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GLOBAL SOLUTION FOR THE YANG-MILLS GRADIENT

FLOW ON 4-MANIFOLDS

HIDEO KOZONO, YOSHIAKI MAEDA AND HISASHI NAITO f

1. Introduction

In this paper, we will study a global weak solution for the Yang-Mills gra-

dient flow on a closed (i.e., compact without boundary) 4-manifold. Let us explain

some notion briefly to be able to state our results.

Let M be a closed 4-manifold, G a compact Lie group embedded as a sub-

group of 5O(/), or SU(l) and P be a principal G-bundle over M. We now

assume the universal covering G of G is compact. Denote by g the Lie algebra of

G and denote also by gP and ®P the adjoint and automorphism bundles of P, re-

spectively. Using the metric on G induced by the Killing form, we fix a metric on

P compatible with the action of G. Let Ω (gP) be the space of smooth g-valued

Λ-forms, i.e., β*(gP) = C°°(M; gP ® Λ*Γ*itf). Here, for the space β*(gP) of

gP-valued /c-forms, we can define Sobolev spaces Wm>P> LP with norms || \\wm.p,

|| \\p in usual way.

Connections on P are explained by taking an open covering {Ua} on M; we

trivialize P on Ua via a trivialization: P\u = Ua X G. A connection D on P is,

by definition, given by D = d + Aa on Ua, where Aa is a g-valued 1-form on Ua.

Moreover, for a set of transition functions {gaβ} of P associated with the tri-

vialization for {f/α}, where gaβ: Ua Π Uβ—+G,D satisfies

Aβ = gaβdSaβ + gaβAagaβ on Ua Π Uβ.
a

We denote by dD and dD the covariant exterior differentiation and its formal ad-

joint with respect to a connection D, respectively. Moreover, the covariant dif-

ferentiation on tensors for the connection D is defined by VD. If D is a smooth

connection, then its curvature is given by RD — dD ^ Ω (gP).

We consider the Yang-Mills gradient flow; the steepest descent flow of the
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Yang-Mills functional E(D) = -y Γ I RD Γ dV:

(1.1) dtD = - dtRD on M x [0, °°),

with the initial condition

(1.2) D(Q) = D(o) onMx {0}.

We will construct a global weak solution of (1.1), which may blow up in a

finite time in the classical sense. If the solution blows up, then the structure of the

bundle on which the connection lies may change. The notion of a weak of (1.1) is

described as follows:

DEFINITION.

(1) The connection D(t) is called a weak solution of (1.1) on the space

[Tl9 T2] x M with the initial value D{Tλ) = Dx at t = Tv if D(t) is a

connection on the same bundle P for t e [7\, Γ2), and if the connection

D(t) satisfies

f * f <D, dtΦ> - <RD, dDΦ>dVdt = [ <DV

D(t) e L2(Tlt T2; Wh2(Ω1 (Qp))),

sup f\RD(t)\2dV<<χ>,

for any Φ ^ Cζ([Tly T2) x M, Ω (gP)), where the inner product

<Z), Φ> for connection D is defined by using the expression D = Do + A

for fixed Do.

(2) Moreover, a connection D(t) is called a weak solution of (1.1) on

[0, °°) X M with the initial condition (1.2), if there exist finitely many

collection of G-bundles {Pi}i==lf where Px — P, {̂ }z=0» with t0 = 0, tL+1

= °°, such that D(t) is a weak solution on each [to ti+1] with the initial

value D(0) .= D(o) at ί = 0 and Z)(ίf) at t = t^i = 1, . . . , L) in the

above sense on the bundle Pi+ί and such that RD(t) -+ RD(ti+1) weakly

in L\M) as t ΐ ίί+1.

Let G be the universal covering space of G and let K — it (e), where e is

the identity element of G. Let gaβ be a lift of transition functions gaβ on G. Since
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faβr' UaΓ\UsΓ\Uτ—K, faBr = gaB • g$r • g,
ra

is well-defined and satisfies rcfaβr = e, ifaβr} determines the element of H (M, K).

We denote this element by η(P) (cf. [8]).

The first purpose of this paper is to show the following:

THEOREM A. For any D £ l l ' , there exists a weak global solution D(t) of

(1.1) with the initial condition (1.2) on [0, °°) X M. More precisely, we have the fol-

lowing :

(i) There exist finite set of times {̂  }/=0, with t0 = 0 and tL+1 = °° , and

G-bundles ίP,-},-^ with P1 = P such that D(t) is a smooth connection of P{

on (tif ti+1) and satisfies (1.1) in the classical sense.

(ii) For each i, there exist N{(< °°) points {xt}iU of M such that D(t{) is a

connection of Pt I M \ U ^ }

(iii) The function t *-> I \ RD(f) | dV is non-increasing and weakly continuous

inL2(0, oo).

(iv) Each bundle Pt satisfies ϊ](Pt) = η(JP).

Here, the space Um'P is defined by as follows. Fix an open covering {Ua} of M

which trivialize P on Ua. Now, the connection D is expressed by d + Aa on ί/α,

so we define

UmP = {D = d + Aa; || A J U P < oo},

where || \\wm,p denotes the Wm' -norm given by the trivialization P\ua — Ua X G.

The weak global solution D(t) of (1.1) as described in Theorem A should be

viewed as leading in the first step from the initial connection D(tQ) = D(0) to the

ideal connection D{t^) on P — Pv a point of the boundary of the space of connec-

tions, and their within that boundary, to a new ideal connection D(t2) on a mod-

ified bundle P 2 It wiU be proved that in a finite number of such steps the solution

can be extended to the interval [0, °°). The procedure is very much in accordance

with the structure of the module space compactification as elucidated by Donald-

son and Uhlenbeck.

The gauge transformation s ^ & = C (®P) acts on connections: Aa •-• saAa

= s~ dsa + s~ Aasa. The curvature is actually a section of the bundle P ® T M

ATM, and so a gauge transformation s €= ® also acts on curvature tensors by

RDt-* s RD = RS*D = s~ RDs. Note that gauge transformations leave the

Yang-Mills functional invariant i.e., E(s D) = E(D). This is a crucial difficulty
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for treating the smooth solution of (1.1). At first we construct a solution of (1.1) in

a finite interval (0, T) by using the following trick: If a connection D transforms

to 5 D = D under a gauge transformation s, then the equation of the Yang-Mills

gradient flow (1.1) is transformed to

3 )

f dtD = - d*RD + dDa on M x [0, «>),

IZXO) =D{0) on M X {0},

where a = s^d^ e Ω°(QP) (cf. Jost [2]). We call (1.3) a modified Yang-Mills gra-

dient flow. Conversely, a solution fl, α or s of (1.3) yields a solution (s~ ) D of

(1.1).

To obtain Theorem A, we constructed a solution of (1.3) in a finite time inter-

val (0, T), and return to (1.1). We also show that the energy functional

E(D(t)) is monotone non-increasing with respect to t Such a monotonicity of the

energy functional can extend the life span of our local solution beyond T. The

singular set ώ can be characterized in terms of the local concentration of the

L -norm of the curvature RD.

THEOREM B. The singular set sS = {(xijf tt) e M x (0, °o], i = 1, . . ., Z, + 1}

for the weak solution given in Theorem A is characterized as follows: There exists a

positive constant εx depending only on M and G such that

limsup Γ \RD(t)\2dV>ει
t t tt

 JBr(xiβ)

for all r>0.

For a principal bundle P on M, we take a connection Do and fix it. Any con-

nection D is expressed as D = Z)o + Λ where A ^ ί? (Qp)

Our second purpose is to discuss the uniqueness of weak solutions to (1.1).

To this end, let us introduce a class X(M, (0, D ) of connections:

X(M,0, T)) = ΪD(t) e U1'2: sup [ (\RD\2+ \VDRD\2+ \V2

DRD\2) dV<
L 0<t<TJM

THEOREM C. L ί̂ D = Do + A and D = Do + A be two weak solutions of (1.1)

wiί/i the initial condition (1.2), Z) ^ U ' in the class of X(M, (0, D ) . Suppose in

addition that A,A*= Lq(0, T; Lr(Ωι(qP))) for q>2 and r>4 with 2/q + A/r

< 1. Ifd*A9 d*A e »Γ1>β0(M x [0, Γ ) ; fl°(gP)), ί ^ n Λere βxisί ^αw^ transforma-

tions s and s in the class Wl'°°(M x [0, Γ);® P ) swc/i Λαί s*A = s *A on
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MX [0, T).

2. Fundamental inequalities

In this section, we give some fundamental inequalities for later use.

W1>2(M), v e Wι'\M), and any r e (0, i?0],

PROPOSITION 2.1. There exist constants C, Ro > 0 such that for any u

0]

C s u p ί Γ \u\2dV) 2 (f \Vv\2dV+r~2 f \v\2dv).

We first show a local version to Proposition 2.1.

LEMMA 2.2. There exist constants C, Ro > 0 such that for any u ^ W ' (M),

v ^ W ' (M), r E (0, i?0], x ^ M and a monotone non-increasing non-negative ra-

dial function φ — φ(distCr, *)) e L°°(M) with φ = 0 on M\Br(x), the following

inequality holds:

f \ u \ \ v \ 2 φ d V < c ( f \u\2dV) ( f \ Vv |2 φ d V + r~2 f \ v \ 2 φ d v ) .

Proof First we assume φ — 1 on Br(x) and let v = voliB^x))'1 I v dV
JBr{χ)

be the mean value of v on Br(x). By Holder's inequality, we have

X I Γ \ 1 / 2 / Γ \1/2

| « | | ϋ | 2 d V ^ C ( I | « | 2 r f V ) I I H 4 ^
(2.1)

/ 1 / 2 \1/2

t
By the Sobolev embedding theorem, we have

(2.2) Γ I v- v\4dV< c( f \Vv\2dV) .

On the other hand, by Holder's inequality,

4 dV

(2.3) < Cvol(BrΓ
3\f υdV
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< C volφ,)"1 ( J \υ\2dV)

By (2.1), (2.2) and (2.3), we get Lemma 2.2 for φ = 1.

By linearity, Lemma 2.2 holds also for step functions. For general φ, we can

show the assertion by approximating φ in measure by step functions. •

Proposition 2.1 is derived from Lemma 2.2 via the following lemma. For the

proof, see Struwe [9].

LEMMA 2.3. There exist constants K, Ro > 0 depending only on M such that for

any r €Ξ (0, Ro] there exists a covering of M by balls Br/2(x) satisfying that at any

point x ^ M at most K of the balls Br(x^) meet.

Next, we give identities for the curvature form RD for a connection D:

LEMMA 2.4. If D is a smooth solution of (1.1), then

(2.4) dtRD = - Λ"DRD,

(2.5) d,RD = - Ar

DRD + [RD, RD],

(2.6) d, I RD I < Δ I RD I + CI RD |2,

(2.7) dt I VfRD \<A\ VfRD I + C £ I f Λ I I VT°RD |, forn = 1,2,...

w /î rg VD denotes the covariant differentiation of i- th order with respect to VD> and ΔD

and ΔD are the Hodge and the rough Laplacian, respectively, i.e., ΔD — dΏdΏ

Jr dDdD

and Δr

D = D*D.

Proof. Note that dDdtD = dtRD. Applying dD to (1.1), we have, by the Bianchi

indentity,

dtRD = - dDd»RD = - ΔH

DRD.

The Bochner-Weizenbόck formula gives

(Δr

D-ΔH

D)RD=[RD,RD],

hence we obtain (2.4) and (2.5).
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Moreover, for φ ^ Ω (gP) we have

\φ\Δ\φ\><φ, -Δr

Dψ>,

which implies (2.6).

To obtain the inequality (2.7), we may show

(2.8) dt V?RD = V2

D V?RD + Σ V?RD * V^R*
i=0

where A * B denotes some linear combination of tensor products of components of

A and B. Indeed, the case n.= 0 is obtained by (2.5). Assuming (2.8) for n and us-

ing (1.1), we have

dtVDV™RD = VDdtV
(

D

n)RD + [d*DRDi V™RD]

= VD(v2

D fD

n)RD + Σ Γ X * Vt"RD) + ld*DRD, V(?RD],

Σ FfRB
ί=0

which implies (2.8) for n + 1.

3. Construction of the local strong solution

In this section, we show the existence of a time-local smooth solution for

(1.3). First we rewrite (1.3) as an equation for the connection D = DQ + A, where

Do is a fixed connection on P. To make (1.3) a parabolic system for A, we take

a = — dAA, (cf. Kono-Nagasawa [3]). Taking V = Z)o, we see that (1.3) is equiva-

lent to the following equations (cf. Naito-Kozono-Maeda [7]):

(3.1) + [A\ VjAi + [A,, A,]] + [Vfi - VίAι + [Aif AJ], A,]

+ F'[A,,A,] + [A', LAJ9A{]]9

where A ( 0 = A^Odx1 ^ β^g^) is the unknown function, A° = A{ dx% ^

Ω (gP) is the given initial data, and R = R{idx% Λ dxJ is the curvature 2-form of

For the construction of the local solution for (3.1), we do not need to restrict

the dimension of M. Making use of fractional powers of the Laplacian, we shall
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prove the existence of a strong solution A(t) of (3.1) on a finite time interval

(0, T) .

Let us introduce some notations: The space L (Ω (QP)) denotes the usual

Z/-space with the norm || | | r We define an operator £r on Lr{Ω (gP)) by

: = - V'VA + [Rl, A,], for A e D(£r)

with the domain D(<£r) = W2'r(Ω\§P)).

(3.1) may be rewritten as the following equation on L (Ω

(3.2)

A(0)=Am,

where Q(A) = Q,(A) + Q3<A);

Q1(A)i = ~ 2\Aj, V/A,] - WtA!, A,] - V'\Aj, A,],

Q2U), = - 3 W ; , LA,, A,]].

Our result now reads as follows.

THEOREM 3.1. Let dim M = n and let Ai0) e Ln(Ω1(QP)). Then there exist T >

0 and a function A(t) on [0, T) with the following properties'.

(1) i l e C([0, T);Ln(Ωι(QP))) Π Cι«0, T) Ln(Ωι(QP)))

(2) A(t) e D(<en) fσrt>0, ZJί e C((0, T); Ln(Ω\Qp)));

(3) A is a solution of (3.2).

In this section, we are interested only in constructing the local solution of

(3.1). Changing the unknown connection A(t) into A'(t) by the relation A'(t) =

e A(t), we may assume that £r has a bounded inverse ί£r on Lr{Ω (gP)), where

λ is a constant larger than the smallest eigenvalue of Xr. To prove Theorem 3.1,

we need some lemmas. By the well-known theory of elliptic differential equations,

(3.3) || A | U < Cr || £A I, for A e D(£r) ( 1 < r < oo)

with a constant C r independent of A Moreover, — i£ r generates a contractive

holomorphic semigroup {e r}t>0 of class C in L (Ω (gP)). Therefore, we can

define the fractional power J£" (0 < a < 1) of Xr and get a continuous embedding

(3.4) D(ίO ^ H^ 'IΩHQP)), 0 < α < 1,

where /fw'r denotes the space of the Bessel potentials, (see, e.g., Fujiwara [1]).
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In the following, we shall work mainly with r = n and write ^£n — ̂ £ for sim-

plicity.

LEMMA 3.2. If A e D(£a) for\<a<\, then ^ 0 4 ) , Q2(A) e= Z/OG1^)).

c\\rA \\jz1/2A\\n,

Q,(B) I < C(\\ <£tt(A - B) 11| ί? 1 / 2 β I

(3.6) +\\rA\\n\\<eι/2(A-B)\\n),

II Q 2 U ) - Q2(B) i ^ aw ίe1MA l + ιι t"B ι

where the constant C depends only on a.

Proof. By (3.4) and the Sobolev embedding, we have D(£a) C_> LC°(Ω1(QP))9

D(<e1/2) ^Hι'\Ω\§P)) and D(£1M) <^ L2n(Ω1 (QP)), where c * means a con-

tinuous inclusion. Hence it follows from Holder's inequality that

,\\VA\\n^C\\rA\l\\£1/2A\\n,

II Q2(A) IL £CΠIILIIAL < C||2βA||BII t'Άt,

which shows (3.5). The inequality (3.6) is an immediate consequence of (3.5). D

LEMMA 3.3.

IfA<ΞD(£a)foΛ<a< 1,

( 3 7 )

If A, B e ZXίO for~<a<\, then

(3.8) +| | i? 1 / 44lUl^ 1 / 2U-β)| |B)

< M (II i? 1 / 4 4 II2 + || 21MB ID
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where the constant M is independent of A and B.

Proof. It is easy to see that !£r, the adjoint operator of ϊ£r in L (Ω (gP)), sa-

t i s f i e s <e? = <er,, w h e r e l/r+l/r'= 1 .

Take r ^ (1, oo) So that 1/r = 1/n + l/2n. Then by (3.4) we have \\A\\r,

< C || <e%Ά \nr for all A e Z)(«O with C independent of A (nf = ^ = y ) . Hence

Holder's inequality yields

^ , φ>\ = \ <QM). 2~JM<P> I

M\\<eιMA\\n\\<eί/2A\l\\φl

for all φ ^ β (9p) By duality, we obtain

In
Similarly, we have for r — -^-.

φ \l

t I I φ t = c |UIILIIΦI ^ M I I 2 1 / 4 A I<,C\AtIIφt = c|UIILIIΦI- ^ MII2AIII*>IL
for all φ ^ β (gP), from which it follows that

Using (3.7), we easily get (3.8). D

LEMMA 3.4. Let Ai0) e L"(Ω1(QP)). Then there exist T> 0 αwrf α function

Ait) on [0, Γ) such that A e C([0, T); L^Q^Qp))) Γ\ C((0, T);D(£a)) with

(3.9) sup ίβ || ̂ αΛ(ί) It < oo / o r 0 < a < f

A is α solution of the integral equation

(3.10) A(ί) = e"*Am - f e~u~s)XdtRds - Γ'e"(ί"s)ί?QU)(s)ds, 0 < t < T.
JQ ° JQ

Proof We solve (3.10) by the following successive approximation:
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A(t) = e-^A(0) -
(3.11)

Aj+1(t) =Aι(t) - f e~(t~s)*Q(Aj)(s)ds,j= 1,2, .

Let us first show that

3
(3.12) sup fW^Ajit) \\n < Kav 0 < α < χ , = 1,2, ,

Indeed for j = 1, we have

f ιι r A ω i < f ιι re->xA™ ι + e jΓ' ιι r ' ^ X /? ι

where /î  is the smallest eigenvalue of £ and hence we may take

Tjr . .a II ^ Λ α — tX Λ (0) ii i /T^α s—1 n t * τ-> II

ULαfl = sup t \\<e e A \\n+ T λ* \\dDR\\n,
0<t<T

3
for all 0 < a < j .

Suppose that (3.12) holds for j . Then from Lemma 3.3, we have

|| £aAj+ι(t) I < II rAx{t) I + [' II £a+1/ie-u-s)!e!e-1/4Q(A,) (s) \\n ds

< Ka ,f
a + [' (t - s)-"-1" || £-1MQ(A,) (s) I ds

£ κaΛr
a

+ M f α-s)-"-1/4(iι^1/4A,ω U£U2A,(S) i + i i ^ A ω \0ds

< KβΛΓ" + M(Kι/4JK1/2J + Klj £ it - sVa-Vis-Vi ds

< KaΛΓ
a + MB(3/4 - a, 1 /4) (K1/4JK1/2ti + Klj) t~"

for 0 < a < 3/4 and 0 < t < T, where B( , •) denotes the beta function. Hence

(3.12) is satisfied with j replaced by ' + 1, with

(3.13) Kaj+1 : = KaΛ + MB(3 /A - a, 1 /4) (Kι/4JK1/2J + K^).

(3.13) shows that {KaJ}J=1 is a closed recurrence for a = ~τ and a — -w. Now let
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kj : = m a x { # 1 / 4 J , K1/2J}(j = 1,2, •). Then by (3.13), we have

k, + IMβik) + φ, β = B(l/4, 1/4).

By (3.14), we see that there exist positive constants m% and k

kλ <

kj<k for all = 1,2, .

In fact, m% is determined by the local maximum of the function fix) = x —

2Mβix + x ) and k is the positive root of the equation fix) — kv

Assume (3.15) for a moment and set

fiy(f):=ji,(f) -AH1(t),j= 1,2, , iAoit) =0).

From (3.8) and (3.16), we have

(3.14)

for j = 1

such that

(3.15)

then

(3.16)

,2,

if

••.By

\\rBj+1it) I < C \\r

f
ds

< f ii <r"V"-5'*

(o.l /)

+ (iι Z^A+S) I + ιι xv%_, ID ιι £u%(s) u ds

< Mk f a - S )- a - 1 / 4 ( i ι^ 1 / 2 β y ω ιιBs-1/4 + ιι^ 1 / 4 β/ s ) \\ns-ι/2)ds

+ n w , 2 I / , \ —α —1/4 11 //)l/2 7-i / \ II —1/4 j

2MA: I it-s) \\<£ BΛs) \\ns ds

for 0 < a < j .

Taking a — 1/4 and a — 1/2 in (3.17), we get by induction

ί" £lMβ'(t) 'I- " MMβ(k + k2)Y-λΓι/\
1(3 18) ί" £ β ' (

11| <eυ2Bj(t) I < k{2Mβ(k + k2)Y~ιfι/\ j = 1,2, • .

By (3.17) and (3.18),
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(3.19) \\£"BJ+ι(t) I < k{2Mβ(k + /c2)};"1{2AΓβ(|- - α, | ) ( A + A2)}rα,

(0<t< T).
Since k satisfies kx — k — 2Mβ(k + k ), under the assumption (3.15) we

have 2Mβ(k + k2) = 1 - Ax/A e (0, 1) and hence by (3.19) the sequence

Aj(t) = ΣiJ

r=ιBr(t) converges absolutely and uniformly in U(Ωι(§P)) with

respect to [0, T): Aj(t) ->A(f), where A e BC([0, Γ); L ' Φ H B P ) ) ) .

q

Moreover, again by (3.19), for each 0 < a < -j there exists 4̂ ε C((0, T);

L"{Ω\QP))) with ίαΛ(α>α) e BC([0, T); Ln(Ωι(§P))) such that

sup f || U?"Λ (/) - A{a) it) I -» 0 as — oo.
0Γ

Since ί? is a closed operator on L (Ω (g^)), we can conclude that A ε C((0, T);

D(£a)) with %aA{t) = Aia)(t) for all 0 < t < T, and hence

(3.20) sup fWΠA^t) -Λ(f))IL —0, ( θ < α < | ) a s ; - * c o .

Now again by (3.8), (3.16) and (3.20),

< Γ || £1/4

e-
('-s):e \\Ban) || ί?-1/4(QC4 ;) (s) - QC4) (s)) IL ds

<M Γ (t- sΓι/i{\\ ̂ (Ajis) - A(s))

(II £ι/%(s) i + ιι # 1 / 4 4 ω ID
s 1 / 2< Mkβ sup s || £ (Aj(s) - A(s)) \\n

+ (Mkβ + 2Mk2β) sup s1/41| #1/4W,(s) -

Under the assumption (3.15), we see by (3.11) and the above convergence that A

is the desired solution of (3.10).

It remains to show that we can take T so small that (3.15) is satisfied. Since

D(£1/2) is dense in Ln(Ωι(%P)), there exists a function Λ(o) e D(%1/2) such that
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M < 0 ) - i ( 0 ) | L < m * Then, we have

f ιι 2 > W 0 ) IL < f II ϋ?v'*G4< 0 > - i ( 0 ) ) IL + f ii re~
t!eAm \\n

for a = 1 /4 and α = 1 /2. Since

β>1 = s u p f
0Γ

T may be taken to be

( / \1/a

This completes the proof of Lemma 3.4. •

Let us show that A in Lemma 3.4 also satisfies (1), (2) and (3) in Theorem

3.1.

LEMMA 3.5. Let A be the solution of (3.10) given by Lemma 3.4. Then for

0 ^ a < -T-, the function !£aA(t) is a Holder continuous on (0, T) with values

3 3
in L (Ω (gp)). More precisely, for 0 ^ a < ~τ there exists 0 < η < ~τ — a such that

l-oi\
(3.21) || £aA(t + h) - %aA(f) I < C(hηt~a~η + h3/A-at~3M + h

holds for all h > 0 and 0 < t < T — h, where C — C(a, η, M, k) is independent

of h and t.

Proof An elementary calculation shows

|| (*•** - DA I < Chr || 2rA L, A e D(£r), 0 < γ < 1,

for all A > 0. By Lemma 3.3, (3.12) and (3.16), we get

|| £"A(t + h) - rA(t) I < II (e'h* - l)Jί? W ||w

X
t+h



YANG-MILLS GRADIENT FLOW 107

, Γ II / - h £ Λ \ m < x - ( t - s ) < £ , * ^ I I ,

+ I \\(e - 1)2 e dDR\\nds
Γ II / -h£

I \\(e -

+ Γ" I r+1/Vu+h-s)*2-1/4Q(A) (s) I ds

+ ΓII or** - i)<ea+uYu-s)£!e-1MQ(A) ω I ds

ζ chv ii r+\-kίeAm i + c(hι~a + hvtι-a+v) ii dtβ i

X t+h

(t + h - 5 r α - 1 / 4 ( | | <e1/2A(s) 11 <e1MA(s) \\n + \\$ViA{s) ID

+ ctf fa - S)-°-1/4-"(iι £1/2A(S) i ιι £U4A(s) i + ιι Λ ω ID

< CAT""* \\Ai0) I + C(h'-a + h't1-"-*) || d*R I

/

t+h

(t + h - sΓa-Wis-3Mds

+ CM(k2 + k3)h" f
O

/C )-'? II Λi0) II J_ nil 1~a _1_ 7 vΛ-a-η\ \\ , * D M J ^ M\k r /C ) 3/4-α,-3/4

IIΛ ||n + C(h + h t ) || d^i? ||w + 3 / 4 _ α h t

+ k3)B(3/4 - a - η , l/4)hηt~a~\ 0 < a < j ,
3

for all ί > 0, h > 0, where 0 < η < j - a, from which (3.21) follows.

Proof of Theorem 3.1. Let A(t) be the solution of (3.10) given in Lemma 3.4.

Then by Lemmas 3.2 and 3.5, we see that the function Q(A) (t) is Holder con-

tinuous on (0, T) with values in Ln(Ω (QP)). By the general theory of holomor-

phic semigroups (see e.g. Tanabe [10, Theorem 3.3.2]), A is also a solution of (3.2)

in the class of (1) and (2) in Theorem 3.1. This completes the proof. D

Remark 3.6. By using a standard argument of semilinear parabolic equations,

we can prove that the strong solution A(t) given by Theorem 3.1 is actually

smooth (i.e., of class C°°) on M x (0, Γ) .
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4. Estimates

Now we return to the case when M is a closed 4-manifold. In this section, we

give various estimates for the curvature tensor, which will be useful for character-

izing the singular set ώ.

In the following sections, a connection D(t) is smooth means that D(t) ^ C°°.

LEMMA 4.1. Let D be a smooth solution 0/(1.1). Then the function

E(t) =^f\RD( , t)\2dV,

is non-increasing.

Proof Taking the L -inner product with RD in (2.4), we have

for any t ^ [0, T ] , which gives Lemma 4.1. EH

By Lemma 4.1, if D is a solution of (1.1), then for any t ^ [0, Γ ] ,

E(t) = f\RD(-,t)\2dV,

is bounded from above. For a smooth solution A, put

α \ 1/2

\ RD( , t) \2 dV) .

In the sequel we give a priori bounds for the norm of D in terms of the initial

energy E(D ) = EQ, T and εv Here εL > 0 is a parameter depending only on M

which will be determined in Lemmas 4.2-4.9. To obtain these, we use the Sobolev

embedding in 4-dimensional case. We will set εx to be the smallest of the numbers

εx appearing in Lemmas 4.2-4.9.

LEMMA 4.2. Let Ro be as in Proposition 2.1. There exists a constant εx > 0 such

that for any smooth solution D 0/(1.1) on (0, T) with the initial value (1.2), D ^

U ' and any number r ^ (0, Ro], if ε(r, x) < εv then we have
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(4.2) C f \VDRD\2dVdt<C(l + r-2T)E0,
J0 JBr/2(x)

where the constant C depends only on M.

Proof Let φ be a non-increasing with respect to distCr, •) real-valued func-

tion independent of t, which satisfies φ = 0 outside Br(x), φ — 1 on Br/2(x) and

\Vφ\ < c/r. Taking the L2-inner product with RDψ2 in (2.5), we have

kίiί \RD\YdV+f \VDRD\VdV
(4.3)

<cf \RD\3φ2dV+cf \RD\\VDRD\\Vψ\φdV.
JBr{χ) JBr(x)

For the right hand side of (4.3), using Lemma 2.2, we have

Γ \RD\\VDRD\\Vφ\φdV<ε f \VDRD\2φ2 dV + Cr~2 f | RD\2 dV
JBr(x) JBr{χ) JBr(x)

f \RD\YdV^c(f \RD\2dv)m (f \V\RD\\2φ2dV+r-2 f \RDfdV)
JBr(x) \JBr(x) ' \JBr(χ) JBr(x) '

<c(f I RD\2 dvY2 ( / \VDRD\2ψ2dV+r-2 f \RD\2dv).
\JBrω

 / \JBrω
 JBr{χ) i

Since we assume that ε(r) < εv we obtain

<4 4> \ίiϊ \RD\YdV+cf \VDRD\2φ2dV< Cr~2 f \RD\2dV.
Δ Ul Jβr(x) JBr(,x) JBr(x)

Integrating (4.4) over [0, T], we have

\ f \RD\2(T)φ2dV+C Γ f \VDRD\2φ2 dVdt
* JBr(x) J0 JBr(x)

< \ f \RD \2(0)dV+ Cr~2 Γ f \RD Γ dVdt.
Δ JBr(x) J0 JBr(x)

Therefore we have

Γ f \VDRD\2 dVdt < C(l + r-'VE,.

LEMMA 4.3. Let Ro be as in Proposition 2.1. There exists a constant εx > 0 such

that for any smooth solution D of (1.1) on (0, T) with the initial value (1.2), D e
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U ' , any τ > 0 and any number r ^ (0, i? 0], if ε(r, x) < εv then we have

(4.5) sup \RD\<C,
τ<t<T

xeBr/2(x)

where the constant C depends on τ, T, r, Eo and M.

Proof. By (2.7) with n — 1, we have

dtv < Δv + Couυ,

where u = \ RD\, v = \ V DRD |. Let ψ be a non-negative function. Multiplying the

above inequality by vPψ2, p > 1 and integrating over [0, Γ] x Br(x), by Lemma

2.2, we have

fT Γ dt(vp+1ψ2)dVdt + X ^ T Γ Γ I VΌ^ \2ψ2 dVdt
J0 JBr(x) P ~Γ 1 J 0

 JBr{χ)

< 4 C f I F ^ I υ^ IF0 I 0 dVdt + 2 Γ" Γ ^ + 1 1 9,0 I 0 rfVΛ

α \ 1/2

w 2dF

-\fT f \vv^IVdra + r"2 Γ Γ Γ /+102rfvaίl.
LJo Jβr(x) J0 Jβr(x) J

Let us take ψ such that ψ(t, y) = ψ1(t)ψ2(dist(x, y)), where φλ is

non-decreasing, ψ2 is non-increasing and

, / i λ [O i n θ < ί < δ r . . . ί l ins<<5/-,

^ ω = l l i n r < ^ < T , 0 2 ( 5 ) = ( o i n , > r ,

where 0 < δ < 1.

w2 dV) < : , then we have

— * -A) ' (p+l)2C0C1

(4.6)

Γ f dt(vp+1ψ2)dVdt + -7-^τγ Γ f IVυ^\2φ2dVdt

< 2<Φtl) Γ ί vp+11 Vφ |2 dVdt + 2 f f vp+1 \d,φ\φ dVdt
P Jθ ^Br(x) JO ^Br(x)

y-2 Γ f υp+ιφ2dVdt
Jθ JBr(x)



YANG-MILLS GRADIENT FLOW 1 1 1

<Cpδ(r~2 + τ-1) Γf vp+1dVdt.
JQ JBr(x)

Then there exists σ ^ [τ, T), such that

sup f vP+1dV<2 f vP+1dV
τ<t<T JBr/2(x) JBr/2(x)

(4 7 ) 2 , r ' r< CPtδ(r~2 + τ'1) J J v
J0 JBΛx)

%/2ω

P + l
dVdt.

'Br(x)

Since the first integral on the left hand side in (4.6) is non-negative, we have

f f I Vv*P \2φ2 dVdt < Cpδ(r~2 + r"1) Γ f v
JQ Jβr(x) ' Jo JBT(X)

vp+1 dVdt.

Thus, we get

(4.•8) Γ Γ Wυ^fdVdt^Cpiίr^ + τ'1) f f vp+1dVdt.
Jτ JBr/2(x) ' J0 JBr(x)

Using Proposition 2.1 and applying (4.7) and (4.8) with p = 1 with δ = \/\[2

and p — 2 with 5 = 1 /2, we have

(4.9) Γ f v9/2dVdt<C(r-2 + τ-ιΫ"/A(f( v2 dVdt)'\
Jτ JBr{χ) \ Λ) JBr(x) /

Combining (4.9) and Lemma 4.2, if ε(r, x) < εv then we have

Γ ί IVDRD Γ dVdt < C{r~2 + τ-
ιγ"\(X + r~2T)Ey\

Jτ JBr/2(x)

Since 9/2 > d imM = 4, by Sobolev's embedding and (4.7) with p = 7/2, we

obtain

α \ 2/9
I Γ7 n |9/2 ,Tr\I V D R D I dV)

< CI Λ r Λ(r) |1/4"2/9 ((r-2 + r"1) ΓΓ / I VDRD Γ dVdf

^ π 1/9/ -2 j -K19/18//T , -2rπ\π\\/2

< Cr (r + τ ) ((1 + r T)E0) .

Thus, we get the desired estimate. •

LEMMA 4.4. Let Ro be as in Proposition 2.1. There exists a constant εί > 0 such
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that for any smooth solution D 0/(1.1) on (0, T) with the initial value (1.2), D

U ' , any τ > 0 and any number r G (0, i?0], if ε(r, x) < εx, tfiew W£ have

(4.10) sup IV?zJ < C,

ig constant C depends on τ, T, r, Eo and M.

Proof. By Lemma 4.3 and (2.7) with n = 1, for any p, with 0 < p < τ, we

have

9,1 FzA I ̂  4 I PΪA, I + C I Γ J A , I, on [p, T) x Br/2Cr).

Note that the constant C depends on r, Γ, r, £ 0 and M. Therefore by a Moser's

result [5, Theorem 3], we obtain Lemma 4.4. D

LEMMA 4.5. Let Ro be as in Proposition 2.1. There exists a constant ε1 > 0 such

that for any smooth solution D 0/(1.1) on (0, T) with the initial value (1.2), D G

U '2, any n > 2 αwy r > 0 and any number r e (0, i?0], i/* ε(r, .r) < εx, ί/î n î β

have

Γ ί \vTκD\2dvdt<c,
Jτ JBr/2(x)

where the constant C depends on n, τ, T, r, EQ, M and || RD(τ) \\wn,2iB ix)).

Proof Let φ be the function defined in the proof of Lemma 4.2. Multiplying

(2.8) by Vβ RDφ2 and integrating over Br(x), we have

1 d Γ I Γ7 ( w )
 D I 2 2 , T 7 i Γ

<cf \f?RB\\Ψ?°RB\\Vφ\φdV
JBr(x)

n /*

(4.11) + C Σ I I F D i?D 11 F^ ^ 11 VD RD \ φ dV
ί=0 JBr{χ)

< ε I I Fj, ^ I φ dV + Cε / | VD RD \ \ Vφ \
JBr(x) JBr(x)

-i- r v Γ 117(/) p 11 T7(w"f) p 11 u(n) J? I ,r? A\r
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on [r, Γ), for any ε > 0.

On the other hand, by Sobolev's embedding, we have

Σ f I V™RD 11 Vf'Rn 11 V^RD I φ dV
ι=0JBr(x)

< sup \RD\f \V™RB\VdV+C f \V(?RD\2<p2dV
(τ,T)xBr(x) JBr{χ) JBrix)

(A 12) + C Σ Γ \VU)R I'lF0*""* \2w2dV
ί = l JBr(x)

< sup I RD I I I F^ i?^ I φ dV + C I \VD RD\ φ dV
(τ,T)xBr(x) Jβr(x) Jβr(x)

i Z~Λ sri ί Γ I rτ(ί+l) τ-> |2 2 j T r I / I rτ(ί) r> I2 I ΓT I2 j τ 7 i

+ C Σ { \VD R D \ φ d V + \ V D R D \ \Vφ\ dV).
ι = l \JBr(x) JBr(x) '

Combining Lemma 4.3 with (4.11) and (4.12), we have

1 d C I n(«) n I2 2 tT7 i /^ \ Γ* I π(»+D n I2 2 I T ;

9" 777 I I F D i?D I φ d F + (1 - ε) I | F D i?^ | (̂  d F
Dγ\X) Dγ\X)

(4.13) ^ C Γ I F ^ X |V2 rfF+ C f I F^i?^ |21 Vφ |2 dF

i r> n^ I C I π ( ( + D n I2 2 j\r i Γ I rτ<«) r» I2 I Γ7 I 2 J T Λ

+ C Σ IVD RD\φ dV+ \ \VDRD\\Vφ\ dV).

Integrate (4.13) over (r, T), we have

\ f I C * D |2(r)rfκ + a - ε) Γ f I vTι)RD I2 rfVΛ
Δ JBr(x) Jτ JBr/2(x)

< c ( l + r ) I I I F T ? I d V Λ
Λ JBr(x)

+ C"Σ(Γ f I ^+ 1 )/? f l ΓdVdt + r'2 Γ f I VB

nRD Γ dVΛ

+ f \t?RD\\τ)dV.

(4.14)

JBr(x)

Since we assume that RD is smooth on (r, Γ ] , that last term of (4.14) is bounded.

Assume that the inequality in Lemma 4.5 holds for n, then by the induction, the

right hand side of (4.14) is bounded. Thus, we get Lemma 4.5 in general. D
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LEMMA 4.6. Let Ro be as in Proposition 2.1. There exists a constant ελ > 0 such

that for any smooth solution D c>/(l.l) on (0, T) with the initial value (1.2), D ^

11 ' , any n > 2 any τ > 0 and any number r e (0, Ro], if ε(r, x) < εv then we

have

sup \VDRD\<C,
τ<t<T

xeBr/2(x)Br/2(

where the constant C depends on n, r , T , r , Eo, M and || RD(τ) \\wn,2{B (x)).

Proof By (2.7), we have

(4 1 ^ d I V R I < A 117 /? I + Γ I R II F T ? I + C Y 117 7? II V R I

Using Lemma 4.3 and Lemma 4.5, we may rewrite the inequality (4.15) as

(4.16) dtu <Δu+Cu+ Cf, on (p, T) x Br/2(x),

where u = | Vf RD \ e L2((p, Γ) x β r / 2(x)) and / = Σ ^ ί | VT" RD 11 V™ RD |,

for any p satisfying 0 < p < τ.

Assume that the conclusion of Lemma 4.6 is true for n — 1, then we have

/ e Lp((p, T) x Br/2(x)), for p>2. Applying [4, Theorem IΠ.8.1, p. 192] to

(4.16), we get the desired result. O

LEMMA 4.7. Let Ro be as in Proposition 2.1. There exists a constant εί > 0 such

that for any smooth solution D o/(l.l) on (0, T) with the initial value (1.2), D €=

U ' , any τ > 0, any p>.2 and any number r ^ (0, RQ], if ε(r, x) < ε^ then we

have

sup Γ lA^dV^ C,
τ<ί<Γ uBr/2{χ)

where D = d + A on Br(x) and the constant C depends on τ, T, r, Eo, M,

| |^t/)VW llwΛ'2CBr(.r)) QMd i\A.\T) \\Lp(Br/2(χ))

Proof Multiplying (1.1) by A | A \P~2 and integrating over Br/2(x), we have,

by Lemma 4.3,

d Γ \A\pdV<C f \VnRΔ\A\p-ιdV— C J i v DivD

(4.17) "- BrniX)

 ι/f

\VDRD\PdV) (f \A\Pdv)
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< f \A\pdV+ C, on (p, T),
JBr/2ω

for any p satisfying 0 < p < τ. For the function U(t) = I | A \P dV, we have
JBr/2ω
JBr/2ω

γt U(t) < CU(t) + C.

Lemma 4.7 follows from GronwalΓs inequality. D

LEMMA 4.8. Let RQ be as in Proposition 2.1. There exists a constant ει > 0 such

that for any smooth solution D of (1.1) on (0, T) with the initial value (1.2), D ^

U1'2, any n > 1, any τ > 0, any p > 2 and any number r e (0, Ro], if sir, x) < εlf

then we have

sup Γ \V(n)A\pdV< C,
τ<t<T ^Br/2(x)

where D = d + A on Br(x) and the constant C depends on n, τ, T, r, Eo, M,

\\RD(τ) \\wn+1'2(Br(χ)) a n d \\A(τ) \\LpiBr/2{x)).

Proof By a direct computation, we get

(4.18) VfdfA = dtV^A + C Σ Σ F^U* *V\
k=ι iι+ *+ih+j+k=n

Using (1.1) and (4.18), we have

(4.19) dtV™A = - vfdtRD + C Σ'V^A* * Γ^il* 7^94,

where Σ r = Σ j l ί Σ ί i + . . . + ί Λ + ; + , = w . Multiplying (4.19) by V™A \ VfA Γ"2 and in-

tegrating over Br/2(x), we have, by Lemma 4.3,

ft f I VfA \"dV^cf I FΓn/?o 11 V?A Γ1 dV
(4.20)

(4.20) and Young inequality yield

(4.21) 4ϊ ί I f™A \"dV<cf I VfA \P d V + C ( \ FJ,"+l)Λfl Γ rfF
^^ ^Br/2(x) Jβr/2(x) ^Br/2(x)
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+ CΣ' f I V^A Γ I V^A ΓI V%+ι)RD Γ dV.

Assume that the conclusion of Lemma 4.8 is true for n — 1. By Lemma 4.6, the

last term of the right hand side of (4.21) is bounded by above on (p, T), for any

p satisfying 0 < p < τ. Set U(t) = / . I Vfλ \P dV. Then (4.21) gives

-^U(t) < CU(t) +C.

Using GronwalΓs inequality, we get

sup f \t»A\p dV<C.
τ<t<T JBr/2(x)

Remark that

Γ I V(n)A \pdV< f I vfA \PdV+C f \A\P\ Vtl)A \P dV.
JBr/2(x) JBr/2ω

 JBr/2ω

Using Lemma 4.7, we have by induction,

Γ \V(nA\pdV< f \V?A\pdV+C. m
JBr/2(x) JBr/2(x) U

LEMMA 4.9. Let RQ be as in Proposition 2.1. There exists a constant ε1 > 0 such

that for any smooth solution D 0/(1.1) on (0, T) with the initial value (1.2), D ^

U ' , any T > 0, any p>-2 and any number r ^ (0, i?0], if ε(r, x) < εv then we

have

sup Γ \dtA\pdV< C,
τ<t<T JBr/2(x)

where D — d + A on Br(x) and the constant C depends on τ,T,r, EQ, M,

l l # z > W Ww2 HBr(x)) and \\A(τ) \\Lp{Brn{x)).

Proof Taking the norm on both sides of (1.1), we have

Γ < I d*DRD I*.
Thus, we get

l Λ d l / ) Λ T / = Γ I//*J? \p AM < \ I 17 Ώ \p Λ\7\dιA\"dV=f \d*RD\"dV^f \VDRD\"dV.
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LEMMA 4.10. Let Ro be as in Proposition 2.1. For any smooth solution D o / ( l . l )

on (0, T) with the initial value (1.2), D G i l ' and any number r e (0, Ro], we

have

f I RD \2(t) dV < f \RD \\0)dV + Cr'2tE09JBrn(x) JBr(x)

where the constant C depends only on M.

Proof. Let φ be the function defined in the proof of Lemma 4.2. Multiplying

(1.1) by dfAφ and integrating over M, we have

Γ I dA IV dV = - Γ <d%RD, d&φ2 dV

£ - Γ <RD, dtRD>ψ2dV+ C { \RD\\dtA\\Vφ\φdV.

So we have

(4.22) J \d4\2φ2 dV+^-j~t J \RD\2φ2 dV<^ f \d4\2φ2 dV+ Cr~2 J \RD\2dV.

I n t e g r a t i n g ( 4 . 2 2 ) o v e r [ 0 , t], w e h a v e

^ (\RD\2(t)φ2dV<\ f \RD\2(Q)dV+Cr-2tE0i
Z JM Δ JBr(x)

which gives Lemma 4.10. CD

5. Existence of global weak solutions

Let T — T(D ) be the maximal existence time for the smooth solution of

(1.1).

THEOREM 5.1. Let D ° e U 1 ' 2 , and let D be a solution o / ( l . l ) with the initial

condition (1.2) on (0, T{D ) ) . Then we have the following:

(1) T(D ) is characterized by

α \ 1/2
I RD |2 dV) > ελ for all r e (0, Ro].

(2) // T < °°, f/ι̂ n ί/ι̂  solution D is smooth on M X (0, T] except for finitely

many points {(x , Γ ) : 1 < I < L).
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(3) The singular point (x , T) is characterized by

α v l / 2

I RD | 2 dV) > εv for all r e (0, Ro].

(4) The energy E(D(-, t)) is non-increasing.

Proof. By Theorem 3.1, there exist a local smooth solution D(t) of (1.1). (See

Remark 3.6). By using Lemmas 4.2-4.9, we see that the maximal existence time

T(D ) is characterized by

α v 1/2

I RD |
2 dV) > εlf

for all r > 0 and some x ^ M. Theorem 5.1 follows immediately from:

LEMMA 5.2. Put

*3Γ : = [ r€ΞM: Γ I ̂ ( - , Γ*) |2 dV> ε1 for all r <s (0, Ro]}.

Then ώτ* consists of finitely many points.

The lower semi-continuity of the energy yields

Γ \RD\2dV< liminf Γ \RD\2dV
JΛf'x{T*} τ_>τ*τ<τ*

JM'x{T}

( 5 2 ) < liminf Γ \RD\2dV-£f \RD\2dV
T->T*,T<T* JMx{T) 1 = 1 JBr(xι)x{T*}

< EQ — L^!,

for any r e (0, i?0] and any AT c Af\ U Br(χι). Passing to the limit r - * 0,
/=i

we have

£ ( , Γ*) < Eo - Ll£l.

From this estimate we conclude that Lλ must be finite. This gives Lemma 5.2. Π

By Lemmas 4.2-4.9 and Lemma 5.2, we have the following:

THEOREM 5.3. Let D(t) be a smooth solution of (1.1) on (0, Γ ) , T < °°. 77ten
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there exists a finite open covering {Ua} of M\ {xlf , xL} and a connection D on P

over M\{xlf , xL} satisfying the following conditions:

(1) Aa(t) -> Aa in W^(Ua), for any p > 2, and any n>Q,

(2) (RD(t))a - (RD)a in W£(Ua), for any n > 0,

(3) RDω RD weakly inU{M),

ast ΐ T, where D(t) = d + Aa{t) and D = d + Aa on Ua.

Remark. Assume T = °°, then there exists a To > 0 such that the solution is

smooth on (Γo, oo), By using the identity [ \dA\2 dV— ~^^ΰ [ \ RD\2 dV,
j M z ax JM

the monotone non-increasing property of the energy, and a Sedlacek's result

[8, Theorem 3.1, Theorem 4.3], there exists a finite open covering {Ua} of

M\{χlt ' ' ' ,xL), a sequence {tj}, tj—* °°, gauge transformations {σa(tj)} and a

connection D on P over M\{χv , xL} satisfying the following conditions:

(1) σϊ(tJ)Aa(tJ)-+AainW£(Ua),

(2) σϊiψAait^Aa in L2

loc(Ua),

(3) Rσ*{tj)mtj) RD weakly in L2{M),

as ./—• °°, where Z)(O = d + i4α(ί) and Z) = d + Aα on £/α. Moreover, Aα is a

Yang-Mills connection on C/α, hence P extends to a C°°-bundle over M and D

extends to a C°°-Yang-Mills connection in the extended bundle.

Now, we characterize the singular points for D(t):

THEOREM 5.4. Let D be a solution o/(l.l) with the initial condition (1.2), D(0)

^ U ' constructed in Theorem 5.1, and suppose that (x0, T), T< °°, is a singular

point. Take a local coordinate Ua which contains x0. Then there exist sequences xm —>

x0, tm ΐ Ty rm G (0, RQ], rm^>0, gauge transformations {φm) and a smooth

Yang-Mills connection D^ = d + A^ on R such that φm(d + AYm{XmΛJ) tends to

D^ locally inVί ' on a local coordinate Ua, where

ArM.<xM.tM)&> t):=A(rm-x + xm, r2

m-t+ tm),

and D — d + Aa on Ua. Moreover the Yang-Mills connection D^ extends to a smooth

Yang-Mills connection on S .

Proof Let x0 be a singular point of D at time T characterized by the condi-

tion
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im sup I I RD |2 dV > εl9
T'-*T Jβr(Xo)

lim

and let Ua be a local coordinate of M satisfying x ^ Ua. Moreover let p ^

(0, ifo/2] such that Bp(xt) Π Bp(xj) = Φ for all i Φ j and for each i there exists

Ua such that Bp{x^) c £/α. Under the expression D = rf + i4α on t/α, there exist

sequences «rw—• xo» ^m"^ Ϊ Ί rw e (0» ^o) w i t h rm~^ 0 such that

D\2dV.ε1= f \RD

By Lemma 4.2 and Lemma 4.10, we have for any t ^ [£w — εrm, tm],

f \RD?dV> ^ , fίm / I VDRD |
2 rf7Λ < C,

where ε = p ^ p , and C1 is the constant in Lemma 4.10.

Hence the sequence Am •= Ar t{χ Λ ^ satisfies the estimates on Qm-= {(x, t):

sup f \RDJdV^tx

-ε<t<0

Γ I 9(Z>m |
2 rfVrfί = f'm [\ d 4 Γ </VΛ— 0 (m

where Dm = d + Am. Especially, for some r m ^ [— ε, 0 ] , we have

Γ I RD |2 dF > C > 0,
JB2(0)xiτm) m

2

r
2

as m—> °°, uniformly in m. Rescaling tm^ tm — τmrm, we may assume τm = 0.

Therefore there exist suitable gauge transformations {φm} and a subsequence

{Dm} such that φ*Z)w( , 0) converges to D^ weakly in U1(/>(R4) for any p > 2

and strongly U ^ ί R ) . Passing to the limit rn—>°°, we see that D^ is a
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Yang-Mills connection with finite energy on R4. By a Uhlenbeck's result [12], D^

extends to a Yang-Mills connection on a bundle P' over S . D

By Theorem 5.3 and Theorem 5.1, there exists a solution D(t) of (1.1) with

the initial value (1.2), D G i l 1 and the solution converges to a connection D

over M\sSτ as t~* T, which is characterized by Theorem 5.1. Moreover the curv-

ature form RD(t) of D(t) weakly converges to a R in L (M). Following the proof

of Theorem 5.4, we may assume Ua = R and we have a Yang-Mills connection

on R . By using a conformal change of coordinates, we have a gauge change φa on

Ua, which pull-back of the Yang-Mills connection on S to that on Ua. Now, set

g'aβ = < P a = Ψa'gafr f o r Ua Π Uβ Φ # a n d gβγ = gβr f o r β , γ Φ a . T h e n w e h a v e

a new G-bundle Pr on M with the transition functions igβr}. Using the Theorem

in [8, Appendix], we see that Pr does not depend on the choice of rm, xm, tm, be-

cause, η(P') and the Pontrjagin number px(P') do not change (see Section 7).

We first study the behaviour of the first Pontrjagin number. It is known that

the first Pontrjagin number of a principal G-bundle over a 4-manifold with the

connection D is

p1{P)=—2j{\R+

D\2-\R-\2)dV,
4ττ M

where i?# and i?# is the self-dual and anti-self-dual part of RDf respectively. Let

PM = ~jM (I #»+(o) I2 - I R;(O) I2) dv,

Pι(τ) = -\ f (I i?^(D Γ -1 R~m Γ) dv\

4ττ JM

then ^i(O) is the first Pontrjagin number of the bundle P.

PROPOSITION 5.5. px(T) e Z.

/ Without loss of generality, we may assume that the singular set con-

sists only one point, i.e., ώτ = ίr 0 }. By the lower-semi-continuity for the L -norm

of RD, we have

px(T) -A(0)

= - ^ ( f (I Λ ; (T) I2 -1 i?;(D |2) dv- f (I i?p(o) Γ -1 e (o) I2)
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= Λ ( ί (l ̂ + ( Γ ) I' - I ̂ + ( 0 ) !2) dV- f (\ R~(T) I2 - I R-(0) |2) a

By Theorem 5.4, there exist sequences xm^ x0, tm ΐ T and rm^>0 such that

Arm(xm,tm) converges to A^ in W ' . For the self-dual part, we have

j [ d i ? D

+ ( r ) i 2 - i i ? ; ( o Γ ) ^

- jΓ (i i?fl

+(τ) ι2 - 1 Rtitj ι2) d ^ + jf ω (i i?;(D ι2 - 1 R+

D{tj Γ) dK.

τ , Γ I D+/'+ Λ I2 ΛT/ J Γ I D+/TΛ I2 ^T7 4- Γ I D + I2 ^T7 J

Then, I | RD ytm) \ dv and I | RD yl ) \ dv converge to I | KDM \ dv and
Br (0) Br (0) ΛS4 ""

0 as m—^ °°, respectively. For the anti-self-dual part, we may obtain the similar

result. Moreover, on M\s£τ, RD(tm) converges to RD(T) strongly in L. Since

Pι(0) — Pι(tm) for all m, we have

Pι(T) — pι(0) = the first Pontrjagin number of the bundle on which D^ lies.

Hence pγ(T), e Z. •

In Section 7, we will prove that the obstruction η(P) of the bundle P does

not change under the weak convergence of RD(t), (cf. Theorem 7.1). We may

assume ώτ contains only one point x0. Take a local coordinate Ua which contains

x0 so that other coordinates Uβ, a Φ β do not contain x0. Together with the tri-

vialization φa given in the arguments after the proof of Theorem 5.4, we consider

the transition function g'aβ = φ^gaβ and gβr = gβr for β, γ Φ α, where igaβ} is

the transition function for P. Then {gf

af) gives a bundle Pf over M. By the con-

struction RD(t) given in Theorem 5.3 can be viewed as the L -section of Ω (g^).

In this section, let {g'aβ} be a family of transition functions of Pf. By Theorem 5.3,

there exists the connection d + Aa(T) on Ua such that dAa(T) + [Aa(T),

Aa(T)] — RD(χ(T) on Ua and we have Ua Π s3T = Φ. By using the gauge trans-

formation, we set

(5.3) A a = g £ d g ' « e + 8 β β β

Also, by the construction of P', a family iAβ) is extendable to a W -connection

on P' and satisfies RDω = RD(T) on M\ώτ so that | RD(t) \ converges to | RDω \

in L2{M).

Using the connection D , we see that the solution D(t) is extendable beyond
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T weakly, and as a result a weak global solution of (1.1) can be obtained.

THEOREM 5.6 (existence of global weak solution). Let M be a closed

4-manifold. For any initial connection D ^ 11 ' on P, there exist finite sets {t)i=v

{Xj}i=ι jίv where N{ < °°, a finite correction of G-bundles ίP,},-^, where Pι — P

and a solution D(t) 0/(1.1) on (0, °°) X M with the initial condition (1.2) such that

D(t) is a connection of Pf on (t^, t() and D(tt) is a connection P{ | M \ u ^ . } =

Pi+1 l^u^ {x.}. Moreover, the energy E(D(', t)) is non-increasing.

Proof By Theorem 3.1, we find a time local solution D(t) of (1.1) with the

initial value D at the time T. Assume the solution is smooth on (Γo, 7\), Tx >

To. Then the solution converges to a connection in the sense of Theorem 5.3 as

t—> 7\, and we have 2?(7\) < E(T0) — ε̂ /V*. Iterating this procedure, we see that

the solution D(t) can be extended up to t = °o. Π

non-Since the energy functional E(t) — ~F: \ \ RD(t) \ dV is monotone

increasing with respect to t the initial condition as E(D ) ^ εx allows neither

blow-up time nor local concentration of the energy. In such a situation, we get the

global smooth solution of (1.1):

COROLLARY 5.7 (global smooth solution with small initial energy). If

E(D ) ^ εlf then there exists a smooth global solution for (1.1) with the initial con-

dition (1.2), Dm e It1'2.

6. Uniqueness of solutions

We now prove Theorem C:

THEOREM 6.1. Let D = Do + d and D = Do + d be two weak solution 0/(1.1)

with the same initial condition (1.2) in the class of X(M, (0, D ) . Suppose in addi-

tion that d, d e L9(0, T; Lr(Ωι(§P))) for q > 2 and r> 4 with 2/q + 4 / r < 1.

If dD(d, dDβ- ^ W >O°(M X [0, T); Ω°{^)} then there exist gauge transformations

s and s in the class Wι>°°(M x [0, T);&P) such that s*d = fd on M x [0, T).

Remark. (1) By the Sobolev embedding, we have an inclusion X(M, (0, T))

c_*L°°(0, T)L\Ω\QP))). Hence X(M, (0, T)) is a limiting case in I*(0, T;

Lr(Ωι(QP))) as q ΐ oo and r I 4 in the relation 2/q + 4/r<l.
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(2) For such gauge transformations s and s as above, we have s d, s d ^

ί,°°(0, T; Wι'\Ωι{§P))) Π L*(0, T Lr(Ω1 (QP))) s and s preserve regularity of

d and d, respectively.

Theorem 6.1 is proved by establishing the following lemmas.

LEMMA 6.2. Let f ^ W '°°(M X [0, T]; Ω (gP)). T/ι̂ n there exists a unique

gauge transformation s ^ W '°°(M X [0, T]; &P) such that

8-^8= fin MX (0, T),

s(0) = id.

For the construction of the solution s(t), we may use the successive approxima-

tion:

= so(ί) + I sm(τ)f(τ)dτ, m = 0,l, .
*^0

Then we can easily show that 5m—^ 5 in PF '°°(M X [0, Γ ] ; .0 (QP)), which yields

the desired solution (see, e.g., Nagasawa [6, Theorem 3.2.1]).

LEMMA 6.3. Let A and A be two solutions o/(3.1) in the sense of distribution in

the class L°°(0, T; W 1 I 2 ( Ω \ Q P ) ) ) Π L r ( 0 , T Lr (Ω1 (&,))), where q>2 and r>

4 with2/q + 4/r < 1. Then we have A = A on M x [0, Γ ) .

For a moment, let us assume Lemma 6.3.

Proof of Theorem 6.1. By the assumption in Theorem 6.1, dD{d, dDd ^

W '°°(M x [0, T); Ω (gP)) and it follows from Lemma 6.2 that there exist gauge

transformations 5 such that

\s~ιdts = did, s~ιdts = d*oJ, ί > 0,

U(O) =J(0) = i d .

Defining A = s*d and A = 5 * ^ , we obtain A, A <Ξ L°°(0, Γ; ίΓ^ίfl^gp))) Π

L9(0, Γ L^β^gp))) (see Uhlenbeck [13, Lemma 1.2]). Moreover, the derivation

of (3.1) enables us to see that A and A are weak solutions of (3.1) with the same

initial data. So, Lemma 6.2 yields the desired result. D



YANG-MILLS GRADIENT FLOW 1 2 5

Now it remains to prove Lemma 6.3.

Proof of Lemma 6.3. By the Sobolev embedding, we have

, Ψ>\<\ <Q1(A), φ>\ + \ <Q2(A), φ> |

for all φ ^ W ' (Ω (QP)), from which

Q(A), Q(A) e L"(0, T; Wh2(ί

Hence Λ and i satisfies (3.2) in Wh2(Ωι(&,))*, (Y*: dual space of F).

Taking B = A - A, we have £ e C°([0, T); L2{Ω\%P))) and

9 β • ' " " - Q(A) - Q(Ά) = 0 i n
(6.1)

B(0) = 0.

Since QG4), Q U ) e L (0, T; W ( β (gP)) ), it follows from the definition of

the weak solution that -~r ^ L°°(0, T; W ' (Ω (gP)) ). Then applying Temam

[11, Chapter III, Lemma 1.2], we have the identity

(6.2) (β£r -

where (*,*) denotes the duality pairing between W ' (Ω (gP)) and

W ' (Ω (QP)) and R is the curvature form of DQ. Using Gagliardo-Nirenberg's in-

equality

I Ώ II o <? r II Ώ \\ι~*/r || D | | 4 / r

I B WJUL- < C\\β \\2 II B | |^i,2,

we obtain from Young's inequality

I <QM) ~ QM), B> I < ( I U I + IIA I) II F β ||2 IIB

(6.3)

I < Q 2 U ) - Q2U), B> I < (\\A\t + || A ||2r) || B
(6.4)
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< UVB\\2

2 + c α + ll Allr* + II A\$*) I|B||22.4

Now it follows from (6.1)-(6.4)

(6.5) ~\\Bξ + \\VB\\l Z C (1 + \\R\L + \\A\\p + \\A\\p) \\B\\2

2.

Since Λ < q, we have by assumption I \\ A(t) Wf'4 dt, I \\A(t) \ϊ~4 dt

< °° and hence (6.5) and GronwalΓs inequality yield the conclusion. This com-

pletes the proof of Lemma 6.3. O

7. Topology of bundles

In this section, we study structures of bundles on which defined the weak

solution D(t). In Section 5, we have proved the behaviour of the first Pontrjagin

number plt so we will study the obstruction η(P). The idea in this section is due

to Sedlack [8].

Note that pλ may not be conserved in time, however, we can find a conserva-

tion quantity in time.

THEOREM 7.1. For the weak solution D(t) of (1.1) with the initial condition

(1.2), D e U ' , the obstruction η(P) is conserved in all time.

Proof. Let T > 0 be the first singular time of the solution D(t). Since

D(t) is smooth on 0 < t < T, there exist a family of transition functions {gaβ} of

the bundle P such that Aβ(t) = ga^t)~ldgaf}{t) + gaβ(tyιAa(t)gaβ(t). First, we

observe that igaβ(t)} are if 1>4-bounded on Ua Π Uβ for f-> T. On Ua Π £/̂  we

have

II <te«*(f) IL*(σβπ^) ^ I I ^ ( ' ) IL^^π^) + llΛr(') IHU^U,)

< C( | |A/ i ) \\wi.i{ϋanϋβ) + \\Aa(t) \\wιaiϋanϋβ)) .

Note that the right hand side of (7.1) is bounded on t e (0, T], if Ua Π s&τ = Φ

and t/g Π J^SΓ = Φ. Therefore we conclude the W >4-boundedness on Ua Π Uβ of

Since the projection map π is an isometry, we have

Ugaβ(t) \\LHuanue) = \\πdgaβ(t) \\LHuanuB) = II dgaβ(t) ||L4(Uanue)>
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therefore igaβ(t)} is W 1>4-bounded on Ua Π Uβ.

On the other hand, we can find following results in [8, Section 5].

LEMMA 7.2. Let ώ = {χv , xN} be a set of finitely many points in M, and let

J: M\J£—> M be the inclusion map. For principal G-bundles P and Pr over M, if

η(J*P) = η(J*P'), thenηiP) = ϊ)(P').

LEMMA 7.3. Let f: £/α —• R be a finitely many valued function. Iff e W ' , then

f must be constant function.

LEMMA 7.4. // the lift gaβ ofgaβ e C°° is Wll\ then gaβ e C°°.

Let s£ — {x) be the singular points of the weak solution at t = T. By Lemma

7.2. it is sufficient to prove on M\JS. The functions faβr(t)(x) =gaβ(t)(x)-

gβγ(t)(x) gra(t){x) converges to gaβ(T) (x) gβr(T){x)'gγa(T) (x) =faβr(T)(x)

for any x ^ M\ώ in C°°, by Lemma 7.4 and Lemma 7.3. Therefore, we have

η(P)=r](P'). D

Remark. The obstruction η(P) coincides the second Stiefel-Whitney class

2{P) e H2(M, Z2)w2{P) e H2(M, Z2), if G = O(n) or SO(n). lί G = U(n), η(P) coincides the

first Chern class q ( P ) e 7/ 2(M, Z).

Remark. By following the argument in Sedlacek [8], the assumption that G is

compact will be removed.
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