L® and L{" are
the first modifications of L with respect to f and g respectively, then there
is a modification L’ of L which is also a modification of both L{ and L{"
such that the diagram of natural mappings;

is commutative. For this it is sufficient to put
L' =L®R®R/Z (f(2),2 0 + (8(2),0, )R .
zZEm

Thus we may define the inductive limit of elements in J(R):

MR|T): = lim L.

Note that M(R/T) is an R-module and there is a natural R-homomorphism
of R to M(R/T).

(2.13) Lemma. Exti(k, M(R/T)) = 0.

Proof. We have to prove that any T-homomorphism f:m — M(R/T)
extends to a T-homomorphism g: T'— M(R/T). Since m is finitely generated,
there is an [-th modification L of R for some integer [ and a 7-homomor-
phism f,: m — L such that the following is commutative

MR
,f/* (B[T)

m natural map
fr > L
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Let L™ be the first modification of L with respect to f,. Then define a
T-homomorphism h: T — L® = L@ R/3 ... (f.(2), 2)R by h(x): = the image
of (0, —x)eLA®R in LY for x ¢ T. We easily see that the diagram;

T —> L™

U T natural map

m—> L
fr

is commutative. If g denotes the map of T to M(R/T) induced by h, then
it is obvious that g|, = f as desired.

(2.14) Cororrary. If M(R/T) + 0, then M(R|T) is a T-injective R-
module. In particular R is a rich T-algebra in this case.

Proof. It is sufficient to notice the following fact: For any T-module
M it is T-injective if and only if Extl(k, T) = 0. (Since T is Artinian, see
[B; § 2]).

(2.15) ProprosiTioN. For a T-algebra R the following conditions are
equivalent.

(1) R is a rich T-algebra.

(ii) M(R/T) + 0.

(ii1) For any modification L of R and a natural map r: R — L, it holds
that r(1) + 0.

Proof. (ii1) = (ii). Trivial.
(i1) = (1) was done in (2.14).
(i) = (ii1). Let M be a T-injective R-module and let

ri r rs

R-5 Rv 2, Ro RY — ... pa-n Tt poy

be a sequence of first modifications such that L = R, It suffices to prove
the following

CrLamM. For any R-homomorphism g: R — M there is an R-homomor-
phism A,: L — M which makes the following diagram commutative.

) > R® 1y —
R —>R® —> R — RO =L

v W

We prove this claim by induction on I. So assume that we already
have an R-homomorphism h,_,: R%""Y — M such that the diagram;
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> RY 5> R® ...y RU-D
R n R T2 ri-1 'R/

g hi-y
M

is commutative. We have only to prove the existence of an R-homomor-
phism A,: R — M which makes the diagram;

R4S s R commutative.

hz-\ X;'A/hl

Now assume that R is the first modification of R‘“~" with respect
to fe Homy(m, R*™Y), ie. R® = R'""® R/>,c.(f(2),2)R. Since M is a
T-injective module, h,_,-f extends to a T-homomorphism A': T— M. We
define the R-homomorphism H: R*">@® R— M by H(y, r) = h,_(y) — rh'/(1).
Then it is observed that H(f(2),2) = 0 for any zem, and H(y, 0) = h,_,(y)
for any y e R“~Y, This shows that H induces the R-homomorphism 4,: R
— M and the following diagram is commutative:

R¢-H 5 pw
h"l\*i;‘; h

This completes the proof of the proposition.

(2.16) DEFINITION AND COROLLARY, Let R be a T-algebra and let I be
an integer. R is said to be an l-poor T-algebra if there is an l-th modifi-
cation f,: R — R of R such that f,(1) = 0. It trivially holds that

{1-poor T-algebras} C {2-poor T-algebras} C- - -
C {l-poor T-algebras} C {(I + 1)-poor T-algebras} C - ..

and by (2.15) we see that
{poor T-algebras} = C) {l-poor T-algebras} .
=1
By virtue of (2.16), in order to prove Theorem (2.10), it suffices to show
the following

(2.17) ProPOSITION. R is an l-poor T-algebra if and only if R contains
a specialization of u,(T).

For the proof of this proposition we need a lemma which is almost
trivial.
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(2.18) LemMA. Assume that a minimal free resolution of k is given in
the following;

T > T >T k 0.
X,
A=1[ay] x=

X4

Then, for a T-module L, giving a T-homomorphism of m to L is equivalent
to giving a sequence (¥, ¥, - -+, y.) € L* satisfying 3% ,a,;y; = 0.

Proof. It is trivial by putting vy, =f(x;) (=12,.--,d) for fe
Hom ,(m, L).

Proof of Proposition (2.17). For an R-module L we know by (2.18) that
any first modification L™ of L is described as follows;

L® = L® R/Y] (v, x)R

2
where y,e L (i = 1,2, ---,d)such that 4| - | =0 in L. Thus if R — R® —

Ve
R® —...— RY% is an [-th modification of R, then R is given in the form;

RN, s - 90, 2,0, -, 011 =<d1<j< 1 - 1R

i i)
where for any j (1 <j </ — 1) each row of the matrix 4-| - is
W 9
an R-linear combination of
{(yg)’yg)’ ot ',y§’1§),- Xy Oa c ',0))1 _S_ k é] - 1’ 1 g S é d}'

Moreover the condition that 1 goes to 0 under the natural map of R to R®®
is equivalent to that the vector (1,0,0, ---,0) with [ components is an
R-linear combination of

{(y;pa ég)a "'1y§§'>’xi’09 ,0)]1 élédy 1 é] é l _1}

Putting together these informations we verify that R is an l-poor T-algebra
if and only if R contains a solution of the following system of equations;
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AYn+l = i an(Yj’ x) (n = 0, 1) Y l— 1)
=
15
E = Z Wi(Yi7 x) ’
=

where the notation is the same as in (2.8). This establishes (2.17), hence
Theorem (2.10).

We may expect by Theorem (2.10) that the peculiarity of the structure
of poor algebras comes from the property of generic ones. For instance
we can prove the following proposition.

(2.19) ProrosITION. Let R be a l-poor T-algebra. If I is an ideal of
R which annihilates Tor?(k, R), then I' = 0. In particular, m'R = 0.

Proof. By the assumption there is a T-algebra map of u,(T) to R.
We denote the images of Y,, Z;;, W, in R by the same letters Y,, Z,,, W..
Assume that a minimal free resolution of % is given as in (2.8). Since
I-Tor((k, R) = 0, it can be easily seen that > % ,¢cx; =0 (¢;e R, 1 <i<d)
implies I(c;, ¢, ---,¢;) € R¥-A. Leta,a, ---,a, bein I. We want to prove
a,a; - -+ a; = 0. For this, looking at the (I 4+ 1)-th column of the equation

(*) E= 2 W(Y, 9,

we see that W,x = 0 (i.e. D ¢, wPx, = 0). Then it follows from the above
remark that a,W, ¢ R? is an R-linear combination of rows of 4. Combining
this with the equation A(Y, x)=>'1Z, ,(Y,,x), one obtains that
aW(Y,, x) = >y V(Y,, x) for some V,e R* (1 <j<1—1). Hence by (*)

we get
-1
(**) a,E = jZ:l Wi(Y;, x)

where W/, = a,W,; + V,(1 £j <1 —1). Looking at the I-th column of (**),
we have W/_x = 0. The same argument as above shows that

1-2
(***) a,0,E = Z W;’I(Yj’ x)
=1

for some W/ eR* (1 <j <1 —2). Iterating this, we arrive in the end at
a,a,---a,E=0. Hence a,a,---a, =0 in R.

§3. Big Cohen-Macaulay modules

Let T be a (Noetherian, not necessarily Artinian in this section) local
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ring with maximal ideal m and let R be a T-algebra. We make the
following definition.

(3.1) DEerFINITION. R is said to be a very rich T-algebra if, for any
m-primary ideal q of 7, R/qR is a rich T/q-algebra.

(8.2) Remark. (i) If T is Artinian, then R is a very rich T-algebra
if and only if it is rich. This can be easily verified from (2.5) (a-1).

(i1) Let {q;/i € N} be a set of m-primary ideals of T such that q, D q,
DgD--- and N qif’ = 0. Then a T-algebra R is a very rich T-algebra
if and only if R/q,R is a rich T/q,-algebra for each ie IN.

Proof. By definition “only if”” part is trivial. To prove “if” part, let
q be an arbitrary m-primary ideal of 7. By [N; Theorem (30.1)] one can
find an integer i such that q contains q,. Then R/qR = R/g; ®r,,, T/q is a
rich T/q-algebra by (2.5) (a-1).

The following is the direct consequence of (2.5).

(3.3) LemmaA. (a) Consider the diagram of rings;
T —R

T"— R =T ®:R,

where T and T’ are local rings with maximal ideals m and m’ respectively,
such that mT’ is a (proper) m’-primary ideal.

(a-1) If R is a very rich T-algebra, then R’ is a very rich T’-algebra.

(a-2) If T is flat over T, then the converse of (a-1) is also true.

(b) Consider ring homomorphisms T — R — S.

(b-1) If S is a very rich T-algebra, then R is also a very rich T-algebra.

(b-2) Assume that R is also a local ring with maximal ideal n such
that mR is a (proper) n-primary ideal. If S is a very rich R-algebra and
if R is a very rich T-algebra, then S is a very rich T-algebra.

We can also generalize Proposition (2.6) into the following form.

(3.4) ProrosiTION. (i) If a ring homomorphism T— R has a ring
retraction, then R is a very rich T-algebra.

(ii) If R is a flat T-algebra, then R is a very rich T-algebra.

(1i) If R is a very rich T-algebra which is finitely generated as a T-
module, then T is a direct summand of R as a T-module. In particular,
the natural homomorphism T — R is pure.
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Proof. (i) and (ii) are clear from (2.6) (i) (ii) respectively. To prove
(iii) we first remark that we may assume that T is a complete local ring.
For this, note that T is a direct summand of R if and only if the com-
pletion T of T is a direct summand of 7®, R by [H,; Lemma 1]. On the
other hand, it is easily observed by the assumption that 7®, R is a very
rich T-algebra. Thus one can assume that 7 is complete. Then Northcott-
Rees theorem ([NR; Theorem 6] or [Y,; Theorem]) assures that there is a
suquence {q;|i € N} of irreducible m-primary ideals which is cofinal with
the power of m. Since T/q, is a direct summand of R/q;R for ie N by
(2.6) (iii), [H,; Remark 2] shows that T is a direct summand of R.

Before proceeding to the next, we recall some notation: Let R be a
local ring with maximal ideal n and let M be a (not necessarily finitely
generated) R-module. For a system of parameters x = {x,, x,, - - -, x,} for
R, M is called a big Cohen-Macaulay module with respect to x if

(%4, %y -y x)M: 2, (R = (%, Xy, - - Sx)M (0L <d-1)

and nM + M. M is a balanced big Cohen-Macaulay module over R if it
is a big Cohen-Macaulay module with respect to any system of para-
meters for R.

Considerable progress on the existence of big Cohen-Macaulay modules
was made by M. Hochster in [H;]. He actually proved that there exists
a big Cohen-Macaulay module with respect to a given system of parameters
for an equicharacteristic local ring. However the existence problem of such
modules is still open in general. On the other hand, J.R. Strooker and
J. Bartijn was able to prove that if R has a big Cohen-Macaulay module
with respect to some system of parameters, then R has a balanced one.
More precisely the following is proved.

(3.5) [S; (13.1.8)]. If Mis a big Cohen-Macaulay module with respect
to some system of parameters for R, then its n-adic completion M is always
a balanced big Cohen-Macaulay module over R. In particular, any big
Cohen-Macaulay module which is complete in n-adic topology is balanced.

One of our main results in this paper is the following

(3.6) TuEOREM. Let (T, m)— (R,n) be a local homomorphism of local
rings where T is a regular local ring and R is a finite T-module such that
dim(7T) = dim(R) = d. Then the following conditions are equivalent.

(i) R is a very rich T-algebra.
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(i1) There exists a balanced big Cohen-Macaulay module over R.

Proof. We first prove (ii) = (i). Let M be an R-module which is a
balanced big Cohen-Macaulay module, and let x = {x, x,, -- -, x,} be a
regular system of parameters of 7. Set

T, =T/(xt, x5, -- -, x0T, R, = R/(x}, x5, - -, xR,

M, = M|(x3, x3, - - -, x)M
and m, = m7T, for any integer n. It is sufficient from (3.2) (ii) to prove
that M, is an T,-injective R,-module. For this we prove that every T,-
homomorphism m, — M, can be extended to a T,-homomorphism T, — M,.
(This will imply that Ext} (k, M,) =0 where k = T/m, hence M, is T,-
injective.) Note that, for n >3, the minimal free resolution of %k as a
T,-module is given by the following;

ey Tercdd >»T¢—> T, —>k—>0
xpt X,
x5t
X,
: n—1 :
_____________________________ Ya X,
L K
where K is the Koszul relation of {x,, x,, - - -, x,}, i.e. K consists of d(d —1)/2
rows which are in the form
(07 ""O’xi’o’ Ty —xj)O’ )O) (1§j<i§d)'

Hence by Lemma (2.18) one sees that giving a T ,-homomorphism of m, to
M, is equivalent to giving an element (y,, y,, - - -, y,) of M? which satisfies
xy; = x5, 1 #J) and x7"y, =0 (1 < i < d). Thus it suffices to show the
following.

B.7 If (¥, ¥ -,y € M; satisfies x,y;, = x;y, (I #J) and x}"y, =0
(1 <i £d), then there exists ye M, such that y, = x;y 1 <7 < d).

For any j (j = 1,2, - -+, d) we prove a more general assertion.

(3.7.j) Assume that (y,, y,, - - -, ¥.) € M? satisfies the same condition as
in (3.7). Then for any sequence of j integers {ij, iy, ---,i,} 1 i, <i, <
-+« <i; < d), there exists an element 2(i,, i,, - - -, ;) of M, such that y, =
Xy 20y gy -+, 1) for ke {iy, iy -+, 1}

If (3.7.d) is true, then y = 2(1, 2, - - -, d) will satisfy (3.7).

We prove (3.7.j) by the induction on j. Since a sequence of any power
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of x, x,, - - -, x, forms a regular sequence on M in any order, and since
xr-y, =0 in M,, it follows that y,e x,M, for i = 1,2, -.-,d. Thus there
is a 2,e€ M, such that y, = x,2, foreachi = 1,2, --.,d. This proves (3.7.1).

Assume that (3.7. j — 1) is true. Take {i,, iy, - - -, ;} such that 1 <i, <4,
<..-<1i;<d. By the induction hypothesis there are 2(i,, ,, - - -, i,_,) and
2(y, + -+, 0;_01;) in M, satisfying

x5, % (2@, 0y v v, L) — 2@, - 0, 1) = XiYijo1 — Xijo Yy =0
and
%0 (2, By -+, 8520) — 20, -+, 05.5,0) =0
fl1skgj—2

Combining this with the fact that M is a balanced big Cohen-Macaulay
module over R, we get

.. . . . . J=2
2y By vy 05m0) — 2y, o5 1y 1) €[00 2y, ]y, N D} [0: 2],
= (a3, x5 )M, N ﬂ xi M,
(xn lxn 1, ., ‘x?j_ll’ x;zl lxg 1, lnl lgxn I)M

Hence there are z’ and 2"/ in M, such that

z(iu Iy, - lj 1) + (x" lxn L. z, 1)2
= z(lla tt Ty j—z, lj) + (xi1 e x:.l] 12 )ZU

Denoting the both side of this equality by z(,, i, ---,i;), we see that
2,200 Iy -+, 1;) = ¥, for any k=1,2,---,j. This proves (3.7.j), hence
proves (ii) = (i) in Theorem (3.6).

We next prove (i) = (ii) in Theorem (3.6). The following argument is
of particular importance and contains the central idea of this paper.

Let x, x,, -+, x, be a regular system of parameters of T and T, =
T/(xp, 2, -+, x0T and R, = R/(x?, x2, - - -, x)R for any integer n as above.
By the assumption there exists a T,-injective R,-module M, for each n.
Notice that M, is free over T, since T, is a Gorenstein ring of dimension 0.
Take an arbitrary non-principal ultrafilter on N and denote by M the
separated ultraproduct of the R,-module M,. Note that M is a module
over R" = [J,en R, by (1.15), hence a module over R. We prove the
following

(3.8) CramM. M is a balanced big Cohen-Macaulay module over R.
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We know from (1.8) (iv) and (1.11) that M is a non-trivial, complete
and separated module. It is hence sufficient from (3.5) that {x,, x,, - - -, x4}
forms a regular sequence on M. For this purpose assume the equality;

2(s)iew + -+ -+ xt)iew + X (W)iew = 0

where 0 < £ < d and (s)%x, - -+, (t)iew and (u,);zy are in M. We want to
show that (u)7y € (x, - -+, x,)M. By definition for any integer n it holds
that

X;8; + -+ xkti + X1l € (x;z’ x;L, T xg)Ml

for a.a.ieIN. Hence there are s/, ---, ¢, uj, v;, ---, w,e M, for those ie N
such that

x(s; + x07s) + - - -+ x(t, + 7)) 4 xp . (us + xpLiu)
+ GV + e+ 2w = 0.

Since M, is T;-free, one sees that

u, + xpu; € [(xI, ce, Xy Xiany vy xZ)Mi:xk-rl]Mi
= (xl’ sty Xp x;::-ll’ x;cz+2y Ty xs)Mz
for those i € N. This implies that
Uu; € (xb sy Xy, x::i sz’ Tty xjil)Mz

for a.a.ieN.

Denote M, = M,/(x,, - - -, x,)M, and denote by #, the natural image of
u, in M,. Then the above argument shows that, for any integer n, U, e
(x5, 27, - -+, XM, for a.a. i e N. This implies that (Z,)7y = 0 in [J;enx M.
Consider the trivial exact sequence; 0 — (x,, - - -, x, )M, — M, — M, — 0 for
all e N. Here we remark that

(3.9) m' M, N (x, -, )M, = m*(x,, - - -, )M,
for all n and i e N. In particular, a,((x, ---, x)M,;, M) =1
for all ieN.

If this is correct, then by Theorem (1.18) and (1.8) (v) we see that

0—> ] (x, -+, xdM, —> [] M, —> [| M,—>0
1EN 1EN ieEN
is an exact sequence of R-modules. Thus (z,);y is the image of an element
(@, + -+ 4+ %:0)7%w of [liew (%1, -+ -, )M, and this shows that (u);y =
x(a)7ew + -+ + (b )n e (x,, - -+, x)M as desired.
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It remains to prove (3.9). Since M, is a T;-free module as remarked
above, it is enough to show that, for any integer n,

(3.9.n) m“TZ N (x1, tt oty xk)Tz = mn_l(xly ] xk)Ti
for all ielN and 1 <k < d.

We prove this by the induction on n. Since it is trivially correct when
n =1, we assume that n > 2 and (8.9. n — 1) is true. Then one observes
by (3.9. n — 1) that

m T, N (%, - -, )T, Cm* x,, -, )T, N m"T;.
Thus to prove (3.9.n) it is sufficient to show that

(3.10) mr ¥ xy, -, x0T, N m" T, C mm(x, - -, x )T,
forall ielN and 2 1 <k < d).

We prove (3.10) by induction on k. For this, we denote G, = gr, (T, the
associated graded ring of T, with respect to m;. For the regularity of T,
it can be seen that G, = (T'm)[X,, X,, - - -, X, /(X! X¢, - .., X?) where the
image of X, in G, respresents the initial form of x,, Now assume that
ax; em"T, and a e m* 2T, — m"'T,. If we denote by c(i) the initial form of
a in G, then c(i) € Xi"'G, because of ¢(i)X, = 0. This means that a ¢ xi"'T,
+ m" T, hence ax, e m" 'x,T;. This proves (3.10) in the case k2 = 1.

Assume that y = 3>%  ax,em*T, where a,em™*T, 1<i<k). If
a,em T, theny — a,x, e m" %x;, -+, x,_)T; N T, = m™ Yxy, -+, )T}
by the induction hypothesis. Hence y e m""(x,, - .-, x,)T;. Thus we may
assume that a,e¢m"'T,. Let c,i) be the initial form of @; in G,. Note
that c,(i) has degree n — 2. Since J *_,c,(i)X, =0, we see that c,i)e
X, - -, X, Xi'HG,, that is,

a,=bx,+ - +b_ %+ bxi+c

for some b;em™ T, 1 <j<k), byem 'T, and cem"'T,. Hence y =
k2l(a; + bx)x; + cx,, and it follows by the induction hypothesis that

y—cxpem¥xy, -, x0T N T, CmP N (xy, -, x, )T,

thus we get ye m*(x,, - - -, x,)T,. This establishes (3.10), hence completes
the proof of Theorem (3.6).

Though we have proved Theorem (3.6), we must accept the fact that
the existence problem of big Cohen-Macaulay modules is still in the dark.
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However once we know the existence, we are able to construct modules
which enjoy stronger conditions. Precisely we can prove

(3.11) THEOREM. Let T be a complete regular local ring containing a
field and let R be the integral closure of T in the algebraic closure @ of
the quotient field Q of T. Then there exists an R-module M such that, for
any finite T-algebra S which lies between T and R and for any system of
parameters x for S, M is a big Cohen-Macaulay module over S with respect
to x.

Before proceeding to the proof we should notice some remarks.
(3.12) Let N be the set of field extensions K such that @ € K © @
and [K: Q] < o« and let Sy be the integral closure of T in K for K e N.
Since T is a complete local ring, Sy is a local ring which is finite over
T for any K e N. (See [N].) The set {Sx|K € N} forms an inductive system
ordered by inclusion. One can easily verify R = lim ,.y Sk, hence in
particular R is a quasi-local ring. Since T is a Noetherian ring, @ is an
infinite extension of . Thus one can find a countable set of elements
{x;]i € N} in Q satisfying @(x,) & Q(x;, %) S+ S Q(x, %3, -+ -, %) & Q(xy, x,,
o, X4,)- - -. If we denote A(S) = {Ke N|KDS]} for a subset S of @, then
{A(S)|S is a finite subset of @} forms a filter on N, hence there is an
ultrafilter ¥ on N containing those A(S) for finite S. Since A(x, x,, - - -, x,)
e for any ie N and since

ﬁA(xl,xb "'5xi) =¢9

it follows that ¥ is an w-incomplete ultrafilter on N. (See (1.3).) Thus one
can consider the separated ultraproduct []xcy Sy as T-modules (not as S-
modules). Denote it by S. Then S is naturally a T-algebra. For any
element x of R, x belongs to Sy for a.a. K¢ N, hence x gives the element
(x)i=y of S by (1.8) (iii). This defines a map f: R— 8. It is easily seen
that f is a T-algebra homomorphism. In order to prove Theorem (3.11) it
is hence sufficient to show that there is an S-module M such that, for any
KeN, M is a big Cohen-Macaulay module over Sy.

Proof of Theorem (3.11). We shall construct such an S-module M.
Since each Sy is a local ring containing a field, Hochster’s theorem [H,;
Theorem (5.1)] and (3.5) show that there is a balanced big Cohen-Macaulay
module over S;. We denote it by M, for Ke N, and denote by M the
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separated ultraproduct of the M, as T-modules (not as Sy-modules). Note
that M is a module over S, hence a module over S, for any KeN. Since
M is a separated and complete T-module by (1.11) and since S, is finite
over T, M is also separated and complete as an S;-module. We shall prove
that this M satisfies the required condition. For this, it suffices by (3.5)
to show that x = {x,, x,, - - -, x,} 1s a regular sequence on M, where x is a
regular system of parameters of 7. This is done in the following course.

Let Y5 x(yx(i))ier = 0 where 1 <k < d and (ye(i))zexe M(i=1,2,
..., k). We would like to show that (yi(k + D)icy € (%, %y - - -, x,)M. By
definition it holds that, for any integer n, > .i*!x,y.(i) e (x?, x2, - - -, xB) M,
for a.a. Ke N. Since x forms a regular sequence on M, for any Ke N,
we easily see that

yK(k + 1) € (xly cry Xy x?:%: xﬁ{»b ) x;)MI\
for those Ke N.
If we denote M, = M,/(x,, - - -, x,)M, and denote by y.(i) the natural
image of y.(i) in M, then the above shows that (§.(k + 1))zex = 0 in

ﬁ KeN MK'
Consider the trivial exact sequence;

0—>(x;, - - -, x)Mxg M, > M{c >0
for all Ke N. Here one can verify the following;
m "My O (x,, -+, X)) Mg = m" (%, - - -, %)M

for all ne N and Ke N. (Since {x,, - - -, x,} is a regular sequence on M,
[EGA; (15.1.9)] shows that gr.(My) = (Mg/mMg) (X, - -, X,]. Then the
claim can be proved in the same manner as in (3.9). So we leave the detail
to the reader.) In particular, a,((x;, - - -, x,)My, M) =1 for all Ke N.
Therefore Theorem (1.18) gives the exact sequence;

Hence (yx(k + 1)7ey is the image of an element of []xex (%, - - -, ) Mg,
thus it is in (x,, - - -, x,)M. This completes the proof of Theorem (3.11).
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