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TOWARD THE CONSTRUCTION OF

BIG COHEN-MACAULAY MODULES

YUJI YOSHINO

§ 0. Introduction

What we call the homological conjectures on commutative Noetherian

local rings were first collected and partially settled by C. Peskine and L.

Szpiro [PSJ. The subsequent remarkable progress was made by M. Hochster

[HJ who conjectured the existence of big Cohen-Macaulay modules and

solved it in the affirmative for equicharacteristic local rings. It is, however,

still open in general setting.

If every local ring has a big Cohen-Macaulay module, then all the

homological conjectures will be automatically proved as argued in [HJ.

This makes us feel that it should be big Cohen-Macaulay modules that we

must preferentially consider. It would be also desirable to build a charac-

teristic free way to the homological conjectures. In fact, though there

exist various other papers concerning the homological conjectures such as

[HJ, [HJ, [HJ, [HJ, [F], [I], [PS,], [RJ, [R2], [YJ etc., one finds that most

of their argument heavily depend on the characteristic of local rings.

The main purpose of the present paper is to provide several new tools

for the conjecture which seem to meet our demands. Principal results are

stated in Theorem (3.6) and Theorem (3.11). Roughly speaking Theorem (3.6)

reduces the existence problem of big Cohen-Macaulay modules to a problem

for Artinian local rings, and Theorem (3.11) shows that if big Cohen-

Macaulay modules always exist, then there are "universal" ones in some

sense.

The idea of the proof of Theorem (3.6) is the following: Let (iZ, m)

be a local ring and let {qέ | i e N} be a descending sequence of m-primary

ideals such that R = \hn Rlq^ Assume that Mi is given as an J?/qΓmodule

for each ί e N. If each Mi is "good enough", and if they form an inverse

system of i?-modules, then limik^ will be a "good enough" i?-module again,
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which might be possibly Cohen-Macaulay. However it often happens that

Mi has no relation with Mj if i Φj. In this case how can one construct

an i?-module which may be reasonably considered as a limit of the Mt?

If such construction of limit is always possible, then the existence of "good"

modules over Rlqt (ί e N) will automatically imply the existence of cor-

responding "good" ones over R including big Cohen-Macaulay modules.

In Section 1 we develope the method of constructing limit of modules

which enables us to realize the above idea. We refer to such a limit as

a separated ultraproduct because of its resemblance to ultraproduct. Main

fact concerning it is the Exactness Theorem (1.18). It will make it possible

to compute various examples of separated ultraproducts.

Section 2 is mainly concerned with the problem for Artinian local rings

which corresponds, by the reduction in the above idea, to the existence

problem of big Cohen-Macaulay modules for local rings of high dimension.

An important role will be played by those algebras which the author names

rich algebras and poor algebras. The reader should pay attention to the

existence of generic poor algebras (2.10), where he will notice that the au-

thor was much inspired by the method of Hochster's in [HJ.

Section 1 and Section 2 can be read independently.

In Section 3 we prove the main theorems (3.6) and (3.11), whose proofs

are the core of this paper.

Although he could not settle the existence problem of big Cohen-

Macaulay modules, the author believes that the raison d'etre of this paper

lies in providing several new concepts and methods in the theory of com-

mutative algebras.

§ 1. Separated ultraproducts

We first recall some fundamental concepts about ultrafilters.

Let N be an infinite set of indices, which is in many cases the set of

natural numbers N. A filter on N is a nonempty family g of subsets of

N satisfying (i) φ g g, (ii) if A, Be% then A Π B e g a n d (iii) if A e g and

AaBaN then Be$. A filter g on N is principal if there is an aeN

such that $ = {B\a e BaN}, otherwise it is called nonprincipal. The Frechet

filter on Nis a filter consisting of cofinite subsets of N, i.e. {A\N — A is finite}.

An ultrafilter g on N is a filter on N which is maximal with respect

to inclusion in the class of all filters on N. It is clear from Zorn's lemma

that for any filter 3F there exists an ultrafilter on N which contains §\ It is
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also easy to see the following lemmas.

(1.1) For a filter g on N, the following conditions are equivalent.

( i ) g is an ultrafilter.

(ii) A g g implies N— A e g.

(iii) If U?-i ^ e g for A.czN (£ = 1, 2, - - -,ή), then one of the A, is

an element of gf.

(1.2) For an ultrafilter g o n -ZV, the following conditions are equi-

valent.

( i ) g is nonprincipal.

(ii) g contains the Frechet filter on 2V.

(iii) No finite subset of N belongs to g.

In particular there always exists a nonprincipal ultrafilter on N.

An ultrafilter gf on N is said to be ω-incomplete if there are At e $

(ί e N) such that Π*GN A £ g .

(1.3) For an ultrafilter gf the following are equivalent.

( i ) g is ω-incomplete.

(ii) There is a countable set {Bt e g | i e N} such that B^.aB, (ie N)

and β e N S i = ^
(iii) There is a mapping /:iV->N such that {i e N\f(ΐ) >j} e g for

any y e N.

By this lemma we easily see the following.

(1.4) An ω-incomplete ultrafilter g on N is always nonprincipal. If

N is a countable set, then the converse is also true.

A usual argument using Zorn's lemma leads us to the following.

(1.5) If A is an infinite subset of N, then there is an ω-incomplete

ultrafilter g such that A e g . In particular there always exists an ω-in-

complete ultrafilter on N.

In the rest of this paper we always assume that gf is an ω-incomplete

{hence nonprincipal) ultrafilter on N.

For the simplicity of notation, we make the following

(1.6) DEFINITION. Let {P(ί)\i eN} be a family of propositions indexed

by N. We say that P(i) holds for almost all i eN with respect to gf

(abbreviation; P(ΐ) for a.a. ieN) if {ieN\P(i) is true} e $. Note that if

P(i) holds for a.a. ieN then P(ί) actually holds for infinitely many ieN.

(See (1.1) and (1.2).) However the converse is not true in general.

Let {Hi\ίeN} be a set of local rings indexed by N and let n^ be the

maximal ideal of Rt for each i e N. In this section we shall be concerned
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exclusively with the separated ultraproducts of modules over Rt which is

defined by the following

(1.7) DEFINITION. Let Mt be an i?Γmodule for each i e N. Then we

set

where ~ is the relation defined as follows: (ai)i€N~(bί)ιeN if and only

if, for any integer n, ai — biexan

iMi for a.a. ίeN. Π ί e ^ ^ i s called the

separated ultraproduct of the Mt. We denote by {a?)~eN the class of (at)ieN

in fl^Af*.
Note that if all Rt are fields, then this notion coincides with the usual

ultraproduct of vector spaces.

(1.8) Remark, ( i ) It is easy to see that R: = \\ίeNRi forms a ring

by putting {aτ)~&N + (bt)ΐeN = (αf + bt)zeN and {aτ)γeN(bί)γ&N = (aA)~eN- Note

that (0)~eΛr (resp. (l)Γeiv) * s a n ul l element (resp. a unity) of R. Also note

that R is a quasi-local ring with the maximal ideal m: = {(#i)Γeivlαi e mί

for a.a. i e iV}. In fact if (a^eN & m then at 6 nXi for a.a. / e iV by (1.1) and

hence there exist bt e Rt (i e iV) such that α^^ = 1 for such i. This shows

that (ai)~eN(bi)~eN = (ΐ)ΐeN in R. This proves that m is the unique maximal

ideal of R. Remark that R/xh = Π*eN(Rilm>t) where Π*GJV stands for the

usual ultraproduct of fields.

(ii) M: = YliexMi is an JR-module by defining the iϊ-action as follows;

(adίeΛxdΐeN = (a>iXί)~eN for at e Rt and xt eMt{ie N). If ft is an i?Γmodule

homomorphism of Mt to M\ for all i e N, then we naturally obtain the

β-module homomorphism f: Y\iQNMί -> YI^NM^ by setting f((x^~eN) =

(fi(Xi))ΐeN

(iii) If 3̂  is an element of Mt for a.a. ίeN (not necessarily for all

ieN), then we can give the element (Xi)~QN of Y[iQNMt without any

ambiguity.

(iv) YiieN^i is trivial if and only if vaiMi = Mt for a.a. i eN.

(v) Let (R'i, mθ -> (i?ί? m<) be a local homomorphism for each ieiV.

Assume that there is an integer n such that m^dm^Ri for a.a. ί e N. Then

by definition the separated ultraproduct of the Mi as J?Γmodules coincides

with the one as i^-modules.

(1.9) DEFINITION. A family of local rings {Rt \ ί e N} is said to be good

if there exists an integer n such that the maximal ideal m* is generated

by at most n elements in Rt for a.a. ί e N.
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In most cases we restrict ourselves to consider a good family of local

rings. A reasonable ground to do so lies in the following

(1.10) LEMMA. Let {Rt\i eN} be a good family of local rings and let Mt

be an R^module for each ί e N. For an integer j , if xt e rrt/M^ for a.a. i e N,

then it holds that (Xi)7<=N € fhjM.

In fact since {i?J is good, there is an integer n such that m{ is generated

by n elements, say m| = (α^l), at(2) , a4(n))jRi, for a.a. i e N. Then xt

= Σ * - i <*i(k)yi(k) (y^k) eMi9k = l,29 .,n) for a.a. i e N. Thus by defi-

nition one sees that (xt)7eN = Σil=ι(ai(k))7eN(yi(k))~eN e mJ'M.

Note that this is not true unless {Rt} is good. For instance let N =

N and R€ = Mt = K[[xu x2, , xt]] a formal power series ring over a field

K for all i e N where char (if) Φ 2. If we take elements yt: = x\ + x\ +

• + x\ e Ri (i € N), then obviously yt e ml for all ί e N, however we can

see that (y^Te^^m2. In fact if (;y;X~€Nem2 then there would be finite

elements (Zi(k))ϊeχ, (wt(k))ϊeκ in m (k = 1, 2, , r) such that (^)Γ6N =

Σϊ- iW^ΓeNN^ΓeN, hence it holds that yi = Σl^zJJήw^k) mod mξ for

a.a. i e N. In particular this equality would hold for some i > 2r, then

2xfc = dyjdxu € (2f4(l), «t(2), , zt(r\ wt(X), w,(2\ . . . , ιι;f(r))

in i?ί for fe = 1, 2, , i, therefore (Xj, x2, , **)#* = fe(l), ^(2), , 2t(r),

w;t(l), 1̂ ,(2), , wί(r))Rί for char (if) ^ 2. This contradicts i > 2r.

The following proposition is essentially due to [BDLD; § 1 (iii)].

(1.11) PROPOSITION. If {R^ieN} is a good family of local rings and

if Mt is an Rt-module for ieN, then M: = f\ieNMi is complete and sepa-

rated with respect to the m-adic topology.

Proof We first prove the separatedness of M. Take any (Xi)~eN in

Pl^=1m
nM. For any integer n, {x^7eN may be written in the form

r

Σ (ai(J))7eN(yzU))7eκ

where

(ai(j))7eN e mw, (yi(j))7eN eMJ = 1,̂ 2, , r .

Then by definition one sees that
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for a.a. j e N, hence xt e vaa

iMi for a.a. ί e N. This shows that (xt)ΐeN = 0

in M.

Next we prove the completeness of M. Let {x(j) = (Xt(j))ZeN\j e N} be

a sequence in M satisfying x(j + 1) — x(j) e mjM for any y e N. We would

like to show the existence of z e M which satisfies (*) z — x(j) e rhjM for

any j e N. By (1.3) we have a mapping /:iV->N such that, for any jf €
N, /(£) ^j for a.a.ieiV. On the other hand it follows by definition that
there are Ak e gr (A € N) such that *<(£) — ̂ (y) e πt/Λfi for ί e Ak and

1<^7<^£, where we may choose Ao — N. Define a mapping g:N—>

N U {00} by g(i): = sup{& e N|p|*=oA, 3 *}. Note that i e A3 for all j ^ g(ί)

and that, for any j e N, g(i) ^j for a.a. i e N. Hence if we denote h(ί): =

inf{f(i), g(i)} for ieN, then h is a mapping of N to N and it satisfies that

i e AΛ(i) and that, for any j e N, h(ί) ^ j for a.a. i e N. Now set zt = Xi(h(ί))

and 2; = (̂ i)Γ€i\r e M. We prove that this z satisfies (*). Let j be an arbitrary
positive integer. Then by the above there exists Bt e g such that i e Aft(<)

and Λ(ί) >j iΐ ie Bj. This implies that zi — xt(j) e voJiMi for i e Bj9 whence

by (1.10) we see that z — x(j) e rhjM.

(1.12) PROPOSITION. If {R^ie N} is a good family of local rings, then

R = f\ίeNRί is a complete Noetherian local ring. Moreover if there is an

integer r such that emb(Ri) = r for a.a. ieN, then emb(i?) = r.

Proof. Since R is a complete and separated quasi-local ring by (1.11),

in order to prove that R is Noetherian it is sufficient to show the finite-

ness of embCR). (See [Ma; (28. P) Corollary 1].) Since {i?J is a good family,

there is an integer r such that m* is generated by r elements for a.a. i e N.

Denote m* = (x^l), x*(2), '9xt(r))Ri for those ieN and x(h) = (xt(k))ϊeir

(k = 1, 2, , r). It is easy to see that fit is actually generated by x(l),

Conversely assume that fit is generated by r elements, i.e. fit = (x(ΐ),

x(2), -, x(r))R where x(k) = (Xi(k))~eN, k = 1, 2, , r. Let /̂  be an ideal of

i?; generated by x^l), ^(2), , xjljr). We prove that m* = It for a.a. j e N,

hence that mt is generated by r elements for a.a. ieN. Suppose that this

is not true. Then by (1.1) It + mj φ mt for a.a. i e N and thus we can find

elements yi e m̂  — {It + m<) for those ieN. It obviously follows that (yt)Teir

& (x(l), x(2), , x(r))JR = fit, and hence yt & mt for a.a. / e N. This contra-

diction proves the proposition.

Note that the example after (1.10) shows that Propositions (1.11) and
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(1.12) fail unless {Rz} is good.

Next we consider the dimension of R. For this, denote h(R): =
inf{n € N|mπ is contained in a parameter ideal of R} for a local ring (R, m).

The following result is proved by C. Mattescu and D. Popescu.

(1.13) PROPOSITION. ([MP; (2.7)]). Let {Rt} be a good family of local

rings. Assume that

(i) there is an integer d such that dim(i?J = d for a.a. ί e N,

(ii) there is an integer h such that h(Rz) <^ h for a.a. i e N.

Then dim(JR) = d.

Proof. Let A = {i e N\άim(Rz) = d, h(Rz) ̂ h}e%. For any i e A we

may choose a system of parameters xz(ϊ), x*(2), , xz(d) for Rz satisfying

m?C(xt(l), xt(2), , x(d))Λ*. Denote x(k) = (*t(Λ))r€*(* =_1, 2, . , d). Then
by definition it follows that xhha(x(ΐ), x(2), , x(d))R, and this proves

dim(l?) ^ d. Next assume that m r ec(z(l), 2(2), , z(t))R for some n and

t e N and #(£) = {Zi{k))~&N (k = 1, 2, , £). It is sufficient to show that

ί ^ d. By definition it holds that m?c(^(l), 2,(2), , z^R, + m?+1 for

a.a. i e AT, hence for these i e N, m? c(e t(l), 2 (̂2), , z^R,. Since dim(i?J

= d for a.a. / e AT, we obtain that t^>d. This completes the proof.

(1.14) COROLLARY. // {i?J is α good family of regular local rings

satisfying d i m ^ ) = d for a.a.ίeN, then R = fj^vi?* is a^o a regular

local ring of dimension d.

Proof Since Rt is a regular local ring for each i e N, one has the

equality dim(Rι) = emb(Rι) = d for a.a. i e N. Then it is obtained from

(1.12) and (1.13) that άim(R) = emb(R) - d.

In many cases the dimension of Y\ίGNRi is much different from each

dimCR<).

(1.15) LEMMA. Let (i?, m) be a local ring and {I^ieN} be a family

of ideals of R indexed by N and denote Rz = RIIτ (i e N). Assume that for

any n e N, /jCniJ for a.a. is N. Then Y\ieNRi is isomorphic to f\ieNR.

Proof. Define a mapping /: Π * e * R ~+ Π * e N Ri by f((xd~e N) = (̂ ^ mod It)?e N.

This is obviously surjective. Assume that f((Xi)ΐeN) = 0. Then it follows

by definition that for any n e N xί e It + m? for a.a. i € iV. Hence by the
assumption xz- e mj for a.a. i e JV. This shows (xz)~eN = 0.

(1.16) COROLLARY. Let (R, m) 6e α ZocαZ riπ-g and Zβί N = N.
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(i) fl*GNRlvx* = Π<e* R, and (ii) Π*eN R = fίieN R = ΠieN ΛΛ wftere R (resp.

Rh) denotes the completion (resp. henselizatioή) of R.

Proof, (i) is immediate from (1.15). (ii) is the direct consequence of

(i) and the fact; R/m* = R/m'R s R^mΉ*1 for any i e N.

This result (1.16) (ii) will be generalized in (1.19).

Next we would like to prove an exactness criterion concerning sepa-

rated ultraproducts. For this purpose we need some additional notation.

(1.17) DEFINITION. Let (12, m) be a local ring and let NdM be R-

modules. Then we denote aR(N, M) = inf{r e N| m'Λf ΠN = mn" r(m rMilN)

for all n ;> r} and refer to it as the Artin-Rees number of NdM.

The following theorem is one of the main results of this section, and

is quite useful in computing separated ultraproducts.

(1.18) THEOREM (Exactness Theorem). Let {Rt\i e N} be a good family

of local rings indexed by N and let

0 > M't • M< > M'S >0
ii 9i

be an exact sequence of R^modules for ieN. Assume that there is an

integer r such that αΛ<(/i(Mί), (Λf€)) <̂  r for a.a. ί e N. Then one gets the

exact sequence of γ[ieN Rrmodules;

0 — * Π Ml^> fί M i - r > Π M i ' — > 0 .
ieN f ieN g iβN

Proof. Recall that /((x-)re^) = (ft(xΰ)ΐeN and g((^)r6^) = (gt(Xi))TeN for

(xfiΐeN 6 UieN M'i9 (x^TeN e UieN Mt. Thus it is obvious that g-f = 0 and g

is surjective. We prove the injectivity of /. Assume that f{{x'ϊ)7eN) = 0

for (XO7GN£ UieN Mi. Then it follows by definition that, for any integer

n, it holds that fi(x£) e m^Mi for a.a. ί e N. Hence if n ί> r then ft(oζ) e

mnM n/i(M0 = mr^mίAf, Π/<(M0)cmΓrΛ(Afί) = /4(mr rMQ for those i e 2V.

Since ft is injective, it follows that x\ e xrtι

i~
rMf

i for a.a. i e iV. Hence we

have (x'dΐeN = 0. This proves the injectivity of /.

Next we prove that Ker(^) df(f\ieNM$. For this, assume that

g((Xi)~eN) = 0 ((Xi)Γe^e Πieiv^i)- Then we have that, for any integer n,

gi(xt) e xrf\M" for a.a. i e N. This means that xt e m?M; + Λ(M0 for a.a. ί e N.

Thus for any integer n, we can find elements yt(n) e /<(M0 for a.a. i e N

such that xt — y^ri) e mΐMi for those i e N. Note that this implies that

(Xi)ΐeN — (yτ(n))~eN 6 mn Π i e ^ ^ i by (1.10). Also note that, for m> n> r,
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Vi(m) - yt(n) e m^M, Π/t(Mί)cmΓr/i(Λf0 for a.a. i e N. Thus if we denote

y(n) = (yi(n))~eN ̂ hen {;y(n)|πeN} forms a Cauchy sequence in f(f\ieNM^.

Note that f{Y[i&NM^ is a complete module by (1.11) and by the injectivity

of /. Thus there is an element z of f(γ[ieNMi) to which y(n) converges.

Therefore, for any integer ra, there is an integer n satisfying z — (Xi)~eN =

(z - y(ή)) - ((Xi)ΐeΆr - y(ή)) e mm\[iQNMi. Since YI^NM, is a separated

module by (1.11), it follows that (x%)~eN = 2

Remark that the Exactness Theorem (1.18) fails without the condition

of the uniform finiteness of Artin-Rees numbers. See Example (1.25).

The following generalizes (1.6).

(1.19) COROLLARY. If {Rt\ieN} is a good family of local rings, then

Proof, We only prove the first isomorphism. Note that aRi(Ru R^) = 0.

Hence by the Exactness Theorem (1.18) we have the following exact sequ-

ence :

o — > Π Ri—> Π Rt—> Π RJRi—>o
ί e iV ί e N iβiv

Remark that Y\ίeNRi in this sequence is not a separated ultraproduct

of Ri as iί^-modules but as i?Γmodules. However the both ones coincide

with each other in this case since m A = tit* for all / e N. Thus it is

sufficient to show that Y[iBNRilRi = 0. This is, however, obvious from the

fact that, for any xt e Rt and for any integer n, xt e Rt + m"^.

As a consequence of (1.19) we get the following example which gene-

ralizes [BDLD; Lemma (3.4) and Lemma (3.5)].

(1.20) EXAMPLE. Let K% be local rings with maximal ideal mz and

Rt - KάXt, X*, , Xn]{muXl^...,Xn) (or Rt = Kt[[Xu X29 , Xn]]) for i e N.

Then we have

iβN

where K denotes Πίe^-Kί

Proof. By virtue of (1.19) we may assume that Rt = Kί[[Xu X2, , Xn]]

where Kt (i e N) are all complete local rings. Define a mapping /: \]iQNRi

-> K[[XU X2, , Xn]] by the following: For (Pi(X))7eN e γ[ίeNRί where

ί : i ) , w e s e t / ® ) ) Σ ( ( ) ) ^
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Note that / gives a well defined ring homomorphism.

For any element q(X) = Σme^(^(^))Γeiv^w 6 K[[X)]> P :=(Σ»6N.σi(m)
'Xm)~eN£ Πίeiv^i satisfies that f(p) = q(X), hence / is surjective.

To prove the injectivity of / assume that f((Pi(X))ZeN) — 0 for Pi(X)

= Σmevin ai(m)Xm £ -βi Then by definition (ai(m))zeN — 0 for any m e N " ,

hence for any integer k it holds that at(m) e m* for |m| ^ A and for a.a.

i e N. This implies that Pi(X) e (m<, Xlf X2, , Xn)
k for those i e iV, hence

(1.21) NOTATION. Let 7? be a local ring. We call \\ieNR the sepa-

rated ultrapower of R on N and denote it by RN (or simply 7? if it causes

no confusion). In the same way the separated ultrapower of i?-module M

on iV is defined as \[ieNM and is denoted by MN (or M).

Note that there is a natural ring homomorphism of R to R by placing

an element of R in a diagonal line, i.e. x «-> (x)Γ€iv

(1.22) PROPOSITION. Let R be a local ring. Assume that R = S//
where S is a regular local ring and I is an ideal of S. (Note that it is
always possible to describe R in this manner by Cohen's theorem.) Then it
holds that R = S/IS.

Here we should notice that S is also a regular local ring by (1.14).

Proof. By virtue of (1.19) we may assume that R = S/I. In the exact
sequence 0 —> I —> S -> R -> 0, it is trivial that as(I, S) is constant for ieN.
Hence by the Exactness Theorem (1.18) we have an equality R = S/ϊ. It

remains to prove that 7 = IS. Note that 7 is the ideal of S consisting of

those elements (a^~£N e S such that at e I for all i e N. Thus it is obvious

that 7S C 7. Assume that (xdΐeN el If 7 is generated by /(I), /(2), , f(k)

then each xt can be written as Σ5=iαί0')/0") f° r some at(j) e S. Hence

Σil== Σl=Λ^iU))TeN(fU))ΐeN e IS, which proves IS Z) 7.

(1.23) COROLLARY. Lβί R be a local ring such that R has a coefficient

field K. Then there is an isomorphism of rings;

where K is the separated ultrapower of K and ®κ denotes the complete

tensor product over K.

Proof. By the assumption it can be written that R = K[[XUX2, ,
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Xn]]II for some integer n and some ideal I of K[[Xl9 X2y , Xn]]. Then by

(1.22) and (1.20) we see that

R s ft s iΓ[K, X2, , XJ]~/

£ ^ X2, . , Xn]]

This corollary shows that R is a faithfully flat i?-module under the

assumption that R contains a field. We next prove this fact in general.

(1.24) THEOREM. // R is a local ring, then R is a faithfully flat R~

algebra.

Proof. Notice that if 0 -> M' -> M -> M" -> 0 is an exact sequence of

finitely generated i?-modules, then 0 -» Mf -> M -> M ; / -> 0 is an exact

sequence of i?-modules. In fact since M is finitely generated it follows

by Artin-Rees lemma that aR(M', M) is finite, hence the Exactness Theorem

(1.18) gives the exactness of the sequence; 0 -> Mf -> M-» M / ; -> 0. This

shows that the operation — is an βxαcί additive functor from the category

of finitely generated i?-modules to the category of JS-modules. Since it

trivially holds that M ^ M®R R for a finitely generated free i?-module M,

the usual argument on functors shows that there is a natural isomorphism

M= M®RR for any finitely generated J?-module M. This concludes that

R is flat over R.

We close this section by giving an example.

(1.25) EXAMPLE. Let Rt = Kt[[X, Y]]I(X2 + Y€) for i e N where Kt are
fields. Then we have

flίi = K[[X, Y]]I(X2)

where K denotes Π<eΛr̂ ί To prove this fact we set St = Kt[[X, Y]],

S - Πi 6 N

 si = K[[X9 Y]] and It = (X2 + Y*)Sf. It is easily observed that

asάli, S^ = 2 for all i e N. Hence it follows by the Exactness Theorem (1.18)

that Πi€N Ri = »§// where I is generated by a single element (X2 + F')ΓeN e S.

Since, for any τιeN, Γ e m ? for a. a. / e N, we know that (y 4 )^ N = 0.

Hence I is generated by X2 e S.

This example shows that the Exactness Theorem (1.18) fails when there

is no bound on Artin-Rees numbers. For instance consider an exact
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sequence

0 >Ri—>Rί • RJXR, > 0

for all i e N. In this case the following sequence is not exact:

Note that aRi(XRu Rτ) = i - 1 for all i e N.

§ 2. Rich algebras and poor algebras over Artinian local rings

In this section we mainly concentrate our attention on the following

(2.1) PROBLEM. Let Γbe a Noetherian ring and let R be a T~algebra.

Under what condition does there exist a non-trivial i?-module which is

injective as a T-module? (To simplify the notation we shall call such a

module a T-ίnjectίve R-module. Note that under this name we only con-

sider non-trivial ones.)

The problem is reduced to the case that T is an Artinian local ring

by the following

(2.2) LEMMA. Let T and R be as above. Then the following conditions

are equivalent.

(i) There exists a T-injective R-module.

(ii) There is a minimal prime ideal p of T such that there exists a

Tp-ίnjectίve Rp-module.

Before proceeding to the proof we note the following fact: Let A be

a local ring with maximal ideal m and let E be the injective envelope of

Ajm over A. For an A-module M, M is a flat (resp. injective, non-trivial)

A-module if and only if Hom^(M, E) is an injective (resp. flat, non-trivial)

A-module.

Proof of (2.2). (ii) =£> (i). If M is a 7>injective i?p-module, then M itself

is an i?-module and is an injective T-module.

(i)=φ(π). Assume that M is a Γ-injective J?-module. Let q be a

prime ideal of T such that q has the minimum height among AssΓ(M).

Since M is T-injective, we see that Mq is a direct sum of copies of

ETq((Tlq\) as ^-module. (See [M].) Denote N: = HomΓq(Mq, tf

Then it is easily verified that N is a direct product of copies of

hence is flat over Tq. If we take a minimal prime ideal p of T contained in
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q, then we see that Np is a non-trivial T -̂flat i?p-module. It follows from

the above remark that Ή.omTp(Np, ETp((Tlp)p)) is a Tp-injective i?p-module.

(2.3) Remark. By the fact remarked before the above proof one sees

that if T is a local ring, then there is a T-injective i?-module if and only

if there is a Γ-flat i?-module.

By virtue of (2.2) we may restrict ourselves to consider the case that

T is an Artinian local ring. Thus in the rest of this section T always

denotes an Artinian local ring with maximal ideal m and k = Γ/m. We

make the following definition in this case.

(2.4) DEFINITION. We say that a Γ-algebra R is a rich T-algebra if

there is a T-injective i?-module, otherwise we call it a poor T-algebra.

We exhibit some formal results in the following.

(2.5) LEMMA, (a) Consider the following commutative diagram of rings;

T >R

T >Rf = T ®TR

where T and Tr are Artinian local rings.

(a-1) If R is a rich T-algebra, then R is a rich T-algebra.

(a-2) If Tf is flat over T, then the converse of (a-1) is also valid.

(b) Consider ring homomorphisms T -> R -> S.

(b-1) If S is a rich T-algebra, then R is also a rich T-algebra.

(b-2) Assume that R is also an Artinian local ring. If S is a rich R-algebra

and if R is a rich T-algebra, then S is a rich T-algebra.

Proof, (a-1) Let M be a Γ-injective i?-module. Setting

Mr = HomΓ(:F, M),

we see that Mf is an ^-module by the action; {(r®t)f)(tf) = rf(ttf) for

r®teRf = R®T', t'eT and feM'. It is well known that Mf is an

injective module as a T'-module. Since T is Artinian local and M is

injective, we have Mf ψ 0.

(a-2) If R is a rich ^-algebra, then by (2.2) there is a T"-flat j?'-module

M'. Since T is a flat Γ-algebra, Mf is also flat over T. Hence by (2.2)

we see that R is a rich Γ-algebra.

(b-1) Trivial.
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(b-2) Let M be an i?-injective S-module and let N be a T-Άat Λ-module.

If we denote L = HomR(N, M), then L is obviously an S-module by the

action; (rf)(ri) = r(f(τί)) for r e S, neN and feL. Note that there is an

isomorphism of functors; Hom r( , L) = Hom^ ®riV, M) and hence this

is an exact functor. This shows that L is an injective module as a T-

module.

We next give some information about ring theoretic properties of rich

alegbras.

(2.6) PROPOSITION, ( i ) If α ring homomorphism T-+R has a ring

retraction, then R is a rich T-algebra.

(ii) If R is a flat T-algebra, then R is a rich T-algebra.

(iii) If R is a rich T-algebra, then T is a direct summand of R as a

T-module. In particular, the natural ring homomorphism T-+R is pure.

Proof. ( i ) is clear from the fact that, in this case, every T-module

is naturally an i?-module.

(ii) is immediate from (2.3).

(iii) Let M be a jP-injective JR-module. We know by [M] that M i s a

direct sum of copies of E where E denotes the injective envelope of k as

a T-module. In particular there is an embedding E->M as a T-module.

Taking the dual of it we have a map;

/: HomΓ(M, E) -> HomΓ(.E, E) s T.

(See [M] for the last equality.) Since / is surjective, there is an element

x of HomΓ(M, E) such that f{x) = 1. We define an i?-module homomorphism

g: R->ΐίomτ(M, E) by sending 1 to x and define h: =f g. It is easily

seen that h is a Γ-module homomorphism of R to T satisfying h{l) = 1.

This proves (iii).

In general the converse of this proposition fails.

(2.7) EXAMPLE, (i) Let k be a field and let T = k[[x, w]]/(x\ w') and

R = k[[x, y, z, w]]/(x\ w\ xw — yz, x2z — y\ yw2 — z\ xz2 — y2w) where T is

naturally a subring of R. One can show that T—> R has no ring retraction

and R is not flat over T. However we will see later that R is indeed a

rich T-algebra. This will be immediate from Theorem (3.6).

(ii) Let V be a discrete valuation ring with a prime element t and

let T = V\t2V and R = T[X]/(tX, X2 + t). One can easily verify that T is

naturally a subring of R. Since T is a Gorenstein ring of dimension 0, T
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is a direct summand of R as a T-module. It will be proved in (2.11) that

R is a poor jΓ-algebra.

One of the purposes of this section is to construct the generic poor

algebras. We first give a concrete description of those algebras, and after-

ward we will verify that they satisfy the necessary properties to be generic.

(2.8) DEFINITION OF U^T). Let (T, m, k) be an Artinian local ring as

above. Denote a minimal free resolution of k as a T-module by the follow-

ing;

A = [atj]

-> Td 0

x =

xd

where A is a df X d-matrix whose components are in T and xt e m. Notice

that both d and d1 are uniquely determined by T. We prepare a number

of variables over T. For any integer n and j (1 <̂  j' <^ n), consider the

following matrices;

0

= d x oo-matrix ,

= d' X d-matrix, and

Wn = [w[n\ , wd

n)] = 1 x d-matrix,

where all y$\ z^j) and ^ n ) are indeterminates over T. We also denote

v\n) x 0
Jin *Ί w

Π . . .U

= d X oo-matrix,

and E = [1, 0, 0, •] = 1 X oo-matrix. Under these notation we define the

T-algebra ut(T) for an integer I as follows:

Uι(T): = •' F ^ Z » ' ( 1 - n - Z ~ ^ 1 - ;< ^ n l W* W^

r,, ^r n + 1 - t ZnjiYj χ)(i ^ Fi ̂ z ~ l), £ - t WjiYj, x))

where Γ[F l 5 F2, , Yu Znj(l ^ n ^ l - l9l<:j ^ή),WuW2, -, Wt] denotes
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the polynomial ring over T with the variables which appear in those

matrices Yu F2, , Yn, Znj(l ^ n ^ I - 1,1 ^ jf ^ ή) and JVU W2, , Wu

and the ideal described in the denominator expresses the ideal generated

by the elements which appear in those matrices AYU , etc.

It can be easily verified that there is a natural isomorphism;

^ ZZ_M(1 £j ^ Z - 1), F

hence there is a sequence of surjective ϋΓ-algebra maps;

> Uι{T) • uUT) • > u2(T) > Ul(T).

(2.9) Remark. The T-algebra u^T) does not depend on the choice of

minimal free resolution of k. In fact if

B y

is another minimal free resolution, then it is observed that there are

invertible matrices C and D which satisfy AC = DB and Cy = x. Then by

the change of variables; Yn H-> C~Ύn, Znj H-> D~ιZnjC, Wt *-* WtC, we easily

see that both T-algebras constructed from (A, x) and (B, y) are isomorphic

to each other.

One of the main results of this section is the following

(2.10) THEOREM (Existence of generic poor algebras). A T-algebra R

is a poor T-algebra if and only if it contains a specialization of ut(T) as a

T-algebra for some integer I.

Before proceeding to the proof of this theorem we give some examples.

(2.11) EXAMPLE, (i) Under the notation as in (2.8),

Ul(T) = T[YU Wι]l(AYu E - W^Yu x))

where

t 0 0 . . .

h* o o

and W1 = [wl9 w2i , wd]. Since A contains the Koszul relation of x, it

holds that xty5 = x5yx (1 ^ i, j ^ d) in u^T). Therefore xt = xt Σ%λ Wjy3

= Σ?=i WjXjyi = 0 in u^T). Thus we conclude that
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u,(T) = u^/mu^T) ^ k[yuy2, - ,yd, wu w2, -, wd]/(l - Σ J ^ J .

(ii) Let V be a discrete valuation ring with a prime element t and

let Γ = V/t2V. In this case

>T >T >T >k >0
t t

gives a minimal free resolution of k. (i.e. A = (t) and x = t in (2.8).) Hence

we have

u2(T) = T[YU Y29 Zu, Wu Wt]l(tYl9 tY2 - Zn(Yu t\

E- W,(Yut)- W2(Y2,t)),

and

7, (ψ\ _ ψ\y γ γ γ y γ W W
" ' 3 \ - i - / — •*• L * 1? •* 2> •* 3? ^ Ί l > z-'21> -^22? ^ ^ U ' ^ 2?

where / is generated by tYu tY2 - Zn(Yu t), tY3 - Z21(YU t) - Z22(Y291) and

E - Wλ(Yl91) - W2(Y2, t) - WIY%91).

If we denote R = T[X]/(tX9 X
2 + t) as in (2.7), then we see that R is

obtained from us(T) by the following specialization;

Yl, > ( _ χ9 o, 0, •), F21 • (1, 0, 0, . ) , Ys i > (0, 0, X, 0, 0

Hence Theorem (2.10) asserts that R is a poor Γ-algebra. (See (2.7).)

Roughly speaking, the proof of Theorem (2.10) is done in the following

course: First we construct a universal i?-module which is possibly T-

injective if it is non-trivial. One can see that this construction is the

same one as in the proof of the existence of injective envelopes in [CE;

Theorem (3.3)]. Next we verify that the constructed module is non-trivial

if and only if R contains a specialization of some ut(T). The reader will

notice that, on the whole, our method is similar to the one used in [H^

§4].

For this purpose we begin with the following

(2.12) DEFINITION. Let (T, m, k) be an Artinian local ring as above

and let R be a Γ-algebra. For an i?-module L and a T-homomorphism f

of m to L, we define
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and call L(1) the first modification of L with respect to f Note that L(1) is

an iί-module and there is a natural i?-homomorphism of L to L(1). In

general, we may have a sequence

in which L('+1) is the first modification of L{i) with respect to some ft e

HomΓ(m, L(ί)). Then we say that Ur) is an (r-th) modification of L. Denote

by Wl(R) the set of all the modifications of i?. We can prove that Wl(R)

forms an inductive system of i?-modules by those natural homomorphisms.

In fact to prove this it suffices to see the following: If Lψ and L^ are

the first modifications of L with respect to / and g respectively, then there

is a modification 1! of L which is also a modification of both Lψ and L^

such that the diagram of natural mappings;

is commutative. For this it is sufficient to put

U = L ® R Θ RIΣ (ftz), z, 0)R + (g(z), 0, z)R.
zGrn

Thus we may define the inductive limit of elements in 3Jt(R):

M(R/T): = lirn L.
LeW(R)

Note that M(R/T) is an i?-module and there is a natural i?-homomorphism

of R to M(R/T).

(2.13) LEMMA. Ext^fc, M(R/T)) = 0.

Proof. We have to prove that any T-homomorphism /: m -> M(R/T)

extends to a Γ-homomorphism g: T->M(RIT). Since m is finitely generated,

there is an Z-th modification L of R for some integer I and a T-homomor-

phism fL: m -> L such that the following is commutative

TU natural map

f>L
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Let L ( 1 ) be t h e first modification of L with respect to fL. Then define a

T-homomorphism h: T - ^ L ( 1 ) = L®RJYλzem{fL{z\ z)R by h(x): = the image

of (0, — x) e L ® R in L ( 1 ) for x e T. We easily see t h a t the diagram;

T • L(1>
h A

U natural map
m > L

ΪL

is commutative. If g denotes the map of T to M(R/T) induced by hy then

it is obvious that g\m — f as desired.

(2.14) COROLLARY. // M(R/T) Φ 0, then M(R\T) is a T-injective R-

module. In particular R is a rich T-algebra in this case.

Proof. It is sufficient to notice the following fact: For any Γ-module

M it is T-injective if and only if Ext 1 ^, T) = 0. (Since T is Artinian, see

[B;§2]).

(2.15) PROPOSITION. For a T-algebra R the following conditions are

equivalent.

( i ) R is a rich T-algebra.

(ii) M(RIT)ΦO.

(iii) For any modification L of R and a natural map r: i? —> L, it holds

that r(ΐ) Φ 0.

Proof, (iii) >̂ (ii). Trivial.

(ii) =̂> (i) was done in (2.14).

(i) =̂> (iii). Let M be a T-injective J?-module and let

be a sequence of first modifications such that L = R{1). It suffices to prove

the following

CLAIM. For any .R-homomorphism g:R-+M there is an i?-homomor-

phism h^.L—ϊM which makes the following diagram commutative.

We prove this claim by induction on /. So assume that we already

have an i?-homomorphism hι_1:R
{l~l) -> M such that the diagram;
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x-j? **-****

is commutative. We have only to prove the existence of an iMiomomor-

phism h^: R(l) -+ M which makes the diagram;

commutative.

hi

1V1

Now assume that R{1) is the first modification of Jc2(ί~1) with respect

to feΉ.omτ(m,R{l-l)), i.e. Wl) = R{l~l) ® RIΣzem{f(z\ z)R. Since M is a

Γ-injective module, ht^-f extends to a Γ-homomorphism hf\T->M. We

define the i?-homomorphism H: Ril-1) © R —> M by H(y, r) = h^^y) — rh'(ΐ).

Then it is observed that H{f(z), z) = 0 for any zexn, and iϊ(y, 0) = hi_ί(y)

for any y e R^'^. This shows that if induces the i?-homomorphism /ιf: i? ( 0

-> M and the following diagram is commutative:

This completes the proof of the proposition.

(2.16) DEFINITION AND COROLLARY, Let R be a T-algebra and let I be

an integer. R is said to be an l-poor T-algebra if there is an l-th modifi-

cation ft:R->R{l) of R such that ft(ϊ) = 0. It trivially holds that

{l-poor T-algebras} c {2-poor T-algebras} C •

C {l-poor T-algebras} c {(I + ΐ)-poor T-algebras} c

and by (2.15) we see that

{poor T-algebras} = (J {l-poor T-algebras}.
Z = l

By virtue of (2.16), in order to prove Theorem (2.10), it suffices to show

the following

(2.17) PROPOSITION. R is an l-poor T-algebra if and only if R contains

a specialization of ut(T).

For the proof of this proposition we need a lemma which is almost

trivial.
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(2.18) LEMMA. Assume that a minimal free resolution of k is given in

the following;

-> Td k

A = [atj] x =

Then, for a T-module L, giving a T-homomorphism of m to L is equivalent

to giving a sequence (yl9y2, , yd) eLd satisfying 2 J s l a i y ^ = 0.

Proof It is trivial by putting yt — f(x%) (i = 1, 2, , d) for / e

HomΓ(m, L).

Proof of Proposition (2.17). For an i?-module L we know by (2.18) that

any first modification L(1) of L is described as follows;

where yt e L (i = 1,2, , d) such that A

-R c 2 )
\yg\

= 0 in L. Thus if i?

.-> iϊ(Z) is an /-th modification of R, then i?(Z) is given in the form;

ι/{(yil\ yϊί\ • , ̂ } , ^, o,.. , o)| 1 s i £ d, 1 £ j £ i

where for any j (1 <ί j <S / — 1) each row of the matrix A

an i?-linear combination of

{(yl?,y%\ - -,y%\ x., o, , o)|i ^ k

_Jdl Jdj .

IS

- 1, 1 ^ s ^

Moreover the condition that 1 goes to 0 under the natural map of R to Ril)

is equivalent to that the vector (1, 0, 0, , 0) with I components is an

jR-linear combination of

{(yiί\y{tϊ, , χt, o, , i^d, i£j ^ ι - i } .

Putting together these informations we verify that R is an /-poor Γ-algebra

if and only if R contains a solution of the following system of equations
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AYn+1 = £ Z.AYj, *) (n = 0,1, ,1 - 1)
1 = 1

E=ΣWi(Yί>x),
ί = l

where the notation is the same as in (2.8). This establishes (2.17), hence
Theorem (2.10).

We may expect by Theorem (2.10) that the peculiarity of the structure
of poor algebras comes from the property of generic ones. For instance
we can prove the following proposition.

(2.19) PROPOSITION. Let R be a l-poor T-algebra. If I is an ideal of
R which annihilates Torf(&, R), then I1 — 0. In particular, mιR = 0.

Proof By the assumption there is a Γ-algebra map of ut(T) to R.
We denote the images of Yu Zis, Wt in R by the same letters Yu Ztj9 Wt.
Assume that a minimal free resolution of k is given as in (2.8). Since
I TorίXfe, R) = 0, it can be easily seen that Σ t i ^ Λ = 0 (c« e R, 1 ^ i <; d)
implies I(cu c2, , cd) e Rd' A. Let al9 au >,aι be in /. We want to prove
ata2 at = 0 . For this, looking at the (Z + l)-th column of the equation

(*) E = Σ WAY,, x),
ί = l

we see that Wtx = 0 (i.e. 2?=i wίl)χί = 0) Then it follows from the above
remark that ax WL e Rd is an ϋ-linear combination of rows of A, Combining
this with the equation A(Yιyx) = ^ι

ιfJ1Zi^lj(YjJx)y one obtains that
a1Wι(Yι, x) = ΣffΛ vAγv x) for some V, e Rd (1 ^ j ^ I - 1). Hence by (*)
we get

(**) aJE = Σ WAY,, x)

where W'j = axWs + Vj(l£j £l - 1). Looking at the Z-th column of (**),
we have W[_λx = 0. The same argument as above shows that

(***) a^E^ΣW' iY^x)
j = ι

for some W' e Rd (1 ^ j <ΞJ Z — 2). Iterating this, we arrive in the end at
a^2 - - - aLE = 0. Hence ata2 at = 0 in R.

§ 3. Big Cohen-Macaulay modules

Let T be a (Noetherian, not necessarily Artinian in this section) local
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ring with maximal ideal m and let R be a T-algebra. We make the

following definition.

(3.1) DEFINITION. R is said to be a very rich T-algebra if, for any

m-primary ideal q of T, R/c\R is a rich T/q-algebra.

(3.2) Remark, (i) If T is Artinian, then R is a very rich T-algebra

if and only if it is rich. This can be easily verified from (2.5) (a-1).

(ii) Let {q J i e N} be a set of m-primary ideals of T such that q{ 3 q2

DqgD and ΠΓ=icfcT1 = 0. Then a T-algebra i? is a very rich T-algebra

if and only if RjqiR is a rich T/qralgebra for each i e N.

Proof. By definition "only if" part is trivial. To prove "if" part, let

q be an arbitrary m-primary ideal of T. By [N; Theorem (30.1)] one can

find an integer i such that q contains qt. Then R/qR = Rlqt®Thi Tjq is a

rich Γ/q-algebra by (2.5) (α-1).

The following is the direct consequence of (2.5).

(3.3) LEMMA, (a) Consider the diagram of rings;

T >R

T >Rf = T'®TR,

where T and Tf are local rings with maximal ideals m and m' respectively,

such that mT; is a (proper) m1'-primary ideal

(a-1) If R is a very rich T-algebra, then R; is a very rich Tf-algebra.

(a-2) If Tf is flat over T, then the converse of (α-1) is also true.

(b) Consider ring homomorphίsms T—>R->S.

(b-1) If S is a very rich T-algebra, then R is also a very rich T-algebra.

(b-2) Assume that R is also a local ring with maximal ideal n such

that mR is a (proper) n-prίmary ideal. If S is a very rich R-algebra and

if R is a very rich T-algebra, then S is a very rich T-algebra.

We can also generalize Proposition (2.6) into the following form.

(3.4) PROPOSITION, ( i ) If a ring homomorphίsm T->R has a ring

retraction, then R is a very rich T-algebra.

(ii) If R is a flat T-algebra, then R is a very rich T-algebra.

(iii) If R is a very rich T-algebra which is finitely generated as a T-

module, then T is a direct summand of R as a T-module. In particular,

the natural homomorphίsm T->R is pure.
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Proof, (i) and (ii) are clear from (2.6) (i) (ii) respectively. To prove

(iii) we first remark that we may assume that T is a complete local ring.

For this, note that T is a direct summand of R if and only if the com-

pletion T of T is a direct summand of T®TR by [H2; Lemma 1], On the

other hand, it is easily observed by the assumption that T®TR is a very

rich T-algebra. Thus one can assume that T is complete. Then Northcott-

Rees theorem ([NR; Theorem 6] or [Y2; Theorem]) assures that there is a

suquence {qt \ ί e N} of irreducible m-primary ideals which is cofinal with

the power of m. Since Γ/q̂  is a direct summand of Rj^R for i e N by

(2.6) (iii), [H2; Remark 2] shows that T is a direct summand of R.

Before proceeding to the next, we recall some notation: Let R be a

local ring with maximal ideal n and let M be a (not necessarily finitely

generated) i?-module. For a system of parameters x = {xί9 x2, , xd) for

R, M is called a big Cohen-Macaulay module with respect to x if

(xu x2, , Xt)M: xi+ίR = (xl9 x29 , x%)M (0 <; i £ d - 1)

and nM Φ M. M i s a balanced big Cohen- Macaulay module over R if it

is a big Cohen-Macaulay module with respect to any system of para-

meters for R.

Considerable progress on the existence of big Cohen-Macaulay modules

was made by M. Hochster in [HJ. He actually proved that there exists

a big Cohen-Macaulay module with respect to a given system of parameters

for an equicharacteristic local ring. However the existence problem of such

modules is still open in general. On the other hand, J. R. Strooker and

J. Bartijn was able to prove that if R has a big Cohen-Macaulay module

with respect to some system of parameters, then R has a balanced one.

More precisely the following is proved.

(3.5) [S; (13.1.8)]. If M i s a big Cohen-Macaulay module with respect

to some system of parameters for R, then its n-adic completion M is always

a balanced big Cohen-Macaulay module over i?. In particular, any big

Cohen-Macaulay module which is complete in n-adic topology is balanced.

One of our main results in this paper is the following

(3.6) THEOREM. Let (T, m) -> (R, n) be a local homomorphίsm of local

rings where T is a regular local ring and R is a finite T-module such that

dim(T) = dim(jR) = d. Then the following conditions are equivalent.

(i) R is a very rich T-algebra.
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(ii) There exists a balanced big Cohen-Macaulay module over R.

Proof. We first prove (ii) r=> (i). Let M be an i?-module which is a

balanced big Cohen-Macaulay module, and let x = {xlf x2, , xd) be a

regular system of parameters of T. Set

Tn = T/(xn

u *J, , xί)T, Rn = fl/(*ϊ, *J, , *3)fl ,

Afn = M/(xj, ΛJ, - - - ^ M

and mTO = mTB for any integer n. It is sufficient from (3.2) (ii) to prove

that Mn is an Tn-injective i?n-module. For this we prove that every Tn-

homomorphism τnw -* Mn can be extended to a ϊ^-homomorphism Tw —> Mn.

(This will imply that ExtJ.n(fc, Afw) = 0 where A = Γ/m, hence Mn is Γn-

injective.) Note that, for n >̂ 3, the minimal free resolution of k as a

TVmodule is given by the following;

0

where K is the Koszul relation of {xl9 x2,

rows which are in the form

•, xd}, i.e. K consists of d(d — l)/2

Hence by Lemma (2.18) one sees that giving a T^-homomorphism of mn to

Mn is equivalent to giving an element (yu y29 , yd) of Md

n which satisfies

%.y. — χ.y. (ί φ j) and xni~lyi = 0 (I <L ί <, d). Thus it suffices to show the

following.

(3.7) If (yl9y29- ,yd) e Md

n satisfies xiyj = x^ (ί Φ j) and x^y, = 0

(1 ^ ί ^ d), then there exists y e Mn such that yt = xty (1 ^ i ^ d).

For any j (j = 1, 2, , d) we prove a more general assertion.

(3.7. j) Assume that (yu y2, , yd) e Md

n satisfies the same condition as

in (3.7). Then for any sequence of j integers {ίl9 ί2, , iό) (1 ^ ix < i2 <

• <ijr ^ d), there exists an element z(il9 iZi , ij) of Mn such that yA =

x*' z(h, h, - - -, ̂ ) for A € {ι\, i2, , i3).
If (3.7.d) is true, then y = 2i(l, 2, , d) will satisfy (3.7).

We prove (S.l.j) by the induction on j . Since a sequence of any power
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of xl9 xz, , xd forms a regular sequence on M in any order, and since

xn

i~
ιyί = 0 in Mn9 it follows that yt e xMn for i = 1, 2, , d. Thus there

is a et e Mn such that ŷ  = xizi for each i = 1, 2, , d. This proves (3.7.1).

Assume that (3.7. j — 1) is true. Take {il9 i2, , ij} such that 1 <Ξ ii < i2

< < i, <I d. By the induction hypothesis there are eft, ι2, , ij-ι) and

z(iu - , ij-2, ij) in Afn satisfying

JC X / ^ / 7 7 . . . j \ ^Λ* . . . 7 j \\ _ . y V V y Q

and

γ (pίi Ί . . . 7 ^ 7(1 . . . 7 7* ̂  Π

if 1 ̂  ife ̂  7 - 2.

Combining this with the fact that M is a balanced big Cohen-Macaulay

module over R} we get

i-2
^Λ* 7' . . . 7' 1 SΎT* . . . 7' j ' W ΓΠ r v 1 Π O ΓΠ v 1
Λ \ ί j , t<2> > "j-u ^ V Ί J > ̂ 3-21 "3) ^ L^ ^ij-x^ijlMn I ' I I IΛ' * ̂ i^Jiίra

i-2

Hence there are 2' and 2" in ikL such that

= eft, , ij_29 ij) + (xV x%\x\^)z" .

Denoting the both side of this equality by z(iu i29 , i3), we see that

*ί*2ft, ί2> , ij) = y<fc for any k = 1, 2, •,;. This proves (3.7.;), hence

proves (ii) =̂> (i) in Theorem (3.6).

We next prove (i) =£> (ii) in Theorem (3.6). The following argument is

of particular importance and contains the central idea of this paper.

Let xl9 x2, , xd be a regular system of parameters of T and Tn =

Tj(xn

u *?, -,Xa)T and Rn = /?/(*?, xn

2, , x$R for any integer τι as above.

By the assumption there exists a TVinjective i?n-module Mn for each n.

Notice that Mn is free over Tn since ϊ7,, is a Gorenstein ring of dimension 0.

Take an arbitrary non-principal ultrafilter on N and denote by M the

separated ultraproduct of the i?n-module Mn. Note that M is a module

over i?N = γ[neN Rn by (1.15), hence a module over i?. We prove the

following

(3.8) CLAIM. M is a balanced big Cohen-Macaulay module over R.
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We know from (1.8) (iv) and (1.11) that M i s a non-trivial, complete

and separated module. It is hence sufficient from (3.5) that {xu x2, , xd}

forms a regular sequence on M. For this purpose assume the equality;

where 0 <J k < d and (sέ)~6N, •> (̂ )Γew and (Z/̂ ΓGN are in M. We want to

show that (Wi)~ΘN e (xu , xfc)M By definition for any integer n it holds

that

XiSi + + xktt + xk+1ut e (x?, xξ, , x2)Mz

for a.a. i e N. Hence there are s , , £ , zz , ι> , , w[ e Mt for those i e IN"

such that

a φ i + ^ΓX) + + xk(tt + xΓ^ ) + xfc+1(Mf + xΐllυβ

+ xn

k+2Vi + + xn

dw'i = 0

Since Mi is ϊ^-free, one sees that

for those £ e N. This implies that

Ui 6 \Xι, , Xfc, Xj + i, Xfc + 2? ' ' * >

for a.a. i e N.

Denote Mt = MJ(xu , x^M^ and denote by ΰ̂  the natural image of

ut in Mi. Then the above argument shows that, for any integer n, Ut e

(xn

kl\, x£+2, , x2)Mi for a.a. ί e N. This implies that (^)ΓGN = 0 in f|ieN M

Consider the trivial exact sequence; 0 ~>(xu , xfc)M^ -> Mi -> M^ -> 0 for

all i e N. Here we remark that

(3.9) mnMt Π (xί9 , xΛ)M, = m"" 1 ^, , xk)M,

for all n and i e N. In particular, aTi((x19 , xfc)M^ Mf) = 1

for all i e N.

If this is correct, then by Theorem (1.18) and (1.8) (v) we see that

0 > ft (χu . ..9χk)Mt • ft Af, >Y[Mi > 0
iGN iGN iGN

is an exact sequence of i?-modules. Thus (WJΓG N is ^he image of an element

(xA + + xkbi)~eM of ΠieNte, '9xk)Mi and this shows that (ut)zeN =

v + + *̂(6ί)ΓeN e (*!, , xfc)M as desired.
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It remains to prove (3.9). Since Mt is a TVfree module as remarked

above, it is enough to show that, for any integer n,

(3.9.71) mnZ Π (xl9 9xk)T< = mn'\xl9 , xk)Tt

for all i e N and 1 <; k < d.

We prove this by the induction on n. Since it is trivially correct when

n = 1, we assume that n ;> 2 and (3.9. n — 1) is true. Then one observes

by (3.9. n - 1 ) that

mnTt Π (xl9 , xk)Tt c m - f e , **)T, ΓΊ m"!7,.

Thus to prove (3.9.n) it is sufficient to show that

(3.10) mn-\xl9 - -9xk)Tt Π mnT, c m""1^, , a*)!7,

for all ί e N and h (1 ^ k < d).

We prove (3.10) by induction on k. For this, we denote Gt = grmt(Tt) the

associated graded ring of Ti with respect to mt. For the regularity of T,

it can be seen that Gt = (Γ/m)K, X2> , XJ/(Xί, Xί, , XJ) where the

image of Xj in Ĝ  respresents the initial form of xt. Now assume that

ax, e mnT, and aem71'2^ - m"" 1 ^. If we denote by c(0 the initial form of

a in Gu then c(i) e Xί^G* because of c(ί)Xi = 0. This means that a e x[~1Ti

+ mn'1Tί hence axj 6m i l"1x1T i. This proves (3.10) in the case A = 1.

Assume that y = Σkj=i QjXj € m^Γ, where αf e m71"2?7, (1 ^ £ ̂  k). If

αfc e m - ' Γ , then y - α Λ e m " " ^ , , x*.,)^ Π m^ϊ7, = m " " ^ , , x^Tt

by the induction hypothesis. Hence yemn~1(x1, ,xk)Tίt Thus we may

assume that ak^mn~1Tί. Let cβ) be the initial form of a5 in Gt. Note

that cfc(i) has degree n — 2. Since J]*=i cj(ί)Xj = 0> w e s e e that cfc(i) e

(^...J^XJΓ1)^ that is,

for some bj e mn~%Ti (1 ^ j < Λ), 6, e mn" ί + 1Γ, and c e m7 1"1^. Hence j =

Y?jZ\(cLj + bjXk)Xj + cx̂ ., and it follows by the induction hypothesis that

y - cxk e mn-\xl9 '9xk.dTt Π mnT, c m " " ^ , , xk^)Tt,

thus we get y evan~\xu , ̂ JT^. This establishes (3.10), hence completes

the proof of Theorem (3.6).

Though we have proved Theorem (3.6), we must accept the fact that

the existence problem of big Cohen-Macaulay modules is still in the dark.
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However once we know the existence, we are able to construct modules

which enjoy stronger conditions. Precisely we can prove

(3.11) THEOREM. Let T be a complete regular local ring containing a

field and let R be the integral closure of T in the algebraic closure Q of

the quotient field Q of T. Then there exists an R-module M such that, for

any finite T-algebra S which lies between T and R and for any system of

parameters x for S, M is a big Cohen-Macaulay module over S with respect

to x.

Before proceeding to the proof we should notice some remarks.

(3.12) Let N be the set of field extensions K such that Q c X c Q

and [K: Q] < <χ> and let Sκ be the integral closure of T in K for KeN.

Since T is a complete local ring, Sκ is a local ring which is finite over

T for any KeN. (See [N].) The set {Sκ\KeN} forms an inductive system

ordered by inclusion. One can easily verify R = ]ΛX^K^NSK, hence in

particular R is a quasi-local ring. Since T is a Noetherian ring, Q is an

infinite extension of Q. Thus one can find a countable set of elements

{ x t \ i e N } i n Q s a t i s f y i n g Q(x,) Q Q ( x u x 2 ) Q - - Q Q ( x u x2, • • • , * , ) £ Q(xl9 x2,

-• ,xi+1)> >. If we denote A(S) = {KeN\Kz)S} for a subset S of Q, then

{A(S)|S is a finite subset of Q} forms a filter on N, hence there is an

ultrafilter $ on Ncontaining those A(S) for finite S. Since A(xu x2, , x^)

e % for any i e N and since

Γ ) A ( x ί 9 x 2 , - - , X i ) = φ ,
= 1

it follows that g is an ω-incomplete ultrafilter on N. (See (1.3).) Thus one

can consider the separated ultraproduct f\κeNSκ as T-modules (not as Sκ-

modules). Denote it by S. Then S is naturally a T-algebra. For any

element x of R, x belongs to Sκ for a.a. KeN, hence x gives the element

(x)~eN of S by (1.8) (iii). This defines a map f:R-+S. It is easily seen

that / is a T-algebra homomorphism. In order to prove Theorem (3.11) it

is hence sufficient to show that there is an S-module M such that, for any

KeN, M is a big Cohen-Macaulay module over Sκ.

Proof of Theorem (3.11). We shall construct such an S-module M.

Since each Sκ is a local ring containing a field, Hochster's theorem [H2;

Theorem (5.1)] and (3.5) show that there is a balanced big Cohen-Macaulay

module over Sκ. We denote it by Mκ for KeN, and denote by M the
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separated ultraproduct of the Mκ as T-modules (not as S^-modules). Note

that M is a module over S, hence a module over Sκ for any KeN. Since

M i s a separated and complete Γ-module by (1.11) and since Sκ is finite

over T, M is also separated and complete as an S^-module. We shall prove

that this M satisfies the required condition. For this, it suffices by (3.5)

to show that x = {xu x2, , xd} is a regular sequence on M, where x is a

regular system of parameters of T. This is done in the following course.

Let ΣUlXi(yκ(ϊ))κeN = 0 where 1 £ k < d and (yκ(i))κβN e M (ί = 1, 2,

• ., k). We would like to show that (yκ(k + ϊ))κeN e (xu x2, , xk)M. By

definition it holds that, for any integer n, ΣΪH Xiyκ{i) € (z?, xj, , x%)Mκ

for a.a.KeN. Since JC forms a regular sequence on Mκ for any KeN,

we easily see that

for those if e N.

If we denote Mκ = Mκ){xu , xk)Mκ and denote by JA(0 the natural

image of j^(0 in M*, then the above shows that (yκ(k + l))κeN = 0 in

Consider the trivial exact sequence;

0 > (xl9 , xk)Mκ > Mκ > Mκ > 0

for all KeN. Here one can verify the following;

mnMκ Π (xl9 - - -,xk)Mκ = m * - 1 ^ , - -,xk)Mκ

for all n e N and KeN. (Since {xί9 , xk} is a regular sequence on Mκ,

[EGA; (15.1.9)] shows that grm(Mκ) ^ (MκlxaMκ)[Xl9 ., Xk]. Then the

claim can be proved in the same manner as in (3.9). So we leave the detail

to the reader.) In particular, aτ.((xu , xk)MK9 Mκ) = 1 for all KeN.

Therefore Theorem (1.18) gives the exact sequence;

0 > Π (x» , x*)Mκ > M > Π Mκ • 0 .

Hence (yκ(k + ΐ))κeN is the image of an element of Y[KeN(Xι> , x*)Mκ,

thus it is in (xu , xk)M. This completes the proof of Theorem (3.11).
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