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RIESZ CAPACITY AND REGULAR BOUNDARY POINTS

FOR THE PARABOLIC OPERATOR OF ORDER a

MASAHARU NISHIO

§1. Introduction

Let Rn+ = Rn x R be the (n + 1)-dimensional Euclidean space with n > 1.

We denote by X = Or, t) a point in Rn+ with x ^ Rn and t ^ R. Consider the

parabolic operator on R
n+i

where 0 < a < 1 and 1̂ denotes the Laplacian on Rn.

For a closed set £ in Rn\ we put

Γ ( α ) ( £ ) = i(s1/2ax, -s);x<ΞE

a n d

, s > 0 )

In [EK] and [IN], it is shown that for a non-empty open set ω in i?w, the origin 0

is a regular boundary point of Ω a (ω) for L a (with respect to the Dirichlet prob-

lem). The purpose of this paper is to give a characterization of this type. Let

K2a(x> y) be the kernel on Rn X Rn of the form

K2a(x, y) =

max (θ, log^—T)

\x-
\2a-n
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(2a = n)

(1 < 2a < n)

(n = 1, a < 2"

185



1 8 6 MASAHARU NISHIO

where θ(y, x — y) is the angle between y and x — y or θ(y, x — y) = 0 accord-

ing as I y 11 x — y \ Φ 0 or | y \ \ x — y | = 0. We denote by C2a(E) the capacity of

a set E associated with K2a. Our main theorem is the following

THEOREM 1. Let E be a closed set in R . Then the origin 0 is a regular bound-

ary point of Ω (E) for La if and only if C2a(E) > 0.

From Theorem 1, it follows immediately

THEOREM 2. Let Ω be an open set in R and (x0, t0) ^ R a boundary point

of Ω. If there exist s0 > 0 and a closed set E in R with C2a(E) > 0 and with

where

< ! , „ , (E, so) = ίfcb + sU2ax, to-s);x<ΞE,O^s<so},

then (x0, t0) is a regular boundary point of Ω for L .

We remark that for 1/2 < a < 1, C2a(E) is the 2α-Riesz capacity of E. For

0 < a < 1/2, there is no relation between C2a(E) and the Riesz capacity of E

(see Section 4 for further discussions). Our typical applications of Theorem 1 is

the following

COROLLARY 3. Let H be a hyperplane in R and E a non-empty open subset of H.

In the case 0 ^ H, the origin 0 is a regular boundary point of Ω a (E) for La if and

only if 1/2 < a < 1. In the case 0 £H, 0 is a regular boundary point of

Ωia)(E) forϋa) if and only if a Φ 1/2.

In particular, we have

COROLLARY 4. Let n = 1 and let E be a closed set in R. Then the origin 0 is a

regular boundary point of Ω a (E) for La if and only if

EΦ 0 /or 1/2 <a< 1,

Ci(£) > 0 fora= 1/2,

E\{0) Φ 0 forO <a< 1/2,

where Cλ{E) is the logarithmic capacity of E.



RIESZ CAPACITY AND PARABOLIC OPERATOR 1 8 7

§2. Capacities and regular boundary points

Denote by W the fundamental solution of L , that is,

UΛ*)( A ί(2τrΓw f
W (x, t) = j Λ

10

t>0

0 t<0,

where x- ξ is the inner product of x and ξ and | ξ\ = (ξ- ξ) . Put φa(\ x |) =

FT α Cr, 1). Then 0 α is decreasing on [0, °°) and

/-i \ TTT to) / ,\ , - » / 2 α , / , — l / 2 α ι K

(1) W Cr, ί) = ί φ a ( t \x\)

~w~2αfor ί > 0. Fur thermore, in the case 0 < a < 1, 0 α ( r ) is of order r~w~ 2 α as r—• °°
a (Recall t h a t for a closed set F in i ? w + , the α - p a r a b o l i c capaci ty c a p a (F) of F

is defined by

M X(F)},

where MX(F) is the set of all Radon measures μ ^ 0 on R supported by F

satisfying W a μ < 1 on Rn+ (see [N] and [W]). If F is compact, there exists a

unique μ ^ MX{F) with I dμ = c a p α (F), which is called the equilibrium

measure of F with respect to W . For λ > 0, we denote by r̂  : i? .—* i?

the 2α-parabolic dilation, that is, τλ

a Cr, t) = (λx, λ at). By (1), we have

n+PROPOSITION 5. Let F be a compact set in Rn+ and λ > 0. Denote by μ and μλ

ec

have

the equilibrium measures of F and τλ

a (F) with respect to W , respectively. Then we

(a)

λ μ

and

where τλ μ is the image measure of μ by τλ .

We define the capacity associated with K2a in the usual manner.

DEFINITION 1. For E c Rn, we put
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C2a(E) = sup[J* dv v^m^l

where Wl^E) is the set of all Radon measures v > 0 on Rn such that supp(v) c:

E and J K2a(x, y)dv{y) < 1 for every x e i?w.

DEFINITION 2 (see [IN]). Let β be an open set in Rn+1 and Xo a boundary

point of Ω. Then ^ 0 is said to be regular for La (with respect to the Dirichlet

problem) if

lim εXtZΩ = εXo (vaguely),

where εXCΩ is the balayaged measure of the point measure εx at X to CΩ (the com-

plement of Ω) with respect to W(a\x, t) = Wia)(x, - f). Denote by MX(CΩ) the

vague closure of the set of all positive Radon measures μ on Rn+ which satisfies

W a * μ> W a * ε^ on CΩ. Then εXCΩ is the unique positive measure in

MX(CΩ) which satisfies H ^ *e£ f C 0 < PF^ * μ on i?M + 1 for every μ G MX(ZΩ).

By the Wiener criterion and Proposition 5, we know the following character-

ization of the regular boundary points (see [EG] and [N]).

PROPOSITION 6. For a closed set E in R , the following three conditions are

equivalent:

(1) 0 is a regular boundary point of Ω a (E) for La .

(2) c a p ( α ) ( Γ ( α ) ( £ , 5)) > Ofor every s > 0.

(3) c a p ( α ) ( Γ ( α ) ( £ , sv s2)) > 0 for some 0 < sx < s2,

where

(E, sίf s2) = \(s x, — 5) x e E, sλ < s < s2).

§3. Proofs of Theorem 1 and Corollary 3

In order to discuss the α-parabolic capacity and the capacity associated with

K2a, we estimate the following integral:

I TT7- to) / / i\ / / \l/2α \ \ j

I W ( U , — I) - ((— s) y, s))ds.

Since the 2α-Riesz kernel is the fundamental solution of (— Δ)a, we have
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LEMMA 7. For | x \ < 1 /2, there exists a constant M > 1 such that

M'ιR2a(x) < f * W{a\(x, - l )-(0, s))ds <
J-2

where R2a is the 2a-Riesz kernel, that is,

for 2a < n

R2Λx) =

\χ\

maxίo, logT—T) for 2a = n
\ i x i /

1 for 2a > n.

In the proof of Theorem 1, the following lemma plays an essential role.

LEMMA 8. For each 0 < rλ < r2, there exists a constant M > 0 such that

M'lK2a{x, y) < f * Wia\(x, - l ) - ( ( - s)1/2ay, s))ds < MK2a(x, y)
J-2

for every x, y & Rn with | x \ < r2> rλ < | y \ < r2.

Proof For functions a and b on {(x, y) | x \ < r2, rx < \ y \ < r2}, we write

a « b if

C~ιb <a<Cb

for some constant C > 1. Assume a > 1/2. Then we have

(2)
Γ ττ/(α)// i\ / / \l/2α x\ T

I IT ( ( X , — 1) — ( ( — s) y, s))ds
J-2

X -n/2a j / -l/2α i / • -, \ l/2α K *

5 φ a ( s \ χ - (s + 1 ) y \ ) d s
I -n/2a , A -l/2a / \ -l/2a / / , -, \ l/2α -, \ | \ t

= I 5 φa(\ s (x — y) — s ((s + 1) — l)y |) ds

r l
^_ / — n/2a , / —l/2α ι K

~ J 5 φa(s \χ-y\) ds

~K2a(x,y).

Assume 0 < a < 1/2. Then we have

- 2
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r \
I -n/2a , / - l/2α ι / . Λ \ l/2α K »

= I 5 φa(s \χ—(s + l) γ\)ds

^ I -n/2a, / -l/2α ι /^l/2a ~\ / x K ,

0

~ J s Φa\s \ sy — x\) ds (say = / ) ,

where y = y/\ y \ and x — (x — y)/(2 a — 1) | y |. In the above calculation, we

use the change of variables from 5 to s':

We may assume that

By separating into the following three cases of θ = θ(x, y), we estimate the integ-

ral / τr/6 < θ < π, \x\ι/2a~ι < θ < π/6 and 0 < θ < U | 1 / 2 α " \

In the case θ > π/6, we have, for 0 < s < 1,

' \sy — x \ ~ \ x \ + s ,

so that

/ o x τ / -n/2a , / -l/2aΛ ~ I . \\ t

(3) / - I 5 φa(s (\x\ + s))ds

X \x\ z l

-n/2a , / -l/2a ι ~ K , , / -n/2a , , l- l/2α\ *
5 φa(s \x\)ds+ I 5 φa(s )ds

J\x\X \x\ M

I - \-n-2a i I / \-n-2a *
s I x I ds + I s ds

J\x\

for n= 1
ί l
I I ~

l| x
~ |2-w-2α -. \ r»

x I for w > 2.

In the case 0 < θ < π/6, we have

I sz/ — x I « I x I for 0 < 5 < I x I /3

and

I 5^ — x I « s • for 5 > 2 I ̂  I,
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so that

X
121/3 r l

+ I s φa(s I sy- x\)ds
J2\x\

ί 1 for n = 1
I I -, 1 2 — n — 2 α f \ o

l | x | for w > 2.

In the case | x | α < θ < π/6, denoting by x -y the inner product of x and

y, we have for | x \ /3 < 5 < 2 | x |,

- l / 2 α I ^ ~ I > ~ 1 / 2 α 1 - 1 Λ ~ β I ~ | l - l / 2 α > •,

so that

- / '

Γ -W-2

+ / I ~ I I ~ ~\—n—2a i

I \ x \ \ s — x -y\ ds
J\s-x y\ < lx|^>|5|/3<5<2|ϊ|

-»/2α , / -\/2a 1
s 0α(s |

lίl/3

~2\x\

\x\\sy-x\-n

lίl/3

Therefore combining this relation with (4), in the case | x | 1 / 2 α ι < θ < π/6, we

have

r I ~ I /I ~ I n\l—n—2a/r-\

(5)
T < 1 n ^ I ~ | l / 2 α — 1 ,

In the case c7 S | x | , we have

5 0 ( s
,51/3

J\x\/3

J r*2\x\
I -. \-n/2a , ,\ .. ι-l/2α ι ~ ~ l\ J
Ix\ φa\\x\ \ sy — x\)ds

\x\/3

f \xΓ/2ads
J\s-x y\<,\x\1/2a

+ I I x | I s — x *^Γ w ~ 2 α ds
J(\s-x u\>\x\1/2a.\x\/3<s<2\x\)
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« I T I a

PI

This and (4) imply

(6) / ~ | . r | .

Thus Lemma 8 is shown by (2), (3), (5) and (6).

To prove Theorem 1, we use the following

PROPOSITION 9. Let μ be a positive Radon measure on Rn x [0, °°). For s > 0,

we put μs = μ * ε ( 0 5 ). If for any s > 0,

0 Φ n\ n ^ μ ,

ί/ien /or every 0 < sx < s2, there exists a positive Radon measure v Φ 0 on R such

that

μ>v®dt on Rn x (5^ s2).

iίere μ lje»χ(Sfoo) ^ ί/ie restriction of μ to Rn X (s, °°).

Proof. Let )̂ > 0 be a continuous function with supp(φ) c (s : + 1, s1 + 2)

and J φ(t)dt — 1. Define the positive measure v on i?w by

ff(x)dv(x) = ff(x)φ(t)dμ(x, t)

for every continuous function on Rn with compact support. Then v is a required

measure.

Applying the transformation:

(ξ, τ) = (exp(— Ox, - αexp(- 2at))

to the measure ^ in the preceding proposition, we have

LEMMA 10. Let a > 0 and μ > 0 a measure on Rn X [— a, 0). // for any

0 < /t < 1,

Λ j_ I ^ (α)

ϋ ^ ^ / ? » x ( - a ^ 0 ) S ^ ^»

/or αnjv — α < 5X < 52 < 0, f/ẑ r̂  ^15^5 α positive Radon measure v Φ 0 on R
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such that

ffdμ >ffj2f((- s)~1/2ay, s)dsdv(y)

for every continuous function / ^ 0 on R with compact support.

Now we give the proofs of Theorem 1 and Corollary 3.

Proof of Theorem 1. First suppose that C2a(E) > 0. Then there exists a posi-

tive Radon measure v Φ 0 on R such that supp(v) c E is compact and that

J K2a(x, y)dv(y) < 1

for every x e Rn, When 0 < a < 1/2, we may assume that 0 £ supp(v), be-

cause K2a(0, 0) = o°. Define the measure μ on Rn+ by

ffdμ = / J[ 7 ( ( - sΓ1/2£V, s)dsdv{y)

for every continuous function / on Rn+ . By Lemma 8, W a * μ is bounded on

i?w + . Hence cap a (T a (£,1,2)) > 0. By Proposition 6, 0 is a regular boundary

point of β α CE) for L a . Conversely suppose that 0 is regular for L a . By Prop-

osition 6, we have cap a (T a (E, 3)) > 0. We may assume that E is compact and

that 0 & E if 0 < a < 1 /2. For s < 0, we denote by μs the equilibrium measure

of T a (Ef s) with respect to W a . We remark that for any s > 0,

^3 l/?nx(-5,0) ^ 0

For >ί > 0, since τ^(T{a){E, s)) = Tia)(E, λ2as), Proposition 5 shows μχ3as =

λn - τ(

λ

a)μs. On the other hand, for 0 < s, < s2, μH < μSι on Γ ( α )(J5, sj (see [N,

Lemma 2.14]), so that for 0 < λ < 1,

/ (CX) rr\((X) / r\ r\ \2(X\

μ3 < τλ μ3 on 1 (K, άλ ) .

By Lemma 10, there exists a positive Radon measure v Φ 0 on R such that

supp(v) c: £ and that

for every continuous function / > 0 on Rn+ . Therefore Lemma 8 gives
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f K2a(x, y)dv(y) < MW(a)*μ3(x, -

which implies C2a(E) > 0. This completes the proof.

Proof of Corollary 3. First we remark that E has a positive 2α-Riesz capacity

if and only if 1 /2 < a < 1. Then in the case 0 ^ Hy the assertion of Corollary 3

follows from Lemma 7. Next we assume 0 & H. By Theorem 1, we have only to

show C2a(E) > 0 in the case 0 < a < 1/2. We may assume that E is compact.

Let v be the restriction to E of the (n — 1)-dimensional Lebesgue measure on H.

Then we can show that / K2a(x, y)dv(y) is bounded on Rn. In fact, if x ^ H or

if x and 0 are in the same component of Rn\H, then θ(y, x — y) > Co for some

constant Co > 0, so that we have

/ K2a(x, y)dv(y) - I \χ— y\2~n~2adv(y)
J JBH(x0,\)

^ Γ I \2—n—2a i / \

< J \x0- y\ dv(y)

« 1

for x ^ Rn near E, where x0 is the nearest point in H from x, and where BH(x0, r)

denotes the ball in H with radius r and center xQ. If x and 0 are not in the same

component of Rn\H, denote by x0 the constant multiplication of x belonging to H.

Then

JBH{χ0,\x-x0\Λ)

Γ
/

JB

BH(x0,\x-x0\,l)

|2-w-2α r / \

xy y\ dv(y)

K2a(x, y) dv(y)

xQ,\x-xQ\ι-2a,\x-xQ\)

~ C I II \l-n-2a j / \

~ I \χ- xo\\y~ xo\ dv(y)
JBH,(χo,\χ-χo\ι-2a>^-χov

where J5^U0» ^i. 2̂) = BH(xQi r2)\BH(x0, rj. Moreover



RIESZ CAPACITY AND PARABOLIC OPERATOR 1 9 5

J 1 2 α K2a(x, y) dv{y)

X I \(X-ή)/2a i / \

i2a I x — x01 dv(y)

Therefore we have C2a(E) > 0, which shows Corollary 3.

§4. Capacity C2a and the Riesz capacity

For 0 < a < 1 /2, we discuss a relation between the capacity C2a and the

Riesz capacities. Since

I \2-2a-n ^ Ύτ / \ ^ \ \(l-n)/2a

I x - y I < K2a(x, y) <\χ- y \

for y Φ 0 and x ^ Rn such that | «χr — z/1 is sufficiently small, C2a(E) > 0 implies

C™2a(E) > 0 and C2a(E) = 0 implies C (

(fl ( 1_2 α ) M ) / 2 α(£) = 0, where C f ( )

denotes the β-Riesz capacity of ( ) in Rn. Corollary 3 gives an example of E

such that C2a(E) > 0 and C^ (E) = 0 since C^ (H) = 0 for every hyperplane

H in Rn. It would be a question to be answered whether for every ε > 0, there ex-

ists a compact set E in Rn\ {0} such that C2a(E) > 0 and C^a^iE) = 0. Con-

versely what is the infimum of β satisfying the following condition?

There exists a compact set E in i?w\{0}such that C2a(E) = 0 and

Concerning the latter question, we have the following example.

EXAMPLE. Let H be a hyperplane in Rn(n > 2) with 0 £ H. For every com-

pact set K c i/, we put

£ χ = {s# CΞ Rn 2/ (Ξ K, 1 < 5 < 2}.

Then C2a(Eκ) > 0 if and only if C2~ (K) > 0. Choosing a generalized Cantor

set K whose Hausdorff dimension is equal to n — 2a — 1, we have C2a(Eκ) = 0

and for any ε > 0, C2a+ε(Eκ) > 0. From this observation, the infimum of β of the

latter question is less than or equal to 2a.
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