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ON TRANSIENT MARKOV PROCESSES OF
ORNSTEIN-UHLENBECK TYPE

KOUJI YAMAMURO

Abstract. For Hunt processes on Rd, strong and weak transience is defined
by finiteness and infiniteness, respectively, of the expected last exit times from
closed balls. Under some condition, which is satisfied by Levy processes and
Ornstein-Uhlenbeck type processes, this definition is expressed in terms of the
transition probabilities. A criterion is given for strong and weak transience
of Ornstein-Uhlenbeck type processes on Rd, using their Levy measures and
coefficient matrices of linear drift terms. An example is discussed.

§1. Introduction

Let R^ be the d-dimensional Euclidean space and B be the Borel σ-
algebra in RA We denote the inner product and the norm in Έld by
(x,y) = Σj=ix.7%' a n d \x\ = V(x>x)i respectively, for x = (xj)i<j<d,
y = (yj)ι<j<d- Let X = (Ω, Λ4, Mt, Xt, θt, P

x) be a Markov process (in the
sense of [1]) with state space (R r f,#), satisfying PX(XQ — x) = 1. Assume
that X is a Feller process. Here we say that X is a Feller process if it satis-
fies the following properties: for any continuous function / on Έld vanishing
at infinity,
(i) Ptf is continuous for all t > 0,
(ii) Ptf —* f uniformly as t —•> 0,
where Pt is the transition operator of X. This process X is a Hunt process
by virtue of Theorem 9.4 in [1] p.46. The process X is called transient if it
satisfies

W l i m |Xt| = oo) = 1

for every x G Έld. Let LB = sup{£ > 0 : Xt G B} for any B G B, which is
called the last exit time from £?, where the supremum of the empty set is
0. Let TB = mί{t > 0 : Xt G B} for any B e B. Now we define strong and
weak transience.
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DEFINITION 1. Let X be transient. Then X is called strongly transient

if it satisfies

EXLB < oo

for every closed ball B and every x. In the remaining case it is called weakly

transient.

Our definition of strong and weak transience is different in appearance

from that of Port [3] given for irreducible Markov chains. But in [3] he

showed that strong and weak transience is equivalent to finiteness and in-

finiteness, respectively, of the expectation of the last exit times from finite

sets. Hence the definition above is a natural extension.

Now we introduce the following condition:

(1.1) inf Exe~Lκ > 0 for any compact set K.
xEK

Our first result is the following theorem.

THEOREM 1.1. Let X be transient and satisfy the condition (1.1). Then

X is strongly transient if and only if we have, for any x and any closed ball

K,

poo

(1.2) / dt tPx (Xt G K) < oo.
Jo

In particular we shall investigate transient Ornstein-Uhlenbeck type

processes. An Ornstein-Uhlenbeck type process ( OU type process ) X is

a Feller process with state space (Rrf,23) such that the process {Xt} under

the probability measure Px has the same finite-dimensional distribution as

the process {Xt} defined by

/ '
Jowhere {Zt} is a Levy process, and Q is a real dx d-matrix of which all eigen-

values have positive real parts. Here the stochastic integral with respect to

the Levy process is defined by convergence in probability from integrals of

simple functions. This process X is called the OU type process associated

with {Zt} and Q. The infinitesimal generator of X is given in [6] and [7].

Let the Levy process {Zt} have the following characteristic function:
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φ{z) = - 2 - 1 (z, Bz) + j (e^'x' - 1 - i(z, x>l{|x|<i}(a;)) p{dx) + i(b, z),

where B is a symmetric nonnegative-definite constant matrix, p is a measure

on Έld with p({0}) = 0 and J ( l Λ \y\2)p(dy) < oo, b is a constant vector,

and l{|£c|<i} *s the indicator function of the set {|x| < 1}. The measure p is

called Levy measure.

Recurrence criterion of OU type processes was found by T. Shiga [9]

in one dimension, by K. Sato, T. Watanabe, and M. Yamazato [7] and

by K. Sato, T. Watanabe, K. Yamamuro, and M. Yamazato [8] in some

multidimensional cases, and finally by T. Watanabe [10] in the general

multidimensional case.

Our second result is the following criterion of strong and weak tran-

sience for OU type processes.

THEOREM 1.2. Let X be a transient OU type process. Fix c > 0. Then

X is strongly transient if and only if

(1.3) Γ°texp ί ds [ (e~\e'sQχ\ - l) p{dx)
JO JO J\x\>c ^ '

dt < oo.

§2. Proof of Theorem 1

In order to prove Theorem 1, we need the following lemmas. For a

nonnegative measurable function / on R^, define Uλf by

/•oo
Uλf{x) - / e-λtPtf(x)dt.

Jo

Let us denote U = U°.

LEMMA 2.1. Let X be transient and satisfy the condition (1.1). Then

is bounded for any compact set K.

Proof. In [2] this lemma was proved under some other condition. Let

Kn be a sequence of compact sets such that Kn is contained in the interior

of Kn+ι and UnKn = RA Let us denote gn(x) = Px(Tκn < oo). We denote

Qnk — k{gn — Pign). We notice that Ugn & < oo. By virtue of Lemma 3.1
' A; '

in [2] p.403, we have, for any m > 1,

(2.1.1) gn = lim | Ug k.



22 K. YAMAMURO

Here the right-hand side denotes the increasing limit of Ugnmk as k —> oo.
Furthermore,

(2.1.2) 1 - lim T 9n = lim ΐ Ϊ75 n j mn.
n—>oo n—>oo

Define # m by

From gn^u < mn we have gm < 1. And from (2.1.2) we have 0 < Ugm < 1.
Set h = Ό^g™. Then /ι < t/g771 < 1. From the resolvent equation we
have Uh < Ugm < 1. Since Ugm > 0, we get h > 0. Furthermore, since
Tκn o θt < oo and L#n > t are equivalent,

= Σ ^ k (1 - e-L-) - e&E* (e-^ - e-L^ : LK

n=l

^ ( ^ ) ^ [ / ^ [e"^n : LKn

Now there is a compact set Kn-2 such that K C Kn-2 We can choose
a nonnegative continuous function / such that the support of / is i^n_i,
/ < 1, and / = 1 on i^n-2 Then, for sufficiently large ra,

Ex \EX^ [e~Lκ^ : LKn >

E'e-'-' .
ι

Here we got the last inequality by using the Feller property. Hence, using
the condition (1.1), we have inίxeκ h(x) > 0 from / = 1 on Kn-2 From
this fact we get

Uh 1
<Ulκ < h(x) infxGχ h(x)'
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concluding the proof.

LEMMA 2.2. Let X be transient and satisfy the condition (1.1). If B

and C are compact sets such that the interior of B contains C, then there

are positive constants a and β such that

(2.2.1) aPx{Tc < oo) < UlB(x) < βPx(TB < oo)

for every x.

Proof Using the strong Markov property, we have

UlB(x) > Ex
 \EXTC \Γ \B{Xt)dΔ : Tc < ooj

>Px(Tc<oo)mϊUxlB(x),
ίcGO

Δ : Tc < ooj

where 0 < λ < oo. Since X is a Feller process, we have inϊxec UλlB(x) > 0.

Hence we obtain the first inequality in (2.2.1). Next we shall prove the

second inequality. We have

UlB(x) = Ex
 \EXTB \ Γ lB(Xt)dt\ : TB < ooj

< Px (TB < oo) sup UlB(x).
xeB

t\ : TB < ooj

Using Lemma 2.1, we have s u p x G β UlB(x) < oo. This shows the Lemma.

Proof of Theorem 1. We have

EXLB = / Px (TB oθt<oo) dt.
Jo

Let A be a closed ball such that B is contained in the interior of A. By

virtue of Lemma 2.2, we get

- / tPt(x,A)dt= - / PtUlA(x)dt
a Jo oί J o

>EXLB

I roo If00

- / PtUlB(x)dt = - / tPt(xJB)dt.
P Jo P Jo

Hence,

EXLB < oo for any closed ball B
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if and only if

tPt(x, B)dt < oo for any closed ball B.Γ
Jo
/o

We have thus proved the theorem.

Remark 2.3. If X is a transient OU type process or a transient Levy
process, it satisfies the condition (1.1). Because, for any compact set if,
there is a compact set C such that Exe~Lκ > E°e~Lc for all x G K.
Further (1.1) holds in case of transient strong Feller processes. Here we say
that X is a strong Feller process if it is a Feller process and if (i) in the
Feller property holds for any bounded measurable function /. In fact, we
have Exexp{-Lκ} > Ex exp{-(Lκ o θt + t)} = e-tPtE

xexp{-Lκ}, and
the last expression is continuous in x by virtue of the strong Feller property.
Since Ex exp{—Lχ\ > 0 for all x G K, we have the condition (1.1).

Remark 2.4. Let

r(t) = Γ ds ί dxh(x) ( Px (Xs G dy) % ) ,

where h is a nonnegative continuous function on Hd with compact support,
not identically zero. In [4] the definition of strong and weak transience
for Levy processes is given by Jo°° r{t)dt < oo and = oc, respectively. In
case of an OU type process, since the condition of Theorem 1 is satisfied
by virtue of Remark 2.3, we see that it is strongly transient if and only if

§3. Proof of Theorm 2

In this section let X be an OU type process. First we shall state a
fundamental lemma discovered by T. Watanabe [10] on boundedness of
some integrals. This will play an important role in the proof of Theorem
2. Let n and m be positive integers. The number z signifies the complex
conjugate of z. Let 7j(l < j < n) be complex numbers. Let Pj(s), 1 < j <
n, be polynomials with degrees being at most m. We assume that Pj(s)
has real coefficients if ηj is real, and that jj = τ& and Pj(s) = Pk(s) for
some k if ηj is not real. Define a function f(s) on R 1 as
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Further let I[x) be a real bounded measurable function on R 1 and let

J(x) = JQ I(u)du.

LEMMA 3.1. (T. Watanabe [10]) Suppose that

sup |/(x)| < 1 and sup |</(#)| < 1.

(i) We obtain

ί Hf(s))d*
Jo

<K1+K2 log V 1 ) for every N > 0.

(ii) In addition, suppose that

X\

Then we obtain

/ Πf(s))dε
JM

for every M and N with M < N.

Here K\, K2, and K3 are positive constants depending only on m^n, and

For c > 0 we denote the restriction of p to the set {x : \x\ > c} by
pc. Let {Zf} be a compound Poisson process with Levy measure pc. The
process Xc denotes the OU type process associated with {Z£} and Q.

LEMMA 3.2. Let X be transient. If Xc is weakly transient for some
c > 0, then X is weakly transient.

Proof. Choose a Levy process {Wt} independent of {Z^} such that
{Wt + Zf\ and {Zt} have common finite-dimensional distributions. Let Y
be the OU type process associated with {Wt} and Q. Then, identifying Xc

and Y with Xc

t and Yt defined similarly to Xt in section 1, we see that
the processes Xc and Y are independent. We notice that Y has a limit
distribution μ, because the Levy measure p — pc satisfies Jιa.ι>1 log \x\(p —
pc){dx) < 00 (see [6]). By Theorem 1 and Remark 2.3, we can choose closed
balls E\ and E2 such that Jo°° tPx(X£ G E\)dt = 00 for some x and E2 is a
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μ-continuity set with μ (E2) > 0. Now let a closed ball E contain E\ +
Let t be large enough. Then

Px(Xt EE) = P0(XteE- e^x)

> P°(Xt

c eEx- e'tQx, Yt e E2)

Hence we obtain Jo°° tP
x(Xt G E)dt = oo, and this completes the proof.

Using these lemmas, we shall prove Theorem 2. Let Pt(x,E) and
P£(x,E) be transition probabilities of X and Xc, respectively. And let
Pt and Pi be their transition operators.

Proof of Theorem 2. For any a > 0, the Fourier transform of ha(x) —

Πf=i ((α — \X3\) V 0) i s expressed as

r d

ha(z) = / e^x^ha(x)dx = Y[4zf sin2(2-ι

J 3=1

r
a(z) = / e^x^ha(

J

We have the inversion formula

At first we suppose that X is strongly transient. By virtue of Lemma 3.2, we
obtain that Xc is strongly transient for any c. Let Pt(x, z) and -Pf(x, z) be
the characteristic functions of Pt(x^dy) and Pt(x,dy), respectively. There
is a positive constant N satisfying that \e~s®z\ < N\z\ for all 5 > 0 and
z G Rd. Choose a large enough. We have ha(e~sQχ + z) > ha_N\x\(z).
Then, from Theorem 1,

oo > Γdttjpt

c(x,dy)ha(y)
ΛQO

= dt
Jo

>J dttjPt

c{0,dy)ha_Nφ)
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We have

= j ^ γ d yo dttj dzha_Nφ)Pt

c(0, -z)

1 ί°° Γ
= j^y j dttj dzha_Nφ)RePt

c(0, -z).

Pt

c(0,z) = exp I"/ ds J (exp(i(z,e-s(3χ)) - l) pc(dx)] .

Hence we get

RejPt

c(0,^) = cos Fc(t,z) exp Gc(t,z),

where

Fc(t,z)= / ds s'm(z,e~sQx)ρc(dx),

G c ( ί , z)= I ds I (COB(Z, e~sQx) - l ) p c (

Use Lemma 3.1 (ii) for /(x) = sinx. Then

where K\ is a constant depending only on Q. Choose c so large that
Kλp(\x\ >c)< π/4. Then cosFc(t,z) > \j\/2. Therefore,

oo > / dt t dzha_N\x\(z)expGc(t,z).

We have ha_N\x\(z) > 0 for \z\ < α_
2^, ,. Hence, for some z with 0 < \z\ < 1,

oo > / dt texpGc(t,z)
Jo

/ rfί ίexp I I ds I (e~'^ ' e s ^ ' — 1J pc(dx) + Hc(t,z
Jo Uo J ^ '

where

Hc(t,z) •=• I ds I ίcos(z,e~s^x) — e~^z'e x")pc(dx).
Jo J ^ '
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Letting I(x) = 2 1 (cosx — e lxl) in (ii) of Lemma 3.1, we have

pOO

oo > / dt t exp
Jo

Jo
dt t exp

Next we shall prove the converse. In order to prove that X is strongly
transient, it suffices to prove that, for all x and for all small α,

ί dtt ίPt(x,dz)ha(z) < oo.

We have

f Pt(x,dz)ha(z) = ίdzha(z)Pt(O,z)e^e~tQ^

< Jdzha(z)\Pt(O,z)\

<ad ί dz\Pt

c(0,z)\.
J\z\<aVd

Hence it suffices to prove, for some c > 0,

poo p

/ dtt dz\Pf(0,z)\ < oo.

Furthermore,

J\z\<
= / expGc(t,z)dz

J\z\<l

\fds! (e~\e~sQχ\ - l ) pc(dx)] ί exp [Hc(t, z) + Ic(t, z)] dz,= exp

where Ic(t,z) - / (Jώ/ ^e-l(^β-s<?^>l - e-KsQ^ P c ( ^ ) . Denote by

the d — 1 dimensional unit sphere. Define a set SQ as

1 for u > 1}.
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We can disintegrate pc as

pc(E) = / σ(dξ) ί
JsQ JO

for each Borel set E in Rrf, where σ is a probability measure on SQ and Tξ
is a measure on (0, oo) such that Tξ(B) is measurable in ξ for any Borel set
B in (0,oo) and Tξ((0,oo)) = pc(Rd). Hence setting I{x) = e~^ in (i) of
Lemma 3.1 and letting e~sr — ω, we obtain, for z G Hd with \z\ < 1,

σ(dζ) / rξ(dr)
JO

σK) Γr€(dr) Γ —
Q JO JO

 ω

< pc(Kd) \Kλ + K2 ί log - ^ — σ(dξ)) ,
V J l 2 ) l 7

where î χ and ̂ 2 depend only on Q. From Lemma 2.2 of [7], choosing c
large enough, we have

/
J\z\

< const / exp \K2pc(ΈLd) ί log--^—
J\z\<l I JSQ \{Ziξ)\

Ί*l<i

r Γ , r i 1
dz < (X).

Here we used Lemma 3.1 (ii) for I(x) = 2 1 (cosx — e l x '). By virtue of
Theorem 1 this theorem has been proved.

§4. Example

Now we present an example of Theorem 2. This example has been
already treated in [7]. Let X be an OU type process with Q = α/, a > 0,
and a Levy measure p such that, for every Borel set E in [0, 00),

/

dr

where 7 > 0 , α > 0 , 6 > l . Then we have the following.

(i) If 7 > 1, X is recurrent.
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(ii) If 7 < 1, X is strongly transient,

(iii) If 7 = 1 and a < α, X is recurrent.

(iv) If 7 = 1 and 1 < a/a < 2, X is weakly transient.

(v) If 7 = 1 and 2 < α/α, X is strongly transient.

The conditions do not depend on the dimension d. K. Sato [5] proved that
d-dimensional strongly non-lattice Levy processes are strongly transient if
d > 5. Hence this example shows the difference between Levy processes
and OU type processes.

Proof. Here we shall prove (ii), (iv), and (v). All the rest has been
already proved in [7]. From now on let c = b. By the change of variables
(1.3) becomes

(4.1)

1 f1 dv, 1 \ a f1 du f°° 1- e~ur , 1
= —o / —log-exp / — / —γdr\.

α Jo υ v I a Jv u Jb r(logr)7"1" J
Here we obtain

/ — / — Γ-Γτdr = du I —. ^—r I e ds
Jv u Jb r(logr)7+i Jv Jb r(logr)τ+i Jo

= U1duΓ
Ί Jv Jb

as υ I 0.
(ii) If 7 < 1, then we get

r2/v -vs -2 / 2

/ -^ τ-ds>- [log-
Jb s{\ogs)^ ~ 1 - 7 V v

as v i 0. Hence we see the right-hand side of (4.1) is finite.
(iv) If 7 = 1 and 1 < a/a < 2, then we get

r2/v e-vs 9

/

Jb

ds<loglog
s log s υ
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as v I 0. Hence we see the right-hand side of (4.1) is infinite.

(v) If 7 = 1 and 2 < α/α, then we get

r2/v e-vs rl/vP

Jb slogs - Jb

e

slogs

for υ < 1, where β = β(v) is a function of υ such that 0 < β < 1. Then we

have

I A—ds > e~υl β ί
Jb s log s Jb

ds

slogs

as v I 0. We will calculate (4.1). Now choose δ small enough. Then

Γδ dv Λ 1 \ a fι du f°° 1- e~ur ,
/ —log-exp / — / — r-ττdr

JQ v v [ ajv u Jb r(logrp+i

a

< const / — e x p e v log/3 ( log- I
Jo v l a J V vj

< const / —
Jo v

Here we choose β = β(v) such that β(v) —> 1 and (1 — β(v)) log ̂  —>• CXD as

v i 0. As a result, it follows from a/a > 2 that the last expression is finite.
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