M. Nishio Nagoya Math. J. Vol. 139 (1995), 185–196

RIESZ CAPACITY AND REGULAR BOUNDARY POINTS FOR THE PARABOLIC OPERATOR OF ORDER α

MASAHARU NISHIO

§1. Introduction

Let $R^{n+1} = R^n \times R$ be the (n + 1)-dimensional Euclidean space with $n \ge 1$. We denote by X = (x, t) a point in R^{n+1} with $x \in R^n$ and $t \in R$. Consider the parabolic operator on R^{n+1} :

$$L^{(\alpha)} = \frac{\partial}{\partial t} + (-\Delta)^{\alpha},$$

where $0 < \alpha \leq 1$ and Δ denotes the Laplacian on \mathbb{R}^{n} .

For a closed set E in R^n , we put

$$T^{(\alpha)}(E) = \{(s^{1/2\alpha}x, -s) ; x \in E, s \ge 0\}$$

and

$$Q^{(\alpha)}(E) = R^{n+1} \setminus T^{(\alpha)}(E).$$

In [EK] and [IN], it is shown that for a non-empty open set ω in \mathbb{R}^n , the origin O is a regular boundary point of $\Omega^{(\alpha)}(\bar{\omega})$ for $L^{(\alpha)}$ (with respect to the Dirichlet problem). The purpose of this paper is to give a characterization of this type. Let $K_{2\alpha}(x, y)$ be the kernel on $\mathbb{R}^n \times \mathbb{R}^n$ of the form

$$K_{2\alpha}(x, y) = \begin{cases} 1 & \left(n = 1, \alpha > \frac{1}{2}\right) \\ \max\left(0, \log \frac{1}{|x - y|}\right) & (2\alpha = n) \\ |x - y|^{2\alpha - n} & (1 \le 2\alpha < n) \\ \min(|x|^{2\alpha - 2}, |y|^{2\alpha - n}) & \left(n = 1, \alpha < \frac{1}{2}\right) \\ |x - y| (|x - y| \theta(y, x - y) + |x - y|^{\frac{1}{2\alpha}})^{1 - n - 2\alpha} & \left(n \ge 2, \alpha = \frac{1}{2}\right), \end{cases}$$

Received April 21, 1994.

where $\theta(y, x - y)$ is the angle between y and x - y or $\theta(y, x - y) = 0$ according as $|y||x - y| \neq 0$ or |y||x - y| = 0. We denote by $C_{2\alpha}(E)$ the capacity of a set E associated with $K_{2\alpha}$. Our main theorem is the following

THEOREM 1. Let E be a closed set in \mathbb{R}^n . Then the origin O is a regular boundary point of $\Omega^{(\alpha)}(E)$ for $L^{(\alpha)}$ if and only if $C_{2\alpha}(E) > 0$.

From Theorem 1, it follows immediately

THEOREM 2. Let Ω be an open set in \mathbb{R}^{n+1} and $(x_0, t_0) \in \mathbb{R}^{n+1}$ a boundary point of Ω . If there exist $s_0 > 0$ and a closed set E in \mathbb{R}^n with $C_{2\alpha}(E) > 0$ and with

$$T^{(\alpha)}_{(x_0,t_0)}(E, s_0) \cap \Omega = \emptyset,$$

where

$$T_{(x_0,t_0)}^{(\alpha)}(E, s_0) = \{(x_0 + s^{1/2\alpha}x, t_0 - s) ; x \in E, 0 \le s \le s_0\},\$$

then (x_0, t_0) is a regular boundary point of Ω for $L^{(\alpha)}$.

We remark that for $1/2 \leq \alpha \leq 1$, $C_{2\alpha}(E)$ is the 2α -Riesz capacity of E. For $0 < \alpha < 1/2$, there is no relation between $C_{2\alpha}(E)$ and the Riesz capacity of E (see Section 4 for further discussions). Our typical applications of Theorem 1 is the following

COROLLARY 3. Let H be a hyperplane in \mathbb{R}^n and E a non-empty open subset of H. In the case $0 \in H$, the origin O is a regular boundary point of $\Omega^{(\alpha)}(\overline{E})$ for $L^{(\alpha)}$ if and only if $1/2 < \alpha \leq 1$. In the case $0 \notin H$, O is a regular boundary point of $\Omega^{(\alpha)}(\overline{E})$ for $L^{(\alpha)}$ if and only if $\alpha \neq 1/2$.

In particular, we have

COROLLARY 4. Let n = 1 and let E be a closed set in R. Then the origin O is a regular boundary point of $\Omega^{(\alpha)}(E)$ for $L^{(\alpha)}$ if and only if

$$\begin{array}{ll} E \neq \emptyset & \quad \text{for } 1/2 < \alpha \leq 1, \\ C_1(E) > 0 & \quad \text{for } \alpha = 1/2, \\ E \setminus \{0\} \neq \emptyset & \quad \text{for } 0 < \alpha < 1/2, \end{array}$$

where $C_1(E)$ is the logarithmic capacity of E.

§2. Capacities and regular boundary points

Denote by $W^{(\alpha)}$ the fundamental solution of $L^{(\alpha)}$, that is,

$$W^{(\alpha)}(x, t) = \begin{cases} (2\pi)^{-n} \int_{\mathbb{R}^n} \exp(-t \,|\,\xi\,|^{2\alpha} + \sqrt{-1}x \cdot \xi) \,d\xi & t > 0\\ 0 & t \le 0, \end{cases}$$

where $x \cdot \xi$ is the inner product of x and ξ and $|\xi| = (\xi \cdot \xi)^{1/2}$. Put $\phi_{\alpha}(|x|) = W^{(\alpha)}(x, 1)$. Then ϕ_{α} is decreasing on $[0, \infty)$ and

(1)
$$W^{(\alpha)}(x, t) = t^{-n/2\alpha} \phi_{\alpha}(t^{-1/2\alpha} | x |)$$

for t > 0. Furthermore, in the case $0 < \alpha < 1$, $\phi_{\alpha}(r)$ is of order $r^{-n-2\alpha}$ as $r \to \infty$.

Recall that for a closed set F in \mathbb{R}^{n+1} , the α -parabolic capacity $\operatorname{cap}^{(\alpha)}(F)$ of F is defined by

$$\operatorname{cap}^{(\alpha)}(F) = \sup\left\{\int d\mu ; \mu \in M_1(F)\right\},\,$$

where $M_1(F)$ is the set of all Radon measures $\mu \ge 0$ on \mathbb{R}^{n+1} supported by F satisfying $W^{(\alpha)*}\mu \le 1$ on \mathbb{R}^{n+1} (see [N] and [W]). If F is compact, there exists a unique $\mu \in M_1(F)$ with $\int d\mu = \operatorname{cap}^{(\alpha)}(F)$, which is called the equilibrium measure of F with respect to $W^{(\alpha)}$. For $\lambda > 0$, we denote by $\tau_{\lambda}^{(\alpha)}: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ the 2α -parabolic dilation, that is, $\tau_{\lambda}^{(\alpha)}(x, t) = (\lambda x, \lambda^{2\alpha} t)$. By (1), we have

PROPOSITION 5. Let F be a compact set in \mathbb{R}^{n+1} and $\lambda > 0$. Denote by μ and μ_{λ} the equilibrium measures of F and $\tau_{\lambda}^{(\alpha)}(F)$ with respect to $W^{(\alpha)}$, respectively. Then we have

$$\mu_{\lambda} = \lambda^n \cdot \tau_{\lambda}^{(\alpha)} \mu$$

and

$$\operatorname{cap}^{(\alpha)}(\tau_{\lambda}^{(\alpha)}(F)) = \lambda^{n} \operatorname{cap}^{(\alpha)}(F),$$

where $\tau_{\lambda}^{(\alpha)}\mu$ is the image measure of μ by $\tau_{\lambda}^{(\alpha)}$.

We define the capacity associated with $K_{2\alpha}$ in the usual manner.

DEFINITION 1. For $E \subset \mathbb{R}^n$, we put

MASAHARU NISHIO

$$C_{2\alpha}(E) = \sup\left\{\int d\nu ; \nu \in \mathfrak{M}_1(E)\right\},$$

where $\mathfrak{M}_1(E)$ is the set of all Radon measures $\nu \ge 0$ on \mathbb{R}^n such that $\operatorname{supp}(\nu) \subset E$ and $\int K_{2\alpha}(x, y) d\nu(y) \le 1$ for every $x \in \mathbb{R}^n$.

DEFINITION 2 (see [IN]). Let Ω be an open set in \mathbb{R}^{n+1} and X_0 a boundary point of Ω . Then X_0 is said to be regular for $L^{(\alpha)}$ (with respect to the Dirichlet problem) if

$$\lim_{X\in\mathcal{Q},X\to X_0}\varepsilon_{X,\mathrm{GQ}}''=\varepsilon_{X_0}\ (\mathrm{vaguely}),$$

where $\varepsilon_{X,C\mathcal{Q}}''$ is the balayaged measure of the point measure ε_X at X to $\mathcal{O}\mathcal{Q}$ (the complement of \mathcal{Q}) with respect to $\tilde{W}^{(\alpha)}(x, t) = W^{(\alpha)}(x, -t)$. Denote by $\tilde{M}_X(\mathcal{O}\mathcal{Q})$ the vague closure of the set of all positive Radon measures μ on \mathbb{R}^{n+1} which satisfies $\tilde{W}^{(\alpha)} * \mu \geq \tilde{W}^{(\alpha)} * \varepsilon_X$ on $\mathcal{O}\mathcal{Q}$. Then $\varepsilon_{X,C\mathcal{Q}}''$ is the unique positive measure in $\tilde{M}_X(\mathcal{O}\mathcal{Q})$ which satisfies $\tilde{W}^{(\alpha)} * \varepsilon_{X,C\mathcal{Q}} \leq \tilde{W}^{(\alpha)} * \mu$ on \mathbb{R}^{n+1} for every $\mu \in \tilde{M}_X(\mathcal{O}\mathcal{Q})$.

By the Wiener criterion and Proposition 5, we know the following characterization of the regular boundary points (see [EG] and [N]).

PROPOSITION 6. For a closed set E in \mathbb{R}^n , the following three conditions are equivalent:

- (1) O is a regular boundary point of $\Omega^{(\alpha)}(E)$ for $L^{(\alpha)}$.
- (2) $cap^{(\alpha)}(T^{(\alpha)}(E, s)) > 0$ for every s > 0.
- (3) $\operatorname{cap}^{(\alpha)}(T^{(\alpha)}(E, s_1, s_2)) > 0$ for some $0 < s_1 < s_2$,

where

$$T^{(\alpha)}(E, s_1, s_2) = \{(s^{1/2\alpha}x, -s) ; x \in E, s_1 \le s \le s_2\}.$$

§3. Proofs of Theorem 1 and Corollary 3

In order to discuss the α -parabolic capacity and the capacity associated with $K_{2\alpha}$, we estimate the following integral:

$$\int_{-2}^{-1} W^{(\alpha)}((x, -1) - ((-s)^{1/2\alpha}y, s)) ds.$$

Since the 2α -Riesz kernel is the fundamental solution of $(-\Delta)^{\alpha}$, we have

LEMMA 7. For $|x| \leq 1/2$, there exists a constant M > 1 such that

$$M^{-1}R_{2\alpha}(x) \leq \int_{-2}^{-1} W^{(\alpha)}((x, -1) - (0, s)) ds \leq MR_{2\alpha}(x),$$

where $R_{2\alpha}$ is the 2α -Riesz kernel, that is,

$$R_{2\alpha}(x) = \begin{cases} |x|^{2\alpha-n} & \text{for } 2\alpha < n \\ \max\left(0, \log\frac{1}{|x|}\right) & \text{for } 2\alpha = n \\ 1 & \text{for } 2\alpha > n. \end{cases}$$

In the proof of Theorem 1, the following lemma plays an essential role.

LEMMA 8. For each $0 < r_1 < r_2$, there exists a constant M > 0 such that

$$M^{-1} K_{2\alpha}(x, y) \leq \int_{-2}^{-1} W^{(\alpha)}((x, -1) - ((-s)^{1/2\alpha}y, s)) ds \leq M K_{2\alpha}(x, y)$$

for every $x, y \in \mathbb{R}^n$ with $|x| \leq r_2, r_1 \leq |y| \leq r_2$.

Proof. For functions a and b on $\{(x, y); |x| \le r_2, r_1 \le |y| \le r_2\}$, we write $a \approx b$ if

$$C^{-1}b \le a \le Cb$$

for some constant $C \ge 1$. Assume $\alpha \ge 1/2$. Then we have

(2)
$$\int_{-2}^{-1} W^{(\alpha)}((x, -1) - ((-s)^{1/2\alpha}y, s)) ds$$
$$= \int_{0}^{1} s^{-n/2\alpha} \phi_{\alpha}(s^{-1/2\alpha} | x - (s + 1)^{1/2\alpha}y |) ds$$
$$= \int_{0}^{1} s^{-n/2\alpha} \phi_{\alpha}(| s^{-1/2\alpha}(x - y) - s^{-1/2\alpha}((s + 1)^{1/2\alpha} - 1)y |) ds$$
$$\approx \int_{0}^{1} s^{-n/2\alpha} \phi_{\alpha}(s^{-1/2\alpha} | x - y |) ds$$
$$\approx K_{2\alpha}(x, y).$$

Assume $0 < \alpha < 1/2$. Then we have

$$\int_{-2}^{-1} W^{(\alpha)}((x, -1) - ((-s)^{1/2\alpha}y, s)) ds$$

$$= \int_{0}^{1} s^{-n/2\alpha} \phi_{\alpha}(s^{-1/2\alpha} | x - (s+1)^{1/2\alpha} y |) ds$$

$$\approx \int_{0}^{1} s^{-n/2\alpha} \phi_{\alpha}(s^{-1/2\alpha} | (2^{1/2\alpha} - 1) sy - (x - y) |) ds$$

$$\approx \int_{0}^{1} s^{-n/2\alpha} \phi_{\alpha}(s^{-1/2\alpha} | s\tilde{y} - \tilde{x} |) ds \quad (\text{say} = I),$$

where $\tilde{y} = y/|y|$ and $\tilde{x} = (x - y)/(2^{1/2\alpha} - 1)|y|$. In the above calculation, we use the change of variables from s to s':

$$(s+1)^{1/2\alpha} = (2^{1/2\alpha}-1)s'+1.$$

We may assume that

$$|\tilde{x}| \leq \min\left(\frac{1}{2}, \left(\frac{\pi}{6}\right)^{\frac{2\alpha}{1-2\alpha}}\right).$$

By separating into the following three cases of $\theta = \theta(\tilde{x}, \tilde{y})$, we estimate the integral I; $\pi/6 \le \theta \le \pi$, $|\tilde{x}|^{1/2\alpha-1} \le \theta \le \pi/6$ and $0 \le \theta \le |\tilde{x}|^{1/2\alpha-1}$.

In the case $\theta \ge \pi/6$, we have, for $0 \le s \le 1$,

$$|s\tilde{y}-\tilde{x}|\approx |\tilde{x}|+s,$$

so that

(3)
$$I \approx \int_{0}^{1} s^{-n/2\alpha} \phi_{\alpha}(s^{-1/2\alpha}(|\tilde{x}| + s)) ds$$
$$\approx \int_{0}^{|\tilde{x}|} s^{-n/2\alpha} \phi_{\alpha}(s^{-1/2\alpha} |\tilde{x}|) ds + \int_{|\tilde{x}|}^{1} s^{-n/2\alpha} \phi_{\alpha}(s^{1-1/2\alpha}) ds$$
$$\approx \int_{0}^{|\tilde{x}|} s |\tilde{x}|^{-n-2\alpha} ds + \int_{|\tilde{x}|}^{1} s^{1-n-2\alpha} ds$$
$$\approx \begin{cases} 1 & \text{for } n = 1 \\ |\tilde{x}|^{2-n-2\alpha} & \text{for } n \ge 2. \end{cases}$$

In the case $0 \le \theta \le \pi/6$, we have

$$|s\tilde{y} - \tilde{x}| \approx |\tilde{x}|$$
 for $0 \le s \le |\tilde{x}|/3$

and

$$|s\tilde{y} - \tilde{x}| \approx s$$
 for $s \geq 2 |\tilde{x}|$,

so that

(4)
$$\approx \int_{0}^{|\tilde{x}|/3} + \int_{2|\tilde{x}|}^{1} s^{-n/2\alpha} \phi_{\alpha}(s^{1-1/2\alpha} | s\tilde{y} - \tilde{x} |) ds$$
$$\approx \begin{cases} 1 & \text{for } n = 1 \\ |\tilde{x}|^{2-n-2\alpha} & \text{for } n \ge 2. \end{cases}$$

In the case $|\tilde{x}|^{1/2\alpha-1} \leq \theta \leq \pi/6$, denoting by $\tilde{x} \cdot \tilde{y}$ the inner product of \tilde{x} and \tilde{y} , we have for $|\tilde{x}|/3 \leq s \leq 2 |\tilde{x}|$,

$$s^{-1/2\alpha} |s\tilde{y} - \tilde{x}| \ge s^{-1/2\alpha} |\tilde{x}| \sin \theta \approx \theta |\tilde{x}|^{1-1/2\alpha} \ge 1,$$

so that

$$\begin{split} &\int_{|\tilde{x}|/3}^{2|\tilde{x}|} s^{-n/2\alpha} \phi_{\alpha}(s^{-1/2\alpha} \mid s\tilde{y} - \tilde{x} \mid) ds \\ &\approx \int_{|\tilde{x}|/3}^{2|\tilde{x}|} |\tilde{x}| \mid s\tilde{y} - \tilde{x} \mid^{-n-2\alpha} ds \\ &\approx \int_{|s-\tilde{x}\cdot\tilde{y}| \le |\tilde{x}|\theta} |\tilde{x}| (|\tilde{x}|\theta)^{-n-2\alpha} ds \\ &+ \int_{|s-\tilde{x}\cdot\tilde{y}| \le |\tilde{x}|\theta, |\tilde{x}|/3 \le s \le 2|\tilde{x}|} |\tilde{x}| \mid s - \tilde{x} \cdot \tilde{y} \mid^{-n-2\alpha} ds \\ &\approx |\tilde{x}| (|\tilde{x}|\theta)^{1-n-2\alpha}. \end{split}$$

Therefore combining this relation with (4), in the case $|\tilde{x}|^{1/2\alpha-1} \le \theta \le \pi/6$, we have

(5)
$$I \approx |\tilde{x}| (|\tilde{x}| \theta)^{1-n-2\alpha}.$$

In the case $\theta \leq |\tilde{x}|^{1/2\alpha-1}$, we have

$$\begin{split} &\int_{|\tilde{x}|/3}^{2|\tilde{x}|} s^{-n/2\alpha} \phi_{\alpha} (s^{-1/2\alpha} \mid s\tilde{y} - \tilde{x} \mid) ds \\ &\approx \int_{|\tilde{x}|/3}^{2|x|} |\tilde{x}|^{-n/2\alpha} \phi_{a} (|\tilde{x}|^{-1/2\alpha} \mid s\tilde{y} - \tilde{x} \mid) ds \\ &\approx \int_{|s - \tilde{x} \cdot \tilde{y}| \le |\tilde{x}|^{1/2\alpha}} |\tilde{x}|^{-n/2\alpha} ds \\ &+ \int_{(|s - \tilde{x} \cdot \tilde{y}| \ge |\tilde{x}|^{1/2\alpha}, |\tilde{x}|/3 \le s \le 2|\tilde{x}|)} |\tilde{x}| \mid s - \tilde{x} \cdot \tilde{y} \mid^{-n-2\alpha} ds \end{split}$$

$$\approx |\tilde{x}|^{(1-n)/2\alpha}.$$

This and (4) imply

(6)
$$I \approx |\tilde{x}|^{(1-n)/2\alpha}.$$

Thus Lemma 8 is shown by (2), (3), (5) and (6).

To prove Theorem 1, we use the following

PROPOSITION 9. Let μ be a positive Radon measure on $\mathbb{R}^n \times [0, \infty)$. For s > 0, we put $\mu_s = \mu * \varepsilon_{(0,s)}$. If for any s > 0,

$$0\neq \mu\big|_{R^{n_{\times(s,\infty)}}}\leq \mu_{s},$$

then for every $0 < s_1 < s_2$, there exists a positive Radon measure $\nu \neq 0$ on R^n such that

$$\mu \geq \nu \otimes dt$$
 on $R^n \times (s_1, s_2)$.

Here $\mu|_{R^n \times (s,\infty)}$ is the restriction of μ to $R^n \times (s,\infty)$.

Proof. Let $\varphi \ge 0$ be a continuous function with $\operatorname{supp}(\varphi) \subset (s_1 + 1, s_1 + 2)$ and $\int \varphi(t) dt = 1$. Define the positive measure ν on \mathbb{R}^n by

$$\int f(x) d\nu(x) = \int f(x) \varphi(t) d\mu(x, t)$$

for every continuous function on R^n with compact support. Then ν is a required measure.

Applying the transformation:

$$(\xi, \tau) = (\exp(-t)x, -a\exp(-2\alpha t))$$

to the measure μ in the preceding proposition, we have

LEMMA 10. Let a > 0 and $\mu \ge 0$ a measure on $\mathbb{R}^n \times [-a, 0)$. If for any $0 < \lambda < 1$,

$$0 \neq \mu |_{R^{n_{\times}(-a\lambda^{2\alpha},0)}} \leq \tau_{\lambda}^{(\alpha)} \mu,$$

then for any $-a < s_1 < s_2 < 0$, there exists a positive Radon measure $\nu \neq 0$ on R^n

such that

$$\int f d\mu \geq \int \int_{s_1}^{s_2} f((-s)^{-1/2\alpha} y, s) \, ds \, d\nu(y)$$

for every continuous function $f \ge 0$ on \mathbb{R}^{n+1} with compact support.

Now we give the proofs of Theorem 1 and Corollary 3.

Proof of Theorem 1. First suppose that $C_{2\alpha}(E) > 0$. Then there exists a positive Radon measure $\nu \neq 0$ on \mathbb{R}^n such that $\operatorname{supp}(\nu) \subset E$ is compact and that

$$\int K_{2\alpha}(x, y)d\nu(y) \leq 1$$

for every $x \in \mathbb{R}^n$. When $0 < \alpha < 1/2$, we may assume that $0 \notin \text{supp}(\nu)$, because $K_{2\alpha}(0, 0) = \infty$. Define the measure μ on \mathbb{R}^{n+1} by

$$\int f d\mu = \int \int_{-2}^{-1} f((-s)^{-1/2\alpha}y, s) ds \, d\nu(y)$$

for every continuous function f on \mathbb{R}^{n+1} . By Lemma 8, $W^{(\alpha)} * \mu$ is bounded on \mathbb{R}^{n+1} . Hence $\operatorname{cap}^{(\alpha)}(T^{(\alpha)}(E,1,2)) > 0$. By Proposition 6, O is a regular boundary point of $\Omega^{(\alpha)}(E)$ for $L^{(\alpha)}$. Conversely suppose that O is regular for $L^{(\alpha)}$. By Proposition 6, we have $\operatorname{cap}^{(\alpha)}(T^{(\alpha)}(E,3)) > 0$. We may assume that E is compact and that $0 \notin E$ if $0 < \alpha < 1/2$. For s < 0, we denote by μ_s the equilibrium measure of $T^{(\alpha)}(E,s)$ with respect to $W^{(\alpha)}$. We remark that for any s > 0,

$$\mu_3\big|_{R^n\times(-s,0)}\neq 0.$$

For $\lambda > 0$, since $\tau_{\lambda}^{(\alpha)}(T^{(\alpha)}(E, s)) = T^{(\alpha)}(E, \lambda^{2\alpha}s)$, Proposition 5 shows $\mu_{\lambda^{2\alpha}s} = \lambda^n \cdot \tau_{\lambda}^{(\alpha)}\mu_s$. On the other hand, for $0 < s_1 < s_2$, $\mu_{s_2} \leq \mu_{s_1}$ on $T^{(\alpha)}(E, s_1)$ (see [N, Lemma 2.14]), so that for $0 < \lambda < 1$,

$$\mu_3 \leq \tau_{\lambda}^{(\alpha)} \mu_3$$
 on $T^{(\alpha)}(E, 3\lambda^{2\alpha})$.

By Lemma 10, there exists a positive Radon measure $\nu \neq 0$ on R^n such that $\operatorname{supp}(\nu) \subseteq E$ and that

$$\int \int_{-2}^{-1} f((-s)^{-1/2\alpha} y, s) \, ds \, d\nu(y) \leq \int f \, d\mu_3$$

for every continuous function $f \ge 0$ on \mathbb{R}^{n+1} . Therefore Lemma 8 gives

MASAHARU NISHIO

$$\int K_{2\alpha}(x, y) d\nu(y) \leq M W^{(\alpha)} * \mu_3(x, -1)$$
$$\leq M,$$

which implies $C_{2\alpha}(E) > 0$. This completes the proof.

Proof of Corollary 3. First we remark that \overline{E} has a positive 2α -Riesz capacity if and only if $1/2 < \alpha \leq 1$. Then in the case $O \in H$, the assertion of Corollary 3 follows from Lemma 7. Next we assume $O \notin H$. By Theorem 1, we have only to show $C_{2\alpha}(\overline{E}) > 0$ in the case $0 < \alpha < 1/2$. We may assume that \overline{E} is compact. Let ν be the restriction to \overline{E} of the (n-1)-dimensional Lebesgue measure on H. Then we can show that $\int K_{2\alpha}(x, y) d\nu(y)$ is bounded on \mathbb{R}^n . In fact, if $x \in H$ or if x and O are in the same component of $\mathbb{R}^n \setminus H$, then $\theta(y, x - y) \geq C_0$ for some constant $C_0 > 0$, so that we have

$$\int K_{2\alpha}(x, y) d\nu(y) \approx \int_{B_H(x_0, 1)} |x - y|^{2-n-2\alpha} d\nu(y)$$
$$\leq \int_{B_H(x_0, 1)} |x_0 - y|^{2-n-2\alpha} d\nu(y)$$
$$\approx 1$$

for $x \in \mathbb{R}^n$ near \overline{E} , where x_0 is the nearest point in H from x, and where $B_H(x_0, r)$ denotes the ball in H with radius r and center x_0 . If x and O are not in the same component of $\mathbb{R}^n \setminus H$, denote by x_0 the constant multiplication of x belonging to H. Then

$$\begin{split} & \int_{B_{H}(x_{0},|x-x_{0}|,1)} K_{2\alpha}(x, y) \, d\nu(y) \\ \approx & \int_{B_{H}(x_{0},|x-x_{0}|,1)} |x, y|^{2-n-2\alpha} \, d\nu(y) \\ \approx & 1, \\ & \int_{B_{H},(x_{0},|x-x_{0}|^{1-2\alpha},|x-x_{0}|)} K_{2\alpha}(x, y) \, d\nu(y) \\ \approx & \int_{B_{H},(x_{0},|x-x_{0}|^{1-2\alpha},|x-x^{0}|)} |x - x_{0}| |y - x_{0}|^{1-n-2\alpha} \, d\nu(y) \\ \approx & 1, \end{split}$$

where $B_{H}(x_{0}, r_{1}, r_{2}) = B_{H}(x_{0}, r_{2}) \setminus B_{H}(x_{0}, r_{1})$. Moreover

$$\int_{B_{H}(x_{0},|x-x_{0}|^{1-2\alpha})} K_{2\alpha}(x, y) \, d\nu(y)$$

$$\approx \int_{B_{H}(x_{0},|x-x_{0}|^{1-2\alpha})} |x-x_{0}|^{(1-n)/2\alpha} \, d\nu(y)$$

$$\approx 1.$$

Therefore we have $C_{2\alpha}(\bar{E}) > 0$, which shows Corollary 3.

§4. Capacity $C_{2\alpha}$ and the Riesz capacity

For $0 < \alpha < 1/2$, we discuss a relation between the capacity $C_{2\alpha}$ and the Riesz capacities. Since

$$|x-y|^{2-2\alpha-n} \leq K_{2\alpha}(x, y) \leq |x-y|^{(1-n)/2\alpha}$$

for $y \neq 0$ and $x \in \mathbb{R}^n$ such that |x - y| is sufficiently small, $C_{2\alpha}(E) > 0$ implies $C_{2-2\alpha}^{(n)}(E) > 0$ and $C_{2\alpha}(E) = 0$ implies $C_{(1-(1-2\alpha)n)/2\alpha}^{(n)}(E) = 0$, where $C_{\beta}^{(n)}(\cdot)$ denotes the β -Riesz capacity of (\cdot) in \mathbb{R}^n . Corollary 3 gives an example of E such that $C_{2\alpha}(E) > 0$ and $C_1^{(n)}(E) = 0$ since $C_1^{(n)}(H) = 0$ for every hyperplane H in \mathbb{R}^n . It would be a question to be answered whether for every $\varepsilon > 0$, there exists a compact set E in $\mathbb{R}^n \setminus \{0\}$ such that $C_{2\alpha}(E) > 0$ and $C_{2-2\alpha-\varepsilon}^{(n)}(E) = 0$. Conversely what is the infimum of β satisfying the following condition?

There exists a compact set E in $\mathbb{R}^n \setminus \{0\}$ such that $C_{2\alpha}(E) = 0$ and $C_{\beta}^{(n)}(E) > 0$.

Concerning the latter question, we have the following example.

EXAMPLE. Let H be a hyperplane in $R^n (n \ge 2)$ with $0 \notin H$. For every compact set $K \subseteq H$, we put

$$E_{K} = \{ sy \in R^{n} ; y \in K, 1 \le s \le 2 \}.$$

Then $C_{2\alpha}(E_K) > 0$ if and only if $C_{2\alpha}^{(n-1)}(K) > 0$. Choosing a generalized Cantor set K whose Hausdorff dimension is equal to $n - 2\alpha - 1$, we have $C_{2\alpha}(E_K) = 0$ and for any $\varepsilon > 0$, $C_{2\alpha+\varepsilon}^{(n)}(E_K) > 0$. From this observation, the infimum of β of the latter question is less than or equal to 2α .

REFERENCES

- [EF] E. Effros and J. Kazdan, On the Dirichlet problem for the heat equation, Indiana Univ. Math. J., 20 (1971), 683-693.
- [EG] L. Evans and R. Gariepy, Wiener's criterion for the heat equation, Arch. Rational

Mech. Anal., 78 (1982), 293-314.

- [IN] M. Itô and M. Nishio, Poincaré type conditions of the regularity for the parabolic operator of order α , Nagoya Math. J., **115** (1989), 1–22.
- [N] M. Nishio, The Wiener criterion of regular points for the parabolic operator of order α , Nagoya Math. J., **116** (1989), 163–179.
- [W] N. A. Watson, Thermal capacity, Proc. London Math. Soc., **37** (1978), 342–362.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi Osaka 558, Japan