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ON TWISTING OPERATORS AND NEWFORMS OF
HALF-INTEGRAL WEIGHT 11

COMPLETE THEORY OF NEWFORMS FOR
KOHNEN SPACE

MASARU UEDA!

Abstract. The author continues his previous work with the purpose of estab-
lishing a theory of newforms in the case of half-integral weight. In this paper,
the author formulates and proves a complete theory of newforms for Kohnen
space. Kohnen space is an important canonical subspace in the space of cusp
forms of half-integral weight k + 1/2 (k > 0). Every Hecke common eigenform
in Kohnen space corresponds to a primitive form of integral weight 2k and of
odd level via Shimura Correspondence.

These newforms for Kohnen space satisfy the Strong multiplicity One the-
orem. Moreover, we explicitly determine the corresponding primitive form (of
weight 2k) to each newform for Kohnen space. The space of oldforms is also
explicitly described.

In order to find all newforms for Kohnen space, the author needs a certain
non-vanishing property of Fourier coefficients of cusp forms. Such property
proves by using representation theory of finite linear groups. The method of
proof of newform theory is mainly based on trace formulae and trace relations.

Introduction

The theory of newforms is very important and useful for arithmetical
study of modular forms of integral weight. This theory has the following
nice properties:

(i) The space of newforms have an orthogonal C-basis consisting of
common eigenforms for all Hecke operators and such common eigenforms
are uniquely determined up to multiplication of complex numbers. More-

over such common eigenforms satisfy the Strong Multiplicity One Theorem
(cf. [M, §4.6]).
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118 M. UEDA

(i) The full space of cusp forms, S(2k, N), can be reconstructed by the
space of newforms, i.e., we have the following decomposition:

- @ @ stann|[(1),

0<B|N 0<A|(N/B)
where S%(2k, B) is the space of newforms (see below §0 and [M, §4.6]).

(iii) The above operator f — f l [(;‘ ?)]% (almost) preserves the

Fourier coefficients of the cusp form. Hence for studying the Fourier coef-
ficients of cusp forms, it is sufficient to study cusp forms only in the space
of newforms.

(iv) The theory of newforms has tight relations to both Representation
theory and Geometry.

Until now, several authors have attempted to find a similar theory of
newforms of half-integral weight which satisfy similar properties like the
above (i)—(iv) (cf. [She], [N], [K], [M-R-V], [U1], [She-W]).

In the paper [K], W. Kohnen defined (what is called) Kohnen space
which can be considered as the canonical subspace corresponding to cusp
forms of integral weight and of odd level via Shimura correspondence. And
when the level is a 4 X (odd squarefree integer), he also established a theory
of newforms for this Kohnen space.

In the previous paper [Ul], the author generalized Kohnen’s work and
obtained a similar theory of newforms for Kohnen space of arbitrary level
(= 4 x (odd integer), cf. [U1, §3]). But those results are half-way for a
technical reason (cf. [U1, §4]).

The aim of this paper is to complete the results in the previous paper
and to formulate and state a complete theory of newforms of Kohnen space.

Let us precisely state a formulation of the theory of newforms for
Kohnen space.

Let k, N € Z and N divisible by 4. Let x be an even character modulo
N with x2 = 1. We denote the p-adic additive valuation for any integer m
by ord,(m). We decompose N as follows:

N = 2ord2(N)M1M2+, M = H b, M2+ = H pordp(N).
pIN,p#2 p|N,p#2
ordp(N)=1 ordp(N)>2

Denote the set of all prime divisors of My by II.
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Kohnen spaces S(k+1/2, N, x) can be defined only in the case of
ords(N) = 2 (See below §0 (d) for the definition). Put M = M;Ms.,.

We shall consider such a case. For simplifying the explanation, we deal
with only the case of k£ > 2. In the case of k = 1, we must slightly modify
subspaces (cf. §0).

Define the space of oldform O(k + 1/2, N, x)k as follows.

Ok +1/2,N,x)k §: §: S(k+1/2,4B,&) g | 6a
0<B|M 0<A|(M/B)
BAM - g(4)=x

+ ) Yo N Stk+1/2,4B,&) | UA) [[ RO

0<B|M o0<A|(M/B)2 0<e;<2 lell
B#M E(A)=x (le)

Here, & runs over all characters modulo 4B such that & (é) = x. The
operator 4, the shift operator U(A), and the twisting operator R; (I € II)
are defined as follows: For f =} -, a(n)e(nz),

f ] SA(Z) .= Ak/2+1/4f(Az Ak/2+1/4 Z Anz

n>1

FIUA)(2) =} a(An) e(nz),

n>1

flRi(z):= Za(n) (—?)e(nz).

n>1

The space O(k+1/2, N, x)k is a subspace of S(k + 1/2, N, x) . We denote
by M(k + 1/2, N, x)x the orthogonal complement of O(k + 1/2, N, x)k in
S(k+1/2,N,x)Kk

The space M(k +1/2, N, x)k is stable by the twisting operators R, for
all p € II. Hence we can decompose this space into common eigen subspaces
as follows:

N(k+1/2,N, x)k = BpeenynN(k+1/2, N, x)k
NO&(k +1/2, N, x)K = {f € N(k+1/2, N, x)Kk;
f IRy, =ck(p)f for all p € IT}.

Here {+1} := Map(IT,{£1}).
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We call these spaces M%< (k + 1/2,N,x)x (v € {£1}7) the spaces
of newforms, because these subspaces have the following nice properties
(cf. below §3 and especially Theorem 4).

(1) Mk + 1/2, N, x)k has an orthogonal C-basis consisting of com-
mon eigenforms for all Hecke operators Tk+1 /2, N,X(P2) (p: prime, p § M)
and U(p?) (p: prime, p | M), which are uniquely determined up to multipli-
cation with non-zero complex numbers. Let f be such a common eigenform
and ), the eigenvalue of f with respect to Ty, /2, Nyx®®) (p f M) resp.
U(p?) (p| M). Then there exists a primitive form F' € SY(2k, M) of weight
2k and of conductor M which is uniquely determined and satisfies the fol-
lowing: For a prime p,

F | Tom(p) =2pF if (p, M)=1 and F|U(p)=NF ifp| M.

Furthermore we can find, by using the trace relation of Theorem 2 (1),
which primitive form occurs via the above correspondence.

(2) (The Strong Multiplicity One Theorem)

Let f, g be two non-zero elements of MP*(k +1/2, N, x)k. If f and g
are common eigenforms of Tk+1 /2, N,X(pQ) with the same eigenvalue for all
prime numbers p prime to some integer A, then Cf = Cg.

Therefore N%*(k + 1/2, N, x)x — S°(2k, M) as modules on the full
Hecke algebra.

(3) The space of oldforms O(k 4+ 1/2, N, x)k has also an orthogonal
C-basis consisting of common eigenforms for all operators T, k4172, N,X(pz)
(p: prime, p f/ N). The system of eigenvalues of such a common eigenform
corresponds to a primitive form of weight 2k whose conductor is a divisor
of M and is less than M (cf. Theorem 3).

(4) The space of oldform O(k+ 1/2, N, x)k is generated by the spaces
of cusp forms of lower level. Hence, by induction, we see that the spaces
S(k+1/2,N, x) are reconstructed by the spaces of the types of M- (k +
1/2,4B,€)k and the operators of the types of 64, U(A), and R).

From the above definition these operators &4, U(A), and R; (almost)
preserve Fourier coefficients of cusp forms. Hence for studying Fourier co-
efficients of cusp forms € S(k +1/2, N, x), it is sufficient to study cusp
forms only in the spaces of newforms M (k +1/2, N, x) k.

Finally the author has some comments.
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There exists a case such that 9t%%(k+1/2, N, x) g=N®* (k+1/2, N, x)
as modules on Hecke algebra for two distinct «, &’ € {#1}7. See the formula
(3.4) for such an example.

It seems likely that there exists a similar theory for any full spaces of
cusp forms S(k+ 1/2, N, x) even if orda(N) > 3.

In the case of ordy(N) < 3, the author thinks that necessary prepa-
rations have already done in the author’s previous papers [U3-5]. But
situations are quite different in the case of ordy(N) > 4 (cf. [U5]).

It seems that its reason is the existence of the twisting operators for
characters (_—1) and (2) These twisting operators can be defined only if
ordz(N) > 4 and ordy(N) > 6, respectively. See the forthcoming papers
(U6].

This paper is composed as follows: §0 is general preliminaries. §1 is
preparation from representation theory of finite groups. We apply results of
81 to calculations of §2. In §2, we will complete an attempt in the previous
paper [U1, §4]. §3 is the main part of this paper. We will formulate and state
a complete theory of newforms for Kohnen space in §3. In the Appendix,
we will prove several general formulae which are used in calculations of §2.

The author wrote this paper while he was staying at Max-Planck-
Institut. The author would like to express his hearty thanks to Max-Planck-
Institut and its staff for their warm hospitality.

§0. Notational Preliminary
Throughout this paper, we use the following notations.

(a) General notations.

Let A, B be subsets of a set X and {A;}icsr a family of subsets of X.
If AU B is a disjoint union, then we denote A+ B := AU B for simplicity.
Similarly, if | J;c; A; is a disjoint union, then we denote ), ; A; := J;c; Ai-

We denote the set of positive integers by Z. We denote the additive
valuation for any integer m by ordp(m).

See [M, p.82] for the definition of the Kronecker symbol (%) (a, b inte-
gers with (a, b) # (0,0)).

Let N be a positive integer and m an integer # 0. We write m | N if
every prime factor of m divides N.

Let k denote a non-negative integer. If z € C and z € C, we put

2% = exp(z - log(z)) with log(z) = log(|z]) + v/—1arg(z), arg(z) being
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determined by —m < arg(z) < . Also we put e(z) = exp(27v/—1z).

Let 9 be the complex upper half plane. For a complex-valued function
f(z)on 9, a= (a Z) € GLI(R), v = ( ) € Ip(4) and z € 9, we define
functions J(«, 2), j(v, 2) and f | [@]x(z) on $ by: J(a,z) = cz+d, j(v,2) =
()72 (2) (ws +2)/2 and [ [ele(z) = (det )2 (o, 2) *f(az),

T

u v

w T

For m € Z we define a shift operator U(m) on formal power series in
e(z) by
Z a(n)e(nz) | U(m) := Z a(mn)e(nz).

n>0 n>0

Let x be a Dirichlet character modulo N. We denote the conductor of
x by f(x) and the p-primary component of x by x, for each prime divisor
pof N.

Let V, V'’ be finite-dimensional vector spaces over C. We denote the
trace of a linear operator T' on V by tr(T; V) and also the kernel of a linear
map F from V to V' by Ker(F;V).

We denote the set of all mapping from a set A to a set B by Map(A, B).
Furthermore we use the abbreviated notation B4 (= Map(A4, B)).

Let A be a set of prime numbers and (ap)peca @ system of integers. We
put the following notation: A(a); :={p € A|ap =i} and A(a);4 :=={p €
A|ap > i} for any i € Z.

(b) Modular forms of integral weight.

Let k and N be positive integers. By S(2k, N), we denote the space of
all holomorphic cusp forms of weight 2k with the trivial character on the
group I' = IH(N). We also denote the subspace of S(2k, N) spanned by all
newforms in S(2k, N) by S°(2k, N).

Let @ € GLi(R). If I' and o 'I'a are commensurable, we define a
linear operator [['al'l,, on S(2k,N) by: f | [[all,, = (deta) 13" f |

[ci)2k, Where «; runs over a system of representatives for I\ I'al’. For a

0
positive integer n with (n,N) = 1, we put Tor y(n) = >, [F(a )F] )
: w2l Noa/” Jak
where the sum is extended over all pairs of integers (a, d) such that a, d > 0,

ald,ad=n.
Let @ be a positive divisor of N such that (Q,N/Q) = 1. Take any
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element g € SLy(Z) which satisfies the conditions:

(0,) (moda),

_ 10
“ (; ?) (mod N/Q).
Q0

Put W(Q) = 7o(?

normalizer of I'; [W(Q)],, induces a C-linear automorphism of order 2 on
S(2k, N) and this operator is independent of a choice of an element ~g.

). The following facts are well-known: W(Q) is a

For Q = 1, we can take v; = W(1) = (; 2) Hence we have [W(1)],, =

1. Moreover for the sake of simplicity, we use the following abbreviated
notation: Let A be a subset of the set of all prime divisors of N. Then
Wy =W (HpeApOrdP(N)). In particular, we simply write W; = Wy, if
A ={l}.

Moreover, if the subscripts are obvious and any confusion does not
occur, we simply write T'(n) = Tog y(n) and W(Q) = [W(Q)]g, etc..

For any f(z) = > o2, a(n)e(nz) € S(2k,N) and x a primitive charac-
ter modulo § = f(x), put f | Ry(2) := Y oo, x(n) a(n)e(nz). From [Sh 3,
Prop. 3.64] we have f | R, € S(2k,N’,x?), where N’ is the least common
multiple of N and f(x)2. We call this operator R, the twisting operator of
X
(¢) Modular forms of half-integral weight.

Let k denote a non-negative integer, N a positive integer divisible by
4, and y an even character modulo N such that x2 = 1. Put u = ordy(N),
M = 27HN and Iy = I[H(N). Then there is a square-free odd positive
divisor My of M such that x = (—A@) or (%) (the Kronecker symbol).

Let &(k + 1/2) be the group consisting of all pairs (a,¢), where a =
(Z Z) € GLF(R) and ¢ is a holomorphic function on $ satisfying ¢(z) =
t(det @) ~*/2=1/4J(q, 2)k*t1/2 with t € C and [t| = 1. The group law is
defined by: (o, ¢(2)) - (B,%(2)) = (aB,p(Bz)¥(z)). For a complex-valued
function f on §) and («, ) € &(k +1/2), we define a function f | (a, ) on
9 by: £ (a,p)(z) = p(2)"Lf(az). Moreover if there will be no confusion,
we also write v* = (v, (7, 2)?*!) for all v € Ip(4).
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By Ao = Ao(N, x) = Ao(N, X)k41/2, we denote the subgroup of &(k
1/2) consisting of all pairs (v, ), where (a Z) = € Iy and ¢(z) =

x(d)j (v, 2)?**1 and also denote A; = A(N) := {y* | v € I}(N)}.

We denote by G(k+1/2,N,x) (resp. S(k+1/2,N,x)) the space of
integral (resp. cusp) forms of weight k£ + 1/2 with the character x on the
group Ip, namely, the space of all the complex-valued holomorphic functions
f on $ which satisfy f | £ = f for all £ € Ay and which are holomorphic
(resp. are holomorphic and vanish) at all cusps of I'y. Moreover we also
denote by S(k + 1/2,A1(N)) the space of cusp forms of weight k + 1/2
on the group I1(NN) i.e., the space of all the complex-valued holomorphic
functions f on $) which satisfy f | £ = f for all £ € A; and which are
holomorphic and vanish at all cusps of I'1(N) ([cf. Sh 1}).

In the case k = 1, i.e., the case of weight 3/2, S(3/2, N, x) contains
theta series of special type. We know that these theta series correspond to
Eisenstein series via Shimura correspondence.

From this reason we define the orthogonal complement V(N;x) of the
space of such theta series in S(3/2, N, x). In the case of weight 3/2, we deal
only with this complement V(N;x). See [U1, §0, §1] for the details.

Let £ € &(k + 1/2). If Ag and €71 Ay are commensurable, we define
a linear operator [Ao€Aqly;,/p on G(k +1/2,N,x) and S(k +1/2,N,x)
by: f | [A0§A01k+1/2 = >, f | m, where n runs over a system of rep-
resentatives for Ag \ AgfAg. Similarly, if A; and €7'A € are commen-
surable, we define a linear operator [A;£Aq] on S(k + 1/2,A1(N)) by:

flA€A] = ZneAl\AlgAl fln.
Then for a positive integer n with (n, N) = 1, we put

Tk+1/2,N,x(n2) = nk-3/2 Z G[A0<(a2 0), (d/a)kH/Z)Ao]

0 d? k+1/2°

ad=n
where the sum is extended over all pairs of integers (a,d) such that a,
d>0,a|dand ad = n. We simply write T(n?) := Tk+1/2,N,x(n2) if the
subscripts are obvious and any confusion does not occur. These operators
T(n?) ((n, N) = 1) are hermitian and commutative with each other on
S(k+1/2,N,x) (cf. [Sh 2, lemma 5], [Sh 3, Prop. (3.32)], [U1, (1.9)]).

For any m € Z,, put b 1= ((’: ?),m—k/2—1/4>‘
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Let @ be an odd positive divisor of N such that (Q, N/Q) = 1. Take
any element yg € SLy(Z) satisfying the conditions:

0 (medaq),

10

(1 °> (mod N/Q).

01

YQ =

Then g € To(N/Q) C Ih(4). Put W(Q) := 1¢*8g € &(k +1/2). See [U1,
§1] for the details of properties of these 6, and W(Q).

Let f(z) =Y o2 ,a(n)e(nz) € G(k +1/2,N, x) and % a primitive char-
acter modulo (). Let N’ be the least common multiple of N, f(3)?, and
f(¥) f(x). Then f | Ry(z) := > o2 9¥(n)a(n)e(nz) belongs to the space
G(k +1/2, N’,xz/zz). In particular, if f is a cusp form, so is f | Ry [Sh 1,
Lemma 3.6]. We call this operator Ry, the twisting operator of .

(d) Kohnen space.

We keep to the notations in the subsection (c).

Let k& be a positive integer. Suppose that N = 4M and M is an odd
natural number. We define the Kohnen space S(k + 1/2, N, x) ; as follows:

1 | S(k+3,N,x) 3 f(2) = 0% an) e(nz);
S<k - E’N’ X)K B { a(n) = 0 for xo(—=1)(=1)*n=2,3 (mod 4) } ’

where o is the 2-primary component of x.
In the case of weight 3/2, we define V(N;x), = V(N;x) N S(3/2, N,
X) k- See [Ul, §0, §1] for the details.

81. Representations of SL, over finite fields and non-vanishing of
Fourier coefficients

We begin with a summary of representations of G := SLy(F,) (p is an
odd prime number).
Define subgroups of G by:

B {0 1) Jecrpver) v {()pem)

and put
¥ : Fp 3 umod pr— e(u/p) := exp(2mv/—1u/p) € C*.

1/)(1((1 u)) =1(au) (a,u € Fy).

01
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The set of all irreducible representations of U is given by {¢, | a € Fp}.
For any Dirichlet character x modulo p, we define the representations x of

B of degree one by: x : B> (g :) — x(a) € C*.

The following facts are well-known.

PROPOSITION 1. ([S, Chapter 7, pp. 54-60]) (1) If x2 # 1, Ind§ X i
an irreducible representation.

(2) If x = 1 (the trivial representation), Ind§ 1 = 1 @ €, where €,
is an irreducible representation of G of degree p which is called Steinberg
representation and Resy €y = qcF,Va-

(3) If x = (;) (Legendre symbol), Indgé =Cpi1)2 @ C’(p+1)/2, where
€(pt1)/2 and Q:'(p +1)/2 denote irreducible representations of G of degree (p+
1)/2, which are not equivalent to each other and satisfy the following:

Resu (C(pt1)/2) = o @ ( @ %)

acFx?

Resy (eg,,ﬂw)%woes( D ¢a).

a€F )} —Fx?

We call €11/ (resp. Qizp +1) /2) the residual (resp. non-residual) represen-
tation. [

ASSUMPTION. From now on and until the end of the paper, we assume
the following:

(1.1) x? =1.
We will determine the explicit C-basis of the irreducible components

L €, Cprnypz, and €y o in Indf x (x =1, ;)

We can identify the induced representation Ind§ X with the left C[G]-
module C[G] ®C[B] Xx- Hence, it is sufficient to find the explicit C-basis of
irreducible components of this left C[G]-module.

Let e := (1 0) be the unit element of G and we choose a basis of

b

the representation space of x by ¢, i.e., X((Z _1))5 = x(a)e. A system
= = a
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of all representatives for G/B is given by the p + 1 elements: e = ((1) Z)

and &, = (; j) ( 01 (1)) (a € Fp). Under these notation, a C-basis of
Ind§ x = C[G] Qi) X is given by the p+ 1 elements: e® ¢ and {, ® €
(a € Fyp). -

Take any element u € Fp and b := a(e®e)+3_,cp, Ba(§a®¢) € Indgx

(a, By € C (z € Fp)). We have the identity (; 1;) ‘h = ale®e) +

Zzer Bz(€urz ® €). Hence any element h belonging to the representation
e (a € Fp) is expressed as follows:

{ h=a(e®s)+ﬂ(EzGFp§$®s) (@, €C) ifa=0,
(1.2)
h= B er, o(~az/p)(€: ®c)  (BEC) ifa#0.

We therefore see that for any non-zero a, C(Za:EFp e(—ax/p)(é: ® €))
is the t,-component in the C[U]-modules Resy €,, Resy €(,41)/2, and
Resy ¢/(p+1)/2.

We must determine an explicit basis of each ¥g-component in the above
three C[U]-modules.

Put for any a € Fyp, hq := ) cp, e(—az/p) (& ®¢) € Ind§ x and put

We will calculate the element Xhq = 3., cp e(—ay/p) &y ® ).

Since £,&o = (—01 :?) € B, the part of y = 0 in the above sum is
S ahoe=3 cox((] ))e=x-DpEse).
z€F) z€F, -

Next assume that y # 0. Then

6= (" ) =ann (U )0

Hence

> e(—ay/p) (&6, ®¢)

z€Fp
X
UGFP
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> conmeon((7 LG )

Il

z€Fp
yeF

=Y e(—ay/p)x(-y) | Y &oyr ®c
yEF; z€F,

= Y elay/p) xw) | ho-

yeF )
From these results,
([ ple®e)+ (p—1)ho, if x=1and a=0,
ple®e) — ho, if y=1and a # 0,
(13)  Xhe= ( ) (e®e), ifxz(;)) and a = 0,
| ( ) (e®¢e)+ ()gpho, ifx=(}—7) and a # 0,

T

where g, := erF; e(z/p) (;) is the gauss sum.

Suppose x = <5) and take a quadratic residue a € F;. Since h, €
Cpry2s Xha = (5) e ® &) + (8] 85h0 = ap(ap(e © 2) + ho) € Cpay
From the formula (1.2), C(gp(e®¢)+ho) = 9o and hence this element gives
a basis of the p-component of €, 1)/s.

We can find an explicit basis of the 1p-component of €,, QZ’(p +1)/2 in the
same way. The case of 1 is trivial. Thus we obtain the following.

PROPOSITION 2. Under the above notation, we have the following ex-
plicit expression of irreducible C[G]-modules in Indg X-

1 = C((e®€)+h0)
¢, =Cplexe) - @(@ Cha),

aEF><

Cpt1)/2 = Clgp(e ®e) + ho) @ ( &y Cha),

aeF’<2

(12 = Clople @) — @( ey Ch)

a€F) —FX?2
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Here, each direct summand of the right-hand sides is an irreducible C[U]-
module. Precisely speaking, each first direct summand is isomorphic to g
and the other direct summands Chg (a # 0) are isomorphic to 1, respec-
twely, as C[U]-module. {

From now, we study representations of finite groups which are con-
structed by modular forms of half-integral weight.

We use following notation until the end of this section.

Let k be a positive integer and N = 4 x M, M is a positive odd integer.

Put v, = ord,(N) = ord,(M) for any odd prime p. We decompose
M = MMy, M := leM’ypzlp and My := HPIMvvaZ pvP.

Let x be an even Dirichlet character with x? = 1 and for any prime p,
Xp the p-primary component of x. Moreover we denote the M, (resp. 2Ma. )-
component of x by x1 := HPIM1 Xp (resp. X := le2Mz+ Xp)-

For any positive integer o € Z, put

G(a) := SLy(Z/aZ),

B(a) := {(; :) € G(a)},

U(a) == {(; 1) € G(a)}.

Moreover if (o, ) = 1, we naturally identify as follows: G(af) = G(«a) x
G(f) and for simplicity, we shortly write Gy := G (M;), By := B (M),
and B := B (4My,).
For any positive integer a divisible by 4, put A (a) := {y* | v € I'(a) },
A1(a) = {v" |7 € T(a)}, and Ao (a) == {v* | 7 € To(a)} (cf. §0(c)).
Under these notation, we have that Ag(4May)> A(N) = A(4M1Moy)
and that

Ao (4Myy) /A(N) = I (4May) /T(N) = B x Gy.

From this we can define the representation w of the group B x G; on
S(k+1/2,A(N)) as follows:

(14)  [w(ymod (N)]f:=flv""  (feS(k+1/2,AN))),

where v mod (N) € Iy(4My,)/T'(N) ~ B x G;. We consider S(k +
1/2, A(N)) as a left C[B x G;]-module by the above representation 7.
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Let m; be the left C[B X Gi]-module generated by a non-zero cusp
form f e S(k+1/2,N,x), ie.,

mp = CB x Gi]f = (£ |75 v € To(4May)) ¢ -

Moreover we can define the following one-dimensional representations x,
X1, X and xp:

[1>22
0
W

—
[is
o)
[t
\
— A@ —
(S
N— N N
<
)
—~
)
N—
m
Q
X

&<
os)
—~
»dt
3
~—
w
/N

Then we have a canonical identification y = x ® x1 = X ® (®pl M &).
For any f € S(k+1/2,N,x) and any v = (a Z) € IH(N), (v mod

(N)Yf=f ’ (_dc _ab> = x(a)f. Hence we get the isomorphism X = Cf as

B(N)-modules. We denote the basis of the representation space of x by ¢.
Then we get the following proposition by easy computation. N

PROPOSITION 3. For any non-zero f € S(k+ 1/2,N,x), the following
map gives an surjective homomorphism of B x G1-modules:

=090, Indgzgll X 7Ty, (Z apn ® € — Za,gr(n)f),
n n
where a,, € C and n is taken over all representatives for (B x G1~)/(]~3 xB1).

We can, therefore, identify wy with a subrepresentation of Indgig; x- U

We have canonical identity:

B ~ ~ G
Indg:gll X= §® Indgl1 xi= §® <® IndB((g)) &>.
p| M —
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From Proposition 1, we know that each Indg((:f )) Xp is the direct sum of two

distinct irreducible submodules. We therefore have the following decompo-
sition

(o) - @ (10(Q0)

(Op)piny p|M

where 0, is taken over the set of irreducible C[G(p)]-modules {1 ), €p} or
{€(p+1)/25 (’:’(p+1)/2} accordingly to x, = 1g(p) or (5) (cf. Proposition 1). We
note that X ® (@),u, bp) are irreducible C[G]-modules and not equivalent
to each other.

Now we more closely study the representation 7y by using Proposi-
tion 2. We need some notational preliminaries.

For any prime divisor p of My, let &, be a basis of one-dimensional repre-
sentation space of xp. Put e, := ((1) (1)) € G(p) and &p(a) := ((1] Z) ( 01 (1)) €
G(p) for a € Fp and Xp(a) := 3, cp, e(—az/p)ép(z) € C[G(p)]. Moreover
let € be a basis of x.

For any prirne_divisor p of M and any = € F),, we choose an element
Yp(x) € SL2(Z) such that

() o

&(xz)  mod p,

(L7) SLo(Z) 3 1) =

and define an operator X, (p | M;) as follows:

(18)  f|Xp:= )Y w(wp(e)mod (N))f, feS(k+1/2,N,x).
z€F,

In [U1, §1], we defined several fundamental operators on S(k+1/2, N, x):
U(p), W(p), and Y. The above operator X, can be express by those.

PROPOSITION 4. Let p be any prime divisor of My and f any element
of S(k+1/2,N,x). Then the following hold.

(1) f | X, =p F/2+3/4f | W (p)U(p). Hence the map f — f | X, gives
an operator on S(k+1/2,N,x).

(2) £1YU(p) = f | U(p)Xp.
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b =

()t =)
Hence X, is a semi-simple operator on S(k+1/2,N,x).

Proof. (1) We keep to the notation in [Ul, §1]. We have from the
definition [U1, p. 151] W(p) = v,;6p, where v, € SLy(Z) is satisfied the
following condition:

(0 _1) (mod p),
(1 0) (mod N/p),

and 3, = ((’; ?)’p_k/2—1/4). From [U1, (1.19)],

*

FITO)UE) =20 3 11T (3 2), ) ()

0
a€F, P

= pHims 2 1 ((ﬁ 2)1> (o (f)*

*

v )

acF,
By using the notation y,(a) (cf. (1.7)), we can easily calculate for any
*

acFy flv ((1) (11) = 7(vyp(—a) mod (N))f. We therefore have

FIW@UE =72 3 f (0 )

acF,

= p27 Y w(p(—a) mod (N))f = p* 74 | X,
a€F,

From this and [U1, (1.22)], f — f | X, gives an operator on S(k+1/2, N, x).
(2) From the definition of Y}, (cf. [U1, p. 155]) and the above (1),
PRI, UP) = 1 UR) W) Up)

=L 1U®) | WE)Up) =p**7/*f | Up) X,.
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(3) The map f +— f | U(p) gives an isomorphism from S(k +1/2, N, x)
onto S(k+1/2,N,x (B)) (cf. (U1, (1.28)]). Hence it follows from the above
(2) that U(p)~'Y,U(p) = X, on S(k+1/2,N,x). By using this relation,
we can deduce properties of X, from those of ¥,. In particular, from [U1,
Proposition (1.27)], we have the above relation (3). U

Take any non-zero f € S(k+1/2,N,x) and assume that 7 is irre-
ducible. From Proposition 3 and (1.6), there exists a system of irreducible
representations (6p),|ar, such that ®;: X ® (®par,6p) = wy. Moreover for
any prime divisor ¢ of My,

Ker(®) 2 X ® ( & Indg ") X,,) ® 6.,
p| M1, p#q

where 921 is the irreducible component such that Indg((g)) Xq = 0,0

Set the elements a,, aj, € C[G(p)] such that

/
q

(ep + Xp(0), pep — Xp(0)), if Op = 1g(p),
(pep — Xp(0), e + &, ( ))s if 6, = €,

1.9 ,al) = ]

19) (apay) (gpep + & ( ) 8p€p — (0)) if Op = €ipi1)/25

Then oy, ® g € Op, ap, ® & € 6, and

(1.10) E® < ® ep ®sp) ® (o ® g4) € Ker(®y).

p|M1, p#q

‘We therefore have

(1.11)

o
Il

cpf(g@)( ® e,,@s,,) ®(Oz;®€q)>

p|M1, p#q
af — f 1 Xg i by =1g(g)s
f+flXq, if 0, = €,
gqf - f ] XQ7 if eq = Q:(q+1)/27
gof +f | Xy if, _Q:/(q-l-l)/

In other wards, f is a common eigenform of X, for all prime divisors p | M.
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Conversely, assume that f is a common eigenform of X, p | M;.

Decompose 7 into irreducible components: s = p1 @ - ® pr, and let
f=h++fm ficp (i=1,...,m). )

We apply the following operator to the above: M := |B x By|™! Zw
x(d) v*, where v = (a b) is taken over all representatives of I'h(N)/I'(N).

cd

We easily see that f = f | M and for any ¢, f; | M € p; N S(k +
1/2, N, x). From this, without loss of generality, we can assume that f; €
S(k+1/2,N,x) and f; # 0 (i = 1,...,m). Then p; is generated by a
non-zero form f; for all 7. It follows from (1.11) that all f;’s are common
eigenforms of X, p | M.

Set f; | Xp =0 fi, (i=1,...,m, p| My, o) € C).

Since 7y is identified with subrepresentation of Indgzgll X> Pi (i =
1,...,m) are not equivalent to each other ch. (1.6)). Hence, from (1.11),
the systems of eigenvalues (JZ(,l))pI Mis - (0p " )piay are different from each
other. Therefore we see that m = 1 and 7 is irreducible.

Thus we get the following results.

PROPOSITION 5.  Let the notation be the same as above. For (0 #)
feSk+1/2, N,x), the following hold good.

(1) 7 is an irreducible C[B x Gi]-module if and only if f is a common
eigenform of X,, p | Mj.

(2) Suppose that 7y is irreducible. Then 7f = X ® <®p|M1 0,,), where

6p’s are irreducible C[G(p)]-modules. Let o,(p | M1) be an eigen value of f
on Xp: f | Xp =o0pf. Then oy is given by the following table.

( D, ifxp=1 and0,= la@p),

-1, ifxp=1 andf, =0,
(1.12) op = ,
p Ops if Xp = (5) and 6, = C(p+1)/2»

—8p> ’Lf Xp = (;)) and 01’ = €/(p—i~1)/2'

a

Now we will study relations between the above representations and
Fourier coefficients.
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Let f be a non-zero element of S(k +1/2, N, x) and take any system
(@p)pinsy € [Lpjns, Fp- Then

o ((5@ ((X) X,(ap) ® sp)>

p| M1

= Y [ el~apzp/p) w(v((25)) mod (V) £,

(@p)pimy p| M
zp€Fp

where y((xp)) € SLy(Z) is an element satisfied the following condition:

Y(ep)) = { (5 1) mod andas,

&p(zp) mod p for all prime divisors p of M;.

Choose a matrix vu, € SL2(Z) and an element 2 € Z for (zp)pn, €
le a, Fp such that

((1) 2) mod 4Msy,

vy = (? _01> od M. and == {

0 mod 4Myy,
zp mod p for all p | M;.

and put a((zp)) = ((1) glc) Then we note that v((x,)) var,a((zp)) ™t €

I'(N). Moreover set g := f | W(M) = Yo ib(n)e(nz) € S(k+1/2,N,
X (M)) Hence

% (20 @ha) 0e)

p|My

= Y I e(~awzo/p) £ | virl(zp))* ™

(@p)p|py Pl M1
zp€EFp

= Z H e(—apzp/p) f | W(Ml) 51_\_/[11 a((l'p))*_l
(ep)p|py p|M1
= My R4 Z H e(—ayzp/p) 9((z — x) /M)

(@p)p|pmy p|M1
zp€Fp
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JH2- 1/42 elns/a) 3 (T el-apaa/p) Jel-na/at)

(@p)p|ay Pl M
zper

Since the G.C.D. of all M;/p (p: prime divisor of M) is 1, there exist
integers up € Z such that 3/, up - (M1/p) = 1. We therefore have

2 (H e<~apmp/p>)e<—n:c/M1>

(@p)p|ney  p|M
= Z H e((—aprp — nzup)/p)

zp€EFp
(ep)p|ny, p|Mi

zp€EFp
= H Z e((—apTp — nxpup)/p)
p| My zp€F,
| M, if —ap =nup (mod p) for all p | My,
10, otherwise.

Here, we use the condition: z =z, (mod p).
Since —ap = nu, (mod p) & —ap(Mi/p) =n (mod p), we get the
following.

(1.13) (s® ONEACHETY >
plM;
— M, ~k/2+3/4 Z b(n) e(nz/M;),

n=-—ap(M; /p)mod(p)
p| My

where g 1= f | W(M;) = Yoo, b(n) e(nz).

Moreover we suppose that 7y is irreducible. In this case, there are
irreducible C{G(p)]-modules 6, (p | M;) such that X® Qpir, bp = 7y via
;.

We use the notation a;, and aj, of (1.9). Then in all cases of 6, = 1g(p),
<y, €pr1)/2, OF Q(p+1)/2, we can express that X,(0) = cp X ap+c1 X oz;7 with
a non-zero constant cp and a constant ¢;. And from the formula (1.10), it

follows that for any system (ap)pnr, € [l Fp, there exists a non-zero
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element ¢ such that

E® ® p(ap) © €p)
plM
(1.14) = ® ( X (Xo(ay) @sp)>
PIMlyap?éO
®< ® (ap®6)) (mod Ker ®y).
p|M1,ap=0

Now we set the following notation for any prime divisor p of Mj:

0, if 0, = 1),
Fx if,=¢
X . P /4 P QX
(1.15) S) = Fx?, £ 6, = €y, and S, := S U {0}.
2 : /
Fo —F% 0, =T )

From the formula of Proposition 2, we see that S;° = {a € F\ | Xp(a)®¢; €

0,}.

From (1.14), we see that for any system (ap)pinr, € [Ljar, Fps

Pr(E® <® X,(ap) ®ep)> #£0

p| M

<:><I>f<5®( & X,,(ap)@aep)@( (%) ap®ep>>¢o

p|M1,ap7#0 p|M1,a,=0

E=EQR < & Xp(ap)@)ep) ® ( (%) ap®sp> €EX® (@@,)
p|M1,0,7#0 p|M1,0,=0 - p| M1

<= Xp(ap) ®ep € 6, for any p | My such that a, # 0

<= ap € S for any p | My such that a, # 0

= (ap)ppr, € ] So-
p|M;

Combining the above with the formula (1.13), we obtain the following
theorem.

THEOREM 1. Let f be a non-zero element of S(k+1/2,N,x) and
g:=f| W) =32, bn)e(nz) € S(k+1/2,N,x (M)) Suppose that
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wy is irreducible and wr = X ® @y, Op with irreducible C[G(p)]-modules
Op. B
Then for a (ap)p“\/[1 € HP|M1 F,, we have the following:

“there exists n € Zy such that b(n) # 0 and
(ap)pin, € Pllgl Sp = n = —ay(Mi/p) (mod p) for allp| M.

In other words,

“b(n) = 0 for all n’s which satisfy the condi-

(ap)pim, & H Sp <= tion: n = —ap(My/p) (mod p) for any p |
pIM; My

See (1.15) for the definition of Sp. a

82. A complete theory of newforms for Kohnen spaces

We will generalize the results of §4 of the previous paper [U1] and will
get a complete theory of newforms for Kohnen spaces. So we will consider
only Kohnen spaces in this and next sections.

We keep to the notations in §0, §1 and in [U1]. See those for the detail
of definitions and notations.

We recall some notations.

Let k& be a positive integer and N = 4 x M, M is a positive odd
integer. Put v, := ord,(N) = ord,(M) for any odd prime p. We decompose
M = MiMay, My =[]} p,=1 P and Moy = [ s, 52 P

Let x be an even Dirichlet character with x? = 1 and for any prime p, Xp
the p-primary component of x. Moreover we denote the M; (resp. 2May )-
component of x by x; := HpIM1 Xp (resp. X := Hp|2M2+ Xp)-

We also denote the set of all prime divisors of My by II. Foranyl € II,
we denote the twisting operator of (Z) by R; (cf. §0 (c)). Furthermore for
any subset I C IT, we put R; :=[];c; R

For any £ € {*1} and any [ € II, we define operators by ef :=
T(R? + k()Ry) and e := [],cref. For any subset I of IT, we set the
following notations: Iy := [];c; [.

Let (aq)ierr be a system of integers such that 0 < oy < v for all
l € II. For simplicity, put Mz(i) = [Liem 1%, N(a) = 4M1M2(i), D =
Ha)y :={lell | o =0} E=IHOa :={l €Il | q =1}, and
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F = II(a)o4 = {l € I | oy > 2}. We note that every positive divisor of
Moy is of the form M7’ for some system (oq)ierr.

We choose and fix k € {£1} until the end of this paper. Let x| €
{£1}F be the restriction of  to F.

We have to study the subspace &%#IF(k + 1/2, N(a),x)x of S(k +
1/2,N,x)k. We recall the definition of this subspace (cf. [U1, (3.3) and
(3.5)).

We decompose the character x into two parts as follows:

!

X=77?7I7 n= (E)’ 77/: (£>, O<u|lD, 0<UI|MllElF.

Since the character 7/ can be defined with modulo N(«), the subspace
&P¥IF (k + 1/2, N(a), )k is naturally defined, where #/|r := &|F - © e
{£1}F (cf. [U1, p. 177]). And then, using this subspace, we define as follows

(2.1) &%F(k+1/2,N(a),x)k := &>17 (k + 1/2, N(a), 7 )k | U(u).

S%'IF (k 4+ 1/2,N(a),n')k has a C-basis B, consisting of common eigen-
forms for all Hecke operators T'(n?) = Tk+1/2,]\~,(a)’n, (n?) (n € Zg, (n, ]\:/'(a))
= 1) (cf. [U1, (3.11)]). Moreover U(u) gives an injection on S(k+1/2, N(a)-
Ip,n)k ([U1, (1.28)]) and is commutative with all Hecke operators T'(n?)’s
(cf. [U1, (1.8) and (1.20)]). Therefore the set By := {g | U(u); g € By}
gives a C-basis of G%*Ir(k + 1/2, N(), x)k consisting of common eigen-
forms for all Hecke operators T'(n?) = Tk+1/2,N,X(n2) (neZy, (n,N)=1).
Put

B@:= 3 &%Ir(k+1/2,N(a), x)x | U(a?)

0<a|lD
[ Sk NN iRz,

Then from [U1, (3.10)],

(2.2) B@ = @ &"Ir(k+1/2,N(a),x)k | U(a?)
0<allp
c SOslr(k+1/2, N(a) - lp,x)x if k> 2,
| VBHEE(N (@) - Ip, X))k ifk=1.
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Since every U(a?) (0 < a | Ip) gives an injection on S(k+1/2,N(a)-Ip,x)
(cf. [U1, (1.28)]), we get the following:

(2.3) B = ( P cri U(az)),
feBy “o<allp

where f takes over all elements in B,.
Moreover we can see that

(2.4) B | ef; € 8" (k+1/2,N,X)k.

In fact, applying the operator ef; to the both sides of the definition, we see
that

K — QK s
B(")]e'fyg{S(k+1/2’N’X)K‘eH_S (k+1/2,N,x)k, ifk>2,

V(N3 K | efy = VO (N5 Xk, if k=1

Every generator of B(®) | % f | U(a®)ef, (0 < a | Ip), is a common
eigenform on T(n?) (n € Z,, (n, N) = 1) and has the same system of eigen
values as f (and so as g € B,y). This system corresponds to a primitive
form in S°(2k, My M), 0 < M’ | MY ([U1, (3.11))).

From [U1, (3.10)] and the Strong Multiplicity One theorem of weight
2k (M, Theorem 4.6.19]), &%*(k 4+ 1/2, N, x)x contains all of generators,
f | U(a?)ef;, and therefore contains all elements of B(®) | ef;.

We denote for any f € B,

(2.5) B = P Cf|U(a?).

0<allp

These spaces BJ(,O‘) are contained in S(k +1/2, N(a) - Ip,x). We will

decompose B}a) by the semi-simple operators Yp, p | Milplg, on S(k +
1/2,N(a) - lp,x) (cf. [UL, (1.27)]).

First we consider the case of p | M;lg.

Take g € B,y such that f =g | U(u). Then

S(k+1/2,N(a),n)k, ifk>2,
91 Yp € - , .
V(N(a);n')k, if k=1,
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and since R; (I € F)) commutes with Y, ([U1, (1.24) (2)]), we see

| S@,R'|F(k~ + 1/2,N(a),n’)K, if k> 2,
g / -
p V@,K IF(N(O(),??I)K, ifk=1.

Since Y, commutes with Hecke operators T'(n?), (n, N) = 1, both g and
g | Y, belong to the same system of eigen values on T'(n?), (n,N) =
1. And since g € &%¥'IF(k 4+ 1/2, N(a),7 )k, its system of eigenvalues
corresponds to a primitive form of weight 2k and of conductor Mjlg x

(a divisor of [[;cp1*) ([U1, (3.10) (2)]).
From these, first we see that g | Y, € 69717 (k 4 1/2, N(a),7")k ([U1,

(3.10) (1)]) and next, by using the Strong Multiplicity One theorem ([U1,
(3.11) (2)]), g | Yp = 1pg for some 7, € C.
Combining these with Proposition A.1 in Appendix, we obtain that

@6 11 =00 Y, =) (2) a1 00 =) () 7,

i.e., f is an eigen form for Y.
Moreover in this case, Y, commute with U(a®) (0 < a | Ip) because

of Proposition A.1. Hence we see that every element of Bj(fa) is a common
eigenform on Y,’s (p | Milg) belonging to the same system of eigen values

as f.

As to the case of p | [p, we get the following proposition.

PROPOSITION 6. Let I be any subset of D and f be any element of By,.
And let A(I) be the subset of Map(I, C) consisting of all functions p such
that p(p) = £, /(%l)p resp. p(p) € {p, —1} according to xp, = 1 resp. (5).
Hence |A(I)| = 21|, Then we have the following decomposition:

P criv@® = P cf,

0<all; pEA(I)

where each f, (p € A(I)) is a non-zero cusp form satisfying the condition:

folYp=p(p)fy (forallpel).

Proof. We will prove by induction on |I|.
If |I| =0 (& I =0), then Iy = 1 and the assertion is trivial.
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Next suppose that I # () and the assertion holds good for any proper
subset I’ of I.

Take and fix a prime p € I and decompose I = {p}+1I',i.e. I' = I—{p}.
By the assumption of the induction, we have

P crlved= @ cfy,

0<ally pEA(I)

where A(I') is the subset of Map(I’, C) which is described in the assertion.
Hence |A(I')] = 2"l and f, (o' € A(I)) is a non-zero cusp form satisfying
the condition:

fo | Yp = P/(p)fp’ (for all p € I').

Since U(p?) gives an automorphism of S(k + 1/2, N(a) - Ip, )k, we can
calculate as follows:

P crlu@®) = ( @D cri U(a?)) ea( P crl U(a2)> ‘U(p"‘)

0<ally 0<ally 0<allyr
=( D Cfp> ( D CfpflU(pQ))
p'eA(I") p'eA(I")
- @ (crecuive).
prEA(I)

From [U1, (1.24)] fy | U(?) Yy = fy | YoU(®?) for any q € I'. Hence,
every element of Cf, & C(f, | U(p?)) is a common eigenform on all ¥;
(q € I') which belongs to p'.

Now, we will decompose the space Cf,y ® C (fy | U(p?)) into two eigen
subspaces on Y.

From the definition of By, there exists g € B,y such that f =g | U(u).

Then
@ cf v = (P s |ve)) v

0<ally 0<ally/

and so for any fy (p' € A(I')), there exists gy € Doy, C9 | U(a?) such
that fy =gy | U(u). 3

These forms g, satisfy the conditions: gy € S(k+1/2,N(a) - Iy, 7).
And also we have (p, N(a) - lp) =1, (u,4lp) =1, and 1/, = 1.



COMPLETE THEORY OF NEWFORMS FOR KOHNEN SPACE 143

g is an eigen form on T'(p?). From this and [U1, (1.20)], gy is also an
eigen form on T(pQ) belonging to the same eigen value as g.

From the above facts, we can apply the formulae (A.7) and (A.11) in
Appendix to the forms f, = g, | U(u) and fy | U(p?) = g, | U(up?).

It follows that the space Cfy @ Cf, | U(p?) can be decomposed into
two distinct one-dimensional eigen subspaces on Y

Cfy ® Cfy | U(p*) = Chy @ Cha.

And also we see that hq, hy are two common eigenforms on Y, (¢ € I)
whose eigen values are coincide (= p/(q)) on the operators Y; (¢ € I') and
are different only on Y,. We can extend p’ to two elements in Map(J, C)
by associating {p} with each of such two eigen values.

Combining this and the above formula, we obtain the assertion. U

From these arguments and Proposition 6, we have the following decom-
position:

(2.7) BY = @ cflu@) =  cf,

0<allp pEA(D)

Here A(D) is a subset of Map(D, C) such that |A(D)| = 2!P! and each f, is

a non-zero common eigen form on Y, (p | M1lplg) satisfying the condition:

Ap, forall p| Mg,

(2.8) fo |l Yo =cpfp, Cp = { p(p), forallpe D,

where ), is the eigen value of f € B, on Y.
We take such a f, and fix it. Since f, € S(k+ 1/2,N(a) - Ip, X)k,

ho == f, | W(Milplg)™ € S(k +1/2,N(a) - lp, x (ML) ¢ (cf. [U1,
(1.22)]).

PROPOSITION 7. Let X, be an operator defined in (1.8) of §1. The
above form h, is a common eigen form of X, for any p | Milplg.

Proof. From [U1, (1.18)] and Proposition A.1, it follows that

hy | W(Milple) U(p) W (p) = coh,, | W (p) W (Milpls /p) U(p) W (p)
=hy | W(p) U(p) W (Milple/p) W(p)
= crh, | W(p)U(p) W(MilplEg),
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where cg = (X (M)) (p) and ¢; = (X (M—IM)) (Mylplg/p).
Milplg/p p
Hence, for any prime divisor p of Milplg,

cohp = fo | Yy W (Mylplg) ™}

(2.9) = p~H/25/ 4 b, | W (Milpls) U(p) W (p) W(Milple) ™
= Clhp | Xp.
Thus we proved the above claim. 0

From this claim and Proposition 5, Ag(4[[;cp l"")/A(4M11DM2(i))-
module 7, is irreducible. We decompose it into primary components:

(2.10) Th, XY @ (@ 0,,) ® ( X 0p>,

p| My pliple

where ¢ = HP/* Mylply (x (M)>p and i is defined by % in the same
way as (1.5).

PROPOSITION 8.  We can determine each primary component 0, (p €
D + E) by using (1.12) and (2.9) as follows:
[Case 1] (p | lplg and xp =1)

Coprnyjz o Ap = (Mglm) g, and p € E,

. Mylpl
oty T Ap=— (—1 L;E/p) gp and p € E,

S
11

Cpr1y/2: if p(p) = (M‘“;ZE/”> gp andp € D,
Q:/

. Ipl
L (p+1)/2) if p(p) = — (MIDTE/p> gp andp € D.

[Case 2] (p|Ip and x; (;))



COMPLETE THEORY OF NEWFORMS FOR KOHNEN SPACE 145

Proof. The assertions in Cases 1 and 2 are easily verified.
We consider Case 3. Suppose that 6, = 1g(,). We have h, | X, =ph,
from Proposition 5 (2). Hence A, = p. This follows from (2.8) and (2.9).

Moreover, using (2.6) and the fact: 7, = x, = (§>, we get that g | Y, =py.

Applying [U1, (1.26)] to g (= 3_,,5; a(n) e(nz) € S(k+1/2, N(a),7)k)
and p, we have g | Y, = g | W(p) ™1 &, — g+ p*/2t3/1g | U(p) &,.

Since p~*/2+3/4g | U(p) = (g | Yp) | W)™ = (pg) | W(p)™?, we
therefore have g = p~*/2-Y4g | U(p) §, = 3., a(pn) e(pn 2).

From this formula we have that a(n) = 0 if (p,n) = 1. Hence there is
aform g’ € S(k+1/2,N(a)/p,n’ ®))k if k > 2, resp. V(N(a)/p;n (B))k if
k =1 such that g = ¢'(p2) ([U1, (1.11)]).

Both g and ¢’ have the same system of eigen values on the Hecke
operators T'(n?), (n,N) = 1 (cf. [U1, (1.8)]). Since g is in GP¥IF(k +
1/2,N (a),n") K, the system of eigen values corresponds to a primitive forms
of weight 2k and of conductor Milg x (a divisor of [];cp1%).

On the other hand, from [U1, (3.10)] for the spaces S(k+1/2, N(«a)/p,
7' (®))k and V(N(a)/p;n' (B)) k., the system of eigen values of g’ corresponds
to a primitive form of weight 2k and of a conductor prime to p.

This is a contradiction. Hence we have 0, = €,,. (]

Now we will find the condition for f, | e}, # 0 by using the results in
81.
ProposiTION 9. (1) If x, = 1, we have A\, = *g, (p € E) and

p(p) =+gp (PE D). If xp = (5) p(p)=por -1 (pe D).
(2) We have

Y= () k) gy, for allpe B with x, =1,

foleg #0 <= ¢ p(p) =—1, forallpeDwitth:<5),
= (_?1) k(p) @p, for allp € D with x, = 1.

Remark. In the above, the condition: A, = (:pl) «(p) gp depends only

on f.

Proof. The first assertion follows from [U1, (1.27)] and (2.8). We will
prove the second assertion.
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[=] We apply Theorem 1 to the forms h, and f, (€ S(k + 1/2, N(a) -
I, X)K). Set fy(z) :== 3,5, c(n)e(nz) and use the notation S, on mp, in
(1.15).

From Theorem 1, we know the following:

(2.11) ¢(n) =0 ifn=—z(Mlplg/p) mod p for some x mod p ¢ S,.

We modify the condition. Let first p € E with x, = 1. From the
definition of S, and Proposition 8,

the condition in (2.11) <= —n (Mylplg/p)”" (mod p) ¢ S,

g <__"MllDlE/P) _ { 1_1’ if 0p = €py1)/2,

P if 0, 2 €Ly

Suppose that 6, = €,41)/5. From the first assertion, A, = *gp. If

Ap = — <M1l?)lE/p) gp, then 6, = Q:/(p+1)

contradiction. Hence A\, = (M%@) gp and so (—?") Ap 8p ! = —1. Thus

we can easily deduce the following from similar argument.

/ (cf. Proposition 8). This is a

the condition in (2.11) <= <:ZL—> Ap g;l =-1
p

(2.12) — (%) = - (%) g A

We suppose that A, = — (:pl> k(p) gp (& K(p) = — (_71) gp )\p—l) for
some p € E with xp, = 1. If (%) = k(p), we have c(n) = 0 from (2.12). On

2
the other hand, if (%) = —k(p) or 0, we have (%) + k(p) (%) = 0.

Observing that f, | ey = 3 D on>1 c(n)((%)2 + k(p) (%))e(nz), we get
foles=0andso f,|ef =0.

In the same way, we get the assertions in the case of p € D with x, = 1.

Next we consider the case of p € D with x, = (]—)). Let 0p = 1g(p)-
Then S, = {0 mod p}. It follows from (2.11) that ¢(n) = 0 for any n prime
to p. Hence we have f, | ey = 0. From these f, | ef; # 0 = 0, = ¢, =
p(p) = —1. We use the first assertion at the last implication.
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[<] From (2.2) and f, € B}a) C B, it follows that f, | R, = x(p) f,
for all p € F. Hence for allp e F, f, | ey = fp. Therefore,

folen =1l H €p

pED+E
n 2
- I 0 (3o

For each prime p | Milplg, we choose a residue class b, (mod p) € Fy
satisfying the following condition:

(%p) = (N-[LzlEﬁ) 9p ’\p—la ifpe Fand xp =1,

(b—z?) = (M%ZM)) 9p P(p)_l, if pe D and xp = 1,

(bf) = ('?1) (W) k(p), ifpeD+E andx,= (5)
[ bp € Sp, if p | M;.

We can see from the definition S, and Proposition 8 that (b)pjanipis €
le Milplg Sp. Hence by using Theorem 1, there exists ng € Z such that
c(no) # 0 and —ng = by (Milplg/p) (mod p) for all prime divisors p of
M lplg.

For such a ng, we have by using the assumption

5)-6) )5
p p p p
T

-1 =k(p), if pe D and xp =1,

k(p), ifpe D+ FE and xp, = (5).

Thus we see that (ﬂp‘l) = k(p) and also that the ng-th Fourier coefficient of

fo | €% is equal to 2~ (IPIHIED ¢(ng) [Lepieix@)?+x(p)s(p)} = c(no) # 0.
This means that f, | ef; # 0. 0

Combining (2.5), (2.7) with Proposition 9, we get the following propo-
sition.
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PROPOSITION 10. Let the notation be the same as above. Then
B | efy = Cfay | €,
(‘—1) k(p) 8p, forp€ D and xp =1,

P

po(p) =
-1, forpe D and xp, = (5).

Moreover f,, | €5 # 0 if and only if f € By satisfies the following condi-
tions:

(%) 1Y, = (7) k(D) gp f for all p € E with x, = 1. 0

We have the following formula:

ProroOSITION 11.

B |ef= P Chulel

fEBXaf:(*)
(%) K(p)gp, forp€ D and xp =1,
and  po(p) =
-1, forpe D and xp = (5),

where (x) is the same condition as in Proposition 10 and f,, is a non-zero
common eigenform on Y, (p | Milplg) such that f,, | Yo = po(p) foo if
p €D resp. A, fp, if p € E. Here A, is the eigen value of f on'Y,.

Proof. From [Ul, (1.20)] and [U3, (1.7)], fp, | €}y € B}a) is a com-

mon eigenform on all T(n?) ((n, N) = 1) belonging to the same system of
eigenvalues as that of f.

And since there is a g € B,y such that f = g | U(u), the system of
eigenvalues is also the same as those of g € B,.

By applying the Strong Multiplicity One theorem [U1, (3.11) (2)] to
elements in B,y, each different element in B, belongs to a different system
of eigenvalues from each other. Therefore, {f,, | €f;; f € By, f satisfies the
condition (x)} is a system of linear independent forms. U

We will express the above condition (*) in terms of g € B,y such that
f=g|U(u). Since n, = x, for all p € E, we have f | Y, = (%)g | Y, U(u)
for all p € E with x, =1 (cf. (2.6)).



COMPLETE THEORY OF NEWFORMS FOR KOHNEN SPACE 149

Hence, the condition (x) < (%) 9| Y,U(u) = (:pi) k() gpg | U(u).
Moreover since U (u) is an isomorphism on S(k +1/2, N(a) - Ip,n’), we
get that the condition (x) < ¢ | Y, = (’Tf‘) k(p) gp 9.

In [U1, (3.6)], we defined the hermitian involutions wy, (p | Milg) on

k+1/2

&IF(k+1/2,N(a),n')k. Then g | wp, = p1/? —?1) n'(p)g | Y, for

all p € E with x;, = 1. This follows from [U1, (3.7)] and 7, = x, for all p €
k k
E. Hence f : (x) & g | wp = (‘71) n'(p) (%) k(p)g = (:pl) x(p) &(p) 9.

Here, we note that x(p) is meaningful because of x, = 1.
We denote this condition for g by (xx):

—1\*
(%) gl wp= <?> x(p)k(p)g for all p € E with x, = 1,
and we denote
Gg;’iliF — GE;KllF(k:"‘ 1/2 N )

B he &Ir (k+1/2,N(a),n )
- h|w,,=(—7)'c ()()hforaupeEwthp~1}'

From [U1, (3.9) and (3.11)], we have g | w, = +g for all g € B,y and so
{9 € B,y; g satisfies the condition (*)} is a basis of the space elrlr,

As we show in the proof of Proposition 11, all of three forms f,, | e/,
f, and g are common eigenforms on T(n?) (n € Z4, (n, N) = 1) and all of
them belong to the same system of eigenvalues.

Therefore, for all n € Zy and (n, N) =1,

tr(f(nQ);B(a) |e'f7> = tr| T(n?); @ Cfo |l e
FEBy, f:(*)

(2.13) = tr [ T(n?); @ Cyg
9EB, 1 ,g:(x*)
= tr(T(n?); 621" (K +1/2, N (@), )K)

We will describe the right hand side of the above formula in terms of
cusp forms of weight 2k.
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Take any element g of the basis of GQ;MF ,i.e. g € B,y which satisfies the

condition (xx). Let G be the primitive form of weight 2k which corresponds
to g in the sense of [Ul, Theorem (3.11)]. From [U1, (3.9)], we have g |

k
U(p?) = —p* g | wp = —p*! (‘71) x(p)k(p)g for all p € E with x, = 1.

k
So from [UL, (3.11)}, G | U(p) = ~** () x(p)x(n)G.
Let W(p) be the Atkin-Lehner operator of weight 2k (cf. §0 (b)). From
[M, Corollary 4.6.18], G | U(p) = —p*~'G | W(p) and so G | W(p) =

k !
(:171) X(p)k(p)G for all p € E with x, = 1. Hence the space 623«5 o

corresponds to all such G’s.

We can deduce the following expression by the trace relation in the
paper (U1, (3.10) (2), (A.2) (3), and (A.5)]:

For any n € Z prime to N(a),

tr(T(nQ); chrlr (k +1/2, N(a),n')K)
(2.14) = > E'((B), ¥, (7', 0"))

((:Bl)vlpl7(7-l7o'l))epl

x tr (T(n); §*(79") <2k:,M1lE II lﬁl) | R\p/) ,

leF

where the notations are as follows: Z((ﬁz) W ( yep! is the sum extended

7./’0-/)
over all elements of the following set:

((Bier, ¥, (7',0"); (B1) = (Bi)ier is a system of integers
P':={suchthat 0 < 3 < o forany | € F, ¥ C F(B)o + F(B)1,
7' € Map(F, {%1}), o' € Map(F(8)2+, {%1})

F(ﬂ)l = {l € F',@l :i} for : = 0, 1 and F(,B)2+ = {l e F | G > 2}.
E’((/Bl)’ v, (Tla OJ)) = HpeF E;)((ﬂl)v v, (TI7 U,))' Each E;’n((ﬁl)a v, (T,v OJ))
is the constant determined by the table [U1, (2.22)]. 7/ is the extension of
7! which is defined as follows:

. T’(l), if l € F
= { )" xr0) e () 1€ Band i =1.
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Finally,

f eS8 2k, Milpllicplf); fIW =

M(I)f foralll e F+{le E | x; =
S*(T ,0') 2k, Myl l’Bl - T(
( 1 Elll 1}, f | RW, = o'()f | R; for all

L€ F(B)2+
See [U1, Appendix 1] for the definition of the space S*(2k, M1lg [];cp 18,

In order to compare this formula (2.14) with those in [U1, (3.10) (2)],
we must modify the above formula.

We define a system of integers (Bl)le 11 for each system of integers (5;);cp
as follows: ﬁl = [, 1, or 0 according tol € F', E, or D.

Then we have I1(8)o = D + F(B)o, I(8)1 = E + F(8)1, I(B)24 =
F(,B)2+, and lg X HleF‘lﬁl = HleH 1P,

We want to extend the domain of definition of 7/ (= F)) to the whole set
IT. Since {1} = {£1}F x {£1}P+F we will append this factor {+1}P+F
and denote each element of {#1}7 = {£1}F x {£1}P*F as 7 = (7, 7).

We note that there are some assumptions on the primes [ € E with
xi = 1 in the definition of the space S*(7'") (2k,M1lE HleFlﬁl). We
remove this condition by replacing the coefficients Z'((3;), V', (7/,0')) =:

[Ler Z0((81), ¥ (7', 0")) with [[c p E,((B1), W' (7,0")) X[ e py 1 Epp Where
the notation is as follows:

1+ 7"(p), if pe D;
2XEZ: 1+1, 1fp€Eanpr=<5),

1+ (3) X@)s0) Tyew (8) /), ifpe Band xp = 1.

Finally replacing o’ with ¢ and combining the formula (2.13) and (2.14),
we can obtain the following expression of tr (T(nz), B | e’fj) in terms of
primitive forms of weight 2k:

Under the above notation, we get the followings for all n € Z, prime
to N,

tr (T(nQ), B(@) | e%)
(2.15) = 3 [T, v, .00 x T] =

((8),¥ (7' ,0),7")EP x {£1}P+E  peF pED+E
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X tr (T(n); 5*(m0) <2k,M1 11 l@) | R\p,> ‘

lell

where 7 := (r',7") € {£1}F x {£1}P*+E = [(+1}T o € {il}F(ﬂ)H— —
{£1}7B)2+ | and

) fes (2k,M1Hlenl[’l>; Flw, =
§* o) ok, My [T 17 ) = _
) 1 T(p)fforallpe I, f | R,W, =0o(p)f |

lell R, for all | € IT(B)2y = F ()24

Now we will compare the above formula (2.15) with [U1, (3.10) (2)].
And we will see that the formula (2.15) can be considered as a part of the
expression formula [U1, (3.10) (2)] of tr (T(nQ); &5 (k4 1/2, N, X)K)‘

We first note that for any parameter ((8;), ¥, (1, o), 7") € P'x {£1}P+E
the system ((Bl)le 11, V', (1,0)) is contained in the range P of parameters
in the expression formula [U1, (3.10) (2)] of the trace tr(T(n?); &% (k +
1/2, N, x) k. This is easily verified.

We second must study for any (8))ier, V', (1,0) = ((7',0),7"), whether
the coefficient of tr (T(n); S*(7,0) (Qk:, M [Lien lBl) | R\p/) is equal to those
in the expression formula [U1, (3.10) (2)].

Both coefficients are defined as products of primary components on
p € II. We will compare these primary components.

For p € F' + E, we can verify the following identities:

N , E/ )\I}/7 /, N f F’
(2.16) Ep((ﬁl),m,(w)):{ = (40, ¥, (7, 0)) ;fﬁiE,

Eps
where the left-hand side is the constant with respect to &% (k + 1/2, N, x) x
determined by [U1, (2.22)] and 7/ := 7|p.

These identities are easily verified, in case by case, from the following

facts.
‘ oo (G (@) L~ (&)
(1) The 2-primary part of x is x2 = 21y = (—) (—), My = (—),
)
and also néMllE = [~ xa HpEE Xp-

(2) For p € E + F, we have x, = 7,
Next we consider the case of p € D. Then if 7(p) = —1, any identity
like (2.16) does not hold good.
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However, since any prime p € D does not occur in the level M; [];c ;7 lél,
the Atkin-Lehner operator W), is the identity operator 1. Hence if 7(p) =
—1, the space S*(7:%) (Qk, My [Tien lél) is always equal to {0}. Therefore
we can neglect such cases and eventually without a loss of validity, we can
consider that we also have the same identity as (2.16) in the case of p € D.

Therefore we get the following formula.

PROPOSITION 12.  Let notation be the same as above andn € Z such
that (n,N) = 1.

tr(T(nZ); B@ | e'f-[) - 3 1B, ¥, (r,0))

((ﬁl),\lll,(T,,a'),T”)GP/ X{il}D+E lell

X tr (T(n);S*(T*") (%, M ] zf*l> | Rq,,> ,

lenl
where each coefficient Zi((6), ¥, (1,0)) has the value either 0 or 1 which
is the coefficient 0ftr<T(n); S§*(19) <2k,M1 [Len lﬂl) | Rq,/) in the expres-
sion formula [U1, (3.10) (2)] of the trace of T(n2) on the space &% (k +

1/2,N,X)K.
In other words, we can consider the above formula as a part of the
expression formula [U1, (3.20) (2)]. 0

For any (y), B\ | e is a subspace of G%*(k + 1/2, N, x) x (cf. (2.4)).
We define the following subspace of &%*(k 4+ 1/2, N, X))k

(2.17) NOm = NOF (k+1/2,N,x) = Y, B |ef.
(a)#(wv)

Here, (o) in the above sum runs over all system of integers such that 0 <
oy <vp=ordy(N) (I € IT) and (o )ierr # (M)ierr. We also denote by N0* =
NP (k 4 1/2, N, x)k the orthogonal complement of N (k 4 1/2, N, x)
in %% (k+1/2, N, x)k.

Since any operators T(n?) ((n, N) = 1) fix each subspace B(®) | &%
respectively, both 91%* and MP* are stable under the action of T'(n?)
((n,N) =1).

We can generalize [U1, Theorem (4.13)] as follows:
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THEOREM 2. Let the notation be the same as above and let k €
{£1}1. We suppose that orda(N) = 2. The following assertions hold good.
(1) For alln € Z prime to N,

tr(T(nQ);‘ﬁ@’“(k +1/2,N, X)K)
= Z Z E(w(I,I)), I+ J,(1,0))

M(v)s=I+J+K  reMap(L,{1})
o€Map(IT—(I+J),{£1})

xtr| T(n); $* ) (26, M [Tt [T ™) I Rivs |
leJ lell—(I+J)

where II(v)y == {l € IT | vi = 2}, Y p1(y),=1454K 15 the sum extended over
all partitions such that II(v)e = I + J + K, v(I,J); is a constant which
has a value 0, 1, or v; (:= ord)(N)) according tol € I, J, or IT — (I +J),
E((v(I,JIN), I+ J,(1,0)) are the constants determined by [U1, (2.22)].

(2) Let B be an orthogonal basis of &%%(k + 1/2, N, X) . which is stated
in [U1, (3.11_5 (1)]. Let By (resp. By) be the set of all f € B which correspond
to primitive forms in S—O(2k,M)—_(7"esp. in S9(2k,M'), 0 < M' | M, and
M' < M) in the sense of [Ul, Theorem (3.11) (1)]. Then By (resp. Bi)
generates the space MP*(k +1/2,N,x)k (resp. MP*(k +1/2,N,x)k).

(3) Let f be any element of By and A, the eigenvalue of f with respect
to Tk+1/2,N,X(P2) (p: prime, p ¥ M) resp. U(p?) (p: prime, p | M). Then
the primitive form F which corresponds to f in the sense of [U1l, Theo-
rem (3.11) (1)] satisfies the condition F' | T(p) = ApF resp. F' | U(p) = A\ F
for all primes with p | M resp. p | M.

Proof. Let B be the same C-basis of G%*(k+ 1/2,N,x), as in the
above statement—(Z) and P the same set of parameters as in the expression
formula [U1, (3.10) (2)].

For any (o), the space B(® | €% is a stable subspace of G%*(k +
1/2, N, x)k under the action of all operators T(n?) ((n, N) = 1). Using the
Strong Multiplicity One theorem [U1, (3.11) (2)] on 8%*(k 4+ 1/2, N, x)x,
B | ef; is generated by the set BN (B("‘) | €f). Similarly, we can see that
the spaces 9% and NP* are generated by éﬁ‘j”(m*"‘ = U(ay)£w) (B(o‘) | e’f:,)ﬂ

B and nls N B respectively. And also B = (éﬂ ‘ﬁm*") + (éﬂ ‘51@”‘). For
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any ((p1), ¥, (7,0)) € P, we denote by é((pl),'ll,(r,a)) the subset of B which

corresponds to the subspace S$*(7) (2k, M1 [T;c117') | Ry in the sense of
[U1, (3.11) (1)).
Then from Proposition 12, there exist only two possible cases: either
C Bl@) | 5 (@) | ok — (I
é((p[),‘l’,('r,a)) C B\ | ef;, or é((pl),\I/,(T,G)) N B | ef = 0; and whether the
former case is or not depends only on the parameter ((p;), ¥, (1,0)).

We define the subsets P* and P** of P by:

((p), ¥, (r,0)) € P; ((;), ¥, (,0)) does not satisfy (at least)
P* := { one of the following three conditions: (i) p; = v; on II(p)2+;
(i) ® = II(p)o + I (p)1; (iii) v, = 2 on I (p)o + II(p)1
and P** := P — P*.

Take a system (oy);ey and a parameter ((p;), ¥, (7,0)) € P such that
(oq) # (1) and é((pz),‘l’,(ﬂa)) C B@ | e%. Then ((m), ¥, (r,0)) € P*. In
fact, suppose that ((p;), ¥, (7, 0)) satisfies the above condition (i) and (ii).
We get from Proposition 12 that p; < a; for all [ € IT and ¥ C II(a)2+.
Hence I1(p)a4 C II(a)2+ and by using the condition (i), (p; =) oy = v for
all l € II(p)a+.

From the condition (ii), IT(a)ey 2 ¥ = IT — II(p)o+ 2 II — II(c)2+.
This means IT = IT(a)2+.

Since (aq) # (1), there exists [ € IT such that oy < v;. From the above,
then I € IT — II(p)2+ (C II(a)24+) and 2 < oy < ;. Hence the condition
(ii1) is not satisfied.

The contrary is also true. Take any ((p;), ¥, (7,0)) € P*. Put

pi, if 1€ I (p)ay,

92, ifle,

1, ifle(p), -,
0, lflEH(p)o—\If

Q=

Since ((p1), ¥, (1, 0)) does not satisfy one of the conditions (i)—(iii), we have
(o) # (v;). Next we put

Pl ifl e H(p)2+a
G = 1, iflevnlIip),
0, ifle‘I/ﬁH(p)o.

We also define the system of integers (Bl)leﬂ by the above (f;) in the
same manner as in the paragraph after the formula (2.14). Then we have
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B, = p; for all | € II. Moreover observing that ¥ C I(p)o + II(p): C
(IT(@)2+)(B)o + (H(a)2)(B)1 and (IT(@)ay)(B)zs = H(p)as, we can see
that ((61)icir(a)sy W (7,0)) occurs in the parameter set P’ x {#1}T(@h+H(e)o

c Bl@) |

of the expression formula in Proposition 12. Hence B (o) (ro)) &

ey
Thus, we see that MO~ ig generated by the set U((p[),‘P,(T,O’))EP* B((pz V,(,0)

and so U((pl)’\I/’(Tyo.))GP**E((‘W),‘I”(T’U)) generates NM?*. The assertion (1) is
easily deduced from this result.

We will prove the assertion (2). For any ((p;), ¥, (7,0)) € P, we have
from the definition: S*(") (2k, My [[,c;71?) | Ry € S°(2k, My [T)epp_g 1

[T,cw 1?). Hence the assertion (2) follows from the fact:

(), ¥, (1,0)) € P <= [ 1" [[?* = Mos-
lell-¥ lev

The assertion (3) can be proved by the same method as in the [U1, Theo-
rem (3.11) (1)]. O

§3. Another simpler definition of newforms for Kohnen spaces

In this section, we give another simpler definition of newforms for
Kohnen spaces than the previous one.

We keep to the notations in the previous sections and the paper [Ul].
See those for the details of definitions and notations.

We note that we consider only Kohnen spaces in this section.

In this paper and the previous paper [U1l], we define several subspaces
and give several decompositions. Combining those decompositions, we ob-
tain the following:

1) S:=S(k+1/2,N,x)x ifk>?2
' Vi=V(N;x)g ifk=1

=| @ N"*k+1/2,N0)K
ke{x1}1

o @ NF(k+1/2,N,x)k
re{£1}7
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o P D " (k+1/2,4dMax), | U(E)

RG{:{:l}H 0<e, d, d#M;y
My

Ker(Rp,S) ifk>2
Ker(Rg,V) ifk=1 |

This formula follows from [U1, (1.5), (1.7), (3.10) (2)] and (2.17) in this
paper.

DEFINITION. We put the following notation:
(3.2) M(k+1/2,N,x)k

P ROrk+1/2,N, 0k
re{L£1}1

(3.3) O(k+1/2,N,x)k

;:< @ &@aﬂ(k+1/2,N,x)K>

ke{£1}T
e| P P " (k+1/2,4dMay, x) | U(e?)
we{x1}17 °<e!jv|Aj¢M1
ed|My

Ker(Rp,S) ifk>2
53] .
Ker(Rpy,V) ifk=1

Then we can rewrite the formula (3.1) as follows.
S:=8k+1/2,N,x)g, ifk>2
{V V(N;X) g » iszl}
=N(k+1/2,N,x)x ® O(k +1/2,N,X)k.

PROPOSITION 13.

Ker(Rp, ) = 3 S(k +1/2, N/, x @)K 15,

lell

Ker(Ry,V ZV(N/Z X())Klgl’

lenl
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Proof. By using [U1, (1.9)], the subspaces of the right-hand sides are
contained in S, V respectively. Since (f]6;)(z) = I¥/2+1/4£(iz), those sub-
spaces are contained in the subspaces of left-hand sides.

We will prove the contrary. Let I be any non-empty subset of II.

From [U1, (1.5) (3)], it is sufficient to prove that S, V! are contained
in the subspaces of right-hand sides respectively.

From the formula after [Ul, (1.4)], we have

sl = {Z b(n)e(nz) € S; b(n) =0 for alln ¢ L;},
n>1
V= {3 b(n)e(nz) € V; b(n) = 0 for all n ¢ Ly},

n>1

where L! := {a € Z; (a,lg) =11} (C ZI}).

Take a prime ! € I and any element f = > o2 b(n)e(nz) in ST or V1.
Then from the above formula, b(n) # 0 = n € Ly C ZI. Hence there exists
a function g(z) on $ such that f(z) = g(lz). It follows from [U1, (1.11)]
that g € S(k+1/2,N/Lx () if fe S, or ge V(N/Lx () if f e VL

This proves the contrary inclusion. U

DEFINITION. For any primitive form F of weight 2k, we denote by
{Ap(n);n € N} the system of eigenvalues on the Hecke operators {T'(n);n €
N}. Then we define two subspaces of S(k+ 1/2, N, x), as follows:

S(k+1/2,N,x;F), = {f € S(k+1/2,N,X)g; f | T(n?) = AF(n)f}_
oK for all n € Z such that (n,N) =1

. JFEV(IN;X)k; £ T(n?) = Ap(n)f for au}
VN X F)g = {n € Z4 such that (n,N) =1 ’

These are considered as the eigen subspaces corresponding to the primitive
form F.

Remark. We can prove that V(N, x; F)x = S(3/2, N, x; F)k for any
primitive (cusp) form F'.

Under the above notation, we get the following theorem.
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THEOREM 3. (1) For k > 2, the following decompositions hold good.

S(k+1/2,N,x)x = @ Sk+1/2,N,x; F)x,

F:(x1)

Nk+1/2,N, )k = € S(k+1/2,N,x; F)x,
F:(x2)

O(k+1/2,N,x)xk = @ S(k+1/2,N,x; F)k.
F:(x3)

(2) For k = 1, the following decompositions hold good.

VINiX)g = @ VN x: F)g s

F:(x1)
F:(x2)
F:(*3)

Here (x1)—(x3) are the following conditions on primitive forms F of weight
2k:

(x1) the conductor of F' is a diwvisor of M.
(x2) the conductor of F is M.
(x3) the conductor of F' is a divisor of M and less than M.

Proof. From Theorem 2 (2), the subspace M (k 4 1/2, N, x)k has an
orthogonal C-basis consisting of common eigenforms for all Hecke operators
T(n?) (n € Zy, (n,N) = 1). Moreover the system of eigenvalues of any
element of such basis corresponds to a primitive form of weight 2k and of
conductor M.

Similarly, from Theorem 2 (2) and [U1, (3.10) (2) and (3.5)], the sub-
spaces N0 (k 4 1/2, N, x)x and &% (k +1/2,4dMar,x), | U(e?) have
orthogonal C-basis consisting of common eigenforms for all T'(n?) (n € Zy.,
(n, N) = 1). Moreover the system of eigenvalues of any element of such ba-
sis corresponds to a primitive form of weight 2k and of a conductor which
divides M and is less than M.

We will prove a similar result for the subspaces Ker(R7, S) and Ker(Rg,
V), i.e., these subspaces have orthogonal C-basis consisting of common
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eigenforms for all T(n?) (n € Zy, (n, N) = 1) and moreover the system of
eigenvalues of any element of such basis corresponds to a primitive form of
weight 2k and of a conductor which divides M and is less than M.

We use an induction on May,.

If Moy =1, then IT = @ and Rjy = 1. Hence, Ker(Ry7, S) = Ker(Rp, V)
= {0} and the statement holds good.

Let My, > 1 and assume that the above claim holds good if the sub-
space has a smaller “Myy”-part than My, .

We consider the spaces S(k +1/2,N/l,x (l))K and V(N/l; X (é))K for
any | € II. From the assumption of the induction and [U1, (1.8)], these
subspaces have orthogonal C-basis consisting of common eigenforms for all
T(n?) (n € Zy, (n, N) = 1) and moreover the system of eigenvalues of any
element of such basis corresponds to a primitive form of weight 2k and of
conductor dividing M/1.

Combining this and Proposition 13, the claim for Ker(Rp,S) and
Ker(Ry, V) follows.

From (3.1)-(3.3) and the Strong Multiplicity One theorem of weight
2k, the first assertion follows. The second and third assertions are easily
seen by using the above results. U

Our next purpose is to rewrite the space of “oldform” O(k+1/2, N, x)x

PROPOSITION 14. We have the following formulae.
[The case of k > 2]

O(k+1/2,N.x)k= >, >, S(k+1/2,4B,&)x |84
0<B|M 0<A|(M/B)
SR

+ Y > Y S(k+1/2,4B,8), | UA) [] R

0<B|M 0<A|(M/B)2 0<e;<2 lell
B#M é(ﬂ):x (lemn)

[The case of k = 1]
OB/2,N,)xk= Y, >, V(@AB;i&k|éa

0<B|M 0<A|(M/B)
BEMe(d)

D ORED SRS B ACE PO |

0<B|M 0<A|(M/B)2 0<e;<2 lell
B#M &(A)=x (leIl)
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Here, & runs over all (even quadratic) Dirichlet characters defined modulo
4B such that £ (A) =X.

Remark. We know the relation of the twisting operator: R;® = R; for
all [ € II. Hence we can replace the range 0 < ¢; < 2 with 0 < ¢; € Z.

Proof. From [U1, (1.9), (1.22), (1.23)], we easily see that the right-hand
sides of the statements are subspaces of S(k+1/2, N, x)x resp. V(N;x) k-

The subspaces S(k +1/2,4B,§), and V(4B;§), have orthogonal C-
basis consisting of common eigenforms on hermitian operator T (n?) (n €
Z,, (n,4B) = 1), moreover the systems of eigenvalues of such eigenforms
correspond to primitive forms of weight 2k and of conductors dividing B.
(cf. [U1, (3.10))).

The operators T'(n?) (n € Z,, (n, N) = 1) commute with the operators
64, U(A), and R, (I € IT) (cf. [U1, (1.8), (1.20)] and [U3, (1.7)]). Hence all
subspaces in the right-hand sides of the statements have generators which
are common eigenforms on T'(n?) (n € Z, (n, N) = 1). Moreover those
systems of eigenvalues correspond to primitive forms of weight 2k and of a
conductor which divides M and is less than M, because B | M and B # M.

Combining this with Theorem 3, we see that O(k+1/2, N, x) x contains
the right-hand side.

Next we will prove the contrary inclusion.

We have an explicit expression formula (3.3) of O(k+1/2, N, x)x. We
will check each direct summand of the formula (3.3).

It follows from Proposition 13 that Ker(R7, S) and Ker(R, V') occur
in the first term of the right-hand side, respectively.

Next we consider the part of the subspaces &% (k 4 1/2,4dMay, X)f |
U(e?) = &% (k +1/2,4dMa1, x**) . | U(mae?) (0 < e, d, d # My, ed |
M), where see [U1, (3.1)] for the definition of m; and x**. We only remark
K=k (™), 0 < my | My, and x*F (&) = .

This subspace is contained in the space S (k + 1/2,4dM2+,X2+) K |
U(mi€e?) (when k > 2), resp. V (4dMay; x*1) ;| U(mie?) (when k = 1).

We decompose mi = my - m3 with mg = (my, d).

Then the character x2* (1”—2) can be defined modulo 4dMs .. From [U1,
(1.28)], we have S(k +1/2,4dMay, x*"), | U(mz) = S(k + 1/2,4dMay,
x> (22))k and V (4dMay; x*Y) . | U(meg) = V (4dMay; x>+ (2))

From this we may assume that (m,d) = 1.

K
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We decompose that my = my - ms with my = (my, e).

We first consider the case of m4 = 1. In this case, we set B = dMs..

Since (my,ed) = (e,d) = 1, mye? | (My/d)? = (M/B)? and so the sub-
spaces S(k + 1/2,4dMay, x**) ;| U(mie?) (when k > 2) and V(4dMyy;
x*Y)k | U(m1e?) (when k = 1) occur in the second term of the right hand
side.

Next we consider the case of my > 1. Take a prime divisor p of my.
Then mie? = (my/p)(e/p)? x p>.

For k£ > 2, we have

S(k+1/2,4dMoy, x**) . | U(mye?)
= S(k+1/2,4dMsy, x**) | U((ma/p)(e/p)*)U (p°)

C S(k +1/2,4M/p, x2* (ml/p )
C S<k+ 1/2,4M /p, x>+ (ml/p )
1/p

+S<k+ 1/2,4M /p, x** (

K

) U).

Here, we use the formula (A.4) at the last inclusion.
For k = 1, we can see in the same way,

V (4dMay; x*F) o | U(mae?) C V(4M/p; X (M>>K
+ V(4M/P; Xt (m—l/g))K | U(p).

Here, we use that Hecke operator T'(p?) fixes V(4M /p; x*T (ﬂl/—p>) .

We set B= M/p, A=pandso A=p| (M/B)=p. This mearﬁ that
S(k+1/2,4dMsy, x*%) . | U(mie®) (when k > 2) and V (4dMay; x*) . |
U(m1e?) (when k = 1) are contained in the right-hand side.

We finally consider the part of 9%%(k 4+ 1/2, N, x)k. For all ()ierr #
(v1)1emr, we have the following (cf. §2 (2.1)):

B = @ 6" (k+1/2,N(a),x) | U(a?)
O<a|lD

= @ & (k+1/2,N@),1), | Uua?),

0<a|lD

| 6p
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where D = II(a)o, F := II(a)24, and see §2 for the other notation.

It follows from the above that B(® occurs in the second term of the
right-hand side. Here, we note that B = M1M2(i) and so Ip? | (M/B).
Hence A = ua® | Ip® | (M/B)2.

Since €% = [1,c ;7 3(Ri*+ k(1) R;) and N0 (k+1/2,N, X))k = 2 (o) £ ()
B | e, the subspace N5 (k+1/2, N, x) is contained in the second term
of the right-hand side. 0

From the above, we can give the following simple reformulation of re-
sults of §2 and §3.

THEOREM 4. (Final formulation of newform for Kohnen space) Let
k be a positive integer and M an odd positive integer. Let x be an even
character modulo N := 4M with x> = 1. We denote the p-adic additive
valuation for any integer m by ordy,(m). We decompose M as follows:

—— e d, (M
M = M Myy, M= || p, My = || prdn(
ordp(M)=1 ordp(M)>2
p|M p|M

Denote the set of all prime divisors of My by II.
Define the space of oldform O(k + 1/2, N, x)k as follows.
[The case of k > 2]

Ok +1/2,N,x)k
> > S(k+1/2,4B,&)k | 64

0<B|M 0<A|(M/B)
()

+ 3 YN S(k+1/2,4B,9) |UA) [ R

0<B|M 0<A|(M/B)2 0<e;<2 lell
B#M E(A)=X (lelT)

[The case of k = 1]

OB/LN.X)k= Y. >, V(EB;&) |84
0;5}5\14 02?2)1\4:/;3

DD DD DI A0 PR C) |

0<B|M 0<A|(M/B)2 0<e;<2 lell
B E(é)=x (lell)
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Here, & runs over all characters modulo 4B such that & (é) =X.

O(k+1/2,N,x) Kk is a subspace of S(k+1/2, N, x)k if k > 2, resp. V(N;
X)k ifk = 1. We denote by N(k+1/2, N, x)k the orthogonal complement of
Ok+1/2,N,x)k in S(k+1/2,N,x) resp. V(N;x)g according as k > 2
resp. k = 1.

Then the space M(k + 1/2, N, x)k is stable by the twisting operators
R, for all p € II. Hence we can decompose this space into common eigen
subspaces as follows:

m(k + 1/27N>X)K

= @ N k+1/2,N,x)x,
re{x£1}T

N (k +1/2, N, )k
={feNk+1/2,N,X)k; f|Rp,=r(p)f forallp € II}.

We call these spaces ‘J'(Q)’”(k—i— 1/2, N, x)k the spaces of newforms of Kohnen
space, because these subspaces M0 (k4 1/2,N,x)k (k € {£1}) have the
following nice properties.

(1) nos(k+1/2,N, X)k has an orthogonal C-basis consisting of com-
mon eigenforms for all Hecke operators Tka,N’X(pQ) (p: prime, p | M)
and U(p?) (p: prime, p | M), which are uniquely determined up to multi-
plication with non-zero complex numbers. Let f be such a common eigen-
form and X\, the eigenvalue of f with respect to Tkﬂ/z,N,X(pz) p f M)
resp. U(p?) (p | M), then there exists a primitive form F € S%(2k, M) of
weight 2k and of conductor M which is uniquely determined and satisfies
the following: For a prime p,

F | Toe,m(p) = MpF if (p, M) =1 and F|U(p) = \F ifp| M.

Here, we can find, by using the trace relation of Theorem 2 (1), which
primitive form occurs via the above correspondence.

(2) (The Strong Multiplicity One Theorem)

Let f, g be two non-zero elements of N®*(k +1/2,N,x)k. If f and g
are common eigenforms of Tk+1/2,N,X(P2) with the same eigenvalue for all
prime numbers p prime to some integer A, then Cf = Cg.

Therefore M0 (k + 1/2, N, x)k — S°(2k, M) as modules on the full
Hecke algebra.
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(3) The space of oldforms O(k+1/2, N, x)k has also an orthogonal C-
basis consisting of common eigenforms for all Hecke operators T, k+1/2,N, X(pz)
(p: prime, p | N). The system of eigenvalues of such a common eigenform

corresponds to a primitive form of weight 2k whose conductor is a divisor
of M and less than M (cf. Theorem 3).

(4) The space of oldform O(k + 1/2, N, x)k is generated by the spaces
of cusp forms of lower level. Hence, by induction, we see that the spaces
S(k+1/2,N,x); (k> 2) and V(N;x)g (k= 1) are reconstructed by the
spaces of the types of m@"‘(k +1/2,4B,¢&) K and the operators of the types
of 64, U(A), and R;.

These operators 64, U(A), and Ry (almost) fiz the Fourier coefficients
of cusp forms, i.e., for f =3 -, a(n)e(nz),

Fléa(z) = AM/ZH1/Ap(Az) = AR/2+1/4 Z o(Anz),

n>1

F1UA)(z) =) a(An)e(nz),

n>1

FIRi(z) =3 a(n) (%) e(nz).

n>1

From this we claim the following: For studying Fourier coefficients of a
cusp form in S(k 4+ 1/2,N,x)kx resp. V(N;Xx)g, it is sufficient to study
cusp forms only in the spaces of newforms ‘ﬂ@"‘(k +1/2,N,x)k- 0

Remark. There exists a case such that %% (k+1/2, N, x) x = N (k+
1/2, N, x)x as modules over Hecke algebra for two distinct s, & € {£1}/1.
For example we have the following isomorphism: Let p be an odd prime

and {k, '} = Map({p}, {£1}). Then

(3.4) Nk +1/2,4p% 1) =N (k+1/2,4p°, 1)k

= @ s

oe{x1}{r}

@<1+<p))/2{50 (2k,p) | Ry ® S(2k,1) | Ry} .

(cf. Theorem 2 (1))
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Appendix.

We collect several propositions which are used in Section 2.
Let k and N be positive integers such that 4 | N and x an even Dirichlet
character modulo N with y? = 1.

PROPOSITION A.1. Let @ and a be two odd positive divisors of N such
that (Q,N/Q) = (a,Q) = 1. For any f € S(k+1/2,N,x), the following
identity holds good:

FIU@W(Q) = xq(a)f | W(@QU(a),
where xq is the Q-primary component of x.

Proof. If Q =1, the assertion is trivial and so we suppose that Q # 1.

We decompose a = ljly---1l; (li,...,l; are odd prime numbers) and
Q =p1° -+ -pp,° (pi’s are distinct prime numbers and e; > 1).

First we consider the case of t = 1 and will prove this case by using
induction on n.

If n = 1, the assertion follows from [U1, (1.20) (1)].

Suppose that n > 2 and the assertion holds good for any m less than
n.

Observing f | U(ly) € S(k +1/2,N,x (l—l)>, we have the following

formula from [U1, (1.18)] and the assumption of the induction:

—~

FLUT(Q) = (x (l—)) (Qpa=")f | U)W (Qpn=") W (pu")
Pn
= Xpn (QPn ™) Xpropns (1) f | W(Qpn ™) U (L)W (pp")
_ Qp, "
= " e l
Xpn(QP )Xp P ( 1) <X ( >>pn ( 1)

X F W@~ )W on)Uh)
= Xpn (QPn ™ )Xprpn () | W(Qpn ™" )W (pn®)U (1)
= Xprpa () | W(Q)U (L) = x@(l) f | W(Q)U ().

Next we suppose that ¢ > 2 and the assertion holds good for any s less
than ¢. From the above formula and the assumption of the induction, we
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have the following:
FIU@W(Q) = UL L-1)U)W(Q)
= (x (= )) (0 U k) T @)U
Q

= XQ(lt)XQ(ll b)) f W(Q)U(ll 1)U (L)
=xq(a)f | W(Q)U(a).
Thus we obtain the assertion. U
Now, we choose and fix an odd prime number p satisfying (p, N) = 1.
Take a form g € S(k+1/2,N,x). Then g is also contained in S(k +

1/2, Np, x). Hence we can consider the form g | Y, (See [Ul, p. 155] for the
definition of Y},).

Since (p, N) = 1 and y is defined modulo N, we have x, = 1. Therefore
from [U1, (127)}, p™+9/2g | U)W (UMW () = 9 | ;> = (3) po.
Using [U1, (118)], p™*%29 | UmW (@)U (p) = (3) pg | W(e) ™" =

P
~ N\ Kk+1/2 ~
() e We).

Since g € S(k+1/2,N,x) and W (p) = Y,*, for some v, € I'(N), we

get 9| W(p) =g 3.
Thus we obtain the following formula for any g € S(k + 1/2, N, x).

3 N\ k+1/2
(A.2) 915 =(7}) P21 | YU (p).

Next we consider g = > _>7 ; a(n)e(nz) € S(k + 1/2, N, x) as an element
of S(k+1/2, Np,x) and apply [U1, (1.26), (1.18)] to g.

g1Y, = (})Hgﬂx(p)glw(p)éw(‘f) Y an ) (2) et

n>1

- (2 T w5+ (%)_I/megam) () etn)

Nk
= <7> x(p)p*/**

>3 { %-10(n/5) + P x(p) (i)k ) a(n>} e(n),

n>1
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where a(n/p?) = 0 if p? | n.
By using [Sh1, Theorem (1.7)], this formula is expressed by U(p?) and
the Hecke operator Tkﬂ/z’N’X(pz), ie., forany g€ S(k+1/2,N, ),

1\ k12 )
(A3) g|Y,= (?) x@)P**7F (g | Try1/2.n5®?) — 91 U®?).

Combining (A.2) with (A.3), we have for any g € S(k + 1/2, N, x),

(Ad) g | W(p)=g|&=p g | Ter1 /o v DU D) — 9| UG?)).

Now we assume moreover that g is an eigen form of T'(p?), i.e.,

(A.5) g | Tk+1/2,N,x(p2) =g (M €C).

and let u be a squarefree odd positive integer such that (u,4Ms4) = 1 and
X« = 1. Here, x, is the u-primary component of y.

We will describe the action of Y, on the forms f := ¢ | U(u) and
f1U®?* = g | U(up?). Here, we consider the action of Y, on the space

S(k +1/2,N,x (E)) (N is the least common multiple of Np and u).

[Case 1] First we assume that (p,u) = 1.

Since g | U(p) is contained in S (k +1/2,N,x (2)>, we can apply Propo-
sition A.1 to g | U(p). Hence we have f | Y, = p~%/2%3/1g | U(p) U(u)
W(p) = (&) p/2+3/4g | Um) W(p) Ulu) = (2) g | U (w).

By using (A.3) and (A.5),

AN 1\ F1/2
o) 11%=(2) (3 X our - 1 1UG)
Applying Y, to the both sides of the above formula and using [U1, (1.27)],

—1 2 w) (—1\"1? 3/2—k 2

E)er=r1w2= () (5) 2@ 0us 1% - 1106A,).
p P p

Modifying this formula and using (A.6), we have

U\ 1\ ~h+3/2
- (5) (7) PP 40 Y,

(A%) (—71) o XD PN =0T = M F U}

Il

FIU@Y,

I
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We can represent these relations as a matrix as follows:

(f 1Y, fIU®*)Y,)
(A7) =(LFIUGY)

k—1/2 2 2k—2
u) (-1 3/2—k ( Ap AT —p )
X | — —_— .
(p> ( p ) x(p)p -1 —Ap

The characteristic polynomial of this matrix is % — (%) p. Hence, this

matrix has two distinct eigen values.

[Case 2] Next we assume that p | u.

Since g | U(p?) is contained in S(k +1/2,N, x), we can apply Proposi-
tion A.1to g | U(p?). Observing x, = 1, f | Y, = p~#/2+3/4g | U(p*) U(u/p)
W (p) = p~*/2+34g | U(p*) W (p) U (u/p).

. ) o\ kL2

By using (A.3) and (A.5), g | U(p®) = A\pg — (7)

Y,. Applying W(p) to the both sides,

k—3/2

x(p)p* g |

. . L\ k12 N
(48) g1 UGATE) =2 | T0) - (Z) X% | 570
Observing g | U(p) € S<k+l/2,N,X(B)), we apply [Ul, (1.18)] to g |
U(p),

(A.9) 9| Y, W (p) = p~/23/4g | U(p)W (p)?

N
= pk/2+3/4 (—p—) x(p)g | U(p).

Combining (A.4), (A.8), and (A.9), we have
p MG | U)W (p) = p~ (N = 9™ )9 | Ulp) = Ay | U™)}
Therefore
(A.10) F1Yp =0 2522 = 0™ 72) f = Mf [ U}
Applying Y), to the both sides of the above (cf. [U1, (1.27)]),

(P—1f | Yp+pf =Y =p {2 =¥ ) f | Y, = MWf | U@V,
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Modifying this formula and using (A.10),

FIU®)Y,
= P_2k+2{()‘p3 - )‘p(p%‘l +P2k_2))f - ()‘p2 - pzk_l)f | U(PQ)]“

We can represent these relations as a matrix as follows:

(A.11)

(f | Y, £ 1 U()Y))
= (f,f1U®)

y p—2k+2 ( )\pZ _ p2k—2 /\pS _ )\p(gﬂc—lz:_ 11)219—2) > .
—Ap —(/\p —ph)

The characteristic polynomial of this matrix is 2 — (p — 1)t —p =

(t — p)(t + 1). Hence, this matrix has two distinct eigen values.

(M]
[M-R-V]

(N]
(]

[Shi]
[Sh2]
[Sha)
(She]
[She-W]
[U1]
[u2)

[U3]
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