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THE CONTINUITY PRINCIPLE IN EXPONENTIAL

TYPE ORLICZ SPACES
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1. Introduction

In this section we shall present some facts in the background of the problem

under our next consideration. Let (X, d, μ) be a finite measure space, and let B

be a Banach space with a norm || ||. Let M(μ) denote the linear space of all

/^-measurable functions from X into R, and let T be a linear operator from B into

M(μ). Then T is said to be continuous in μ-measure, if ||/w~~/ll~>0 implies

μ{\ Tfn - Tf\ > ε} -+ 0 as w-> °o, for all ε > 0 with fn and / in B for n > 1. If

{Tn I n > 1} is a sequence of linear operators from B into M(μ), then we denote

(T*f) (x) = supw>! I (Tnf) (x) I for / e f i a n d i E X. It is well-known that we

have:

(1.1) (Banach's principle)

Let {Tn I n > 1} be a sequence of linear operators from B into M(μ) such

that every Tn is continuous in μ-measure for n > 1. Then T f < °° μ-a.e.

for all / €= 5, if and only if there exists a decreasing function C : R+ —* R+

satisfying lim^^ C{λ) — 0 such that we have:

μ{T*f>λ\\f\) <C(λ)

for all λ > 0 and all / e B.

A main implicit usefulness of Banach's principle follows from the well-known fact

that having a sequence of linear operators {Tn \ n > 1} from B into M(μ)

satisfying the inequality in (1.1) the set of all / €= B for which the sequence of

functions {Tnf\ n > 1} converges μ-a.e. is closed in B, see [5] (p.3). In this way

the establishment of a.e.-convergence over the whole space B very often becomes

equivalent to the establishment of the inequality in (1.1). Another natural question

is to determine the explicit form of the function C appearing in (1.1). Under our

general hypotheses on the operators and spaces in (1.1) it is difficult to believe in

a possibility of deducing any further information on C besides the given one.
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However more informative inequalities in some particular cases are obtained a

long time ago by Kolmogorov in [8] and Calderon in [19]. Finally they were re-

sulted by Stein's continuity principle giving a specific form to the function C

under additional hypotheses which may be described as follows:

(1.2) The Banach space B equals LP(μ) with 1 < p < 2.

(1.3) There exists a family 8 of measure-preserving transformations in (X, d, μ)

which is "mixing" in the following sense: For any A, B €= d with μC4)

μ(B) > 0 and any a > 1, there exists E e 8 such that:

μ(X)-μ(A Π E'ι(JS)) ^ a-μ(A)μ(B).

(1.4) The sequence {Tn | n > 1} and the family 8 "commute" in the following

sense:

E(T*f) < T*(Ef)

for all / e B and all E e I.

(1.5) (Stein 5 continuity principle)

Under (1.2)-(1.4) we have T*f < oo μ_a.e. for all / e L^^), if and only if:

for all λ > 0 and all / e L^^) with some Cp > 0.

Actually Sawyer was who recognized the above hypotheses and the non-essence of

a group theoretic setting as it was considered by Stein himself. He has also

observed that the above principle remains valid for p > 2 if the operators Tn are

assumed to be positive, that is Tnf > 0 μ-a.e. whenever / > 0 μ-a.e. with / ^

LP(μ) and w > 1. So we have:

(1.6) (Sawyer's continuity principle)

If every Tn in (1.5) is assumed to be positive for n > 1, then the equiva-

lence in (1.5) remains valid for all 1 < p < °°.

Methods used in the proofs of principles (1.5) and (1.6) strongly rely upon

Banach's principle (1.1) with an instructive and nice application of the Rade-

macher randomization in Stein's case. For more details in this direction we shall

refer the reader to [5] (p. 1-15).

The main purpose of this paper is to investigate and establish a continuity

principle of Sawyer's type for positive linear operators in the case where B equals
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to the Orlicz space LΦp(μ) with φp(f) = exp(tP) — 1 for t > 0 and 1 < p < °°. A

very instructive observation in this direction may be obtained by a reformulation

of the inequality in (1.5) and (1.6) in the following way:

(1.7) sup QP-μ{T*f > λ))υp <Cp (f\ f\p
l/P

fThen one might recognize the left side above as a Laurent norm of T f induced

by the function (pp(t) — t for t > 0, while the L -norm of/ on the right side may

be seen as the Orlicz norm of / induced by the same function φp, see [7]. The

given Laurent norm is often called the weak L -norm and is denoted by || H^.

Therefore the inequality in (1.7) may be equivalently written as follows:

Since the given Laurent and Orlicz norms are induced by the same functions φp

we may follow the general terminology involving some other suitable functions φ,

and say that they are associated each to other. Moreover it is well-known and

easily verified that a given Laurent norm is always less or equal to the associated

Orlicz norm, see [7] (p. 11). In particular we have:

Furthermore it is well-known that the left side in (1.8) cannot be replaced by the

right side in (1.9) in general. However in the case where we consider exponential

φp instead of polynomial φp the induced Laurent norms become equivalent to the

associated Orlicz norms, see section 2. Therefore the inequality which corresponds

to that given in (1.5) and (1.6) clearly reduces to the following one:

*f(1.10) \\T*f\\Φp<>Cp \

being valid for all / e LΦp(μ) with 1 < p < °° . Here || \\φp denotes the Orlicz

norm induced by φp for 1 < p < °°. Thus we shall be in the next mainly con-

cerned on the establishment of inequality (1.10) having in mind the equivalence

between the Orlicz norm of T / o n the left side in (1.10) and the associated Lau-
si.

rent norm of T f which is given by:

Since the right side above contains the tail μ-measure of T / it is quite clear that

inequality (1.10) will also contain all needed information concerning the specific

form of the function C arising in Banach's principle in this case. Another interest-
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ing reason for this investigation is coming from the fact that inequality (1.10) may

be viewed as a dominated ergodic theorem in the Orlicz space Lp(μ) for 1 <p

< o°, at least when the operators under consideration have the average form. We

shall however see that in this case inequality (1.10) may be established in a

rather elementary way by using the well-known dominated ergodic theorems in

//-spaces, but this technique does not apply for more general operators. To con-

clude this introduction let us say that the method used in the proof of our main re-

sult relies upon Banach's principle and a technique established in Stein-Sawyer's

continuity principles in L -spaces.

2. Preliminary facts

In this section we shall recall some definitions and more or less known facts

on the objects under next consideration. We begin by considering Orlicz and Lau-

rent spaces. Let (X, d, μ) be a finite measure space, and let φ be an increasing

left continuous function from [0, °°[ into [0, °°[ such that φ(0) = lim, 1 0 φ(t) =

0. Then we may consider the following Orlicz norm induced by φ, see [7]:

τφ = inf [a > 0 I f φia'1 \ f\) dμ < l )

whenever/ belongs to R with inf 0 = 0 0 Recall that / gdμ denotes the upper

μ-integral of a function g from X into R. The corresponding Orlicz space is de-

fined by:

Lτφ(μ*) ^ { / E R 1 ! lim || εf\\Tφ = 0).
ε I 0

It is well-known that we have:

(2.1) If φ is convex, then (LTφ(μ ), || | |Γ) is a Banach space.

Similarly we may consider the following Laurent norm induced by φ, see [7]:

I I / I =inf { α > 0 | s u p ( p ( / ) μ*{|/l > a-t}) < I)
φ t>o

whenever / belongs to R . Recall that μ denotes the outer ^-measure. The cor-

responding Laurent space is defined by:

Λσφ(μ*) = { /€=R*| l im| |ε/ | | r = 0 } .
ε 1 0 φ

It is well-known that we have:
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(2.2) If φ is convex at 0, i.e. φ(λt) < λφ{f) for all λ e [0,1] and all / > 0, then
/ ΛσΦ/ *\ II H 1 / 2 \ τ> ' 1 j-

(Λ {μ ) , II \\σ ) is a Frechet space.

In addition we may also consider the following norm and space:

| | / | | 0 = inf { * > 0 | μ * { | / | > a) <a)

L°(μ*) = { / e = R * | l i m | | e / | | 0 = 0} =
6 | 0

= {/eR*|limμ*{|/| > ί} =0}
ί-»oo

whenever / belongs to R . Note that || ||0-convergence in R is actually converg-

ence in μ -measure, that is \fn — /" ||0—^ 0, if and only if μ {\fn — / | | > ε) —• 0

as n—» °°, for all ε > 0 with fn and / in R for n > 1. It is well-known that we

have:

(2.3) (L°(μ*), || ||0) is a Frechet space.

Let M(μ) denote the set of all ̂ -measurable functions from X into R, then we de-

fine LTφ(μ) = LTφ(μ*) Π M(μ), Λσφ(μ) = Λσφ(μ*) Π M(μ) and L°(μ) = L°(^*) Π

M(μ). It is well-known that we have, see [11]:

(2.4) If l i π v ^ φ(f) — ooj then LTφ(μ ) c L°(^ ) and the natural injection is con-

tinuous. The space Uψ{μ) is a closed linear subspace of LTψ(μ ). If φ is

moreover convex, then LTφ(μ) is a Banach space relative to the Orlicz norm

In exactly the same way one might prove:

(2.5) If lim^^ φ(f) = °°, then Λσφ(μ ) c L (μ ) and the natural injection is con-

tinuous. The space A φ(μ) is a closed linear subspace of A φ(μ ). If φ is

moreover convex at 0, i.e. φ{λt) < λφ(f) for all λ ^ [0,1] and all t > 0,

then Λσφ(μ) is a Frechet space relative to the norm || ||σ .

As another point we evidently have:

(2.6) L (μ) is a closed linear subspace of L (μ ) and thus a Frechet space rela-

tive to the norm || ||0.

According to the fact that the Orlicz norm || ||Γ and the Laurent norm || ||σ are

induced by the same function ψ we will say that || ||Γ and || ||σ are associated

each to other. The following elementary inequality establishes a basic connection

between the associated Orlicz and Laurent norms and is occasionally useful:
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(2.7) \\f\\σφ<\\f\\Tφ

being valid for all / ^ R . Let us now pass to concrete examples. First take for

above φ the function φp(f) — t for t > 0 with 1 < p < °°. Then we evidently

have:

(2.8) ^ ( / Γ

(2.9) | | / I =Sup(tp μ*{\f\>t})1/p

t>0

for all / ^ R*. The norm appeared in (2.8) is the classical L^-norm || \\p, while

the norm appeared in (2.9) is often called the weak Z/~norm and is usually de-

noted by || \\Pt0O. Let us say that the given weak L -norms take a significant place

in the study of various Kahane-Khintchine inequalities in Orlicz spaces, see [10],

[11] and [12]. According to (2.7) we have:

(2.10) U

for all / ^ RX and all 1 < p < °°. However it is easily verified that an L^-norm

and the associated weak L -norm are not equivalent in general. Now take for

above φ the function φp(t) = exp(tp) — 1 for t > 0 and 1 < p < «>. Then it is

easy to see that the explicit forms of the norms are:

(2.11) | | / | | ^ = i n φ > 0 | / φp(a'ι\f\)dμ^l]

(2.12,

for all / G R . The norm appeared in (2.11) is the classical Orlicz norm || \φ in-

duced by ψp, and the norm appeared in (2.12) is the associated Laurent norm

which will be in next denoted by || \φ >OQ. According to (2.7) we have:

(2.13) \\fl^ < I f\\φp

for all / ^ R and all 1 ̂  p < °°. However in this case we have even more.

Namely there exists a constant Cp > 0 such that:

(2.14) \\f\\Φp<Cp

for all / €= R and all 1 ̂  p < °° . This fact is easily established and we shall

leave its verification to the reader. However the given observation is significant

since it shows that the essence of a continuity principle for operators in exponen-
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tial type Orlicz spaces differs from the known ones in L -spaces as it was ex-

plained in introduction. We proceed by considering the measure-theoretic setting

of Stein-Sawyer's continuity principles in some more details. Let (X, d, μ) be a

finite measure space, then a map E from X into itself is called an endomorphism, if

E is measurable and satisfies μ ° E~ — μ. Endomorphisms are often called

measure-preserving transformations. Let E be an endomorphism in (X, d, μ), then

a set A in d is said to be it-invariant, if E (A) — A. The family dE of all

it-invariant sets in d is a σ-algebra in X. The endomorphism E is called ergodic,

if μ(A) -μ(Ac) — 0 for all A ^ dE, while E is called (strongly) mixing, if we have:

\imμ(X)'μ(A Π E~\B)) = μ{A)-μ{B)

for all A, B ^ d. If E is mixing, then it is obviously ergodic. It is well-known

that mixing endomorphisms arise naturally in many concrete examples, while ergo-

dic endomorphisms take a central place in the study of various ergodic theorems

having the origin and interpretation in statistical mechanics. Therefore mixing

condition (1.3) imposed on a family of measure-preserving transformations 8 in

(X, d, μ) becomes natural and acceptable. Let us for instance point out a trivial

fact that if E is a mixing endomorphism in (X, d, μ), then the family of

measure-preserving transformations 8 = {Eι \ i > 1} is mixing in the sense of

(1.3). Moreover one can easily verify that we have:

(2.15) If E is an ergodic endomorphism in (X, d, μ), then the family of

measure-preserving transformations 8 = {E i ^ 1} is mixing in the

sense of (1.3).

A similar interpretation of commuting condition (1.4) is possible, see [5] (p.7). To

conclude this section let us point out an important consequence of mixing condi-

tion (1.3) which can be easily deduced by induction using the inequality 1 — x

< e x p ( - x) for x e R, see [5] (p.10):

(2.16) If 8 is a family of measure-preserving transformations in (X, d, μ)

which is mixing in the sense of (1.3), then for any A G d with μ(A) > 0

and every n > 1, there exist Ev..., En ^ 8 such that:

μ(E;ι(A) U . . . U E;\A)) >\ μ(X)

provided that n μ(A) > μ(X).
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3. The continuity principle in exponential type Orlicz spaces

In this section we present the basic results of the paper. Let (X, d, μ) be a

finite measure space, and let M(μ) denote the linear space of all ^-measurable

functions from X into R Let φp(t) = exp(tP) — 1 for t > 0 and 1 < p < °°, and

let L p(μ) denote the Orlicz space with the Orlicz norm || \\φ induced by φp for 1

< p < °° . Given a sequence of linear operators {Tn | n > 1) from L p(μ) into

M(μ), we recall that T*/ = s u p ^ | TJ\ for / e LΦp(μ) with 1 < p < °o. Then

we have:

THEOREM 3.1. L<?£ {X, d, μt) be a finite measure space, and let {Tn\ n > 1} be

a sequence of linear operators from L p(μ) into M(μ) with 1 < p < °° . Suppose

moreover that there exists a family § of measure-preserving transformations in (X, d, μ)

such that the three conditions are satisfied :

(3.1) Every Tn is positive and continuous in μ- measure for n > 1

(3.2) 8 is mixing in the sense o/(1.3)

(3.3) {Tn I n > 1} and 8 commute in the sense 0/(1.4).

Then T / < °° μ-a.e. for all f ^ L p(μ), if and only if the following inequality is

satisfied:

(3.4) 1Γ71, ^Cyi/t,

for all f ^ L p(μ) with some Cp > 0 and for given 1 < p < °°.

Proof It is no restriction to assume that μ is a probability measure, that is

μ(X) = 1. Furthermore note that if (3.4) is satisfied, then evidently T f < °°

μ-a.e. for / €= L p(μ) with 1 < p < °° . Therefore to complete the proof it is

enough to show the reverse implication. We begin in this direction by establishing

the following inequality:

(3.5) || max | f, \ \\φf < (Δ-log n)ι/p• max \\f, \\φp
1< < « l<j <n

being valid for all fl9. . ., fn e L0 ί(μ) with n > 2 and Δ = 2 /log 2, where 1 < />

< °° is given and fixed. To prove (3.5) it is no restriction to assume that ||/J 1̂

< 1 for j — 1,.. ., n. Since Δ -log n > 1, then by Jensen's inequality we find:

/
/I \p

exp — m a x \ f \ ) d μ =
Mil-log*)1" i<;<n Λ V
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expdnax \ f,\P) dμ)
l<ίi<n '

/log(2w)

1/(Δ log n)

< (2n)

Hence (3.5) follows directly by the definition of the Orlicz norm || \\φ . Let us

further proceed by considering a map F from X into R defined by:

Fix) = — ' max fj(x)
(ΔΊogn) \<)<n

for x e X and n > 1, where / > 0 in LΦp(μ) with \f\φp = 1 is given, and fi =

f°Ej with some Ej £ 8 for j — 1,. . ., n which will be introduced precisely later

on. Let us however notice that according to (3.5) we have:

\\F\\φp<l

for any choice of E/s in 8. By positivity of Tm we find:

(ΔΊogn)

for all I < j < n and all m > 1, and therefore we have:

(3.6) Γ*F > X . max T%
(ΔΊogn)

Let us now for given λ > 0 put A = {T*/> Λ}, and let Ay = Ej ι(A) for =

1,.. . , n. Then by (3.3) and (3.6) we may easily conclude:

(3.7)

According to (2.16) we can choose Ev . . . , En ^ 8 in such a way that

μ(U jsslAj) ^ 1 /2 in the case where we have:

(3.8) n μ(A) ^ 1.

Assuming (3.8) then by (3.7) we get:

(3.9) μ{τ*F> λ

1 (Δ logn)
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However every Tm is by assumption (3.1) continuous in ^-measure. Therefore

Banach's priciple (1.1) may be applied on the function F. Since | | F | | 0 < 1, in this

way we can find C > 0 large enough to satisfy:

(3.10) μ{T*F> C) < 1/2.

So putting λ = C 04'log n)ι/p in (3.9) we obtain a contradiction with (3.10). Thus

(3.8) is false. In other words we may conclude:

μ{T*f> C'(ΔΊogn)1/P} < \/n

for all n > 2. From this inequality we may easily deduce the following inequality:

μ{T*f>λ'\\f\\φ} ^ Q expί-CV/)

being valid for all λ > 0 and all / ^ L p(μ) with some numerical constants Clf C2

> 0. Hence we may easily obtain:

f(exp(τm) ~
Γ ί ( τ*f \

for all 7 > 0 and all / ^ L p(μ). Since the right side above obviouly tends to zero

when 7 tends to infinity, we may conclude that for some numerical constant Cp > 0

the following inequality is satisfied:

τ*fL< ct

for all / ^ L p(μ). This fact completes the proof of the theorem. D

In order to formulate an immediate consequence of the preceding result let us

recall that || \\φ >O0 denotes the Laurent norm given by (2.12) for 1 < p < °°. Then

we have:

COROLLARY 3.2. Under the hypotheses in Theorem 3.1 we have T f < °°

μ-a.e. for all f ^ L p(μ), if and only if the following inequality is satisfied :

Oil) llrVll^cvll/L,

for all f ^ L p(μ) with some Cp > 0 and for given 1 < p < °° . In particular, if
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T*f < °° μ-a.e. for all f e LΦp(μ), then we have :

μ{T*f > λ \\f\\φp) < C, e x p ( - Dp-λp)

for all λ > 0 and all f e Z,0*(μ) wί/i som^ Cp, Dp > 0 and for given 1 < p < °°.

Pnw/. Straightforward by Theorem 3.1, (2.13) and (2.14). •

This result establishes a continuity principle for positive linear operators in

exponential type Orlicz spaces under rather weak hypotheses. It is however in-

teresting to observe that the main inequality in the statement of the continuity

principle, that is inequality (3.4) in Theorem 3.1, may be interpreted as a domin-

ated ergodic theorem in the given exponential type Orlicz spaces, at least when the

linear operators Tn have the average form given by:

(3.12) TJ=^nΣTlf
71 .7 = 0

for some linear operator T in L (μ) with f ^ L (μ) and n > 1. However we shall

now see that in the setting of the well-known dominated ergodic theorems in

//-spaces these theorems contain enough informations to provide the eatablish-

ment of inequality (3.4) in Theorem 3.1 in a rather elementary way. Let (X, sA, μ)

be a finite measure space, let M(μ) denote the linear space of all /^-measurable

functions from X into R, and let T be a linear operator from LP(μ) into M(μ) for

some 1 < p < °°. Then T is said to be a contraction in LP(μ), if we have || Tf\\p

— 11/11/) for all / €= L (μ). And T is said to be an L -IT-contraction, if T is a con-

traction in L (μ) and || TfW^ < 1 whenever | | / | L ^ 1. Having T we may consider

a sequence of linear operators {Tn | n > 1} in LP(μ) defined by (3.12) for all / e

LP(μ). As usual in this case we put T * / ~ supw> x \ TJ\ for all / e LP(μ). Let

1 < p < °° be given and fixed, then it is well-known if any of the following three

conditions is fulfilled:

(3.13) {Wiener's dominated ergodic theorem)

TJf — f°τJ for j = 1,2..., where τ is an endomorphism in (X, d, μ)

(3.14) (Dunford-Schwartz's dominated ergodic theorem)

T is an L -ZΓ-contraction

(3.15) (Akcoglu's dominated ergodic theorem)

T is a positive contraction in L (μ)

then the following inequality is satisfied:
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(3.16)

for all / ^ L (μ), see [9]. Moreover in the case where (3.13) or (3.14) is satisfied

we have:

(3.17) Ilr7lli,oo

for all / <Ξ L (μ), see [9]. It turns out that the constants appearing in inequality

(3.16) are sufficiently good to provide its extension to exponential type Orlicz

spaces. In order to clarify some technical details in the proof of this fact we shall

recall that we have:

(3.18) ε M |l/ll ί^ll/« f^δ t,β 0 ||/L

for all / ^ M(μ) and all 1 < p, q < °° with some numerical constants εPq, δQOO >

0. In particular we may deduce:

(3.19) C(μ) c LΦq{μ) c f)p>ιL\μ) c L\μ)

for all 1 < q < °°. A dominated ergodic theorem in exponential type Orlicz spaces

may be now stated as follows.

THEOREM 3.3. Let (X, d, μ) be a finite measure space, and let T be a linear

operator satisfying any of above conditions (3.13), (3.14) and (3.15). Let us consider a

sequence of linear operators {Tn\ n > 1} defined by (3.12) for all f ^ L p(μ) with

some 1 < p < °°, and let us put T*f = sup w > x | Tj\ for f G LΦp(μ). Then the fol-

lowing inequality is satisfied :

(3.20) I T*flt < Cp

for all f & L p(μ) with some Cp > 0 and for given 1 < p < c°. Moreover we have :

(3.21) μ{T*f>λ \\f\\φp} <Cp exp(-Dp-λP)

for all λ > 0 and all f ^ L p(μ) with some Cp, Dp > 0 and for given 1 < p < oo.

Proof It is no restriction to assume that μ is a probability measure, that is

μ(X) = 1. First suppose that p > 1, then by (3.16) we have:

\kp j

I dμ

exp > c η m d *
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kp ^kp

iofcl C

kp-\\f\ζ - l ) J !

for some Kp > 0 and C •= C^ > 0 sufficiently large. Hence (3.20) follows direct-

ly by the definition of the Orlicz norm || ||0 . Now suppose that p — 1, then by

(3.16) we have:

T'f' *
τ"fl * + ^ I ^ ί Φ c /l/!" *

for all C > 0 with some K1 > 0. Hence by Jensen's inequality, (3.16) and (3.18)

we get:

/ exp ( c T / U d μ - chz + *> / e χ p (cηmf) * - 2

for C '-= Cx > 0 sufficiently large. Hence (3.20) follows directly by the definition

of the Orlicz norm || \\Φi. Inequality (3.21) follows straightforward by (3.20) and

(2.13). D

Let us in addition say that a part of the preceding theorem was already re-

corded and used earlier in an equivalent formulation in [16]. This result has found

also an application in [1]. In this context and due to the fact that the given ex-

ponential Orlicz norms are equivalent to the associated Laurent norms we may

conclude that the continuity priciple established in Theorem 3.1 simultaneously

forms a dominated ergodic theorem for more general positive linear operators than

those considered in Theorem 3.3. Actually it is instructive to observe that the

average form of the operators from Theorem 3.3 is compensated by the

mixing-commuting condition imposed on the phase space in Teorem 3.1. The next

example shows that these facts may in a quite natural setting be the only available
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ones and at the same time serves an application of the continuity principle of

Theorem 3.1 itself.

EXAMPLE 3.4. Let ζ= {£,. | / > 1} be a stationary ergodic sequence of real

valued random variables defined on a probability space (Ω, 2F, P), and let (3n —

(j(ζn, ζn+χ...) denote the σ-algebra generated by ξn, ζn+i... for n > 1. Let us de-

fine:

TJ=E[f\%]

for all / ^ L (P) and all n > 1. Then {Tn \ n > 1} is a sequence of positive linear

operators from L (P) into itself. Moreover every Tn is obviously continuous in

P-measure in every LP(P), and in every L P(P) as well, for 1 < p < °°. So (3.1)

in Theorem 3.1 is satisfied. In what follows it is no restriction to assume that our

probability space ( β , 9, P) equals (RN, S(R N ) , P) with the unilateral shift θ as

an ergodic endomorphism. Therefore by (2.15) the family of measure-preserving

transformations 8 — iθ* \ i > 1} is mixing in the sense of (1.3). So (3.2) in

Theorem 3.1 is also satisfied. Moreover one can easily verify that we have:

(THf)'θ=TH+1(f'θ)

for all / ^ L (P) and all n > 1. Hence by induction we get

(7;/) β1 = τ;+ί (/•»')

for all / e Lι(μ) and all n, i > 1. Putting 7*/ = s u p ^ | Tj\ for / e Lι{P) we

may easily conclude:

for all / ^ L (P) and all i >: 1. In other words the sequence {Tn\n> 1} and the

family 8 commute in the sense of (1.4). Thus (3.3) in Theorem 3.1 is satisfied, as

well as the hypotheses in Sawyer's continuity principle (1.6). Moreover by ap-

plying reversed martingale convergence theorem we know that Tnf converges

P-a.e. as n->°° for every f^U(P). Therefore T*f < °° P-a.e. for all / e

L (P), and by Theorem 3.1 we may establish the following inequality:

(3.22) l | sup |£[/ |«U Mtp<CVl|/| |,p

being valid for all / ^ LΦp(P) with some Cp > 0 and for given 1 < p < °° .

Moreover by (2.13) hence we may deduce:

(3.23) Pίsup I E [/| %] I > λ 1/L } < C, exp(- Dp-λp)
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for all λ > 0 and all / e LΦp(P) with some Cp, Dp > 0 and for given 1 < p < °°.

By applying Sawyer's continuity principle (2.6) we may establish the following in-

equality:

(3.24) P ί s u p I E [/ | « y I > λ) < -% f \f\P dP
n>l λ J

being valid for all / ^ LP(P) with some Cp > 0 and for given 1 </> < °°. In

other words we can write:

(3.25) | s u p | £ [ / | 3 U III^ SCVII/II,

with / , Cp and p as above. However it is instructive to notice that the constants

Cp appearing in (3.24) and (3.25) are not explicitly determined, so a potential ap-

plication of (3.24) and (3.25) in a direct proof of (3.22) and (3.23) as in the proof

of Theorem 3.3 seems to be not available. D

We conclude our investigation on the continuity priciple in this paper by con-

sidering the case where the operators Tn are defined by means of a matrix summa-

tion method. It turns out that in this case a stronger version of Theorem 3.1 is

valid. This fact is already observed in [17] in the L -setting, and we shall here

prove its extension to exponential type Orlicz spaces. The key argument for this

improvement relies upon the conjugacy lemma of Halmos, see [6] (p.77), and is

similar to the one used for the establishment of the domination priciple of Conze,

see [2] and [17]. In order to introduce the hypotheses we shall first recall some de-

finitions and known facts which will be of use in the sequel. Let (X, d, μ) be a

finite measure space, then a measure-preserving transformation r in (X, d, μ) is

said to be an automorphism in (X, d, μ), if τ is bijective and τ~~ is measure-

preserving. The family of all automorphisms in (X, d, μ) will be denoted by %.

The family % forms a group with composition as the binary operation. If r belongs

to ίί, then τf — f° τ for / ^ L (μ) defines a unitary operator on L (μ). It is

well-known that the strong and the weak topology restricted to the set of all unit-

ary operators coincide. Therefore the specializations of these topologies to # are

the same. The given topology is called the weak topology for %, and we have that

τn —• T in % if and only if any of the four equivalent conditions is satisfied:

(3.26) / ° τ w - + / ° r i n L 2 ( μ ) for all / €= L2(μ)

(3.27) μ(τ~\A) Δ τ~\A)) -> 0 for all A e d

(3.28) μ(τn(A) A τ{A)) -• 0 for all A e d
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(3.29) f°τn-+f°τinLp(μ) for all / e Lp(μ)

where 1 < p < °° is given and fixed. Moreover with respect to this topology the

group $ becomes a topological group, see [6] (p.62). In the sequel we will be work-

ing under the hypothesis that the measure space (X, d, μ) is isomorphic (point-

wise) to the unit interval [0,1] with Lebesgue measure. In this case we will say

that (X, d, μ) is a Lebesgue space. It is well-known for instance, that every polish

space X (with d being the completion of the Borel σ-algebra $(X) with respect to

any probability measure μ on 8i(X)) is a Lebesgue space, see [13] (p.16-17). It

turns out that this hypothesis is sufficiently regular to provide fruitful facts on

the weak topology of the group of automorphisms, see [6] (p.61). For instance

under this hypothesis the weak topology of % becomes metrizable and satisfies the

first countability axiom, see [6] (p.63-64). Moreover recall that τ ^ % is said to

be aperiodic, if μ{χ G X\ χnχ — x) — 0 for all n > 1. Then we have, see [6]

(P.77):

(3.30) {The conjugacy lemma)

If σ e % is aperiodic, then the conjugate class c{σ) = {τ~ στ\ τ e %} of

σ is dense in (6.

It is easily verified that every ergodic automorphism in (X, d, μ) is aperiodic.

However one can easily establish that this fact might not be true for some other

measure spaces. We turn to define the operators Tn by means of a matrix summa-

tion method. For this suppose that an infinite matrix of real numbers A = (ank | n,

k > 1) and 1 < p < °° are given and fixed. Let r be from %, then we may formal-

ly put:

(3.31) TΪf=Σank(f°τk)

for all / ^ LΦp(μ) and all n > 1. We will assume that the row vectors an = (ank \

k > 1) belong to lx. From this fact we may easily conclude that by (3.31) a con-

tinuous linear operator Ύτ

n on L p(μ) is defined for n > 1. Clarify that T*fis the

Z>-limit of ΣN

k=1ank(f° τk) when N-> °o , for all / e LΦp{μ) and all n > 1.

Moreover by (2.4) we may easily verify that every Tn is continuous in ^-measure

for n > 1. Further we will assume that ank ^ 0 for all n, k ^ 1. Under this

hypothesis every Tn becomes positive for n > 1. As usual we shall denote:

(3.32) T r * / = s u p | T ; / |

for all / ^ L p(μ). It is instructive to notice that for any σ ^ *8 we have:
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σ(T*f) = T*(σf)

for all y ^ L p(μ) provided that σ°τ — τ°σ. In particular we find:

(3.33) r'(Γ*/) = T*(τf)

for all / £ L p(μ) and all i > 1. In order to prove the main theorem under the

above hypotheses we shall first state a lemma which is also of interest in itself.

LEMMA 3.5. Let A = (ank \ n, k > 1) be an infinite matrix of non-negative real

numbers such that the row vectors an — (ank \ k > 1) belong to lγ for all n > 1, and

let 1 < p < °° be given and fixed. Let (X, d, μ) be a Lebesgue space, and let Tn

and Tτ be defined by means of A as in (3.31) and (3.32) whenever r ^ ίί and n > 1.

L<?ί ® denote the set of all r in ίί satisfying:

(3.34) μiT*f> C(λ)} <D(λ)

for all λ > 0 and all f ^ L p(μ) with \\ f\\φ — 1, where C and D are given functions

from ]0, °° [ into itself Then ® is closed in (β.

Proof. Suppose that τp belongs to ® for all p > 1 and τp —* r in % as ^ —* °°

for some τ ^ c€. Then it is enough to show the following inequality:

(3.35) μ\ sup
l<n<N

C(λ)\ <DU)

being valid for all λ > 0, all /€Ξ Z/'(μ) with | |/ | |^ = 1, and all JV > 1. Let JV > 1

be given and fixed, and let ε > 0 be given. Since an by our hypothesis belongs to

lγ for all n > 1, there exists Mε > 1 such that Έ°^=Mεank < ε for all 1 < n

< N. Therefore by (3.31), (2.4) and Markov's inequality we have:

( oo Λ

sup I Σ ank (f°τk) I > CU) + δj <

μ{ sup I Σank(f°τk)\ > C(λ)} + ε <

μ\ sup I Σ ank (f°τk

p) \ > C(λ) + δ\+ 2ε <
l<n<N fc = l " j

μ\ sup I Σ ank (f°τk

p) I > CU)} +
sup

1<«<JV

Σ a^ > δ[ + 2ε<Z)U) +N-ε j' 2ε
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for all λ, δ > 0 and with some Pε > Mε and pε > 1. Letting first ε I 0 and then

δ I Owe get (3.35), and the proof is complete. •

The improvement of Theorem 3.1 for the operators defined by matrix summa-

tion methods may be now stated as follows.

THEOREM 3.6. Let A = (ank \ n, k > 1) be an infinite matrix of non-negative

real numbers such that the row vectors an — (ank k > 1) belong to lx for all n > 1,

and let 1 < p < °° be given and fixed. Let (X, sd, μ) be a Lebesgue space, and let

Tτ

n and Tτ be defined by means of A as in (3.31) and (3.32) whenever τ G % and

n ^ 1. Then the following two statements are equivalent:

(3.36) There exists an ergodic automorphism σ €= ί? such that:

μ-a.e.

for all f e LΦp(μ)

(3.37) The following inequality is satisfied:

for allf G LΦp(μ) with some Cp > 0.

Moreover in this case we have :

(3.38) supμ{T*f>λ-\\flp} < Cp exp(- Dt λ
p)

for allλ> 0 and allf e LΦp(μ) with some Cp, Dp > 0.

Proof Since (3.37) implies (3.36) obviously, it is enough to show that (3.36)

implies (3.37). For this put % = {σ* | i > I), then by (2.4), (2.15) and (3.33) we

may easily verify that (3.1), (3.2) and (3.3) are satisfied. Thus by Theorem 3.1 we

can find a constant Kp > 0 such that:

(3.39) \\TΪf\\ψp<Kp

for all / e LΦp{μ) with | | / | | ^ = 1. Let c(σ) = { r " V r | r e <β) be the conjugate

class of a. Let a—τ σ r be from c(σ) for some T ̂  <β, then we clearly have:

for all / ^ L p(μ). Hence we directly get:

T*(f) =
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Φpfor a l l / e LΦp(μ). Thus by (3.39) we may conclude

(3.40) \\T*f\\φp<Kp

for a l l / e L0 '(μ) with | | / | | ^ = 1 and all α e c(σ). Hence by (2.12) and (2.13) we

easily find:

(3.41) μ{T*f > λ) < (expU /Kp)
p - I ) " 1

being valid for all λ > 0, all / e L0>(μ) with | | / | | 0 p = 1, and all a e c(σ). By

Lemma 3.5 the family of all a in ^ satisfying (3.41) is closed in ίί. Therefore by

the conjugacy lemma (3.30) we may conclude that (3.41) holds for every a in (β.

Hence (3.40) follows straightforward by (2.12) and (2.14) for any a in (β, where

Kp should by replaced by a constant Lp > Kp which is not depending on a. Now

(3.37) follows directly by taking the supremum in (3.40) over all a in (β. Finally

let us notice that (3.38) follows easily by (3.41) being valid for all a e <g. This

fact completes the proof. •

The preceding strengthening of Theorem 3.1 may be applied in the setting of

Theorem 3.3. In this way we obtain the following stronger version of Wiener's

dominated ergodic theorem in exponential type Orlicz spaces.

COROLLARY 3.7. Let (X, d, μ) be a Lebesgue space, and let Ή denote the topolo-

gical group of all automorphisms in (X, sdy μ). Let us for given r €= Ή consider the

sequence of linear operators {Ύτ

n \ n > 1} defined by :

T;fΣfτ
n ;=0

for all f e Lι(μ) and all n>\, and let us put T*f = supw;> λ | T
τ

nf\ for all f

L (μ). Then the following inequality is satisfied :

(3.42)

for allf^ LΦp (μ) with some Cp > 0 and for given 1 < p < °°. Moreover we have:

(3.43) supμ{Tτ*f>λ \\f\\φp} < C, exp(- Dp λ
p)

for all λ > 0 and all f ^ LΦp(μ) with some Cp, Dp > 0 and for given 1 < p < °o.

Proof Let σ ^% be an ergodic automorphism in (X, <sί, μ), then by

Theorem 3.3 we see that (3.36) in Theorem 3.6 is satisfied with A = (ank \ n, k
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> 1) being a Toeplitz matrix given by ank = 1/w for k — 1, . . . ,n with n > 1

and αnΛ = 0 otherwise. Thus (3.42) and (3.43) follow straightforward by (3.37)

and (3.38) in Theorem 3.6. These facts complete the proof. •
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