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GLOBAL SOLUTION FOR THE YANG-MILLS GRADIENT
FLOW ON 4-MANIFOLDS

HIDEO KOZONO, YOSHIAKI MAEDA anp HISASHI NAITO'

1. Introduction

In this paper, we will study a global weak solution for the Yang-Mills gra-
dient flow on a closed (i.e., compact without boundary) 4-manifold. Let us explain
some notion briefly to be able to state our results.

Let M be a closed 4-manifold, G a compact Lie group embedded as a sub-
group of SO(), or SU(l) and P be a principal G-bundle over M. We now
assume the universal covering G of Gis compact. Denote by g the Lie algebra of
G and denote also by gp and &, the adjoint and automorphism bundles of P, re-
spectively. Using the metric on G induced by the Killing form, we fix a metric on
P compatible with the action of G. Let £2*(gp) be the space of smooth g-valued
k-forms, ie., 2%(gp) = C”(M;g, @ A*T*M). Here, for the space 2"(gp) of
gp-valued k-forms, we can define Sobolev spaces Wm'ﬁ, L’ with norms I "Wm.p,
Il ||p in usual way.

Connections on P are explained by taking an open covering {U,} on M; we
trivialize P on U, via a trivialization: PIU,, = U, X G. A connection D on P is,
by definition, given by D =d + A, on U,, where A, is a g-valued 1-form on U,
Moreover, for a set of transition functions {g,s} of P associated with the tri-
vialization for {U,}, where g,5: U, N Uy— G, D satisfies

Ay = gopdg.s + 8apAalas on U, N U,

We denote by dp and d;k the covariant exterior differentiation and its formal ad-
joint with respect to a connection D, respectively. Moreover, the covariant dif-
ferentiation on tensors for the connection D is defined by V,. If D is a smooth
connection, then its curvature is given by R, = d,,” € 2°(g,).

We consider the Yang-Mills gradient flow; the steepest descent flow of the
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1
Yang-Mills functional E(D) = ff | R, dV:
M

(1.1)

D= —dyR, on M x [0, ),

with the initial condition

(1.2)

D) = D on M x {0}.

We will construct a global weak solution of (1.1), which may blow up in a

finite time in the classical sense. If the solution blows up, then the structure of the

bundle on which the connection lies may change. The notion of a weak of (1.1) is

described as follows:

DEFINITION.

1

(2)

The connection D(¢) is called a weak solution of (1.1) on the space
[T,, T,] X M with the initial value D(T,) = D, at t = T;, if D(¢) is a
connection on the same bundle P for ¢ € [T,, T,), and if the connection
D(t) satisfies

Ty
[ <, 80> — <Ry, dy@>avit= [ <D, o(T)>aV,
T, YM M
D(t) € LT, T,; W7 (2'(gp)),

sup f | Ry(#) |?dV < oo,
T<t<Ty ¥M

for any @€ CJ([T,, T) X M, 2'(gp)), where the inner product
{D, @) for connection D is defined by using the expression D = D, + A
for fixed D,

Moreover, a connection D(#) is called a weak solution of (1.1) on
[0, ©) X M with the initial condition (1.2), if there exist finitely many
collection of G-bundles {P}}, where P, = P, {t}77;, with £, = 0, t,,,
= oo, such that D(¢) is a weak solution on each [#,, ¢;,,] with the initial
value D(O) = D at t=0 and D) at t=tG=1,...,L) in the
above sense on the bundle P,,, and such that R,(t) — R,(¢,,,) weakly
in (M) as t 1 t,,.

Let G be the universal covering space of G and let K = n_l(e), where ¢ is

the identity element of G. Let Z,4 be a lift of transition functions g, on G. Since
8os " Bor " Bra T €
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faBT: U, N UB n U‘/-_) K, faﬂr =8 8sr " &ra

is well-defined and satisfies 7 f;, = e, {f,;,} determines the element of H*(M, K).
We denote this element by n(P) (cf. [8)).
The first purpose of this paper is to show the following:

THEOREM A. For any D'” € U, there exists a weak global solution D(t) of
(1.1) with the initial condition (1.2) on [0, ) X M. More precisely, we have the fol-
lowing

(i) There exist finite set of times {t}iq, with t,=0 and t,,, =, and

G-bundles {P};_, with P, = P such that D(t) is a smooth connection of P,
on (¢, t;,)) and satisfies (1.1) in the classical sense.

(ii) For each i, there exist N;(< ) points {xij}i\,__’l of M such that D(t) is a

connection of P, | MU z,)-

(iii) The function t+— L | R,(2) |>dV is non-increasing and weakly continuous

in L*(0, ).
(iv) Each bundle P; satisfies n(P,) = n(P).

Here, the space U™ is defined by as follows. Fix an open covering {U,} of M
which trivialize P on U,. Now, the connection D is expressed by d + A, on U,
so we define

U = (D = d+ Ag: | A, lyyme < o0},

where || [, m» denotes the W™ _norm given by the trivialization P an = U, X G

The weak global solution D(¢) of (1.1) as described in Theorem A should be
viewed as leading in the first step from the initial connection D(¢,) = D(0) to the
ideal connection D(t)) on P = P,, a point of the boundary of the space of connec-
tions, and their within that boundary, to a new ideal connection D(f,) on a mod-
ified bundle P,. It will be proved that in a finite number of such steps the solution
can be extended to the interval [0, o). The procedure is very much in accordance
with the structure of the module space compactification as elucidated by Donald-
son and Uhlenbeck.

The gauge transformation s € = C”(®,) acts on connections: A, — S, A,
= s.'ds, + s, A,s,. The curvature is actually a section of the bundle P @ T*M
A\ T*M, and so a gauge transformation s € & also acts on curvature tensors by
Ry~ s*R, = Ry = s'R,s. Note that gauge transformations leave the
Yang-Mills functional invariant ie., E(s*D) = E(D). This is a crucial difficulty
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for treating the smooth solution of (1.1). At first we construct a solution of (1.1) in
a finite interval (0, T) by using the following trick: If a connection D transforms
to s*D= D under a gauge transformation s, then the equation of the Yang-Mills
gradient flow (1.1) is transformed to

D= —dyR,+dyx on MX [0, ),

(1.3) ©
D) =D on M x {0},

where a = 3_16,5 S Qo(gP) (cf. Jost [2]). We call (1.3) a modified Yang-Mills gra-
dient flow. Conversely, a solution D, & or s of (1.3) yields a solution (s™N*D of
(1.1).

To obtain Theorem A, we constructed a solution of (1.3) in a finite time inter-
val (0, T), and return to (1.1). We also show that the energy functional
E(D(t)) is monotone non-increasing with respect to ¢ Such a monotonicity of the
energy functional can extend the life span of our local solution beyond 7. The
singular set &4 can be characterized in terms of the local concentration of the
L*-norm of the curvature R).

THEOREM B.  The singular set 3 = {(z;,t) € M X (0,], i=1,...,L+1}
for the weak solution given in Theorem A is characterized as follows: There exists a
positive constant €, depending only on M and G such that

lim supf |R,(t) PaV > ¢,
)

t1t B,(z,,

for all v > 0.

For a principal bundle P on M, we take a connection D, and fix it. Any con-
nection D is expressed as D = D, + A where A € 2'(g,).

Our second purpose is to discuss the uniqueness of weak solutions to (1.1).
To this end, let us introduce a class X(M, (0, T)) of connections:

X, 0, 7)) = {D(t) € 1" sup fM(IRD|2+ Vo Ry + |75 Ry | dV < oo},

0<t<T

TueoreM C. Let D= Dy, + A and D= D,+ A be two weak solutions of (1.1)
with the initial condition (1.2), D'” € U"* in the class of X(M, (0, T)). Suppose in
addition that A, A € L*(0, T; Lr(Ql(gp))) for q =2 and v>4 with 2/q+4/r
<11 d;:A, d;oA € W' (M x [0, T); 2°(8,)), then there exist gauge transforma-
tions s and § in the class W' (M x [0, T); ®,) such that sS*A=5"4 on
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M x [0, T).

2. Fundamental inequalities

In this section, we give some fundamental inequalities for later use.

ProPoSITION 2.1. There exist constants C, Ry > 0 such that for any u €
W (M), v e W' (M), and any r € (0, R,], we have

fM|u||ulzdvg csup(fmlulzdv)m(fMlvulzdwr‘szlvl”dV).

zeM

We first show a local version to Proposition 2.1.

LEMMA 2.2.  There exist constants C, Ry > 0 such that for any u € whi(M),
ve WP ), v € (0, R)], x € M and a monotone non-increasing non-negative 7a-
dial function ¢ = @(dist(z, +)) € L”(M) with ¢ =0 on M\ B,(x), the following
nequality holds

L|u||v|2(pdV_<_ C<£(I)|u|2dV>U2<jA;|Vv|2<pdV+r_zjj;lvf(pdV)‘

r

Proof. First we assume ¢ =1 on B,(x) and let # = vol(B,(x))_lf vdV

B,(z)
be the mean value of v on B,(x). By Holder's inequality, we have

_/':"MHUIZdVS C(j;rlu‘ng>l/z<L,|v|4dV>l/2

<c(f lulrav) (f10- 5+l av)

By the Sobolev embedding theorem, we have

2.2) le—z7|4dV_<_ C(_];IVvlde)z.

On the other hand, by Hélder’s inequality,
1
_ 14 < f f
fs,| sltavsc [ | ogy ), vav

4
(2.3) < Cvol(B)* fvdv
B,

(2.1)

4

av
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< Cvol(B)™ (j; o] dV)z

<cr (j; | o2 dV)z.

By (2.1), (2.2) and (2.3), we get Lemma 2.2 for ¢ = 1.
By linearity, Lemma 2.2 holds also for step functions. For general ¢, we can
show the assertion by approximating ¢ in measure by step functions. J

Proposition 2.1 is derived from Lemma 2.2 via the following lemma. For the
proof, see Struwe [9].

LEMMA 2.3. There exist constants K, Ry, > 0 depending only on M such that for
any v € (0, R,] there exists a covering of M by balls B,,,(x;,) satisfying that at any
point x € M at most K of the balls B,(x;) meet.

Next, we give identities for the curvature form R}, for a connection D:

LEmMMA 2.4. If D is a smooth solution of (1.1), then
(2.4) a,R, = — ALR,,
(2.5) 0,R, = — AR, + [R,, R,],
(2.6) 0, | Ry| <A|R,| + CIR, I,

27 0,|VaR, | <Al VIR, + CZ|VIR, || VI R, |, for n=1,2,...
i=0

where 17;” denotes the covariant differentiation of i-th order with respect to 71,, and Ag
and Ay are the Hodge and the rough Laplacian, respectively, i.e., Aﬁ = d: dp + dl,dz,|<
and A, = D*D.

Proof. Note that d,0,D = 0,R,. Applying dj, to (1.1), we have, by the Bianchi
indentity,
o,R, = — dydyR, = — ALR,.
The Bochner-Weizenbock formula gives
(4, — AR, = [Ry, R,),
hence we obtain (2.4) and (2.5).
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Moreover, for ¢ € 2°(gp) we have
llalgl =<y, — 459>,
which implies (2.6).
To obtain the inequality (2.7), we may show

28 8,75 Ry = VyVy Ry + 2V Ry* V™" Ry,
i=0

where A * B denotes some linear combination of tensor products of components of
A and B. Indeed, the case # = 0 is obtained by (2.5). Assuming (2.8) for # and us-
ing (1.1), we have

8,V, V'R, =V,0,Vy'R, + [dpR,, Vi Rp]

Il

5 52 5 2 s = (n—i 5 (n
Vo (V208" Ry + SV Ry* Vo~ Ry) + [d3Ry, V' Ry,
i=0
=Vo(VoVo'Ry) + ZVL Ry * V" "Ry,
i=0
which implies (2.8) for » + 1.

3. Construction of the local strong solution

In this section, we show the existence of a time-local smooth solution for
(1.3). First we rewrite (1.3) as an equation for the connection D = D, + A, where
D, is a fixed connection on P. To make (1.3) a parabolic system for A, we take

a=— d,;kA, (cf. Kono-Nagasawa [3]). Taking V = D,, we see that (1.3) is equiva-
lent to the following equations (cf. Naito-Kozono-Maeda [7]):
j‘%# =V'VA — [R], A] — dpR
3.1) | + A\ VA + (4, Al + (VA —V'A, + 4, A1, A]
+ V4, Al + (4, (4, A]],
A0 ], =A,

where A(t) = A,(t)dz’ € Q'(gp) is the unknown function, A” = A dzx' €
02'(g,) is the given initial data, and R = R,»jdxi A dz’ is the curvature 2-form of
D,.

For the construction of the local solution for (3.1), we do not need to restrict
the dimension of M. Making use of fractional powers of the Laplacian, we shall
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prove the existence of a strong solution A(#) of (3.1) on a finite time interval
Let us introduce some notations: The space L'(£2'(gp)) denotes the usual
L -space with the norm || [,. We define an operator £, on L’(.Ql(gp)) by
LA = —VVA + [R], Al for A€ D)
with the domain D(¥£,) = W*"(2'(g,)).
(3.1) may be rewritten as the following equation on L’(Ql(g,,)):

oA - ¥
52 5 LA+ Q) iR,

AQ©) = A”,
where Q(A) = Q,(4) + @,(A);
Q,(A), = —2[4,vA]l — VA, A) - V'[4, A],
Q,(A), = — 3[4, [4,, A]].

Our result now reads as follows.

TueoreM 3.1. Let dim M = n and let A € L"(Q'(gp)). Then there exist T >

0 and a function A(t) on [0, T) with the following properties:

(1) A€ C([0, T); L"(R'(g))) N C'((0, T); L"(2'(g,)));
(2) A(t) € D(L,) fort >0, £,A € CU0, T); L"(R"(g:));
(3) A is a solution of (3.2).

In this section, we are interested only in constructing the local solution of
(3.1). Changing the unknown connection A(¢) into A’(¢) by the relation A’(¢) =
¢“A(t), we may assume that &, has a bounded inverse ;" on L'(2'(g;)), where
A is a constant larger than the smallest eigenvalue of £,. To prove Theorem 3.1,
we need some lemmas. By the well-known theory of elliptic differential equations,

(3.3) lAllgr < C 12,40, for A€ D(Z) (1 <7< )

with a constant C, independent of A. Moreover, — ¥, generates a contractive
holomorphic semigroup {¢""“"},, of class C° in L'(2"(g;)). Therefore, we can
define the fractional power &, (0 < a < 1) of ¥, and get a continuous embedding

(3.4) D&Y G H™ ('), 0<a<l,

where H™” denotes the space of the Bessel potentials. (see, e.g., Fujiwara [1]).
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In the following, we shall work mainly with » = # and write £, = £ for sim-
plicity.

LemMa 3.2. IfA € D(¥%) for% < a <1, then @A), Q,(A) € L'(2'(gp).
In fact,

I 1, < CllgeAl, I €Al

(3.5) o
1Q,(4) I, < cleal,l £ Al

IfA, B € D(¥%) for% < a< 1, then

1Q,) — B |, < c(e4—B|,|£"Bl,
(3.6) + e al, 1 €% - B) |,
1Q,(4) — @, I, < clle”Al, +1¢£"BIH | "4 - B) |,

where the constant C depends only on Q.

Proof. By (3.4) and the Sobolev embedding, we have D(£%) <, LM(QI(QP)),
D" & H"™(RQ'(gp) and D) < L*(R2'(gp)), where < means a con-
tinuous inclusion. Hence it follows from Hoélder's inequality that

1), < ClAl.IVAl, < C|£Al,ll£°Al,
1, I, < clal, Al < cleal, €Al

which shows (3.5). The inequality (3.6) is an immediate consequence of (3.5). [

LEmMA 3.3.

IfA € D(¥% foré— < a<1, then

l£7Q M) |, < M| A, £7A),,

3.7
5.9 | ) |, < M| €A,

IfA, B € D¥% for—;— < a<1, then

| 27(Q,(A) — QBN I, < M (| £*(A— B) |, | £7°A],
(3.8) + | Al 1 £ - B |,)
12774(Q,(A) — @,B) I, < M| £ AL+ 1 £BI) | €A - B) |,
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where the constant M is independent of A and B.

Proof. It is easy to see that £}, the adjoint operator of &, in L'(2'(gp)), sa-
tisfies ) = #,,, where 1/r+ 1/7 = 1.
Take 7 € (1, ) so that 1/7=1/n+ 1/2n. Then by (3.4) we have || A,

< C| ¥ A, for all A € D(¥*) with C independent of A (n’ = ) Hence

n
n—1
Holder's inequality yields

| <27*Q(A), o> | =1 <Q,(A), €. 0> |
<l 12 ol,
S ClAl VAL 2 % 0,
<Ml g Al €Al ¢

for all ¢ € 2'(gp). By duality, we obtain
|27 I, < M| £7Al, | £7A1,.

2n
Similarly, we have for » = 3

| <£7Q,(4), @ | <@, ) I, o]
<clallle

"
for all ¢ € 2'(gp), from which it follows that

l£74Q,(A) I, < M| £ A,

L <MI€ Ao,

Using (3.7), we easily get (3.8). O

Lemva 3.4. Let AY € L'(2'(gp)). Then there exist T> 0 and a function

A@) on [0, T) such that A € C([0, T); L"(2'(g,)) N CU0, T); D(£%) with
(3.9) sup " [|£7°A@) ||, < © for 0 < a < —2—;
o<t<T

A s a solution of the integral equation

t t
(310) AW =A% — [ e asRds— [ QA (9ds, 0 1< T
0

0

Proof. We solve (3.10) by the following successive approximation:
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t
AW =AY — [ ax R s,
(3.11) 0

A () =A@ — j: e_“—S)ZQ(Af) (s)ds,j=1,2,---

Let us first show that

(3.12) sup t* || £°A,®) |, < K,,,

’
0<t<T 4

Indeed for j = 1, we have

t
E LA, |, < 10 €% A |, + 2 fo le™““a% Rl ds
<147, + #2451 dp R,
< 14", + & N dR 1,
where Ay is the smallest eigenvalue of € and hence we may take
a —t¥

K, := sup t*[| % A7, + T2; | d:oR I,

0<t<T

3
forall 0 £ a < VR

Suppose that (3.12) holds for 7. Then from Lemma 3.3, we have
t
" faAj_H(t) "n < ” _‘faAl(t) "n + f “ fa+1/4e—(t—s)f£.(£—l/4Q(Aj) (S) ",, dS
0

t
<Kt [ =97 £7QU) ) |, ds
< Ka,lt_a

+M f -9 AN 24, 1,124, 1L, + 1 €744, () ) ds

t
S Koyt ™ + MK,y Ky + K j; (t— ) V™ gs

<Kyt "+ MB(3/4 —a,1/4) (K, Ky, + K. t ™"

for 0 < a<3/4 and 0 < ¢t < T, where B(-,*) denotes the beta function. Hence
(3.12) is satisfied with j replaced by j + 1, with

(3.13) Ky 1=K, + MB(3/4 — a, 1/4) (Ky,;K,,5;, + K ).
1

w 1
(3.13) shows that {K,;},_, is a closed recurrence for a = 1 and a = bR Now let
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k; = max{K,,;, K,,;}(4 =1,2,-++). Then by (3.13), we have
(3.14) oo <k, +2MBKE: + k), B=B(1/4,1/4).

for j=1,2,---. By (3.14), we see that there exist positive constants m, and k
such that if

(3.15) k, < my,
then
(3.16) k, <k forallj=1,2,---.

In fact, m, is determined by the local maximum of the function f(z) = x —
2MB(x® + £°) and k is the positive root of the equation f(z) = k.
Assume (3.15) for a moment and set

B =A@ —A_(1),j=12,, (4,(t) =0).

From (3.8) and (3.16), we have

I ¢°B,;,,@®) |, < f | 2™ 2 7 QA) () — QUA,_) () |, ds
< f 1254 yum | 2774(QA) (5) — Q(A,_) () |, ds

< Mjo‘t (t— ™ £B,(s) I, 1 €74, |,

(3.17)
+ 1224, 1, 1 2B, (s) |,
+ (€A I+ 1274, 1D | £7B,(s) |} ds
t
S Mkf (t _ S)—a—1/4(" .%l/sz(S) "ns—l/4 + " .,(BIMBJ-(S) ”ns—-l/z)ds
0
! 1/ 1/2 1/4
+ 2Mk’ f t =" 2" B)(9) Il,s ds
0
for 0 < a < %

Takinga=1/4 and @ = 1/2 in (3.17), we get by induction

1/4 N
(3.18) [Hfg B,(#) |, < k2MBk + k)Y 7,

1 £°B,t) |, < k2MBk + KDY ' t7%,j=1,2,---
By (3.17) and (3.18),
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(3.19) 2B, |, < k{2MB(k + kz)}’"l{ZMB<% - a, %) Uk + kD),

o<t 1.

Since k satisfies k, = k — ZMB(/C2 + k%), under the assumption (3.15) we
have 2MB(k + k*) =1 — k,/k € (0, 1) and hence by (3.19) the sequence
A(t) = >7_, B,(t) converges absolutely and uniformly in L"(2'(gp)) with
respect to [0, T): A;(t) — A(t), where A € BC([0, T); L"(2'(g,))).

3 a
Moreover, again by (3.19), for each 0 < a < 7 there exists A e cwo, 7);

L"(2%(g,))) with t*A (t) € BC([0, T); L"(2'(gp))) such that

sup £ | £°4,(t) — AW ,— 0 asj— oo.

0<t<T

Since £ is a closed operator on L"(.Ql(gp)), we can conclude that A € C((0, T);
D(£%) with £*A(t) = A (t) for all 0 < ¢ < T, and hence

(3.20) sup t* [ €%, — AW) [l,— 0, (0 <a< 3) as j— o,

0<t<T 4

Now again by (3.8), (3.16) and (3.20),

I @) — @ ©) dsl,
0
< L1217 QU () — QAN | ds

<umf = 9L UL — AW I, 1 24,9

+ | £%A) |, | £ (4;(8) — A |,
+ (1 LA, 2+ 1 274, 1D | 4(A,() — As)) |} ds
< Mk sup s £(4,(s) — A()) |,

0<s<t

+ (MKB + 2MK’B) sup s | £ (A,(s) — A()) |,

0<s<t
—_— O as j——+ [ee]

Under the assumption (3.15), we see by (3.11) and the above convergence that A
is the desired solution of (3.10).

It remains to show that we can take T so small that (3.15) is satisfied. Since
D(£"?) is dense in L"(2'(gp)), there exists a function A” € D(£"%) such that
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My

A — A9, < 5 - Then, we have

ta “ fgae—tfé’A(m "n < ta " ’(Bae—l.‘f(A(O) _ /i((») "n + ta " f“e—tgfiw) “”
< "A(o) _ A(o) "n + ta n faA(o) "n

< ”‘7 + | 27A0 |, t >0,

fora =1/4 and &« = 1/2. Since

Ko, = sup 2% A7 |, + T°4 N dyR |,

0<t<T

T may be taken to be

N} =

1/a
m 1
T = min = * =, .
[(2 U124 |, + A3 | diR u,,>> 4 ]

This completes the proof of Lemma 3.4. ]

Let us show that A in Lemma 3.4 also satisfies (1), (2) and (3) in Theorem
3.1.

LeEmMMA 3.5. Let A be the solution of (3.10) given by Lemma 3.4. Then for

3
0<a< 7 the function PA(t) is a Holder continuous on (0, T) with values

3 3
in L"(2'(gp)). More precisely, for 0 < a < 72 there exists 0 <1 < — a such that

(321) | L°AGt+h) —L°A® |, < CH"O T+ BT+ R
holds for all h > 0 and 0 < t < T~ h, where C = Cla, n, M, k) is independent
of h and t.

Proof. An elementary calculation shows
| ™ —DAl, < Ch | LAl, A€ D), 0<y<1,
for all # > 0. By Lemma 3.3, (3.12) and (3.16), we get
|24+ n) — £°AW |, <] (7 — Dg*e A",

trh a —(t+h—8)E€ %k
+ [ lee dyR |, ds
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t
+ j(: " (e—h.‘t’ _ l)gae—(t—s).‘fd;koR "n ds
trh a+1/4 —(t+h—$)& p—1/4
+ [ e QA (5) I, ds
t

t
4 f I (e—h.‘l.’ _ 1)55“““[“_S)gf_mQ(A) (s) "n ds
0
< CR |1 £ A |, + CH + BT | dpR |,

t+h
+ [ h= 9T ALAG 1,1 7AW |, + 146 ) ds
t

t
+ CH f (t— )N LAG) |, || £ AG) N, + | A D) ds
0
S CH'O T AC ), + CTE + AP | d,’foR I,

t+h
+CMK+ ) [ G+ b= 975
t

t
+CMUE + )R f (t — §) "My
0

M + k) PRZE?

n,—a—n ()} 1-a n,l-a-n *
SCHETTAT ), + CRTE A+ RTETY | dp R L, + 1 —a

+ CMKE+ KYBB/4A—a—n, 1/t " 0<a< —i—,

3
forall t> 0, h > 0, where 0 < < 7 from which (3.21) follows. O

Proof of Theorem 3.1. Let A(¢) be the solution of (3.10) given in Lemma 3.4.
Then by Lemmas 3.2 and 3.5, we see that the function Q(A)(¢) is Holder con-
tinuous on (0, T) with values in L"(2'(gp)). By the general theory of holomor-
phic semigroups (see e.g. Tanabe [10, Theorem 3.3.2]), A is also a solution of (3.2)
in the class of (1) and (2) in Theorem 3.1. This completes the proof. O

Remark 3.6. By using a standard argument of semilinear parabolic equations,
we can prove that the strong solution A(#) given by Theorem 3.1 is actually
smooth (i.e., of class C™)on M X (0, T).
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4. Estimates

Now we return to the case when M is a closed 4-manifold. In this section, we
give various estimates for the curvature tensor, which will be useful for character-
izing the singular set J.

In the following sections, a connection D(¢) is smooth means that D(t) € C”.

LeEmMA 4.1.  Let D be a smooth solution of (1.1). Then the function
1 2
E®W =5 [ IR, 0 Fav,
M
1S Non-1ncreasing.

Proof. Taking the L*-inner product with R, in (2.4), we have
D

i1
E?—LIRDIZdV= ~L|deD|2dvs 0,

for any ¢t € [0, T], which gives Lemma 4.1. O
By Lemma 4.1, if D is a solution of (1.1), then for any ¢ € [0, T,
E® = [ IR, 0 Fav,
is bounded from above. For a smooth solution A, put

4.1) e(r) =¢elr, x) = sup (f | Ry, 1) IZdV)l/Z.

0<t<T “WB,@
In the sequel we give a priori bounds for the norm of D in terms of the initial
energy E(D”) = E,, T and ¢,. Here ¢, > 0 is a parameter depending only on M
which will be determined in Lemmas 4.2-4.9. To obtain these, we use the Sobolev
embedding in 4-dimensional case. We will set &, to be the smallest of the numbers
€, appearing in Lemmas 4.2-4.9.

LEMMA 4.2. Let R, be as in Proposition 2.1. There exists a constant €, > 0 such
that for any smooth solution D of (1.1) on (0, T) with the initial value (1.2), D €
U™ and any number r € (0, R,], ife(r, 2) < &,, then we have
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T = 2 2
(4.2) [ [ 10k, avat < ca + 7 TIE,
0 YB,,@
where the constant C depends only on M.

Proof. Let ¢ be a non-increasing with respect to dist(x, *) real-valued func-
tion independent of £, which satisfies ¢ = 0 outside B,(x), ¢ =1 on B, ,(x) and
|Vo | < ¢/7 Taking the L*-inner product with RD(p2 in (2.5), we have

1 d 2 2 = 2 2
o ALK dv+f3'(z)|v,,R,,|¢ av

(4.3)
<c[ IRPaV+C [ IRIIV,R,|IV0l0aV.
B,(zx) B, (z)

For the right hand side of (4.3), using Lemma 2.2, we have

[ AR NGR N Vgl@av<e [ VR, [ av+Cr™ [ R, Iav
B, (x) B,(x) B,(x)
1/2
3 2 2 2 2 -2 2
J Rl avs c(j;fmllepl av) - ([ PR IPav s [ 1R,Fav)

<C <'/1;,(1) | Ry ¥ dV)m | <'/1;,(.1:) IVDRD 2(,02 av+r” -/t:,m | Ry ¥ dV)'

Since we assume that () < ¢, we obtain

1d 2 2 5 2 2 -2 2
as  gg ) R av+ cj;,mw,,ze,,l 0 dV < Cr j;’(I)IRDI av.

Integrating (4.4) over [0, T1, we have

1 2 2 T 5 2 2
ZIBMIRDI (T)o® dV + cf0 j;’(z)w,,le,, ¢ dVit

1 2 -2 T 2
<1 + .
: fB Bl @av+ Cr fo fB Ryl avar

Therefore we have

T
[ f |V,R, | dVdt < C(1 + » " T)E,.
0 ¥B,,® D

LeEMMA 4.3.  Let R, be as in Proposition 2.1. There exists a constant €, > 0 such

that for any smooth solution D of (1.1) on (0, T) with the initial value (1.2), D9 e
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U any 7 > 0 and any number v € (0, R,1, if e(r, x) < &, then we have

(4.5) sup |R,|<C
T<t<T
ZEBy/5(x)

where the constant C depends ont, T, v, E, and M.

Proof. By (2.7) with n = 1, we have
0,v < Av + Cyuv,

where u = |RD |, v= |V~DRD |. Let ¢ be a non-negative function. Multiplying the
above inequality by v*¢’, p = 1 and integrating over [0, 71 X B,(z), by Lemma
2.2, we have

p+1 P T 5 2XL 5 o
ffma( ¢)dth+p+1fLm|sz|¢dth

41 p+1 T
<4 2 2 p+1
fofﬁ,m"’v [ vglgavat2 [ [ o |oglavar

r

+C,Cp+ 1) sup L ; ude)m

0<t<T

' [ ]; ' fB . |Vo'E [Pg? avat + fo ! j; P av.

Let us take ¢ such that ¢(t, y) = ¢, ()P, (dist(x, y)), where ¢, is
non-decreasing, ¢, is non-increasing and

_ in0 <¢t<9r _ in s < 07,
¢‘(t)_{1 int<t<T, 2(8)—{0 ins> 7,

where 0 < 0 < 1.

2 172 p
If sup (f u dV> < ——— . then we have
0<t<T ‘WB,@ (p +1) COC1

r

T T
p+1 p b4, 4
_/(: ‘/;,( ( ¢’ )dth + p + 1 f j;r(l) |Vv 2 l d) dth

20+1) T pet , r »
< 2 7
<75 '/o.j;,(x)v |V¢ldth+2_/;fB’(I)v | 8,0 | ¢ dVat

T
+ C,C,0p + DEV™ f f g2 dVat

B,(x)

(4.6)
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T
<C,,0t+ e [ fB o ava.

0

Then there exists ¢ € [r, T), such that

sup f rav < Zf " av
T<t<T vYB,,,@) B.

r/2 7 /24%)

7 b+l ,2
,=g£2fof3 8,(" " ¢ avit

y/2(X)

(4.7) T
< Csr?+ 17 f o dvat.
0

B,(1)

Since the first integral on the left hand side in (4.6) is non-negative, we have

T J:53 SN 2 1 T 241
<
l f;fmlvv 2 ¢ dvat < C,,(r" + ¢ )f0 j;’mv dvt.

Thus, we get

(4.8) _/;T_/;

Using Proposition 2.1 and applying (4.7) and (4.8) with p = 1 with 6 = 1/y2
and p = 2 with d = 1/2, we have

(4.9) f ' fB L avas CoT e ( fo ! L v dth)m.

Combining (4.9) and Lemma 4.2, if e(#, x) < ¢, then we have

2Ly -2 -1 T p+1
7o P avar < ¢, + < [ J;(x)v avdt.

r72(T) 0 4

T
[ fB TR, I dvat < €O+ 27 A + DB,

Since 9/2 > dim M = 4, by Sobolev’s embedding and (4.7) with p = 7/2, we
obtain

2/9
sup | Ry| < C1B,,@ " swp ([ |V,R, ")
T<t<T B,y (@)

T<t<T
B, ;@)
1/4-2/9 -2 -1 T = 9/2 9
< C1B,@ " (0 4+ [ [ |V,R, 1" avar)
7/2 Y By(x)
S Crl/g(r—z + T—I)IQ/IS((I + r—2T)E0)1/2_
Thus, we get the desired estimate. ]

LEMMA 4.4. Let R, be as in Proposition 2.1. There exists a constant &, > 0 such
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that for any smooth solution D of (1.1) on (0, T) with the iwitial value (1.2), DO e
U™, any © > 0 and any number r € (0, R,], if e(r, 1) < &,, then we have

(4.10) sup |V,R,| < C,
<t<T
ZEB, ;)

where the constant C depends ont, T, 7, E, and M.
Proof. By Lemma 4.3 and (2.7) with #» =1, for any p, with 0 < p < 7, we
have
8,|VyRy | < A|V,R,| + C|V,R,|, onlp, T) X B,,(x).
Note that the constant C depends on 7, T, #, E, and M. Therefore by a Moser’s

result [5, Theorem 3], we obtain Lemma 4.4. L]

LEmma 4.5.  Let R, be as in Proposition 2.1. There exists a constant &, > 0 such
that for any smooth solution D of (1.1) on (0, T) with the initial value (1.2), D° €
u'?, any n =2 any T > 0 and any number v € (0, R, if e(r, x) < ¢, then we
have

T ~
[ [ 1wyRr,ravar<c,
T By ;@)
where the constant C depends onn, ©, T, v, Eo, M and | R, (1) "Wn.z(B'(x)).

Proof. Let ¢ be the function defined in the proof of Lemma 4.2. Multiplying
(2.8) by Vy’R,¢* and integrating over B,(x), we have

1d

4 @ 5 (n) 2 2 5 (n+1) 2 2
o AR dV-I-j;f(x)IVD R, I'g* aV

<c [ 1PPRIIVSR, V0] @ av
B,(x)

(4.11) +cff

i=0 VB,

VSR V5™ Ry 1175 R, | 0 aV

<e[ 1R PFavHC, [ NTPR, IV av
B B, (x

+CcX [V R, Ve "R,V Ry | ¢ AV,
i )
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on [z, T), for any € > 0.
On the other hand, by Sobolev’s embedding, we have

s f VR, IVI R,V R, | @* dV
1=0 ¥YB,(x)

< R, VPR, Po*dV + C VR, |2 dV
E LN J 18R e
n—1
412) +CX Vo R, *1Vy "R, 0" dV
i=1 ¥YB,(x)
S (,,) V+ (n) 2 de
<,s‘:£,m'kv'f, RISV C ] TRl
+ " 4D p V+ 0) 2 2 )
czl(j; |7 o d f |VR||V<p|dV)

7

Combining Lemma 4.3 with (4.11) and (4.12), we have
Eg— lV(n)RD |2(,02 dv + (1 _ E) f (n+1) D |2¢2 dv
413) <C f VR, P av+C [ 1P9R, |Vl av
B,(x) B,(x)

n-l (i+1) 2 2 ) 2 2
+c‘§(j;’mlv R, o dV+f VSR, [P 1Vo " V).

f

Integrate (4.13) over (r, T), we have

T
%fBHW,‘;”RDV(T)dVJr a-o [ [ 7gR, I avat

B, 5 (@)

T
<ca+r [ fB( VSR, I avar

+C 2 ( f j; VSR, P avt + 7 f ! fB PR, dvit)

r

(4.14)

+ [ 10rR, @ av.
B,(x)

Since we assume that R, is smooth on (z, T'], that last term of (4.14) is bounded.
Assume that the inequality in Lemma 4.5 holds for #, then by the induction, the
right hand side of (4.14) is bounded. Thus, we get Lemma 4.5 in general. 0
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LEmMmA 4.6, Let R, be as in Proposition 2.1. There exists a constant €, > 0 such
that for any smooth solution D of (1.1) on (0, T) with the initial value (1.2), DY e
U, any n =2 any v > 0 and any mumber r € (0, R)], if e(r, ) < €,, then we
have

= (n)
sup |V, Ry <C,
T<t<T
ZEB, ()

where the constant C depends onn, ©, T, v, Eyy M and | R,(7) ||Wn,z(31m,.
Proof. By (2.7), we have
= = = nl —1 = (1
4.15) 0,|VYP Ry < AIVPR, | + CIRyIIVY Ry + C Z VY RV R, .
i=1

Using Lemma 4.3 and Lemma 4.5, we may rewrite the inequality (4.15) as
(4.16) ou < Au+ Cu+ Cf, on (o, T) X B,,,(x),

where u = |V, Ryl € L*((o, T) X B,,(0)) and f= X/ IVy " Ry IV Ry,
for any p satisfying 0 < p < 7.

Assume that the conclusion of Lemma 4.6 is true for # — 1, then we have
feL’((o, T) X B,,,(x)), for p > 2. Applying [4, Theorem IIL8.1, p. 192] to
(4.16), we get the desired result. ]

LemMa 4.7.  Let R, be as in Proposition 2.1. There exists a constant & > O such
that for any smooth solution D of (1.1) on (0, T) with the initial value (1.2), D e
U, any >0, any p = 2 and any number v € (0, R,], if e(r, x) < &, then we
have

b
sup J;mmlAl av<c,

<t<T

where D=d+ A on B,(x) and the constant C depends on 7, T, r, E,, M,
” R, () "wﬂﬂ(s,(z)) and "A(T) ”L’(B,/Z(I))'

Proof. Multiplying (1.1) by A| A |I’_2 and integrating over B,,(x), we have,
by Lemma 4.3,

d

dat By x)

lAPav<c [ (VR l1APav

By/2(@)

<(f kel av)” ([ 1aray)”

r/2 r/2

(4.17)



YANG-MILLS GRADIENT FLOW 115

sf Al av+C, on (o, T),
B

r/2Z)

for any p satisfying 0 < p < t. For the function U(¢) = f | A" dV, we have

By /5(x)

d
#U® <Ccu® +C.
Lemma 4.7 follows from Gronwall’s inequality. U

LEMMA 4.8. Let R, be as wn Proposition 2.1. There exists a constant &, > 0 such
that for any smooth solution D of (1.1) on (0, T) with the initial value (1.2), D e
U2 anyn =1, any >0, any p = 2 and any number r € (0, R,1, if e(r, 2) < ey,
then we have

sup f lv”APav<C,

T<t<T YBy (1)
where D=d + A on B,(x) and the constant C depends on n, v, T, v, E,, M,
I Ry (2) ”W"*”(B,(z)) and | A(2) ”L"(B,,z(z))'

Proof. By a direct computation, we get

- n-1 s s s
(4.18) VyoA= 0V, A+ cx S VA% xTPAR V94

i +eeetigtith=n

Using (1.1) and (4.18), we have
(4.19) VP A=—VPdiR, + CX' VA% - % VyPA*x V0,

where >/ = X37) 2 i bewetiphivk—n- Multiplying (4.19) by WZ”AIVX”A *~* and in-
tegrating over B,,,(x), we have, by Lemma 4.3,

—d_ 7™ A | S (n+1) S5(n) 4 |1p-1

/2 7/2(Z)

(4.20)
ez [ VAL TR Al BT AP av.

B,

(4.20) and Young inequality yield

veAPav+c [ VR, av

B, /5(x)

i 5n) 4 |P
(421) & j;mmWDAl av < ch

r/2(T)
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+Cx [ VAP VAP VIR, P av.

By o(x)

Assume that the conclusion of Lemma 4.8 is true for » — 1. By Lemma 4.6, the
last term of the right hand side of (4.21) is bounded by above on (o, T'), for any

o satisfying 0 < p < 7. Set U(t) = f “7;)mA [” dV. Then (4.21) gives

B, (x)

d
a Ut) < CU®) + C.

Using Gronwall’s inequality, we get

sup V3 AP dV < C.

T<t<T YBy;(x)

Remark that

f 7oA avs f

By /(%)

1724 av + cf AP |7 AP qv.

By /(@)

Using Lemma 4.7, we have by induction,

(n) ﬂ < (n) 4 +
memlv AP av f,,m WA AV + C. -

LEmMMA 4.9. Let R, be as in Proposition 2.1. There exists a constant & > 0 such
that for any smooth solution D of (1.1) on (0, T) with the initial value (1.2), DY e
U™, any >0, any p = 2 and any number r € (0, R,1, if e(r, x) < &, then we
have

sip [ |aAPav<ec,
B,

<t<T

where D=d+ A on B,(x) and the constant C depends on t, T, r, E,, M,
I R, (1) "W“(B,(z)) and | A(7) "L’(B,,z(z)}'

Proof. Taking the norm on both sides of (1.1), we have

16,41 <|dyR,".
Thus, we get

f a0l av=J

By /2(x)

| d*R, I’dV<fmI|l7DRD|’dV. -
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Lemma 4.10. Let R, be as in Proposition 2.1. For any smooth solution D of (1.1)
on (0, T) with the initial value (1.2), D € U™ and any number r € (0, R,1, we
have

f | Ry [*(8) dV < f | R, *(0)dV + Cr™E,,
(@ B,(z)

BI/Z

where the constant C depends only on M.

Proof. Let ¢ be the function defined in the proof of Lemma 4.2. Multiplying
(1.1) by 6,Ag02 and integrating over M, we have

[1aafeav=— f (d*R,, 3,A4)0% AV
M M

— [ <R, 0RO v+ C [ IRy 110A117¢] g aV.
M M

So we have

2 2 2 2 2 < 2 2 -2 2 .
(4.22) fla,A|<pdV+2dtf|R Po’dv < fla,AlgodV+Cr fwlRD| av

Integrating (4.22) over [0, t], we have
1 1 -
nglR,, Pty o* dv < gj;mlRD P0)dV + CrE,

which gives Lemma 4.10. ]

5. Existence of global weak solutions

Let 7= T(D) be the maximal existence time for the smooth solution of
(1.1).

Tueorem 5.1. Let D € U™, and let D be a solution of (1.1) with the initial
condition (1.2) on (0, T(D)). Then we have the following:

(1) T(D'®) is characterized by

1/2
lim sup sup <f | R, I dV) > ¢, forallr € (0, R,].
1T zeM WB@

(2) If T < oo, then the solution D is smooth on M X (0, T except for finitely

many points {(z', T): 1 <1< L),
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(3) The singular point (x', T) is characterized by

2 1/2
tim sup ( fB IRl dvV) e, foralir € O, R,

1T .
(4) The energy E(D(-, t)) is non-increasing.
Proof. By Theorem 3.1, there exist a local smooth solution D(#) of (1.1). (See

Remark 3.6). By using Lemmas 4.2-4.9, we see that the maximal existence time
T(D®) is characterized by

1/2
(5.1) lim sup (j; - | Rp 2 dV) 2 g,

T'-T(D®)

for all » > 0 and some £ € M. Theorem 5.1 follows immediately from:
LemMMA 5.2. Put

Spai= {xe M;f |R,(-, TH PdV>¢, forallir € (0, RO]}.

B, (x)

Then B« consists of finitely many points.

The lower semi-continuity of the energy yields

[ ARFav< timint [ |R,[av
M’ x{T*} ’x{T}

T-T*T<T*
2 a 2
(5.2) < liminf |R,|*dV — Zf | R, |"av
T—T* T<T* YMX{T) 1=1 VB, @) x{T%)

<E,— Ly,

L
for any € (0, R,] and any M’ € M\ U B,(z"). Passing to the limit r— 0,
=1
we have
E(-,T% <E,— Lg,.

From this estimate we conclude that L, must be finite. This gives Lemma 5.2. [
By Lemmas 4.2-4.9 and Lemma 5.2, we have the following:

THEOREM 5.3. Let D(t) be a smooth solution of (1.1) on (0, T), T < o Then
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there exists a finite open covering {U,} of M\ {x,,- "+, 2.} and a connection D on P
over M\{x,," - -, x;} satisfying the following conditions :

(1) Aa(t) = A, in Wit (U, for any p = 2, and any n = 0,

(2) (Rp)a= (Rp)q in Wit (U, for anyn 2 0,

(3) Ry @ Ry weakly in L*(M),

ast 1 T, where D) =d+ A,(t) and D =d + A, on U,,.

Remark. Assume T = oo, then there exists a T, > 0 such that the solution is

14
2 dt Jy

the monotone non-increasing property of the energy, and a Sedlacek’s result

smooth on (7, ). By using the identity f | 6,4 |Z dv = IRDIZ av,
M

[8, Theorem 3.1, Theorem 4.3], there exists a finite open covering {U,} of
M\{z,, - -+, z;}, a sequence {t}, {,— %, gauge transformations {g,(¢,)} and a
connection D on P over M\{xl, RN xL} satisfying the following conditions:

(1) 0, (AL () = Ay in WUy,

(2) ou(t)A(t) — Ay in L3 (U,),
(3) Roxeppey ® Ry weakly in L*(M),

as j— o, where D(t) =d + A,(t) and D=d + A, on U, Moreover, A, is a
Yang-Mills connection on U,, hence P extends to a C"-bundle over M and D
extends to a C”-Yang-Mills connection in the extended bundle.

Now, we characterize the singular points for D(¢):

THEOREM 5.4. Let D be a solution of (1.1) with the initial condition (1.2), D
€ U™ constructed in Theorem 5.1, and suppose that (xy, T), T < o0, is a singular
point. Take a local coordinate U, which contains X, Then there exist sequences X, —
z,t, T T, 1, €, R,], r,—0, gauge transformations {¢,} and a smooth
Yang-Mills connection D, = d + A, on R* such that (p:,(d + A

) tends to
o)
D.. locally in 1% on a local coordinate U,, where

T Eom

A @, )= AW, T+ T, 1t + 1),

and D = d + A, on U,. Moreover the Yang-Mills connection D, extends to a smooth
Yang-Mills connection on S ‘

Proof. Let x, be a singular point of D at time T characterized by the condi-
tion
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lim supf |R,I?dV > ¢,
By(xg)

T’'-T

and let U, be a local coordinate of M satisfying x € U,. Moreover let p €
(0, Ry/2] such that B,(x;) N B,(x;) = # for all i # j and for each i there exists
U, such that B,(z;) € U,. Under the expression D = d + A, on U,, there exist
sequences X, — Z,, t,— T, 7,, € (0, R) with 7,,— 0 such that

6=/ IR, [aV.
By L) X it gy}
By Lemma 4.2 and Lemma 4.10, we have for any ¢ € [¢,, — er:,, Ll

2 _8_1_ tm _ .
‘ll;z,m(zm)xmlRDl av 2 Z’I_Cr%leanl avdt < C,

tm
here & = 54, and C, is the constant in Lemma 4.10
where € = 2C,E, an 1 1s the constant in Lemma 4.10.

Hence the sequence A,,:= A, (. , satisfies the estimates on 2,,:= {(z, #):
VT + 2, € B,(x), 7t + t, = 0}:

2 v
sup f |R, ["dV <e¢,
@,ned,, VB, "
—e<t<0

= 2 tm = 2
[ Vo Ro, PaVat= [~ [ V,R,Favit < C,
Dot € [—e,0 ty—erd, M

2 tm 2
[ (0.0, Favat= [ [ 18,4 aVit—0 (m— o),
Dt €1—¢,0] tm—ers, YM

where D,, = d + A,,. Especially, for some 7,, € [— ¢, 0], we have
[ 1R, Fav=c,
Dt =Tpy

[ 1aDp,Irav—o,
2

ot =Ty

[ AR, Favzc>o,
B,(0) x{t,,}

as m — © uniformly in m. Rescaling ¢, — ¢, — Tmr,i, we may assume 7,, = 0.
Therefore there exist suitable gauge transformations {(om} and a subsequence

{D,} such that ¢.D, (-, 0) converges to D, weakly in 1""(R*) for any p = 2

and strongly u};i(R“). Passing to the limit m— % , we see that D_ is a
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Yang-Mills connection with finite energy on R*. By a Uhlenbeck’s result [12], D,
extends to a Yang-Mills connection on a bundle P’ over S*. ]

By Theorem 5.3 and Theorem 5.1, there exists a solution D(¢) of (1.1) with
the initial value (1.2), D € 1™ and the solution converges to a connection D
over M\ S, as t— T, which is characterized by Theorem 5.1. Moreover the curv-
ature form R,(t) of D(t) weakly converges to a R in L*(M). Following the proof
of Theorem 5.4, we may assume U, = R* and we have a Yang-Mills connection
on R*. By using a conformal change of coordinates, we have a gauge change ¢, on
U,, which pull-back of the Yang-Mills connection on S* to that on U,. Now, set
8o = Pa = @y 8ap for Uy N Uy # & and gz, = g, for B, ¥ # a. Then we have
a new G-bundle P’ on M with the transition functions {géT). Using the Theorem
in [8, Appendix], we see that P’ does not depend on the choice of 7, x,, t,, be-
cause, 1 (P") and the Pontrjagin number p,(P’) do not change (see Section 7).

We first study the behaviour of the first Pontrjagin number. It is known that
the first Pontrjagin number of a principal G-bundle over a 4-manifold with the
connection D is

1 -
2P == [(R; =Ry av,
4n” M
where R; and R is the self-dual and anti-self-dual part of R, respectively. Let

1 . o,
00 = [ (ROF-1R0 P,

_ _1__ + 2 _ - 2
nn = Lar; @ =1R;m P av,
then p,(0) is the first Pontrjagin number of the bundle P.
ProposiTioN 5.5. p,(T) € Z.

Proof. Without loss of generality, we may assume that the singular set con-
sists only one point, i.e., S, = {x,}. By the lower-semi-continuity for the L*-norm
of Ry, we have

pl(T) - Pl (0)

=;’1;(fM (R (D) [ = 1 Ry (D) ) dV—qu R3O [ — | R; ) [5 av)
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— L + 2 + 2 _ - 2 _ - 2
= (fM<|RD<T>I | Ry ) av fM(lRD(T)l | R; @ % av)
By Theorem 5.4, there exist sequences x,,— Z,, t,, T T and 7,,— 0 such that

A, @,y converges to A, in W' For the self-dual part, we have

fM (RI(D) P = | R}t P av

= [ AR@DF-IRE D av+ [ (R =R P av.
B, () M\B, (0

Then, f
B,

o | Ry (t,) |” dV and f o | R;(T) |*dV converge to f | R,;: |>@V and
(o By,,(© st

0 as m— o0, respectively. For the anti-self-dual part, we may obtain the similar
result. Moreover, on M\ S, Ry (t,) converges to R, (T) strongly in L* Since

$,(0) = p,(¢,) for all m, we have
p:.(T) — p,(0) = the first Pontrjagin number of the bundle on which D,, lies.

Hence p,(T) € Z. ]

In Section 7, we will prove that the obstruction 1(P) of the bundle P does
not change under the weak convergence of R,(f), (cf. Theorem 7.1). We may
assume S, contains only one point Z, Take a local coordinate U, which contains
I, so that other coordinates U, a@ # B do not contain x, Together with the tri-
vialization ¢, given in the arguments after the proof of Theorem 5.4, we consider
the transition function gg, = (p:gaﬁ and g5, = &, for B, v # a, where {g,,} is
the transition function for P. Then {g,} gives a bundle P’ over M. By the con-
struction R,(¢) given in Theorem 5.3 can be viewed as the L’-section of 2°(gp).
In this section, let {g;s} be a family of transition functions of P’. By Theorem 5.3,
there exists the connection d + A,(T) on U, such that dA,(T) + [A(T),
A,(D)] = R, (T) on U, and we have U, N S, = 8. By using the gauge trans-
formation, we set

(5.3) A, = gi5'dgls + 855 Aslls.

Also, by the construction of P’, a family MB} is extendable to a W '?-connection
on P’ and satisfies Ryo = R,(T) on M\ S, so that | R,(¢) | converges to | Ry |
in L*(M).

Using the connection D(l), we see that the solution D(#) is extendable beyond
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T weakly, and as a result a weak global solution of (1.1) can be obtained.

TuEOREM 5.6 (existence of global weak solution). Let M be a closed
4-manifold. For any initial connection D'® € U™ on P, there exist finite sets {t}-_,,
{x,-,}:;l M. where N, < 0, a finite correction of G-bundles (P},",, where P, = P
and a solution D(t) of (1.1) on (0, ) X M with the initial condition (1.2) such that
D(t) is a connection of P; on (¢,_y, t) and D(t) is a commection P, |4\ Utz =
P, | MUY iz,)- Moreover, the energy E(D(-, 1)) is non-increasing.

Proof By Theorem 3.1, we find a time local solution D(#) of (1.1) with the
initial value D at the time 7. Assume the solution is smooth on (T,, T), T, >
T,. Then the solution converges to a connection in the sense of Theorem 5.3 as
t— T,, and we have E(T)) < E(T,) — ¢,N,. lterating this procedure, we see that
the solution D(¢) can be extended up to ¢ = 0. ]

1
Since the energy functional E(¢) =§f|RD(t) [dV is monotone non-
M

increasing with respect to ¢ the initial condition as EDY) < €, allows neither
blow-up time nor local concentration of the energy. In such a situation, we get the
global smooth solution of (1.1):

CorOLLARY 5.7 (global smooth solution with small initial energy). If
ED?) < €,, then there exists a smooth global solution for (1.1) with the initial con-
dition (1.2), D € 1",

6. Uniqueness of solutions

We now prove Theorem C:

TueoreM 6.1. Let D = Dy + o and D = D, + A be two weak solution of (1.1)
with the same initial condition (1.2) in the class of X(M, (0, T)). Suppose in addi-
tion that A, 4 € L0, T; L'(2'(gp)) forq =2 and v > 4 with 2/q+ 4/r < 1.
If d:oﬂf , d:oﬂ e WM x [0, T); .Qo(gp)), then there exist gauge transformations
s and § in the class W' (M X [0, T); ®,) such that s*d = 54 on M x [0, T).

Remark. (1) By the Sobolev embedding, we have an inclusion X(M, (0, T))
<, L7(0, T;L4(Ql(gp))). Hence X(M, (0, T)) is a limiting case in L'(0, T;
L'(2'(gp)) asq T o0 and 7 | 4 in the relation 2/q +4/7 < 1.
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(2) For such gauge transformations s and § as above, we have S*.szf, s¥d e
Lz, T; Wl’z(.Ql(gP))) N L0, T; L'(2'(gp)); s and § preserve regularity of
A and 4, respectively.

Theorem 6.1 is proved by establishing the following lemmas.

LEmMa 6.2. Let f € W' (M X [0, T1; 2°(gp)). Then there exists a unique

gauge transformation s € W""(M x [0, T1; ®,) such that
[s“a,s =fMx ©,T)),
s(0) = id.
For the construction of the solution s(¢), we may use the successive approxima-
tion:
[so(t) =id,
t
Spa1(8) = s,(8) +_/; S, (D f(D)dr, m=0,1,---.

Then we can easily show that s,,— s in wh (M x [0, T1; Qo(gp)), which yields
the desired solution (see, e.g., Nagasawa [6, Theorem 3.2.1]).

LEMMA 6.3. Let A and A be two solutions of (3.1) in the semnse of distribution in
the class L™(0, T; W"(2'(gp))) N L0, T; L'(Q'(g,))), where ¢ = 2 and r >
4 with2/q+4/r < 1. Then we have A=A on M % [0, T).

For a moment, let us assume Lemma 6.3.

Proof of Theorem 6.1. By the assumption in Theorem 6.1, df;o.d, d:oﬁ €
W' (M x [0, T); .Qo(g,,)) and it follows from Lemma 6.2 that there exist gauge
transformations s such that

s'os=dpyd, 5'0,5=dpd, t>0,

s(0) = 5(0) = id.
Defining A = s*d and A = §*d, we obtain 4, 4 € L*(0, T; W"*(2'(g;))) N
L0, T;L'(.Ql(gp))) (see Uhlenbeck [13, Lemma 1.2]). Moreover, the derivation

of (3.1) enables us to see that A and A are weak solutions of (3.1) with the same
initial data. So, Lemma 6.2 yields the desired result. ]
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Now it remains to prove Lemma 6.3.

Proof of Lemma 6.3. By the Sobolev embedding, we have

1 <QA), o> | <1<Q,(A), o> | +14Q,(4), ¢ |
<cdalival,lel, +1AEIol,)
< CAR + 1AL [ @y

for all ¢ € W"*(2'(gp)), from which
Q(A), QUA) € L7, T; W"*(Q'(gN™.

Hence A and A satisfies (3.2) in Wl'z(.Ql(gP))*, (Y™ dual space of Y).
Taking B=A — A, we have B € C°([0, T); L*(2'(g;))) and

0B P 1,2 *
o 27 T 4B+ Q(A) — QA =0 in WH(2'(g)7,
B(0) = 0.

Since Q(A), Q(A) € L™(0, T; W (2" (g™, it follows from the definition of
0B w

the weak solution that —r &€ L7, T; W@ (g)™). Then applying Temam

[11, Chapter III, Lemma 1.2], we have the identity

(6.2) 9 ¢, B) =

1d

5—(5"3"2 +vBI;, — (IR, Bl, B>,

where <{:,"> denotes the duality pairing between W' (2'(g,))* and
W'2(2'(g,)) and R is the curvature form of D, Using Gagliardo-Nirenberg's in-
equality

IBlz < CIBI" 1 Blis,
we obtain from Young's inequality

<@, (4) — @A, B | < (Al + 1Al |VvB], “3“72_12—
(6.3) <cdAl, +1A1) 1Bl | Bl

1 _27_ — 27
<z IVBI+ca+1Al=+ 1417 B,

1€Q.(4) — @A), B> | < AL + 1A | BIEz,
4 < CUAl+ 1A 1B BE ™"
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1 2 27 74 2
<zIvBl,+Cca+ AR+ 1Al Bl
Now it follows from (6.1)-(6.4)

d _2r_ . 2r
65  IBE+IVBE<CQ+IRL+ 14177+ 1417 1B

2r T _2r ro_ 27
Since F— 1 < ¢, we have by assumption f | A@t) ","4 dt, f | Ac) ”,"4 dt
0 0

< o and hence (6.5) and Gronwall’s inequality yield the conclusion. This com-
pletes the proof of Lemma 6.3. U]

7. Topology of bundles

In this section, we study structures of bundles on which defined the weak
solution D(¢). In Section 5, we have proved the behaviour of the first Pontrjagin
number p,, so we will study the obstruction n(P). The idea in this section is due
to Sedlack [8].

Note that p, may not be conserved in time, however, we can find a conserva-
tion quantity in time.

THEOREM 7.1. For the weak solution D(t) of (1.1) with the initial condition
(1.2), D' € U™, the obstruction 7 (P) is conserved in all time.

Proof. Let T> 0 be the first singular time of the solution D(#). Since
D(¢) is smooth on 0 < ¢ < T, there exist a family of transition functions {g,s} of
the bundle P such that A;(t) = g,,() 'dges(t) + gus(t) A, (t) g,(t). First, we
observe that {g,s(t)} are W"*-bounded on U, N U, for t— T. On U, N U, we
have

" dgas(t) "L‘(UanU,) = " As(t) "L‘(Uar\Ua) + " Aa(t) "L‘(U‘,I’\Uﬂ)
= C(" Aﬂ(t) "W"Z(Uanvs) + " Aa(t) "W"Z(Uanvﬂ))'

Note that the right hand side of (7.1) is bounded on t € (0, T1, if U, N S, = &
and Uy N S5 = 8. Therefore we conclude the W**_boundedness on U, N U, of
{g.s(D)}.

Since the projection map 7 is an isometry, we have

I dgs(t) "L‘(U,,nu,,) =| mdgas () "L‘(U,,nv,,) = || dg., (®) "L‘(UanUB)’
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therefore {Z,,(¢)} is W"*-bounded on U, N U,
On the other hand, we can find following results in [8, Section 5].

LemMa 7.2. Let S = {x;," "+, 2y} be a set of finitely many points in M, and let
J: M\ S — M be the inclusion map. For principal G-bundles P and P’ over M, if
n(J*P) = nU*P), then n(P) = n(P).

LEmMA 7.3. Let f: U,— R be a finitely many valued function. If f € W', then
f must be constant function.

LEMMA 7.4. If the lift G5 of 8as € C” is W™, then g, € C”.

Let 8 = {z;} be the singular points of the weak solution at ¢ = 7. By Lemma
7.2. it is sufficient to prove on M\ . The functions fug, (t) (X) = Z,(¢) ()~
85, (1) (2) * 8,5 (1) (x) converges to Z,5(T) (x) * 5, (T) (1) £,o(T) (1) = [ (T) ()
for any £ € M\ S in C”, by Lemma 7.4 and Lemma 7.3. Therefore, we have
n(P) = n(P). [l

Remark. The obstruction 7(P) coincides the second Stiefel-Whitney class
w,(P) € H* (M, Z,), if G=0W) or SOm). If G = Um), n(P) coincides the
first Chern class ¢,(P) € H M, 7).

Remark. By following the argument in Sedlacek [8], the assumption that G is
compact will be removed.
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