THE MONOTONICITY OF ABSOLUTE NORMALIZED NORMS ON \mathbb{C}^n

KEN-ICHI MITANI, KICHI-SUKE SAITO, AND NAOTO KOMURO

ABSTRACT. In this paper, we characterize some monotonicity property of absolute normalized norms on \mathbb{C}^n (resp. \mathbb{R}^n) by means of their corresponding continuous convex functions.

1. Introduction

Recently, some properties of absolute normalized norms on \mathbb{C}^n have been studied by several authors (cf. [3, 5, 8, 9, 12, 13, 14, 15, 16], etc). A norm $\|\cdot\|$ on \mathbb{C}^n (resp. \mathbb{R}^n) is called *absolute* if

$$||(x_1, x_2, \dots, x_n)|| = ||(|x_1|, |x_2|, \dots, |x_n|)||$$

for all $(x_1, x_2, \dots, x_n) \in \mathbb{C}^n$ (resp. \mathbb{R}^n), and normalized if

$$\|(1,0,\ldots,0)\| = \|(0,1,0,\ldots,0)\| = \cdots = \|(0,\ldots,0,1)\| = 1.$$

The ℓ_p -norms $\|\cdot\|_p$ are such examples:

$$\|(x_1,\ldots,x_n)\|_p = \begin{cases} (|x_1|^p + \cdots + |x_n|^p)^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{|x_1|,\ldots,|x_n|\} & \text{if } p = 1. \end{cases}$$

Let AN_n be the family of all absolute normalized norms on \mathbb{C}^n (resp. \mathbb{R}^n). Bonsall and Duncan in [3] showed the following characterization of absolute normalized norms on \mathbb{C}^2 (resp. \mathbb{R}^2). Namely, the set AN_2 is in a one-to-one correspondence with the set Ψ_2 of all continuous convex functions ψ on the unit interval [0, 1] satisfying $\max\{1-t,t\} \leq \psi(t) \leq 1$ for any t with $0 \leq t \leq 1$. The correspondence is given by the equation $\psi(t) = \|(1-t,t)\|$. Indeed, for all ψ in Ψ_2 we define the norm $\|\cdot\|_{\psi}$ as

$$\|(x,y)\|_{\psi} = \begin{cases} (|x| + |y|)\psi(\frac{|y|}{|x| + |y|}) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

²⁰⁰⁰ Mathematics Subject Classification. 46B20, 46B25.

Key words and phrases. absolute normalized norm, monotonicity, modulus of convexity.

The first and second authors were in part by Grants-in-Aid for Scientific Research (No.23540189), Japan Society for the Promotion of Science.

Then $\|\cdot\|_{\psi}$ belongs to AN_2 and satisfies $\psi(t) = \|(1-t,t)\|_{\psi}$.

Saito, Kato and Takahashi in [14] extended this fact to \mathbb{C}^n (resp. \mathbb{R}^n). Namely, they showed that for any absolute normalized norm on \mathbb{C}^n (resp. \mathbb{R}^n) there corresponds a continuous convex function on

$$\Delta_n = \{ (t_1, t_2, \dots, t_{n-1}) \in \mathbb{R}^{n-1} : t_j \ge 0 \ (\forall j), \ \sum_{j=1}^{n-1} t_j \le 1 \}$$

with some appropriate conditions. Indeed, for any $\|\cdot\| \in AN_n$ we define

(1.1)
$$\psi(s_1, \dots, s_{n-1}) = ||(1 - \sum_{i=1}^{n-1} s_i, s_1, \dots, s_{n-1})|| \quad ((s_1, \dots, s_{n-1}) \in \Delta_n).$$

Then ψ is a continuous convex function on Δ_n , and satisfies the following conditions:

$$(A_0) \quad \psi(0,0,\ldots,0) = \psi(1,0,0,\ldots,0) = \psi(0,1,0,\ldots,0)$$
$$= \cdots = \psi(0,\ldots,0,1) = 1,$$

$$(A_1) \quad \psi(s_1, \dots, s_{n-1}) \ge (s_1 + \dots + s_{n-1}) \psi\left(\frac{s_1}{s_1 + \dots + s_{n-1}}, \dots, \frac{s_{n-1}}{s_1 + \dots + s_{n-1}}\right),$$
if $s_1 + \dots + s_{n-1} \ne 0$

$$(A_2)$$
 $\psi(s_1,\ldots,s_{n-1}) \ge (1-s_1)\psi\left(0,\frac{s_2}{1-s_1},\ldots,\frac{s_{n-1}}{1-s_1}\right), \text{ if } s_1 \ne 1,$

$$(A_n)$$
 $\psi(s_1,\ldots,s_{n-1}) \ge (1-s_{n-1})\psi\left(\frac{s_1}{1-s_{n-1}},\ldots,\frac{s_{n-2}}{1-s_{n-1}},0\right), \text{ if } s_{n-1} \ne 1.$

Let Ψ_n be the set of all continuous convex functions ψ on Δ_n satisfying (A_0) , (A_1) , \cdots , (A_n) . Conversely, for every $\psi \in \Psi_n$, we define

$$\|(x_1, x_2, \ldots, x_n)\|_{\psi}$$

$$= \begin{cases} (|x_1| + \dots + |x_n|)\psi\left(\frac{|x_2|}{|x_1| + \dots + |x_n|}, \dots, \frac{|x_n|}{|x_1| + \dots + |x_n|}\right) & \text{if } (x_1, \dots, x_n) \neq (0, \dots, 0), \\ 0 & \text{if } (x_1, \dots, x_n) = (0, \dots, 0). \end{cases}$$

Then $\|\cdot\|_{\psi} \in AN_n$ and satisfies (1.1). Hence AN_n and Ψ_n are in a one-to-one correspondence under (1.1). From this result, we have a plenty of concrete absolute normalized norms of \mathbb{C}^n which is not ℓ_p -type. As applications, Saito, Kato and Takahashi in [14] characterized the strict convexity of absolute norms on \mathbb{C}^n (resp. \mathbb{R}^n) in terms of their continuous convex function in Ψ_n (see also [15, 16]). We remark that a norm $\|\cdot\|$ on \mathbb{C}^n is absolute if and only if it has the following monotonicity:

$$|z_i| \le |w_i| \ (\forall i = 1, \dots, n) \Rightarrow ||(z_1, \dots, z_n)|| \le ||(w_1, \dots, w_n)||$$

(see [2]).

In this paper, we characterize some monotonicity properties of absolute normalized norms on \mathbb{C}^n in terms of continuous convex functions in Ψ_n . Moreover, as applications, we calculate the modulus of convexity for absolute normalized norms on \mathbb{R}^2 .

2. Preliminaries

We recall some well-known results about monotonicity of norms on \mathbb{C}^n . At first, we have the following

Proposition 2.1. (cf. [2, Proposition IV.1.1]) Let $\|\cdot\|$ be a norm on \mathbb{C}^n . Then the following assertions are equivalent:

(i) for any (z_1, \ldots, z_n) , $(w_1, \ldots, w_n) \in \mathbb{C}^n$ with $|z_i| \leq |w_i|$ for all i,

$$||(z_1,\ldots,z_n)|| \le ||(w_1,\ldots,w_n)||.$$

(ii) for any (z_1, \ldots, z_n) , $(w_1, \ldots, w_n) \in \mathbb{C}^n$ with $|z_i| < |w_i|$ for all i,

$$||(z_1,\ldots,z_n)|| < ||(w_1,\ldots,w_n)||.$$

(iii) $\|\cdot\|$ is absolute.

For the reader, we repeat the proof.

Proof. We only show (i) \Leftrightarrow (ii). (ii) \Rightarrow (i). Let $z_i, w_i \in \mathbb{C}$ with $|z_i| \leq |w_i|$. Fix $\varepsilon > 0$. Then, since $|z_i| < (1 + \varepsilon)|w_i|$, it follows by (ii) that

$$||(z_1,\ldots,z_n)|| < ||((1+\varepsilon)w_1,\ldots,(1+\varepsilon)w_n)|| = (1+\varepsilon)||(w_1,\ldots,w_n)||.$$

Since ε is arbitrary, we obtain (i).

(i) \Rightarrow (ii). Let $z_i, w_i \in \mathbb{C}$ with $|z_i| < |w_i|$. Take λ with $0 < \lambda < 1$ such that $|z_i| \le \lambda |w_i|$ for all i. By (i),

$$||(z_1,\ldots,z_n)|| \le ||(\lambda w_1,\ldots,\lambda w_n)|| = \lambda ||(w_1,\ldots,w_n)|| < ||(w_1,\ldots,w_n)||.$$

Thus we obtain (ii).

For all $\psi \in \Psi_n$, $(\mathbb{R}^n, \|\cdot\|_{\psi})$ is called strictly monotone if $(x_1, \dots, x_n), (y_1, \dots, y_n) \in \mathbb{R}^n$ with $|x_i| \leq |y_i|$ for all i and $|x_{i_0}| < |y_{i_0}|$ for some i_0 , then we have

$$||(x_1,\ldots,x_n)||_{\psi} < ||(y_1,\ldots,y_n)||_{\psi}.$$

In [16], Takahashi, Kato and Saito showed the following.

Proposition 2.2 ([16]). Let $\psi \in \Psi_2$. Then the following are equivalent:

(i) $\psi(t) > t$ for all t with 0 < t < 1.

- (ii) $\psi(t)/t$ is strictly decreasing on (0,1].
- (iii) If |z| < |u| and $|w| \le |v|$, then $||(z, w)||_{\psi} < ||(u, v)||_{\psi}$.

Proposition 2.3 ([16]). Let $\psi \in \Psi_2$. Then the following are equivalent:

- (i) $\psi(t) > 1 t$ for all t with 0 < t < 1.
- (ii) $\psi(t)/(1-t)$ is strictly increasing on [0,1).
- (iii) If $|z| \le |u|$ and |w| < |v|, then $||(z, w)||_{\psi} < ||(u, v)||_{\psi}$.

Thus we have the following.

Proposition 2.4 ([16]). Let $\psi \in \Psi_2$. Then $(\mathbb{R}^2, \|\cdot\|_{\psi})$ is strictly monotone if and only if $\psi(t) > \psi_{\infty}(t) (= \max\{1 - t, t\})$ for all t with 0 < t < 1.

Dowling and Turett in [6] extended this result to $(\mathbb{R}^n, \|\cdot\|_{\psi})$ in order to characterize the complex strict convexity of $(\mathbb{C}^n, \|\cdot\|_{\psi})$.

Proposition 2.5 ([6]). Let $\psi \in \Psi_n$. Then $(\mathbb{R}^n, \|\cdot\|_{\psi})$ is strictly monotone if and only if ψ satisfies the following conditions $(sA_1), (sA_2), \ldots, (sA_n)$: (sA_1)

$$\psi(s_1, \dots, s_{n-1}) > (s_1 + \dots + s_{n-1}) \psi\left(\frac{s_1}{s_1 + \dots + s_{n-1}}, \dots, \frac{s_{n-1}}{s_1 + \dots + s_{n-1}}\right),$$

$$if \ 0 < s_1 + \dots + s_{n-1} < 1,$$

$$\psi(s_1, \dots, s_{n-1}) > (1 - s_1)\psi\left(0, \frac{s_2}{1 - s_1}, \dots, \frac{s_{n-1}}{1 - s_1}\right), \quad \text{if } 0 < s_1 < 1,$$

$$\vdots \qquad \vdots$$

$$\psi(s_1, \dots, s_{n-1}) > (1 - s_{n-1})\psi\left(\frac{s_1}{1 - s_{n-1}}, \dots, \frac{s_{n-2}}{1 - s_{n-1}}, 0\right), \quad \text{if } 0 < s_{n-1} < 1.$$

3. Monotonicity of absolute normalized norms on \mathbb{C}^2

In this section, we first consider the monotonicity of absolute normalized norms on \mathbb{C}^2 .

Theorem 3.1 ([12]). Let $\psi \in \Psi_2$ and $0 \le s_0 \le 1/2$. Then the following are equivalent:

- (i) $s_0 = \max\{t \in [0, 1/2] : \psi(t) = 1 t\}.$
- (ii) $\psi(t)/(1-t)$ is strictly increasing on $[s_0,1)$, and $\psi(t)=1-t$ for all $t\in[0,s_0]$.

(iii) Let $z, w, u \in \mathbb{C}$ such that |w| < |u|.

(a) If
$$\frac{|u|}{|z|+|u|} > s_0$$
, then $||(z,w)||_{\psi} < ||(z,u)||_{\psi}$.

(b) If
$$\frac{|u|}{|z|+|u|} \le s_0$$
, then $||(z,w)||_{\psi} = ||(z,u)||_{\psi}$.

For the readers we repeat the proof.

Proof. (i) \Rightarrow (ii). Assume (i). Let $s_0 < s < t < 1$. Then by $\psi(t) > 1 - t$, we have

$$\frac{\psi(s)}{1-s} - \frac{\psi(t)}{1-t} \le \frac{1}{1-s} \left\{ \frac{s}{t} \psi(t) + \frac{t-s}{t} \psi(0) \right\} - \frac{\psi(t)}{1-t}$$
$$= \frac{s-t}{t(1-s)(1-t)} \{ \psi(t) - (1-t) \} < 0.$$

Therefore $\frac{\psi(t)}{1-t}$ is strictly increasing on $(s_0, 1)$. From the convexity of ψ we have $\psi(t) = 1 - t$ for all $t \in [0, s_0]$. Thus we obtain (ii).

(ii) \Rightarrow (iii). Assume (ii). Let |w| < |u|. Suppose that $\frac{|u|}{|z|+|u|} > s_0$. In the case of $\frac{|u|}{|z|+|u|} > \frac{|w|}{|z|+|w|} > s_0$ we have

$$||(z, w)||_{\psi} = (|z| + |w|)\psi\left(\frac{|w|}{|z| + |w|}\right)$$

$$= |z| \times \frac{\psi\left(\frac{|w|}{|z| + |w|}\right)}{1 - \frac{|w|}{|z| + |w|}}$$

$$< |z| \times \frac{\psi\left(\frac{|u|}{|z| + |u|}\right)}{1 - \frac{|u|}{|z| + |u|}} = ||(z, u)||_{\psi}.$$

In the case of $\frac{|u|}{|z|+|u|} > s_0 \ge \frac{|w|}{|z|+|w|}$ we have

$$||(z, w)||_{\psi} = |z| \times \frac{\psi\left(\frac{|w|}{|z|+|w|}\right)}{1 - \frac{|w|}{|z|+|w|}}$$

$$= |z| \times \frac{\psi(s_0)}{1 - s_0}$$

$$< |z| \times \frac{\psi\left(\frac{|u|}{|z|+|u|}\right)}{1 - \frac{|u|}{|z|+|u|}} = ||(z, u)||_{\psi}.$$

If $\frac{|u|}{|z|+|u|} \le s_0$, then by $\frac{|w|}{|z|+|w|} < \frac{|u|}{|z|+|u|} \le s_0$ and $\psi(t) = 1-t$ on $[0,s_0]$ we have $\|(z,w)\|_{\psi} = |z| = \|(z,u)\|_{\psi}$. Thus we obtain (iii).

$$(iii) \Rightarrow (i)$$
. The proof is easy and so is omitted.

In the same way we have the following

Theorem 3.2 ([12]). Let $\psi \in \Psi_2$ and $1/2 \leq t_0 \leq 1$. Then the following are equivalent:

- (i) $t_0 = \min\{t \in [1/2, 1] : \psi(t) = t\}.$
- (ii) $\psi(t)/t$ is strictly decreasing on $(0, t_0)$, and $\psi(t) = t$ for all $t \in [t_0, 1]$.
- (iii) Let $z, u, w \in \mathbb{C}$ such that |z| < |u|.
 - (a) If $\frac{|w|}{|u|+|w|} < t_0$, then $||(z,w)||_{\psi} < ||(u,w)||_{\psi}$.
 - (b) If $\frac{|w|}{|u|+|w|} \ge t_0$, then $||(z,w)||_{\psi} = ||(u,w)||_{\psi}$.

4. Monotonicity of absolute normalized norms on \mathbb{C}^n

In this section we consider the monotonicity of absolute normalized norms on \mathbb{C}^n (resp. \mathbb{R}^n).

Theorem 4.1. Let $\psi \in \Psi_n$. Fix $(s_1, \ldots, s_{n-1}) \in \Delta_n$ with $s_1 + \cdots + s_{n-1} = 1$. Then the following assertions are equivalent:

(i) There exists λ_0 with $0 \le \lambda_0 < 1$ satisfying

$$(4.1) 0 \le \lambda < \lambda_0 \Rightarrow \psi(\lambda s_1, \dots, \lambda s_{n-1}) > \lambda \psi(s_1, \dots, s_{n-1}),$$

(4.2)
$$\lambda_0 \le \lambda \le 1 \Rightarrow \psi(\lambda s_1, \dots, \lambda s_{n-1}) = \lambda \psi(s_1, \dots, s_{n-1}).$$

(ii) There exists λ_0 with $0 \le \lambda_0 < 1$ such that

$$f(\lambda) := \frac{\psi(\lambda s_1, \dots, \lambda s_{n-1})}{\lambda}$$

is strictly decreasing on $(0, \lambda_0]$, and $f(\lambda)$ is constant $(= \psi(s_1, \ldots, s_{n-1}))$ on $(\lambda_0, 1]$. (iii) There exists λ_0 with $0 \le \lambda_0 < 1$ such that, for $a_1 \in \mathbb{C}$ and $(p_1, \ldots, p_n) \in \mathbb{C}^n$ satisfying that

$$s_1 = \frac{|p_2|}{|p_2| + \dots + |p_n|}, s_2 = \frac{|p_3|}{|p_2| + \dots + |p_n|}, \dots, s_{n-1} = \frac{|p_n|}{|p_2| + \dots + |p_n|},$$

if
$$0 \leq |p_1| < |a_1|$$
 and $\frac{|p_2|+\cdots+|p_n|}{|a_1|+|p_2|+\cdots+|p_n|} < \lambda_0$, then

$$(4.3) ||(p_1, p_2, \dots, p_n)||_{\psi} < ||(a_1, p_2, \dots, p_n)||_{\psi},$$

and, if
$$0 \le |p_1| < |a_1|$$
 and $\frac{|p_2| + \dots + |p_n|}{|a_1| + |p_2| + \dots + |p_n|} \ge \lambda_0$, then

$$(4.4) ||(p_1, p_2, \dots, p_n)||_{\psi} = ||(a_1, p_2, \dots, p_n)||_{\psi}.$$

Proof. (i) \Rightarrow (ii). Let $0 < \lambda_1 < \lambda_2 \le \lambda_0$. Then

$$\psi(\lambda_2 s_1, \dots, \lambda_2 s_{n-1}) \le \frac{1 - \lambda_2}{1 - \lambda_1} \psi(\lambda_1 s_1, \dots, \lambda_1 s_{n-1}) + \frac{\lambda_2 - \lambda_1}{1 - \lambda_1} \psi(s_1, \dots, s_{n-1}).$$

Therefore

$$f(\lambda_1) - f(\lambda_2)$$

$$\geq \frac{\psi(\lambda_{1}s_{1}, \dots, \lambda_{1}s_{n-1})}{\lambda_{1}} - \frac{1}{\lambda_{2}} \left\{ \frac{1 - \lambda_{2}}{1 - \lambda_{1}} \psi(\lambda_{1}s_{1}, \dots, \lambda_{1}s_{n-1}) + \frac{\lambda_{2} - \lambda_{1}}{1 - \lambda_{1}} \psi(s_{1}, \dots, s_{n-1}) \right\}$$

$$= \frac{\lambda_{2} - \lambda_{1}}{\lambda_{1}\lambda_{2}(1 - \lambda_{1})} \left\{ \psi(\lambda_{1}s_{1}, \dots, \lambda_{1}s_{n-1}) - \lambda_{1}\psi(s_{1}, \dots, s_{n-1}) \right\}.$$

By (4.1) we have $f(\lambda_1) > f(\lambda_2)$.

(ii) \Rightarrow (iii). Let $0 \le |p_1| < |a_1|$ and $(|p_2| + \cdots + |p_n|)/(|a_1| + |p_2| + \cdots + |p_n|) \le \lambda_0$. Put

$$\lambda_1 = \frac{|p_2| + \dots + |p_n|}{|p_1| + |p_2| + \dots + |p_n|}$$
 and $\lambda_2 = \frac{|p_2| + \dots + |p_n|}{|a_1| + |p_2| + \dots + |p_n|}$,

respectively. Suppose that $f(\lambda)$ is strictly decreasing on $(0, \lambda_0]$. Since $s_1 + \cdots + s_{n-1} = 1, \lambda_1 > \lambda_2$ and $\lambda_2 \leq \lambda_0$, we have

$$||(p_1, p_2, \dots, p_n)||_{\psi} = (|p_1| + \dots + |p_n|) \times \psi \left(\frac{|p_2|}{|p_1| + \dots + |p_n|}, \dots, \frac{|p_n|}{|p_1| + \dots + |p_n|}\right)$$

$$= (|p_2| + \dots + |p_n|) \times \frac{\psi(\lambda_1 s_1, \dots, \lambda_1 s_{n-1})}{\lambda_1}$$

$$< (|p_2| + \dots + |p_n|) \times \frac{\psi(\lambda_2 s_1, \dots, \lambda_2 s_{n-1})}{\lambda_2}$$

$$= ||(a_1, p_2, \dots, p_n)||_{\psi}.$$

Suppose that $f(\lambda) = \psi(s_1, \ldots, s_{n-1})$ for all λ with $\lambda_0 \leq \lambda \leq 1$. Then $\lambda_1 > \lambda_2 > \lambda_0$. Hence we have

$$||(p_1, p_2, \dots, p_n)||_{\psi} = (|p_2| + \dots + |p_n|) \times \frac{\psi(\lambda_1 s_1, \dots, \lambda_1 s_{n-1})}{\lambda_1}$$

$$= (|p_2| + \dots + |p_n|) \times \psi(s_1, \dots, s_{n-1})$$

$$= ||(0, p_2, \dots, p_n)||_{\psi}.$$

We similarly have $\|(a_1, p_2, \dots, p_n)\|_{\psi} = \|(0, p_2, \dots, p_n)\|_{\psi}$. (iii) \Rightarrow (i). Let $0 \le \lambda \le \lambda_0$ and let $(s_1, \dots, s_{n-1}) \in \Delta_n$ with $s_1 + \dots + s_{n-1} = 1$. Then $1 - \lambda > 0$ and $(\lambda s_1 + \dots + \lambda s_{n-1})/(1 - \lambda + \lambda s_1 + \dots + \lambda s_{n-1}) \le \lambda_0$. Hence, by (4.3) we have

$$\psi(\lambda s_1, ..., \lambda s_{n-1}) = \|(1 - \lambda, \lambda s_1, ..., \lambda s_{n-1})\|_{\psi}$$

$$> \|(0, \lambda s_1, ..., \lambda s_{n-1})\|_{\psi}$$

$$= \lambda \psi(s_1, ..., s_{n-1}).$$

If $\lambda_0 < \lambda \le 1$, then we have $\psi(\lambda s_1, \dots, \lambda s_{n-1}) = \lambda \psi(s_1, \dots, s_{n-1})$. This completes the proof.

For $\psi \in \Psi_n$ let

$$\widetilde{\psi}(s_1,\ldots,s_{n-1}) = \psi(1-s_1-\cdots-s_{n-1},s_2,\ldots,s_{n-1}) \quad ((s_1,\ldots,s_{n-1})\in\Delta_n).$$

Then $\widetilde{\psi} \in \Psi_n$ and for $s_1 + \cdots + s_{n-1} = 1$,

$$\widetilde{\psi}(\lambda s_1, \dots, \lambda s_{n-1}) = \psi(1 - \lambda, \lambda s_2, \dots, \lambda s_{n-1}),$$

$$\widetilde{\psi}(s_1, \dots, s_{n-1}) = \psi(0, s_2, \dots, s_{n-1}).$$

Therefore, by Theorem 4.1 we have

Theorem 4.2. Let $\psi \in \Psi_n$. Fix $(0, s_2, \dots, s_{n-1}) \in \Delta_n$. Then the following are equivalent:

(i) There exists λ_0 with $0 \le \lambda_0 < 1$ satisfying

$$0 \le \lambda \le \lambda_0 \Rightarrow \psi(1 - \lambda, \lambda s_2, \dots, \lambda s_{n-1}) > \lambda \psi(0, s_2, \dots, s_{n-1}),$$

$$\lambda_0 < \lambda \le 1 \Rightarrow \psi(1 - \lambda, \lambda s_2, \dots, \lambda s_{n-1}) = \lambda \psi(0, s_2, \dots, s_{n-1}).$$

(ii) There exists λ_0 with $0 \le \lambda_0 < 1$ such that

$$f(\lambda) := \frac{\psi(1-\lambda, \lambda s_2, \dots, \lambda s_{n-1})}{\lambda}$$

is strictly decreasing on $(0, \lambda_0]$, and $f(\lambda)$ is constant $(= \psi(0, s_2, \dots, s_{n-1}))$ on $(\lambda_0, 1]$.

(iii) There exists λ_0 with $0 \leq \lambda_0 < 1$ such that, for $a_2 \in \mathbb{C}$ and $(p_1, \ldots, p_n) \in \mathbb{C}^n$ satisfying that

$$s_2 = \frac{|p_3|}{|p_1| + |p_3| + \dots + |p_n|}, \dots, s_{n-1} = \frac{|p_n|}{|p_1| + |p_3| + \dots + |p_n|},$$

if $0 \le |p_2| < |a_2|$ and $\frac{|p_1| + |p_3| + \dots + |p_n|}{|p_1| + |a_2| + |p_3| + \dots + |p_n|} \le \lambda_0$, then

$$||(p_1, p_2, \dots, p_n)||_{\psi} < ||(p_1, a_2, p_3, \dots, p_n)||_{\psi},$$

and, if $0 \le |p_2| < |a_2|$ and $\frac{|p_1| + |p_3| + \dots + |p_n|}{|p_1| + |a_2| + |p_3| \dots + |p_n|} > \lambda_0$, then

$$||(p_1, p_2, \dots, p_n)||_{\psi} = ||(p_1, a_2, p_3, \dots, p_n)||_{\psi}.$$

In general, we have the following theorem.

Theorem 4.3. Let $\psi \in \Psi_n$ and $i \in \{1, 2, ..., n-1\}$. Fix $(s_1, ..., s_{i-1}, 0, s_{i+1}, ..., s_{n-1}) \in \Delta_n$. Then the following are equivalent:

(i) There exists λ_0 with $0 \le \lambda_0 < 1$ satisfying

$$0 \le \lambda \le \lambda_0$$

$$\Rightarrow \psi(\lambda s_1, \dots, \lambda s_{i-1}, 1 - \lambda, \lambda s_{i+1}, \dots, \lambda s_{n-1}) > \lambda \psi(s_1, \dots, s_{i-1}, 0, s_{i+1}, \dots, s_{n-1}),$$

$$\lambda_0 < \lambda < 1$$

$$\Rightarrow \psi(\lambda s_1, \dots, \lambda s_{i-1}, 1 - \lambda, \lambda s_{i+1}, \dots, \lambda s_{n-1}) = \lambda \psi(s_1, \dots, s_{i-1}, 0, s_{i+1}, \dots, s_{n-1}).$$

(ii) There exists λ_0 with $0 \le \lambda_0 < 1$ such that

$$f(\lambda) := \frac{\psi(\lambda s_1, \dots, \lambda s_{i-1}, 1 - \lambda, \lambda s_{i+1}, \dots, \lambda s_{n-1})}{\lambda}$$

is strictly decreasing on $(0, \lambda_0]$, and $f(\lambda)$ is constant $(= \psi(s_1, \ldots, s_{i-1}, 0, s_{i+1}, \ldots, s_{n-1}))$ on $(\lambda_0, 1]$.

(iii) There exists λ_0 with $0 \leq \lambda_0 < 1$ such that, for $a_i \in \mathbb{C}$ and $(p_1, \ldots, p_n) \in \mathbb{C}^n$ satisfying that

$$s_j = \frac{|p_{j+1}|}{|p_1| + |p_2| + \dots + |p_{i-1}| + |p_{i+1}| + \dots + |p_n|},$$

where $j=1,\ldots,n-1$ with $j\neq i$, if $0\leq |p_i|<|a_i|$ and $\frac{|p_1|+\cdots+|p_{i-1}|+|p_{i+1}|+\cdots+|p_n|}{|p_1|+\cdots+|p_{i-1}|+|a_i|+|p_{i+1}|+\cdots+|p_n|}\leq \lambda_0$, then

$$||(p_1, \ldots, p_{i-1}, p_i, p_{i+1}, \ldots, p_n)||_{\psi} < ||(p_1, \ldots, p_{i-1}, a_i, p_{i+1}, \ldots, p_n)||_{\psi},$$
and, if $0 \le |p_i| < |a_i|$ and $\frac{|p_1| + \cdots + |p_{i-1}| + |p_{i+1}| + \cdots + |p_n|}{|p_1| + \cdots + |p_{i-1}| + |a_i| + |p_{i+1}| + \cdots + |p_n|} > \lambda_0$, then
$$||(p_1, \ldots, p_{i-1}, p_i, p_{i+1}, \ldots, p_n)||_{\psi} = ||(p_1, \ldots, p_{i-1}, a_i, p_{i+1}, \ldots, p_n)||_{\psi}.$$

5. Applications

In this section, as applications of Section 2, we study some geometrical constants of Banach spaces. Let X be a Banach space. In 2006, Yang and Wang [17] introduced the geometrical constant $\gamma_X(t)$ of Banach spaces in order to compute the von Neumann-Jordan constant for Day-James spaces $\ell_2 - \ell_1$ and $\ell_\infty - \ell_1$:

$$\gamma_X(t) = \sup \left\{ \frac{\|x + ty\|^2 + \|x - ty\|^2}{2} : x, y \in S_X \right\}.$$

They also presented the following characterization for uniformly non-squareness.

Proposition 5.1 ([17]). Let X be a Banach space. Then the following are equivalent:

- (i) X is uniformly non-square.
- (ii) $\gamma_X(t) < (1+t)^2$ for all (resp. some) t with $0 < t \le 1$.

Mitani and Saito in [12] generalized the notion of the geometrical constant $\gamma_X(t)$ by using the ψ -direct sum $X \oplus_{\psi} X$, as follows:

Definition 5.2. For a Banach space $X = (X, \|\cdot\|_X)$ and $\psi \in \Psi_2$, let ψ -direct sum $X \oplus_{\psi} X$ be the direct sum $X \oplus X$ equipped with the norm

$$||(x,y)||_{\psi} = ||(||x||_X, ||y||_X)||_{\psi}.$$

Then we define

$$\gamma_{X,\psi}(t) = \sup\{\|(x + ty, x - ty)\|_{\psi} : x, y \in S_X\},\$$

where
$$S_X = \{x \in X : ||x||_X = 1\}.$$

See also [16] for the notion of ψ -direct sum. Note that in the case of $\psi = \psi_2$ (ψ_2 is the corresponding function with ℓ_2 -norm $\|\cdot\|_2$) it holds that

$$\gamma_{X,\psi_2}(t) = \sqrt{2\gamma_X(t)}.$$

By using Theorems 3.1 and 3.2, Mitani and Saito presented the following characterization for uniform non-squareness:

Theorem 5.3 ([12]). For a Banach space X and $\psi \in \Psi_2$ with $\psi \neq \psi_{\infty}$, X is uniformly non-square if and only if

$$\gamma_{X,\psi}(t) < 2(1+t)\psi(1/2)$$

for any (resp. some) t with $0 < t \le 1$.

As an application of Section 1, we discuss the characteristic of convexity of $(\mathbb{R}^2, \|\cdot\|_{\psi})$. The modulus of convexity of a Banach space X is the function $\delta : [0, 2] \to [0, 1]$ defined by

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in S_X, \|x-y\| = \varepsilon \right\}.$$

The characteristic of convexity of X is the number $\varepsilon_0(X)$ defined by

$$\varepsilon_0(X) = \sup \{ \varepsilon : \delta_X(\varepsilon) = 0 \}.$$

It is well-known that X is uniformly convex if and only if $\varepsilon_0(X) = 0$, and that X is uniformly non-square if and only if $\varepsilon_0(X) < 2$ (see [7, 10]). We consider the case where $s_0 = \max\{t \in [0,1] : \psi(t) = 1 - t\}$ and $t_0 = \min\{t \in [0,1] : \psi(t) = t\}$ in the theorems above. We shall compute the characteristic of convexity for $(\mathbb{R}^2, \|\cdot\|_{\psi})$ in terms of s_0, t_0 .

Theorem 5.4. Let $\psi \in \Psi_2$. Let $s_0 = \max\{t \in [0,1] : \psi(t) = 1 - t\}$ and $t_0 = \min\{t \in [0,1] : \psi(t) = t\}$. If ψ is strictly convex on $[s_0,t_0]$, that is, $\psi((s+t)/2) < (\psi(s) + \psi(t))/2$ for all s,t with $s_0 \le s < t \le t_0$. then

(5.1)
$$\varepsilon_0((\mathbb{R}^2, \|\cdot\|_{\psi})) = 2\max\Big\{\frac{s_0}{1-s_0}, \frac{1-t_0}{t_0}\Big\}.$$

Proof. Note that

$$\varepsilon_0((\mathbb{R}^2, \|\cdot\|_{\psi})) = \sup\{\|x - y\|_{\psi} : x, y, (x + y)/2 \in S_{(\mathbb{R}^2, \|\cdot\|_{\psi})}\}$$
$$= \sup\{\|x - y\|_{\psi} : x, y \in S_{(\mathbb{R}^2, \|\cdot\|_{\psi})}, \overline{xy} \text{ in } S_{(\mathbb{R}^2, \|\cdot\|_{\psi})}\}$$

because $\dim(\mathbb{R}^2, \|\cdot\|_{\psi}) = 2$ where \overline{xy} is a straight line between the point x and the point y, that is, $\overline{xy} = \{\lambda x + (1-\lambda)y : 0 \le \lambda \le 1\}$. Put the points $P_i(i=0,1,\ldots,7)$ in the unit sphere $S_{(\mathbb{R}^2,\|\cdot\|_{\psi})}$ as

$$P_0 = (1, s_0'), \ P_1 = (t_0', 1), \ P_2 = (-t_0', 1), \ P_3 = (-1, s_0'),$$

$$P_4 = -P_0, P_5 = -P_1, P_6 = -P_2, P_7 = -P_3$$

where $s_0' = \frac{s_0}{1-s_0}$ and $t_0' = \frac{1-t_0}{t_0}$. Since ψ is strictly convex on $[s_0, t_0]$, it is easy to see that the unit sphere $S_{(\mathbb{R}^2, \|\cdot\|_{\psi})}$ has only straight lines $\overline{P_1P_2}$, $\overline{P_3P_4}$, $\overline{P_5P_6}$, $\overline{P_7P_0}$ (see Figure 1). If $x, y \in \overline{P_1P_2}$, then

FIGURE 1. the unit sphere $S_{(\mathbb{R}^2,\|\cdot\|_{b})}$

$$||x-y||_{\psi} \le ||P_1-P_2||_{\psi} = ||(t'_0,1)-(-t'_0,1)||_{\psi} = 2t'_0.$$

If $x, y \in \overline{P_0P_7}$, then

$$||x - y||_{\psi} \le ||P_1 - P_2||_{\psi} = ||(1, s_0') - (1, -s_0')||_{\psi} = 2s_0'.$$

The rest cases are similar. Thus we have (5.1).

References

- [1] B. Beauzamy, *Introduction to Banach Spaces and Their Geometry*, 2nd ed., North-Holland, Amsterdam-New York-Oxford, 1985.
- [2] R. Bhatia, *Matrix analysis*, Graduate Texts in Mathematics. 169, Springer, 1996.
- [3] F. F. Bonsall and J. Duncan, *Numerical Ranges II*, London Math. Soc. Lecture Note Series, Vol.10, 1973.
- [4] M. M. Day, *Normed Linear Spaces*, 3rd ed., in: Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol.21, Springer-Verlag, New York, 1973.
- [5] P. N. Dowling, On convexity properties of ψ -direct sums of Banach spaces, J. Math. Anal. Appl. **288** (2003), 540–543.
- [6] P. N. Dowling and B. Turett, Complex strict convexity of absolute norms on Cⁿ and direct sums of Banach spaces J. Math. Anal. Appl. 323 (2006), 930−937.
- [7] H. Hudzik and T. R. Landes, Characteristic of convexity of Köthe function spaces, Math. Ann. **294** (1992), 117–124.

- [8] M. Kato, K. -S. Saito and T. Tamura, On ψ-direct sums of Banach spaces and convexity, J. Austral. Math. Soc. **75** (2003), 413–422.
- [9] M. Kato, K. -S. Saito and T. Tamura, Uniform non-squareness of ψ -direct sums of Banach spaces $X \oplus_{\psi} Y$, Math. Inequalities Appl. 7 (2004), 429–437.
- [10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Function Spaces, Springer, 1979.
- [11] R. E. Megginson, An Introduction to Banach Space Theory, Grad. Texts in Math. 183, Springer, New York, 1998.
- [12] K.-I. Mitani and K.-S. Saito, A new geometrical constant of Banach spaces and the uniform normal structure, Commentat. Math. 49 (2009), 3–13.
- [13] K.-S. Saito and M. Kato, Uniform convexity of ψ -direct sums of Banach spaces, J. Math. Anal. Appl. **277** (2003), 1–11.
- [14] K.-S. Saito, M. Kato, Y, Takahashi, Absolute norms on \mathbb{C}^n , J. Math. Anal. Appl., **252** (2000) 879–905.
- [15] K.-S. Saito, M. Kato, Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^2 , J. Math. Anal. Appl., **244** (2000) 515–532.
- [16] Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute normes on \mathbb{C}^2 and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179–186.
- [17] C. Yang and F. Wang, On a new geometric constant related to the von Neumann-Jordan constant, J. Math. Anal. Appl. **324** (2006), 555–565.

(Ken-Ichi Mitani) Department of Systems Engineering, Okayama Prefectural University, Soja, 719–1197, Japan

 $E ext{-}mail\ address: mitani@cse.oka-pu.ac.jp}$

(Kichi-Suke Saito) Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan

E-mail address: saito@math.sc.niigata-u.ac.jp

(Naoto Komuro) Department of Mathematics, Hokkaido University of Education Asahikawa Campus, Asahikawa 070-8621, Japan

E-mail address: komuro@asa.hokkyodai.ac.jp

Received September 15, 2011