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CLASSICAL SOLUTIONS OF THE THIRD

PAINLEVE EQUATION

YOSHIHIRO MURATA

1. Introduction and main results

The big problem "Do Painlevέ equations define new functions ? ", what is cal-

led the problem of irreducibilities of Painleve equations, was essentially solved by

H. Umemura [16], [17] and K. Nishioka [9].

Umemura [16] analyzed Painleve's Stockholm Lessons [15] and extracted the

concept of "classical functions". To define "classical functions", Umemura intro-

duced the permissible operations to construct new known functions from already

known functions. First, we note that we identify a holomorphic function / on an

open set U c C with its restriction f\v onto an open subset V ^ U. Let 5 be a

certain set of meromorphic functions on a domain I ) c C . We assume that all the

elements in 5 are already known functions. Permissible operations to construct

new known functions from the set S are as follows.

DEFINITION I [16, Part II §2]. (0) Let fit) e S. Then the derived function

f'{f) is a new known function.

(PI) If fv f2 ^ S, then the sum fγ + f2 and the product fj2 are new known func-

tions. Moreover if f2 Φ 0, then the quotient fx /f2 is a new known function.

(P2) Let aίf * , an €= S. Then any solution / of an algebraic equation / +

axf + + an — 0 is a new known function.

(P3) Let fit) G S. Then the quadrature J f(t)dt is a new known function.

(P4) Let aίf' *, an €= S. Then any solution / of a linear differential equation

dnf/df + a^f/df'1 + + anf= 0 is a new known function.

(P5) Let Γ c C " b e a lattice such that the quotient Cn/Γ is an abelian variety.

Let 7Γ : Cn —* Cn/Γ be the projection. Let fv , fn e 5 be holomorphic functions

on a domain D cz C and φ be a meromorphic function on C /Γ. Then the function

0 7Γ (fίf-' *, fn) is a new known function if it is not the constant function taking
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infinity.

In any operation of (P2), * , (P5), we consider that we take an appropriate

subdomain Df c: D such that the newly constructed function is meromorphic and

single valued on D\ Using these permissible operations, Umemura defined "clas-

sical functions" as follows:

DEFINITION II [16, Part II §2, Definition (2.27)]. Let / be a meromorphic

function on a domain D cz C, MD be the set of all meromorphic functions on D

and C(ί) be the field of rational functions in a variable t. The function/ is called

classical if and only if there exists a tower of differential subfields KQ = C(/),

Klf' * *, Km of MD such that

(i) For any = 1, , m, Kj = #,_!<&> = KHl{gjy g/f g",- •), where gj is

a meromorphic function obtained by one of permissible operations (P2), ,

(P5) from the field KHι.

In this sense, rational functions in one variable, e, log /, elliptic functions,

the hypergeometric function and confluent hypergeometric functions are examples

of classical functions. It is non-classical functions that are essentially new func-

tions. We call a non-classical function an irreducible function.

Using the idea of Nishioka [9] and the fact that Painleve I does not have

algebraic solutions, Umemura [17] showed the theorem that every solution of Pain-

leve I is irreducible. After that, by the same idea, M. Noumi [10] clarified the dis-

tribution of classical solutions and irreducible solutions of Painleve II, K. Okamoto

[14] solved the case of Painleve IV. They slightly generalized the techniques of

Umemura [17] and used the facts on rational solutions of Painleve II and IV and

on solutions of Riccati equations contained in Painleve II and IV [7]. Then our

next target is Painleve III. In this paper, we investigate the distribution of classi-

cal solutions of Painleve ΠΓ, which is equivalent to Painleve III, in connection with

the transformation group of solutions. Particularly, we completely determine all

algebraic solutions. In the forthcoming paper [8], we prove a theorem that except

for classical solutions derived in this paper, any solution of Painleve III' is irre-

ducible.

1.1. Two expressions of the third Painleve equation

Painleve III has an equivalent equation Painleve III' [13, Introduction];
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(1.1 ) P : d 2y = l (dy )2 _ l dy + l (a 2 + /3) + 3 + ~ 
III dx2 Y dx x dx x y ry y 

( 1.2) 
222 

d q 1 (dq ) 1 dq q /3 0 
PIll': dt2 = q dt - t dt + 4t2 (rq + a) + 4t + 4q' 

In fact, a solution of Pm corresponds to that of Pm' by the change of the vari

ables: 

( 1.3) 

In this paper, we mainly treat PIlI" because it has a transformation group with 

good structure (See 1.2). 

As is well known [13, Proposition 1.11. by the change of the variables: t = t l , 

q = tlql' PIIl,(a, /3, r, 0) is transformed into PIIl'(- /3, - a, - 0, - r). In the 

same way, by the change of the variables: t = t l
2 , q = ql2, PIIl,(a, /3, 0, 0) is 

transformed into Pm,(O, 0, 2a, 2/3) [11 II, Remark 1J. The correspondence (1.3) 

implies that PIlI (a, /3, r, 0) also has similar transformations to the above ones. 

From these facts, we may consider that the values of the complex parameters 

a, /3, r, 0 of PIlI' and PIlI satisfy one of the three cases: 

(A) a = r = 0 (or /3 = 0 = 0) 

(1.4) (B) r = 0, ao ::j::: 0 (or 0 = 0, /3r ::j::: 0) 

(C) ro::j::: O. 

In the case (A), PIlI' and PIlI are solvable by quadratures [13, Proposition 1.5J. In 

the case (B), V. I. Gromak [11. [4, Theorem 2] , [5, 2J showed that PIlI has 

3-sheeted algebraic solutions for special values of /3 (or a). In the case (C), any 

solution of PIlI' (resp. PIlI) governs the isomonodromic deformation of a second 

order linear differential equation L IIl, (resp. Lm) which has irregular singularities 

of Poincare rank 1 at the origin and at infinity, and a nonlogarithmic singularity 

at q [11 II, Proposition 11. [12, 4.3J. Then the case (C) is essential for Pm' and 

Pm. In this case, Gromak [5, Theorem 9J obtained the necessary and sufficient 

conditions for Pm (a, /3, 1, - 1) to have rational solutions by the use of trans

formations of solutions of Pm. But, as we will mention in 1.2, the transformation 

group of solutions of Pm' is isomorphic to the Affine Weyl group of the type B2, 

and so, we can treat Pm' more successfully than Pm. Therefore, in this paper, by 

the help of this transformation group of Pm' and by different approaches from 

those of Gromak [5J, in this case (C), we investigate algebraic solutions and solu

tions expressible by Riccati solutions of Pm' in detail. In the process of studying 
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algebraic solutions of Pιιv, we obtain a result on algebraic solutions of Pm which

contains the theorem by Gromak [5, Theorem 9].

Let parameters (α, /3, γ, δ) satisfy the case (C). Then (α, β, 7, δ) can be

replaced by other parameters (τ?0, 77„, θ0, ΘJ) [11 II, 2];

(1.5) a = - AnJ», β = 4r]o(θo + 1 ) , r = 4 ι j o Λ δ = - 4 η o \

In addition, by the change of variables:

(1.6) t = yίίx, ^ = μqv (λμ Φ 0),

P\ιv(?)o> ?700, 0O» 0~) is transformed into P π r (U///) i7 0 , 1̂7o,,, 0O, 0 J . Then, if the

values of λ and μ are chosen appropriately, PUv(Vo> Vo*, θ0, ΘJ) is transformed

into a canonical type equation P I Π ' ( 1 , 1̂  θ0, ΘJ), which we express by Puy(θOt

ΘJ). From now on, we mainly consider this canonical type equation

1 dq . q , a \ , 0Q + 1 1

ot Vooi θ0, ΘJ is also transformed into a canonical type equation

*.„«. ".) = ̂  - i (£)*"
by a similar transformation to (1.6).

+ V - Λ

1.2. Transformation groups of PIΠ, and Pιu

As Okamoto [13, Introduction] pointed out, Pm'(r)0>

formed into a Hamiltonian system. In fact, putting

, θ0, ΘJ) is trans-

(1.7)

9 = ί
- ηot

then we get a Hamiltonian system

(1.8)

θoq - Vot)}

+ θo)p +

qψ

ΘJ] = ~

where H= (1/f) [qψ - (η»q2 + θoq ~ ηot)p + (1 /2)ηJΘ0 + ί j g ] . Let

Hιn,(θ0, ΘJ denote the Hamiltonian system which corresponds to .P I i r (0 o , ΘJ, i.e.,
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the system (1.8) with parameters ( 1 , 1 , ΘQJ #«,)• Okamoto obtained a transforma-

tion group G# of Hιιv(θ0, ΘM) and showed that it is isomorphic to the Affine Weyl

group of the type B2 [13, Theorem 1]. In this paper, we consider the transforma-

tion group G' of PιU'(θOf ΘJ) which is derived from G# by (1.7).

Generators of G' and transformations which we use later are as follows:

(ί, «)->(*, Q) = (ί, -t/q)

(θ0, ΘJ -> (θ0, ΘJ = ( - ft. - 1, - 0O ~ 1)

m

m

h

(/,

(t,

(s, (?) - (ί,

(θ0, ΘJ) =

tdq/dt- q + θ^q - t

tdq/dt- q2 + ~ )

, Q) = (- t, - q)

-q2-(θ0

(θ0, ΘJ - (θ0, ΘJ = (θ0, - ΘJ

(f Λ\ - r o\ - It * tdq/d(t, q) —• (s, Q) - I ί, — —
v 1 tdq/dt- q2

(θ0, ΘJ - (θ0, ΘJ = (0O + 1, 0 . + 1)

I (θ09 ΘJ

is, <0 = (ί,-£

tdq/dt+q -θjti-t

tdq/dt+ q - (θ0

tdq/dt + q2 -

tdq/dt- q2 +

[ (θ0, ΘJ

(t, q) — (s, Q) = (ί, - q)

. (θ0, ΘJ -» (0O, 0 J = ( - 0O - 2, - 0 J .

Each transformation of the above all is applicable only when a solution q(t) does

not vanish the numerator and the denominator of Q. G' is generated by s/s
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0 = 0, 1, 2). These transformations combine together like

s/ = id 0"= 0,1,2),

/ = (s1s2)
2s0s1, m = s2£s2, h = s^s^

Im = ml, hi = /" A, Am = m~ h.

We also introduce the transformation group G of P I Π (9 0 , 0TO), which is

derived from G' by (1.3). Let S ; denote the corresponding transformation to

5, 0" = 0,1) :

ί Cr, y)~* (u, Y) = Cr, - l/y)

, x / TA t — ' (dy/dx) - xy2 + ( 0 ^ + 1 /2)y —
(x, y)~^ (M, K> =

(x/2)(dy/dx) - xy + (β0 + 1/2)*/ -

Sx is applicable under the conditions (x/2)(dy/dx) — xy + (#«, + l/2)y — x

* 0 and (x/2)(dy/dx) — xy2 + (#«, + l/2)y - i Φ O . The transformation s2

corresponds to the transformation

Cr, #)-> (M, y) = (ξx, ξy)

(0o, 0 - ^ ( ^ 0 , 0J = (0o, - O ,

where ξ is i or — i (i = \J~ 1) . So> Si and S5 generate G'. Correctly speaking, G'

= <S0, Slf Sf} — <S0, Sv S_i) holds, because (S±i) — S{±i)3 = Sψi. Here, we

have So = S1 = id and Sj S.,- = S-jS/ — id. The transformation s ; ( = 0,1)

actually corresponds to both of Sy and (Sξ) S ; . The transformation m corresponds

to the transformation

M

, . . T Λ / 1 {x/2){dy/dx) + xy2 - (θo + 3/2)y
(x, y) -> (u, Y) = (x, —

(x/2)(dy/dx) + xy - ((?„. - 1/2)?/ + . χ

The transformation m corresponds to the transformation

M~ι

, x , ,Λ / 1 (x/2)(dy/dx) - xy2 + (θo + l/2)xy-χ\
(x, y) -* (u, Y) = [x, — )

x y (x/2) (dy/dx) - xy2+ ( θ - 1 /2)a» - x y

Cr/2) (dy/dx) - xy + (0O + 1 /2)xy - x\

(x/2)(dy/dx) - xy2 + (0^ -

1).

Here each transformation of the above two is applicable only when a solution
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y(x) does not vanish the numerator and the denominator of Y. The transformation

m (resp. m ) actually corresponds to both of M and (Sξ) M (resp. M and

(Sξ) M ). Furthermore, whichever value ξ takes, we have M— S^SXS^ S^iS^^).

Lastly, the transformation h corresponds to the transformation

(x, y) —• (M, JO = (x, — y)

(θ0, ΘJ-+ (θ0, ΘJ = (- θm- 2, - ΘJ.
H

and the transformation (Sξ) H.

The Hamiltonian expression (1.8) of Puι, and the transformation groups G'^,

G' also play important roles in the forthcoming paper [8].

1.3. Main results

In this paper, if we do not comment especially, "a rational function" means a

single-valued algebraic function defined on a Riemann sphere P, and "an algebraic

function" means a many-valued algebraic function defined on P.

THEOREM 1. P π r ( α , β, γ, δ) has a rational solution if and only if a = γ = 0

orβ=δ = 0.

THEOREM 2. Assume that γδ Φ 0.

(1) Pui'(θ0, #oo) ((θ0, ΘJ) €= C ) does not have rational solutions.

(2) Pιn'(θ0, ί O ((0O, ΘJ^C) has algebraic solutions if and only if there ex-

ists an integer I such that θ^ ~ θ0 — 1 = 2/ or θ^ + θ0 + 1 = 21.

(3) IfPuv(θ0, ΘJ) has algebraic solutions, then the number of algebraic solutions

is one or two. Puy(θOf ftj has two algebraic solutions if and only if there exist two in-

tegers I and J such that #«, - θ0 - 1 = 2/ and θ^ + θ0 + 1 = 2/.

(4) Let

D+= {(-5/2, 1/2), (1/2, -1/2)}, D_ = {(-5/2, -1/2), (1/2, 1/2)},

a+ = 1, a_ = i,

Δ± = {((L-2K- l)/2, ± (L + 2K + l)/2) | 7ί and L ar^ inί^

K>2,L= -2, -

U {((L - 2iί - l)/2, ± a + 2K + l)/2) I i ί and L are integers such that

K<-2,L = 0, 2, , 2 ( - ί ί - l ) } ,

where double signs correspond with eath other. Then, algebraic solutions are classified

as in the table I. In the types IΠ±, IV±, the values of N, ε ; , bj (j: = 1, * , ΛO depend
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on the values of θ0, #«, and a±.

Type

h

ΠI±

iv±

Conditions of (θ0, ΘJ

θm + θo+ 1 = O,(0O, ΘJ e C 2

(θ0, ΘJ e Z)±

9 . T ί 0 T l = 21, (0O, 0 J e C2

I e Z - {0}, (0O, 0 J <έD±Ό Δ±

(0O> 0 J e 4 ±

Forms of algebraic solutions

ί = a±ft

q = ajt + θm

/ 1 N ε

IN<ΞZ, N>0 \

/ e, = 1 or - 1 \

ί ; e C - {0}

I if;'^;v, thenb/Φ by J

\ί — έ- j=ι εj 1

-b)

under the same conditions as in (*)

Table I. Algebraic solutions of P I I Γ (0 O , ΘJ.

Remark 1.1. (1) Every algebraic solution is actually calculable from the

algebraic solution of the type I+ by means of transformation group G'. (Refer to

Propositions 3.4, 3.10 and 3.11.)

(2) When the values of θ0 and ΘM are restricted to real numbers, algebraic solu-

tions are distributed as in the Figure 1.

As is well known [13, 4.1], when θ0 + 6L = 0 ((0O, ΘJ e C 2), P I i r ( 0 o , ΘJ

contains all solutions of a Riccati equation:

(1.9)
dq

By the change of variables: q = (s/2) (d/ds) log u - θo/2 (u Φ 0), t = - s 2/4,

(1.9) is transformed into a Bessel equation:

d u du

Let 0σ(O (σ ̂  C) denote the one-parameter family of solutions of (1.9).
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<θ - θ - 1 = - 2

Figure 1. The distribution of algebraic solutions of P I I Γ (^ 0 , ΘJ) in the case (θ0, ΘJ) ^ R ,

On the line •

On a line —

— , type I+.

- type ΠI+.

On a point C, type II+.

On a point φ, type IV+.

W is a fundamental cell of the Affine Weyl group of the type B2.

On the wavy line ****, type I_.

On a wavy line w w , type IΠ_.

On a point Δ, type II_.

On a point A, type IV_.

THEOREM 3. Let I and J be any integers. If θ^ + ΘQ = 21 (resp, θ^ — ΘQ = 2/),

(@o> ̂ oo) has a one-parameter family of solutions of the form

= 27(0O, ί, φσ(i)) (σ e C)

= &j(θ0, t, φσ(- t)) ( σ e O ) .

•̂, S 7 and Άj are rational functions in three variables with integer coefficients, forms

of which depend on the values of I and J respectively. If #«, + θ0 = 2/ and θ^ — θ0 =

2J, then PUy(θQ9 ΘJ) has two one-parameter families qj(f) and qj(t) which do not

have common solutions.
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Remark 1.2. (1) Theorem 3 itself does not guarantee that qj(t) and ξj{f) are

all the solutions which can be expressible by solutions of Riccati equations. But,

as we will show in the next paper [8], it is actually true.

(2) Okamoto [13, 4.1, 4.2, 4.3] obtained the r-function of the solutions

qj(t) and investigated its properties, relating it to the Toda lattice equation.

In the forthcoming paper [8], by the theory of differential fields, we prove the

theorem that any solution of Puyiθ0, ΘJ) is irreducible except for algebraic solu-

tions of Theorem 2 and one-parameter families of solutions qjit) and ξjit) of

Theorem 3.

2. Proof of Theorem 1

First we note that the equation P Π I ,(α, β, γ, δ) (See (1.2)) is equivalent to

the equation

2 q^f = 4t2 ( ^ ) 2 4tq^ + q\γq + a) + βtq + δt2(2.1) U2 q^f = 4t2 ( ^ ) - 4tq^ + q\γq + a) + βtq + δt2 (?Φ0).
Clt

Proof of Theorem 1. Let qit) be a rational solution of Pιιvia, β, γ, δ). We

suppose that qit) has a pole at t = °°. Putting the Laurent expansion of qit) at

t= co into (2.1) and comparing the coefficients of the terms of the highest degree

with respect to t, we obtain the condition a — y — 0. Similarly, if qit) is holomor-

phic at t — °°, the condition β = δ = 0 is derived. Conversely Pm,(a, 0, γ, 0)

has a general solution q= 2λ2 F/[(F- l ) { ( α / 4 - ε)F~ ( α / 4 + ε)}], where

F = μt\ ε = V7Λ/2, U, μ) e (C - {0}) x C (Okamoto [13, Proposition 1.5]).

Then, if λ is an integer, q is a rational solution of Puvia, 0, 7, 0). Pnvi0, β, 0, δ)

also has rational solutions. CH

3. Proof of Theorem 2

3.1. Possible rational solutions of Puιiθ0, ΘJ)

From now on, we assume that 7<5 Φ 0, and we consider the canonical equation

Pnviθo, 0 J .

Let qit) be an algebraic solution of PUyiθOf ί O , $, the Riemann surface of

qit), T a Riemann sphere P, pr 91—• T the canonical projection. By simple cal-

culations, we can check that any algebraic singularities of qit) on t = b ^ C -
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{0} is a pole. Then, $, has branching points only on t = 0, °° ^ T. By the

Riemann-Hurwitz's formula, $ has one branching point on each point of t = 0 and

t = °° , and the two branching points have the same multiplicity. Let n ( > 1)

denote this multiplicity. If we put X = P, a Riemann sphere, and 0W : X~* T, χ—+

t = χw, then pr" 0W uniformize $. Hence 2Or) = (qφn)(x) is a rational function on

X = P. Conversely if z(x) is a rational function on X, then # (£) = (zφn ) (0 is a

rf-sheeted algebraic function, where d is a divisor of w.

PROPOSITION 3.1. Let q(t) be an algebraic solution of Pm,(θ0, ΘJ. Then q{f) is

two-sheeted and is expanded at t = °° as

q(t) = Cxx + Co + C_,x~ι + + C_kx~k + ,

= ft, (Cv Co) = ( ± 1, (̂ 00 - 0O - l)/4) or (Cv Co) = ( ± i, ( ^ + ^0

+ l )/4) . For any integer k > 1, C_Λ = C1C0Rlc (ΘQ, θ^, Cv Co)

Rk(X j Yy Zy W) is a polynomial in four variables with complex coefficients.

Proof Suppose q(t) is an w-sheeted algebraic solution with an expansion at

t = °° as

q ( t ) = C w χ m + CM_xx
m-1 + •••,

where x — t , m ^ Z, Cm ^ 0. We substitute this expansion into (2.1) and com-

pare the coefficients. If m < 0, then we cannot cancel the coefficient of x n. There-

fore, m must be a positive integer. We also find that m — n/2 and Cm — 4VT =

ί 1, ± i. Thus we have

(the right hand side of (2.1))

- (the left hand side of (2.1))

- 4 Σ ( Σ C.C^CJx* + 4 ( - ΘSl + 0O+DC m x 3 m

Am>ρ>3m k+l+v+w=ρ

+ 4 Σ ( Σ C.Cfifiv-θ^ Σ CkC,Cv + (θo + l)Cp_2m}χp

3m>p>2m k+l+v+w=ρ k+l+v=p

+ 4 Σ { Σ CkCtCvCa - θ^ Σ CkCsCv
2m>p k+l+v+w=p k+l+v=p

1+ (θ0 + 1) Cp_2m + — - Σ (k-2m)(l- k) CkC,}χp = 0.
4m *+'=*

Comparing the coefficients oί x (1 ^ d < m), we inductively obtain

Cm_j = = C1 = 0. Next, from the coefficients of x m, we have 4(4C 0 C m —

^ Q 2 + θ0 + l)Cm = 0. Then Cm = ± 1 and Cm = ± i imply Co = ( 0 . - 0O

— l ) / 4 and Co = (0^ + 0O 4- l ) / 4 respectively. Continuing this process succes-
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sively, from the coefficients of x

3m~(em+d) (e > Q, 1 < d < m), we obtain C_em_ι

= = C_(e+1)m+1 = 0. From the coefficients of x m~ e+ m (e > 1), we find that

C_(e+1)m = - ( C m / 4 ) C 0 (a polynomial of 0O, 0.., C w , Co, , C_e w

with complex coefficients)

= CwC0*(a polynomial of 0O, 0^, C w , Co with complex coefficients).

By the above arguments, it follows that the expansion of q(t) at t = °° must be

q(f) = Σk<λCmkχ
mk = Σk<ιCmkWt)k, where x — tU2m. Hence the multiplicity 2m

is equal to 2. •

The arguments above and (1.3) in 1.1 lead us to the following result.

PROPOSITION 3.2. If q(t) is an algebraic solution of Pm,(θ0, ΘJ), then y(x) =

q(x )/x is a rational solution of Puι(θ0, ΘJ). Conversely, ify(x) is a rational solution

ofPm(θ0, ΘJ), thenq(f) = yjΊyi^ft) is an algebraic solution ofPιu,(θ0, ΘJ.

By this proposition, what we should do to find all algebraic solutions of

P\ιγ{θθi ΘJ) is to find all rational solutions of PιU(θQ, ΘJ). In Proposition 3.3, we

determine all possible forms of rational solutions of Pm(θ0, θ^). From Proposi-

tions 3.1, 3.2, we first obtain the following lemma.

LEMMA 3.1. Let y(x) be a rational solution of Pm(θOf ΘJ. Then y(x) is ex-

panded at x— °° as

y(x) = Do + D_,/x + + D_k_x/xM + ,

where (Do, Dλ) = ( ± 1, ( ^ - θ0 - l )/4) or ( ± i, (θ^ + θ0 + l ) /4) . For any in-

teger k > 1, D_k_1 = D0D_ι ' Rk(θ0, θ^ Do, D^) holds, where Rk is the same

polynomial as in Proposition 3.1.

By simple calculation, we obtain the next lemma.

LEMMA 3.2. (1) // y(x) is a rational solution of Pm(θ0, #«,) with a pole at

x — 0, then it is expanded at x — 0 as

y(x) = 6U" 1 + Eo + Exx + - - ,

where #«, Φ 0.

(2) // y(x) is a rational solution of PUι(θ0, θ^) with a pole at x — b ( ^ C —



THIRD PAINLEVE EQUATION

{0}), then it is expanded at x — b as

y(x) = (± l/2)(x - bΓ1 + Fo + F^x - b)

49

The above two lemmas give us the information on the possible forms of

rational solutions of P I Π(0O, #«,).

PROPOSITION 3.3. If y(x) is a rational solution of Pm(θ0, θ^, then it must be-

long to one of the eight types in the table II, where a+ = 1 or — 1, a_ = i or — i, and

double signs correspond with each other.

Type

I±

π ±

ΠI±

iv±

Conditions of (θ0, ΘJ

ft. T 0O T 1 = 0, (0o, ΘJ e C 2

3θx±θ0±l = 0,θxΦ0

(θ0, ΘJ e C2

θm + θΰ T 1 = 21, (θ0, ΘJ e C 2

30. ± θo±l = - 2 7 , 0 M #O
(0O f ΘJ e C 2

Forms of i/Gr)'s

2/ = α±

2/ = α ± 4- 0^/x

» α ± ' 2 , 5 * - & /
/N*ΞZ,N>0 \

/ εy = 1 or - 1 \

^ C - ( O ) . . . ( * )

I i f i # ; v , then* ; .^ ^ /

y = a * + x +2^ιχ-bi

under the same conditions as in ( * )

Table II. Possible types of rational solutions of PιU(θ0, θ^).

Proof By Lemma 3.1 and Lemma 3.2, the possible decompositions of y(x)

into partial fractions are classified into the eight types I±, * , IV±. For each type,

we can derive the conditions which θ0 and θ^ should fulfill. Here we show the

case IV± only.

If I bj I < I x I, then we have

Sj

x — x 1 — bj /x X
b*/χ2
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Hence, in the neighborhood of x = °°, we obtain an expansion

y(x) = a± + θoo/x+ (l/2){I/x + (Σf=1 s^/x2 + •••}.

From Lemma 3.1, it follows that θ^ + 1/2 = (θ^ + ΘQ + l )/4. Then, we have

36L ± θ0 ± 1 = - 2/. D

Here we introduce new notations R(θ0, ΘJ and r(θ0, ΘJ. Let R(ΘQ, ΘJ

denote the set of all rational solutions of Pm(θ0, ΘJ. If PUι(θQ, ΘJ does not have

a rational solution, we consider R(θ0, ΘJ = φ. We express an element of

R(ΘQ, ΘJ by a form (x, y), where x is the independent variable of P I Π ( ί 0 , #«,)

and y is a rational solution of Pm(θ0, ΘJ expressed by the variable x. Next, let

K#o> $oo) denote the set of all rational solutions of Pm(θ0, ΘJ of the types I + , ,

IV+. r(θ0, ΘJ is a subset of R(θ0, ΘJ. By Proposition 3.3, we must study eight

types of rational solutions. But the following result decreases our labor.

PROPOSITION 3.4. (1) The mapping

o, ΘJ-+R(ΘO, ΘJ = R(θ0, - ΘJ,

(x, y) —> St(x, y) = (u, Y) = (ix, iy)

is bijective, where i = \/~ l

(2) // (x, y) is a rational solution of the type J±(J = / , • • • , IV), then S^x, y)

= (u, Y) is of the type J^, where double signs correspond with each other.

We omit the proof. By this proposition, we may concentrate on the study of

rational solutions of the types I+, , IV+ in the following.

3.2. Existence and uniqueness

First, we note that Pnι(θQ, ΘJ is equivalent to the equation

(3.1) xy^ = x ( ^ ) 2 - y ^ + 4 ( - θmy2 + θo + \)y + Ax/ - 4x (y Φ 0).
ClJu

PROPOSITION 3.5. (1) (Existence and uniqueness of the type I+) If y(x) = 1 or

y(x) = — 1 belongs to r(θ0, ΘJ, then (θOf ΘJ ( e C2) satisfies the condition θ^ —

θ0 ~ 1 = 0. Conversely, if θ^- θ0 - 1 = 0 ((0O, ΘJ e C2), then r(θ0, ΘJ =

iy(x) = ± 1).

(2) (Existence and uniqueness of the type II+) Ifyix) = 1 + θ^/x or y(x)• =



THIRD P AINLEVE EQUATION 5 1

- 1 + ΘJx belongs to r(θ0, 0J, then (0O, ΘJ = ( - 5/2, 1/2) or (1/2, - 1/2).

Conversely, if (0O, ΘJ = ( - 5/2, 1/2) or ( 1 / 2 , - 1 / 2 ) , tfι*n r(0o, 0 J =

= ± 1 + 0ooΛr}.

Proo/. We prove (2) only. The proof of (1) is the same as that of (2). If

Λn(0o» 0~) has y(x) = 1 + θ^/x or y(x) = — 1 + θM/x as a solution, it fol-

lows from Proposition 3.3 that 30^ + 0O + 1 = 0 and 0*, Φ 0. On the other hand,

substituting y(x) into (3.1) and comparing the coefficients of x~ , we obtain

4θJ = 1. Therefore (0O, ΘJ = (~ 5/2, 1/2) or (1/2, - 1/2). Conversely, if

(θ0, ΘJ = ( - 5/2, 1/2) or (1/2, - 1/2), then we have 30^ + θ0 + 1 = 0

and 40oo = 1. At this time, y(x) = ± 1 + 0^/^ satisfy (3.1). Moreover, Lemma

3.1 ensure that r(θ0, ΘJ does not contain rational solutions of other types. CH

PROPOSITION 3.6 (Existence and uniqueness of the type ΠI+ and the type IV+

(1)). (1) If Pιu(θOf ΘJ has a rational solution of the type III+, then it most be that

K0O> ΘJ = {y(x) = ± 1 + (1/2) Σ f = 1 ε ; /Cr + b)}> where double signs corre-

spond with each other.

(2) If Pιu(θ0, ΘJ has a rational solution of the type IV+, than it must be that

r(θ0, ΘJ = (y(x) = + 1 -h θ^/x + (1/2) Σf=1 Sj/ix =F b,)}, where double signs

correspond with each other.

Proof We prove (2) only. Since the transformation (St)
2: i?(0o> ΘJ —•

R(θ0, 0 J , (x, y) -> (u, Y) = (- x, — y) is bijective, if y{x) = 1'+ 0O./ΛΓ +

(1 /2) Σf=1 6y/(x ~ 6y) is a solution of P I Π(0O, 0 J , then Y{u) = - 1 + 0^/w +

(1/2) Σ y = 1 ε y / ( w + &;) is also a solution of Pm(θQ, ΘJ, and vice versa. Next,

Lemma 3.1 ensure that for a fixed (0O, ΘJ a rational solution expressed as y = 1

+ D_λ/x + D_2/χ2 + or y = - 1 + D_λ/x + D_2/χ2 + is uniquely

determined. CU

Remark 3 .1 . F r o m Propos i t ions 3.4, 3.5 and 3.6, we see t h a t i ? ( 0 o , $«>) h a s

only the following four possibi l i t ies :

(i) i?(0o, 0 J = 0.

(ii) i?(^o> ôo) — (two rational solutions of the type /+}

(/ + = I + , , I V + ) .

(iii) R(θ0, ΘJ — {two rational solutions of the type i θ

(K_ = !_,•••,1V_).
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(iv) R(ΘQ, ΘJ = {two rational solutions of the type /+}

U {two rational solutions of type K_}

σ + = i+, , i v + > # _ = i_, , i v j .

From now on, we study the transformations SQf H and M in order to deter-

mine necessary and sufficient conditions for rational solutions of the types III+,

IV+ to exist. The next lemma is prepared for the proofs of Proposition 3.7 and

Proposition 3.9. We omit the proof of it.

LEMMA 3.3. Let y(x) = ± 1 + P(x)/Q(x) be a rational solution of the type

J+ (J+ = Π+, * *, IV+). Here P(x) and Q(x) are polynomials with complex co-

efficients. We do not assume that P(x) and Q(x) are coprime.

(1) 7/0(0) Φ 0, then y(x) is of the type IΠ+.

(2) If 0(0) = 0 and P(0) Φ 0, then y(x) is of the type II+ or the type IV+.

PROPOSITION 3.7. (1) The mapping

So: r(θ0, ΘJ - r(θ0, ΘJ = r(- θ. ~ 1, - θ0 ~ 1),

(x, y) — S0(x, y) = ( i , Y) = (x, - \/y)

is bijective.

(2) Let y be a type IV+ rational solution of Pm(θ0, ΘJ, where 36^ + θ0 + 1 =

- 2 / ( / G Z ) , Θ»Φ 0, and let S0(x, y) = (x, Y). Then Y is a type IΠ + rational

solution of Pιu(θ0, ΘJ with the condition F(0) = 0, where θ^ — θ0 — 1 = 27 (7 ^

Proof. (1) It is obvious.

(2) Substituting y=±l + θ./x+(l/2) Σ f = 1 ε / C r + b,) into Y=-\/y

T1 + (±y- \)/y, we obtain Y(x) = + 1 + P(x)/Q(x), where

jli (x + fty) e C[x]

Q{x) =yxU?=1(xTbi)

Since Q(0) = ^ Πf=1 (=F b,) Φ 0, by Lemma 3.3, 7(x) is of the type ΠI+. Then,

we have θm — θ0 — 1 = 27, where 7 ^ Z — {0} because of Proposition 3.5 (1).

Next, if we assume F(0) Φ 0, from S0(x, Y) = (x, y) and the similar argument

as the above, we obtain that y is of the type IΠ+. This is a contradiction. Then

7(0) = 0 must hold. D
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COROLLARY 3.1. We consider a set

D = {((Z, - 2K - l)/2, (L + 2K + l)/2) e R21 K, L e Z, # Φ 0}.

(ΘQ> ΘJ Λ̂5 α rational solution of the type IV+, f/wn (0O, 0 J e Zλ

Proo/. By Proposition 3.7 (2), if Cr, z/) is a type IV+ rational solution of

Puι(θ0, ΘJ, then S0(x, y) = Cr, Y) is a type III+ rational solution of Pm(θOf ΘJ,

and (0O, ΘJ satisfies a relation ϊ ~ fl0-1 = 2 / ( / e Z ~ {0}). Hence,

ΘM - 0O - 1 - ( - 0O - 1) - ( - 0 β - 1) - 1 = ^ - 0O - 1 = 27.

On the other hand, we have 3 ^ + θ0 + 1 = - 2/ (7 e Z). By the both equali-

ties, we obtain l90 = ( - 7 - 37 - 2)/2, θ^ = ( - 7 + 7)/2. Putting - 7 - 7 - 1

= I and 7 = ίΓ(Φ 0), we obtain θo= (L-2K- l ) /2 , θ» = (L + 2K + l )/2.

3.2. A point ((L - 2K - l ) /2 , (L + 2 # + l)/2) is an intersection

of two lines θ^ — θ0 — 1 = 2K and θ^ + θ0 = L in the real plane R2.

From the table II of Proposition 3.3, Proposition 3.5 (2) and the Corollary

3.1, we obtain

COROLLARY 3.2. Let Σ ± = i(θ0, ΘJ ^ C | there exists an integer I such that

± 7 > 0, βo. - 6>o - 1 = 27}. J/K0O, <?J = 0, then (θ0, ΘJ e Σ + U Σ _ .

PROPOSITION 3.8. (1) 77ιe mapping

H : r(0o, 0 J - r(0o, 0 J = r ( - 0O - 2, - 0 J ,

, y) = OP, Y) = OF, - y)

is bijective.

(2) // (x, z/) is α rational solution of the type J+ (J+ = I+, * ,IV+), ί/ien H(x, y)

= (x, Y) is also a rational solution of the type J+.

We omit the proof of this proposition. This proposition implies that the set

K0O, ΘJ ((0O, ΘJ e Σ+) are uniquely determined by the set r(θQ, ΘJ ((0O, 0 J

€= Σ J , because 0^ - θ0 - 1 = ( - ΘJ ~ ( - 0O - 2) - 1 = - (0TO - 0O - 1).

Therefore, we may investigate the set r(0o, 0^) only in the case (0O, 0^) ^ Σ _ .
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PROPOSITION 3.9. (1) The mapping

M : r(θ0, ΘJ -» r(θ0, ΘJ = r(θ0 + 1, 0.. - 1),

(x,y)^M(x,y) = (x, Y)

1 (x/2) (dy/dx) + xy2 - (θ0 + 3/2)y + x

y (x/2) (dy/dx) + xy2 - (0. - 1 /2)y + x-('

is bijective.

(2) // Cr, z/) is a rational solution of the type / + ( / + = I + , " , IV+), ί/wn M(x, y)

— (x, Y) i5 α rational solution as in the table III. i/#r£ double signs correspond with

each other, and (θ0, ΘJ) ^ Σ _ .

Proof. (1) By Lemma 3.1, any rational solution y(x) of the type /+ (J+ =

1+,* * *, IV+) of Puι(θ0, ΘJ) is developed as

y{x) = ± 1 + Ώ_x/x + + Ώ_k_x/xM + •

at x = °°. Then it follows that

Cr/2) (dy/dx) + xy2 - Ay + x = 2x + 0(1) * 0,

at .r — °°, whichever A = #0 + 3 /2 or A — θ^ — 1 /2. Therefore we can apply

M to any solution in r(θ0, ΘJ). By a similar reason, the inverse transformation

M is applicable to any solution in r(θ0, ΘJ). Therefore M is bijective.

(2) We prove only the case / + = IΠ+. Proofs of the other cases are done in

the same ways. First, by the assumption (θ0, ΘJ) ^ Σ _ and Proposition 3.5 (1),

we have ΘM ~ θ0 - 1 = 21 < - 2, and ()„ ~ θ0 - 1 = ( ^ - 1) - (0O + 1) - 1

= 2(1—1) ^ — 4. Therefore, from Proposition 3.5, Fmust be of the type IΠ+ or

the type IV+. Next, we substitute y = ± 1 + (1 /2) Σf=1 Sj/(x + bj) into

1 (x/2) (dy/dx) +xy2- (θo

(x/2) (dy/dx) + xy2 -(θm-l /2)y + x

(x/2)(dy/dx) +xy2 - (θoo-l/2)y

Here we note that

where Λ(x) = (+ y + 1) Πf=1 Or + bf) e CM
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Type of

y(χ)

i+

IΠ+

iv+

Conditions of (0O, ΘJ e Σ_

Form of y(x)

θ m - θ o - l = O

V=±l

(0Of ΘJ = (1/2, - 1/2)

y= + 1 + (-1/2)/*

0.. - 0β - 1 = 2/

(/ = Σf=1 ε, < 0)
y=±l + (l/2)Σ%ιεi/{χTbl)

(0O, 0J = (&-2K-D/2,
(L + 2K + l)/2) e 5

π<o
ί = z + 0M/x(0β^O),

where
z= ± 1 + (1/2) Σ^ε/ixT b,)

Conditions of (0O, ΘJ e Σ_

Type of Y(x)

θm - θ0 - 1 = - 2

(i) If (0β, 0 J # (1/2, - 1/2), then

Fis of the type IΠ+.

Here F(0) = 0 if and only if

(00, ΘJ = (~ 1/2, - 3 / 2 ) .

(ii) If (0O, ΘJ = (1/2, - 1/2), then

Fis of the type II+.

(0O, ΘJ = (3/2, - 3 / 2 )

Fis of the type IV+.

0 . - 0 o - l = 2 ( / - l )

(i) If ΘOΦ l/2andί/(0) Φ 0, then

Fis of the type III+.

F(0) = 0 if and only if 0O = - 3/2.

(ii) If θ«, = 1/2 and 2/(0) ¥= 0, then

Fis of the type IV+.

(iii) If ί/(0) = 0, then Fis of

the type IΠ+ or the type IV+.

(0βI ΘJ = ((L-2K-D/2,

(L + 2K+ l)/2) e β
K=K-KQ,L = L

(i) If 0» # - 1 /2 and z(0) Φ 0, then

Fis of the type IΠ+.

(ii) If θm = - 1 /2 or z(0) = 0, then

Fis of the type IV+.

Table III. Actions of the mapping M.

Particularly, we have

(3.3) Px(0) = (+ y(0) + 1) Πf=1 (+ ft,), Qx(0) = y(0) Πf=1 (+ b,).

Furthermore, we note that
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goo - ΘQ - 2

(x/2)(dy/dx) + xy - (^ - \/2)y + x

-θo-2 _ P2(x)

χ{(l/2)(dy/dx) + y + 1} - (ΘM - 1/2)*/

where P2(x) = (ΘM - θ0 - 2) Πf=1 (x T b,)2

f=1 (x T b,)2

- ( 0 β - 1 /2) 2/Πfβl te + ύ; )
2

deg P 2 = 2iV, deg Q2 = 2iV + 1.

In particular, we obtain

P2(0) = (βo. - θ0 - 2) Πf=1 ( + bj)2 = (21 - 1) Πfml 6/ * 0

( 3 ' 4 ) Q2(0) = - ( ^ - 1/2) »(0) Πf=1 6/.

Since F = ± 1 + P 1 U ) / Q 1 ( x ) + P2{x)/Q2(x), it follows from (3.3), (3,4) and

Lemma 3.3 that

(i) When Θ^Φ 1/2 and 2/(0) Φ 0, F is of the type IΠ+.

(ii) When θ* = 1/2 and z/(0) Φ 0, F i s of the type IV+.

(iii) When y(0) = 0 , F i s either of the type III+ or of the type IV+.

In the case (i), (3.2) imply that

1 -(f l o + 3/2)y(O) _ (gq + 3/2) 1 _

°- (6L - 1/2)^(0) " ( ^ - 1/2) 0(0) ~ °

if and only if θ0 = - 3/2. D

Here we prepare a simple lemma for Proposition 3.10.

LEMMA 3.4. Let y = z + θ^/x (θ^ Φ 0) be a rational solution of the type IV+

ofPm(θ0, ΘJ, where z = ± 1 + (1/2) Σf=1 SjΛx =F b,). IfθooΦ± 1/2, then we

have z(0) = 0.

/. The solution y(x) is developed at x = 0 as z/ = θ^/x + z(0) + O(x).

We substitute this expansion into the equation (3.1). Comparing the coefficients of

x~2, we obtain (AθJ - ΐ)z(β) = 0. Therefore, if 0TO Φ ± 1/2, then z(0) = 0

must hold. D
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From Propositions 3.5,* **, 3.9 and Lemma 3.4, we can derive the following

final result about the existence of rational solutions of the type III+ and the type

PROPOSITION 3.10 (Existence and uniqueness of the type IΠ+ and the type

IV+ (2)). We set

E+ = {((L-2K- l)/2, (L + 2K+ l)/2) | K and L are integers

such that K > 2, L = - 2, - 4, , - 2K)

E_ = {((£, - 2K - l)/2, (L + 2K+ l)/2) | K and L are integers

such thatK< - 2, Z, = 0, 2, , 2 ( - K- 1)}

E = E+ U E_ U { ( - 5/2, 1/2), (1/2, - 1/2)}

Σ * = {(θ0, ΘJ ^ C I there exists a nonzero integer I

such that 0*, - θ0 - 1 = 2/}.

(1) // r(θ0, ΘJ contains a rational solution of the type IΠ+, then it must be that (ΘQ,

θ^) ^ Σjj. — E. Conversely, if (θ0, θ^) ^ Σ ^ — E, then r(θ0, ΘJ) = {two rational

solutions of the type III+}.

(2) If r(θ0, ΘJ) contains a rational solution of the type IV+, then it must be that (θ0,

ΘJ e E+ U £_. Conversely, if (θ0, ΘJ e E+ U £ . , ί/iβn r(θ0, ΘJ = ί ί w rαίtonα/

solutions of the type IV+}.

We prove (1) and (2) simultaneously. Refer to the figure 1 in the Re-

mark 1.1 after Theorem 2. By Propositon 3.5 and Corollary 3.2, we first note that

if r(θ0, ΘJ contains rational solutions of the type IΠ+ or the type IV+, then (ΘQ,

ΘJ e Σ*.

Step 1. For any integer /, we define a set

Π7 = {(0O, 0 J €= C 2 | 0« - 0o - 1 = 2 /} .

By their definitions, Σ * U Π 0 = Σ + U Σ _ , E+ U { ( - 5/2, 1/2)} c Σ + , E_

U {(1/2, - 1/2)} c Σ _ hold. Let PKtL denote a point ((L — 2ΛΓ — l )/2 , (L +

2K + l)/2) in C , where if and Z, are integers. As we mentioned in the Remark

3.2 after Corollary 3.1, PKL is an intersection of a plane Π^ and a plane θ^ + #0

= L. When (50, ΘJ = PKtU we express r(0o, 0 J by

2. By Proposition 3.5, Proposition 3.9 (2) I+ and Proposition 3.6 (1), it

turns out that when (0O, ΘJ e Π_! - {P_i,_2, -P-i,oh (̂̂ o» ΘJ = (two rational
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solutions of the type III+, which satisfy 2/(0) Φ 0}, and that r(P_h_2) = {two

rational solutions of the type III+, which satisfy 2/(0) = 0}, r(P_10) = {two

rational solutions of the type II+}.

Step 3. From now, we prove the following facts (Fl), (F2), (F3) by induction.

Here we assume — K = k > 2.

(Fl) r(θ0, ΘJ = {two rational solutions of the type III+, which satisfy 2/(0) Φ

0} for any (0O, ΘJ €= Π_, - {P_k>L \ L = - 2k, - 2(/c - 1), , 2(k - 1)}

(F2) r(P_kL) = {two rational solutions of the type III+, which satisfy 2/(0) =

0} forL = - 2 A , ~2(k- 1), , - 2.

(F3) r(P_kL) = {two rational solutions of the type IV+} for L = 0,2, ,2(ft — 1).

By proposition 3.9 (1), we note that M(r(θ0, ΘJ) = r(θOf ΘJ, where ΘM — θ0 —

1 = (ft. - θ0 - 1) - 2, and that M(r(P_k>L)) = K P _ α + l u ) .

(i) Let A = 2. From the results in step 2 and Proposition 3.9 (2) II + , III+ (ii),

we see that if L = 0 or 2, then r(P_2L) = {two rational solutions of the type

IV+}. By Proposition 3.7 (2), we see that if L = — 4 or - 2, then r(P_2J) = {two

rational solutions of the type ΠI+, which satisfy y(0) = 0}. Hence, Proposition 3.9

(2) IΠ+ (i) tells us that for any (0O, 0 J e Π_2 - {P_2>L | Z = - 4, - 2, 0, 2},

K#o> #oo) = {two rational solutions of the type IΠ+, which satisfy 2/(0) Φ 0}

holds.

(ii) We suppose that k > 2 and that (Fl), (F2), (F3) hold for k. By Proposi-

tion 3.9 (2) ΠI+ (ii), IV+ (ii) and Lemma 3.4, we see that if L = 0,2, , 2k, then

r(P_(Λ+1)ιL) — {two rational solutions of the type IV+}. By Proposition 3.7 (2), we

see that if L = — 2(/c + 1), — 2/c, , — 2, then r(P_ ( f c + 1 ) t I) = {two rational

solutions of the type III+, which satisfy y(0) = 0}. Therefore, by Proposition 3.9

(2) ΠI+ (i), we find that if (θ0, ΘJ e Π_ α + 1 ) - {P_α + 1 ),J L = ~ 2{k + 1),

— 2ky - - , 2/c}, r(^o» ôo) = {two rational solutions of the type ΠI+, which satisfy

2/(0) Φ 0} holds.

(iii) From (i) and (ii), we obtain the desired results (Fl), (F2), (F3) for any

Step 4. We have proved (1) and (2) of the present proposition in the case that

(θ0, ΘJ €= Σ_. By Proposition 3.8, we can also obtain the same result in the case

that (θ0, ΘJ ^ Σ+. Hence we have finished the proof. Π

3.3. Rational solutions of Pm(θ0, ΘJ and proof of Theorem 2

Using the results in previous subsections, we give a proof of Theorem 2. We
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prove the following proposition first, and then prove Theorem 2.

PROPOSITION 3.11. (1) Pm(θ0, ΘJ does not have algebraic solutions.

(2) Pm(θ0, ΘJ has rational solutions if and only if there exists an integer I such

that 6L - θ0 - 1 = 2/ or θ» + θ0 + 1 = 21, where (0O, ΘJ e C2.

(3) If Pm(θ0, ΘJ has rational solutions, then the number of rational solutions is

two or four. Pm(θO1 ΘJ has four rational solutions if and only if there exist two inte-

gers I and J such that θ^ - θ0 - 1 = 2/ and θ^ + θ0 + 1 = 2/.

(4) Rational solutions are classified as in the table IV. Here the sets D±> Δ± and

the numbers a± are the same ones as in Theorem 2, and double signs correspond with

each other. In the types IΠ±, IV±, the values ofN, εjy bj (j = 1, * , N) depend on

the values of θ0, θ^ and a±.

Type

π ±

ΠI±

iv±

Conditions of (θ0, ΘJ

^ T O , T 1 = (θ0, ΘJ e C2

(θ0, ΘJ e D±

θm + θ0 + 1 = 21, (θ0, ΘJ e C 2

/ e z - (0), (θ0, ΘJ ί ΰ ± U Δ±

(θ0, ΘJ e Δ±

Forms of rational solutions

y = a±, y= -a±

y-a± + θa/x, y=-a± + θm/x

V a± 1 9 Σ x - h

V- «± + 2 £ x + b,

IN, ε}, bp /satisfy \

the same conditions I •••(**)

\as in Theorem 2, I Π ± ( * ) /

v a*' x ' 2%x-b,

y~ a* ' x ' 2ί?1x+fty

under the same conditions as in (* *)

Table IV. Rational solutions of Pm(θ0, ΘJ.

Proof. (1) If y(x) is a /c-sheeted (k > 1) algebraic solution of Pm(θQ, ΘJ,

then q(t) = \[t yWt) is an algebraic solution of PUy(θOy ΘJ. Since q(χ2)/x =

yx y(yx )/x = y(x) is a rational solution by Proposition 3.2, it turns out that

k = 1. Therefore, Pm(θOf ΘJ does not have a many-valued algebraic solution.

(2) (3) (4) From Propositions 3.5, 3.6 and 3.10, we obtain the results for rational
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solutions of the type / + (J+ = I+, , IV+). Next, from these results and Proposi-

tion 3.4, we obtain the results for rational solutions of the type /_ (/_ = I_, ,

IV_). By Proposition 3.3, we thus exhausted all rational solutions of Pm(θ0, ΘJ).

D

Remark 3.3. Gromak's result [5, Theorem 9] corresponds to (2) in this prop-

osition.

Proof of Theorem 2. From Propositions 3.2 and Proposition 3.11, we obtain

the desired results. Here, by the following calculation, we can check that two

rational solutions of the type J± (J = I, * * *, IV) give the same algebraic solution

of Pm'(θ0, θoo). For example, we assume /+ = IV+, and take

= 1 + QJx + (1 /2) Σj=1 SjΛx - b)

y2(x) = - 1 + djx + (1/2) Σjli ε,/Gr + 6,).

Since

ίi(ί) = ftyλ(ft) = ft{\ + £»//? + (1/2) Σjlx ε; /(v7 - &,)}

ί2(β = ̂ 2 ( / ? ) = yft{- 1 + 0«/\/i + (1/2) Σf=1 ε; /(/7 + ̂ )},

if we analytically continue qx{f) around t — 0,

ί!(β = ( - ft){I + ^ / ( - ft) + (1/2) Σf= 1ε ;V(- v7 - b,)} = q2(f). D

4. Proof of Theorem 3

In this section, we suppose that parameters θ0 and θ^ of Puy(θ0, #«,) always

satisfy the condition θ^ -\- θ0 = 21 or θ^ — θ0 = 2/, where / and / are any inte-

gers. To clarify the condition which parameters θ0 and θ^ fulfill, we will often use

notations P^θ^ +ΘO = 2Ϊ), P π r (6L ~ΘO = 2J) (or Pnv(θM + 0O + 1 = 2 / + 1),

-PIH'(0OO ~~ ô ~ 1 = 2/— 1)). Let us consider the following four Riccati equations:

R1:dq/dt= (l/t)(- q2 - θoq + t)

R_,: dq/dt = (1 /t) (q2 -θ.q-t)

R1:dq/dt= (l/f)(- ζf2 4- θ^q- t)

R_λ: dq/dt = (l/t)(q2 - θoq + t).

R1 coincides with the equation (1.9) and is contained in P^iβ^ + θ0 + 1 = 1).

R_v Rx and R_x are contained in Pnyiθ^ + 0O + 1 = — 1), Pnyiθ^ — θ0 — 1 = 1)
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and Pnyiθ^ — θ0 — 1 = — 1) respectively. We express the Riccati equation Rx

contained in J V ^ + 0O + 1 = 1) by R ^ + θ0 + 1 = 1). Similarly we use

notations R^iθ^ + θ0 + 1 = - 1), R ^ - θ0 - 1 = 1) and R^iθ^ - θ0

— 1 = — 1). If we apply the transformation h to solutions of Rv then we get

solutions of R_v Conversely, if we apply h to solutions of R_h then we get solu-

tions of Rv We express this relation by the symbol

(4.1) R1^
L+R_1.

In the same meanings, we have the following relations:

PROPOSITION 4.1. Transformation I (resp. m ) is applicable to a solution

q(t) of Puv(θ0, θco) if and only if q(t) is not a solution of Rψ (resp. R±ι). Here double

signs correspond with each other, and R+1, R+1 denote Rlf Rλ respectively.

Proof. We prove only the case of /. Let q(f) be a solution of Puv(θOf ΘJ)-. We

can not apply / to q(f) if and only if q(f) satisfies the equation

(4.3) dq/dt= (l/t)(q2 - Aq-t),

where A = - (θ0 + 2) or A = #«,.

Suppose qif) satisfies (4.3). Differentiating (4.3) by t, we obtain

d2q = 2q - (3A + \)q2 + ( - 2t + A2 + A)q + At

dt t

Substituting (4.3) and (4.4) into

we obtain

(4.5) ( ^ - A)q2 - (θ0 + 2 + A)t = 0.

Whichever A may be, (4.5) induces θ^ + θ0 = — 2, and (4.3) coincides with

fl-i(0oo + 0O + 1 = - 1). Conversely, if ?(ί) is a solution of i ? . ^ + θ0 + 1 =

- 1), then ί(ί) satisfies (4.3). D
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We put

Π±1 - {(0O, 0J e C21 0. + 0O + 1 = ± 1}

Π ± 1 = {(θ09 ΘJ ^ C 2 \ Θ M - θ o - l = ± 1 ) .

Apparently, we have

π, n nι = { (- l, i)} πx n π ^ = {(o, o)},

π_! 0 11!= { ( - 2, o)}, π.x n π.! = { ( - l, - i)}.

In connection with these facts, we have the following proposition.

PROPOSITION 4.2. P\\γ(~ 1> D contains two Riccati equations Rlf Rx and these

equations do not have common solutions. Similar results hold for PuyiO, 0) and (Rlf

R-x), Puv(- 2, 0) and (R_v RJ, Pm,(- 1, - 1) and (R_v RJ respectively.

We omit the proof. By simple calculations, we obtain the following result

PROPOSITION 4.3. (1) // q(t) is a solution of 5 ± 1 ( e M + 0O + 1 = ± 1), then

m(q(t)) (resp. m~ι(q(t))) is a solution of i?±1((6L - 1) + (0O + 1) + 1 = ± 1)

(resp. R±1«θ.. + 1) + (0O - 1) + 1 = ± D ) .

(2) Ifq(t) is a solution of R±ι{θM - 0O - 1 = ± 1), then l(q(i)) (resp. Γ\q(t)))

is a solution of R ± 1((0o β + 1) - (0O + 1) - 1 = ± 1) (resp. R ± 1((0β β - 1) -

( 0 O - 1 ) - 1 = ± 1 ) ) .

Using the above results, we can prove Theorem 3.

Proof of Theorem 3. Let / be any integer, t be the independent variable of

Puv(θoo + 0O = 2/). Let φσ(f) (resp. φσ(t)) (σ e C) be a general solution of

#i(0oo+ 0O = O) (resp. ^ ( 0 ^ + 0O = - 2)). By Proposition 4.1, f (φσ(t))

(σ G C) is a one-parameter family of solutions of Puv(θ00 + 0O

 = 27), where 7 ^ 0 ,

0 o = 0O + 7, 0 « = 0^ + 7. When 7 = 1 , Z(0σ(ί)) and W/Λ) {/(0ff(ί))} are

rational functions of 0O, t and 0 σ (β with integer coefficients. By induction, we find

that / (φσ(t)) is a rational function of 0O, t and φσ(t) with integer coefficients. By

similar arguments, we see that Puv(θoo + 0O = — 2(7 + 1)) has a one-parameter

family of solutions (/" ) (φσ(t)), which is a rational function of θ 0, t and

φσ(i) with integer coefficients, where 7 > 0, 0O = 0O — 7, 0^ — 7. Here let us re-

call the correspondence of 7?x and 7?_: by the transformation h (See (4.1)). By this

correspondence, we see that P π r ( 9 0 + 0^ = 27) has a one-parameter family of

solutions of the form
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(4.6) q{t) = 27(0O> t, φσ(t))>

where S 7 is a rational function of three variables with integer coefficients. The

form of S 7 depends on the value of /. From (4.2) and the same arguments as in the

above, we find that P^yiβ^ — θ0 = — 2/) has a one-parameter family of solution

of the form

(4.7) qiO^&^iθvt^φvi-tJ),

where / is any integer, t1 = — t is the independent variable of P π r ( ί M — θ0 =

— 2/), Q_j has the same property as 2 7 in (4.6).

Next, we suppose that (θ0, θ^ satisfy the conditions #«, + θ0 = 2/ and #«, —

θ0 = — 2/, where /, / are nonnegative integers. We use a variable t as the inde-

pendent variable of Pui'(θ0, ΘJ). Then, PUy(θOf ΘJ) has a one-parameter family of

solutions q(t) of the form (4.6) and a one-parameter family of solutions qif) of the

form (4.7). Noting Proposition 4.3 and the fact that transformations / and m do

not change the independent variable of Puv(θ0, ΘJ, and that Im — ml, we see that

q(t) = ΐ(φσ(t θ^ + θ0 = 0)) = ΐ(mJ{φσ(t 0 + 0 = 0)))

q(f) = mJ(φσ(t θw - θ0 = 0)) = m\l\φσ{t 0 - 0 = 0))),

where φσ(t ;θoo+ θo = 0), φσ(t #«, — θ0 = 0) are general solutions of the Ricca-

ti equations R ^ + 0O = 0), Λ ^ ί ^ - 0O = 0) respectively (Refer to Figure 2).

By Proposition 4.2, i?2(0 + 0 = 0), R _j(0 - 0 = 0) do not have common solu-

tions. Therefore one-parameter families q(t) and q(t) can not have common solu-

tions. When / and / satisfy other conditions, for example, I < — 1, / > 0, we can

prove in the same way. O
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Θm-Θo=-2J

θ+θ=-2 θ +θ=0

Figure 2. The relation ml = I m holds.
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