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THE MONOTONICITY OF ABSOLUTE NORMALIZED
NORMS ON C”

KEN-ICHI MITANI, KICHI-SUKE SAITO, AND NAOTO KOMURO

ABSTRACT. In this paper, we characterize some monotonicity property of absolute
normalized norms on C" (resp. R™) by means of their corresponding continuous

convex functions.

1. Introduction

Recently, some properties of absolute normalized norms on C” have been studied by
several authors (cf. [3, 5, 8, 9, 12, 13, 14, 15, 16|, etc). A norm || - || on C™ (resp.
R™) is called absolute if

(21, 22,y )| = (2], |22l ]
for all (x1,z9,...,2,) € C" (resp. R"), and normalized if
II(1,0,...,0)]| =1(0,1,0,...,0)]| =--- = |[(0,...,0,1)]| = 1.
The ¢,-norms || - ||, are such examples:

(JzalP + -+ |2alP)? i 1 <p < oo,
(@1, )l =

max{|z1],...,|z.|} if p=1.

Let AN,, be the family of all absolute normalized norms on C™ (resp. R™). Bonsall
and Duncan in [3] showed the following characterization of absolute normalized
norms on C? (resp. R?). Namely, the set AN; is in a one-to-one correspondence with
the set Wy of all continuous convex functions ¢ on the unit interval [0, 1] satisfying
max{1 —t,t} <(t) <1 for any ¢ with 0 < ¢ < 1. The correspondence is given by
the equation ¢ (t) = ||(1 —¢,)||. Indeed, for all ¢ in ¥y we define the norm || - ||, as

1(@.5)l = {<|x| Do) i (2.y) # (0,0),
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Then | - || belongs to AN, and satisfies ©(t) = ||[(1 — ¢, 1)]] .

Saito, Kato and Takahashi in [14] extended this fact to C" (resp. R™). Namely,
they showed that for any absolute normalized norm on C™ (resp. R"™) there corre-
sponds a continuous convex function on

—_

n—

A, ={(ty, ta, . tyy) ER™ it >0 (V), t; <1}
1

.
Il

with some appropriate conditions. Indeed, for any || - || € AN,, we define

n—1
(L) sty osnmn) = 11 =D sis,osam)ll (51500 80m1) € Ay).
=1

Then v is a continuous convex function on A,,, and satisfies the following conditions:

(Ao)  ¥(0,0,...,0) =(1,0,0,...,0) = (0,1,0,...,0)
= =(0,...,0,1) =1,
(Al) ¢(31,---,3n—1) Z

(Sl—l—---‘i‘sn—l)l/J( 51 Sl ) ,

S+t Sum1 st S
if sp+- 48,1 #0,

S Sp— .
(A2> w(slv"'asn—l)Z(1_81),17Z}<071_2517"'a1_;1)a 1f$17é1,
S Sp— .
(An) w(sl,...,sn1)2(1—5n1)¢(1_;n_1,...,1_85_1,0), if 5,1 # 1.

Let U,, be the set of all continuous convex functions ¢ on A, satisfying (Ay), (A1),
-+, (A,). Conversely, for every ¢ € ¥,,, we define

”(xlvx%"'vxn)”iﬁ
0 if (x1,...,2,) =(0,...,0).

Then || - || € AN, and satisfies (1.1). Hence AN, and V¥, are in a one-to-one
correspondence under (1.1). From this result, we have a plenty of concrete absolute
normalized norms of C" which is not £,-type. As applications, Saito, Kato and
Takahashi in [14] characterized the strict convexity of absolute norms on C™ (resp.
R™) in terms of their continuous convex function in ¥,, (see also [15, 16]). We remark
that a norm || - || on C" is absolute if and only if it has the following monotonicity:

|zi] <|w;| (Vi=1,....n)=|(21,..., )| < |[(wy,...,w,)l



(see [2]).
In this paper, we characterize some monotonicity properties of absolute normal-
ized norms on C" in terms of continuous convex functions in ¥,. Moreover, as

applications, we calculate the modulus of convexity for absolute normalized norms
on R?.

2. Preliminaries

We recall some well-known results about monotonicity of norms on C". At first, we
have the following

Proposition 2.1. (cf. [2, Proposition IV.1.1]) Let || - || be a norm on C"™. Then the
following assertions are equivalent:

(i) for any (z1,...,2n), (wi,...,w,) € C" with |z| < |w;| for all i,
1ot 2l < sy

(ii) for any (z1,...,2n), (wi,...,wy,) € C* with |z| < |w;| for all i,
G- 2l < (s wn)]

(iii) || - || is absolute.

For the reader, we repeat the proof.

Proof. We only show (i) < (ii). (ii)) = (i). Let z;,w; € C with |z| < |w;]. Fix
e > 0. Then, since |z;| < (14 ¢)|w,|, it follows by (ii) that
£)

Gz, 2a) [ < I+

Since ¢ is arbitrary, we obtain (i).
(i) = (ii). Let z;,w; € C with |z| < |w;|. Take A with 0 < A < 1 such that
|zi] < A|w;| for all 4. By (i),

1z, za) [ < T Awss - daon) | = Al (wes o wa) < [ (way - wn)]]
Thus we obtain (ii). O

eJwy, ., (L+)wn)|| = (L+e)[(wis .. wn)]-

For allp € W,,, (R", ||||y) is called strictly monotone if (z1,...,2,), (Y1,...,Yn) €
R™ with |z;| < |y;| for all ¢ and |x;,| < |y;,| for some iy, then we have

[ @)l < (- )l
In [16], Takahashi, Kato and Saito showed the following.

Proposition 2.2 ([16]). Let ¢ € V5. Then the following are equivalent:
(1) (t) >t for all t with 0 <t < 1.



(ii) ©(t)/t is strictly decreasing on (0, 1].
(iif) If [2] < |ul and |w| < |v], then [|(z,w)|ly < [|(u, V)]l
Proposition 2.3 ([16]). Let i € Uy. Then the following are equivalent:

(1) ¥(t) > 1=t for all t with 0 <t < 1.
(ii) ¥ (t)/(1 —t) is strictly increasing on [0,1).
(iii) If [2] < |ul and |w| < v], then ||(z,w)|ly < |l(u,v)[-

Thus we have the following.

Proposition 2.4 ([16]). Let ¢ € Uy. Then (R? || - ||4) is strictly monotone if and
only if Y(t) > VYoo(t)(= max{l —¢,t}) for all t with 0 <t < 1.

Dowling and Turett in [6] extended this result to (R™, ||-||,;) in order to characterize
the complex strict convexity of (C™, || - ||) -

Proposition 2.5 ([6]). Let ¢ € ¥,,. Then (R™,|| - ||y) is strictly monotone if and
only if ¥ satisfies the following conditions (sAy), (sAz), ..., (sAn):

(SA1>

’QD(Sl, .. .,Snfl) >
S1 Sn—1
S1+ -+ Sp— e ,
(5 l)w(sl—l—---—i—sn_l sl+--~+sn_1)
fO<sy 445,01 <1,
(SAQ)
52 Sn—1 .
ey Sno1) > (1 — 0, e , 0<s; <1,
V(51,5 8n1) > ( 31)¢( 1— s 1—31) if S1
(sAy)
o ) > (1 U (— 2 0), if0< s <1
S1y.n.ySpe — Sp— b ) , Sp— )
1 ’ 1 1 1—Sn_1 1—Sn_1 1

3. Monotonicity of absolute normalized norms on C>
In this section, we first consider the monotonicity of absolute normalized norms on
C2

Theorem 3.1 ([12]). Let ¢p € ¥y and 0 < so < 1/2. Then the following are
equivalent:

(i) sop = max{t € [0,1/2] : (t) = 1 — t}.
(ii) (t)/(1 —t) s strictly increasing on [so, 1), and ¥(t) =1 —t for all t € [0, s¢].



(iii) Let z, w, u € C such that |w| < |ul.

( ) If |z|‘z||u| > So, then H(%W)Hw < H(Z,U)Hw

(b) 1f s < s0, then [|(z,w0)lly = (2, ).
For the readers we repeat the proof.
Proof. (i)=-(ii). Assume (i). Let sp < s <t < 1. Then by #(t) > 1 — ¢, we have

vis) _w@ _ 1 {s “—Sw(O)}—M

—(t
1—s 1—-t  1-—s tw()—i_ t 1—1¢

s—1
= t)—(1—-1%); <O.
t(l—s)(l—t){¢() (1-1)}
Therefore %’? is strictly increasing on (sp,1). From the convexity of ¢ we have

P(t) =1—tforall t € [0, sp]. Thus we obtain (ii).

(il)=-(iii). Assume (ii). Let |w| < |u|. Suppose that > s0. In the case of

ol
[el+ul
|u]

w|
> 3o we have
l2l+[u] ~ Tel+w] 0

I}l = (el + s (k)

2] + [w]

= |z| x w<%>

1— |w]
|2[+]w]

< |zl X o ||(Zau)”¢
2]+ (ul

> S50 > vl e have

Tzl +w]
0 lelw
2wy = |2] % <"—||>
T Jel el
@Z)(So)
1— s
0 Zlulu
<=l LW“) = [1(z, ) ly-
|2]+|ul

In the case of B |+|u|

= [2] x

If % < sg, then by |Z||_1:||w| < |Z||i“u| < 50 and ¥(t) = 1 — ¢ on [0, s9] we have

|(z,w)|ly = |2] = ||(z,u)]|. Thus we obtain (iii).

(iii)=-(i). The proof is easy and so is omitted. O

In the same way we have the following



Theorem 3.2 ([12]). Let ¢» € Uy and 1/2 < t, < 1. Then the following are
equivalent:
(i) to = min{t € [1/2,1] : ¥ (t) = t}.
(ii) ¢(t)/t is strictly decreasing on (0,to), and ¥(t) =t for all t € [to, 1].
(iii) Let z,u,w € C such that |z| < |ul.
() IF 2L < to, then (2 0)y < ().
(b) If s > to, then (2, w)ly = l(,w)l-

4. Monotonicity of absolute normalized norms on C"

In this section we consider the monotonicity of absolute normalized norms on C"(resp.
R™).

Theorem 4.1. Let ) € V,,. Fix (s1,...,8,-1) € A, with s+ -+ s,_1 = 1. Then
the following assertions are equivalent:
(i) There exists Ao with 0 < \g < 1 satisfying

(41) 0< A< N => Q/J()\Sl, . ,)\Sn_l) > )\1/1(81, RN Sn—l)a
(42) )\0 <I<1l= @ZJ()\Sl, c 7)\Sn_l) = A¢(81, cey Sn—l)'
(ii) There exists N\g with 0 < \g < 1 such that

) = (s, . )\ , ASp—1)

is strictly decreasing on (0, A\o], and f(X\) is constant (=¥ (s1,...,8,-1)) on (Ao, 1].
(iii) There exists N\g with 0 < Ao < 1 such that, for a; € C and (p1,...,p,) € C"
satisfying that

[p2] o — [ps] e = [Pn]
[p2| + -+ |pal’ p2| + -+ pal” [p2| + -+ + |pal’

pQH‘ 'Hpn
arltlpal e tlpn] < Ao, then

(43) ||(p17p27 v 7pn>||'¢) < H(a17p27 s Jpn)“dla

S1 =

if 0 < |p1| < la1| and

~ p2 |+ +pn|
and, if 0 < |p1| < |a1| and i = Ao, then

(44) H(p17p27 ce apn)Hw = H(abp?? s 7pn)“1/)'
Proof. (1)=-(ii). Let 0 < A; < A2 < Ag. Then

1—X
1—XN

A2 — A\
1-N

1/1(/\251,---7)\2371—1) S 1/)()\131,-~->)\13n—1)+ ¢(51>---,3n—1)-

Therefore

F) = f(Xe)



w()\lslv R )‘lsnfl) 1 1-— )\2 )\2 _ )\1
> - N o .. — DY —
= N M1 )\17/’()\181, , AMiSn—1) + 1= n (St ..y Sn_1)
AN
T Ahe(l— )\1){@5()\131  A1Sn-1) — MY(s1, ..., 1) |-

By (4.1) we have f(\;) > f()2).

(i) (iil). Tet 0 < |pa| < Jaa] and (Jpo] + -+ [pal)/(la] & lpal + -+ [pal) < Ao
Put
_lplt e+l pal 4+ Ip
1] + [p2| + -+ + [pal lax| + [paf + - + [pal”
respectively. Suppose that f(\) is strictly decreasing on (0, Ag]. Since sq + -+ +
Sp—1 = 1,A1 > Xy and Ay < A\g, we have

and Ay =

|p2] ]
papa"'apn| :<p ++pn ><¢( P
1,22 My = (e L N e o e PN AT
A1S1, s A Sn
— (ol -+ [pa) x L2151 Aasncn)
A
X281, , AgSp_
< <|p2|++|pn|) X w< 2 )\2 : 1)

== ||<alap27 ] 7]%)”1/}

Suppose that f(A) = ¢(sq1,...,s,-1) for all A with \g < A < 1. Then \; > Ay > .
Hence we have

% w()\lsla Tt 7)\1571—1)
A1

= (|p2| ++ |pn|) X ¢(517 ceey Sn—l)
= H(Oﬂp27"'7pn)||1/1'

I(prs P2, s pa)lle = (Ip2] + - + [pal)

We similarly have |[(a1, pa, ..., pn)lle = [|(0, 02, ..., pn) ||y
(iii)=(1). Let 0 < A < Xg and let (sq,...,8,-1) € A, with sy +---+s,_1 = 1. Then
I—=A>0and (As;+---+Asp—1)/(1 = A+ Asy+ -+ As,—1) < Ag. Hence, by (4.3)
we have
’QD()\Sl, ey )\Snfl) = H(l - )\, )\51, e ,)\Snfl)Hw
> ||(0, )\81, ey )\Sn_1)||¢
= )\w(sl, c ,Snfl).

If \g < A <1, then we have ¥)(Asq,...,Asy—1) = A)(S1,...,8,-1). This completes
the proof. O



For ¢ € U, let

@Z(Sh oy Sne1) =P =81 — =81, 89,0y 8n1) (815000, 80-1) € Ay).
Then{/;E v, and for s; 4+ -+ + 5,1 = 1,

D(As1, . A1) = V(1 — A, Asa, .., Asn_1),

77/}(81, ceey Sn—l) == @ZJ(O, SS9, ... >3n—1)-
Therefore, by Theorem 4.1 we have

Theorem 4.2. Let v € W,.. Fizx (0,89,...,8,-1) € A,. Then the following are
equivalent:
(i) There exists N\g with 0 < \g < 1 satisfying
0 S A S )‘0 = w(l - >\7 )\827 e 7Asn—1> > A¢(O7 82y . 7877,—1)7
A <AZ<1T=9P(1 =X Asg, -+, Asp—1) = AY(0, 59, .., Sp1).
(ii) There exists Ao with 0 < Ao < 1 such that

UL — A ASg, ..oy ASp—
o = P AA s Aon)
is strictly decreasing on (0, Xo], and f(X) is constant (= (0, S2, ..., Sn—1)) on (Ao, 1].
(iii) There exists N\g with 0 < Ao < 1 such that, for ay € C and (p1,...,p,) € C"
satisfying that

o — |ps] e [Pn]
o1+ Ips| + -+ pal” " Ip1] + |ps| + -+ + [pal’

; p1|+|ps|+-+|pnl
1if 0 < as| and [P < \g, then
f - |p2| < | 2| [p1|+]az|+|p3|+-+[pn] — 0

||(p17p27 v 7pn>||”¢) < H(p17a27p37 e 7pn)||’lll7

‘p1‘+‘173‘+“'+‘17n\
Ip1|+laz|+[ps]-+lpnl

||(p1ap2a S 7pn)||w = ||(p17a2>p37 cee apn)|l¢'

and, if 0 < |pa| < |az| and > Ao, then

In general, we have the following theorem.

Theorem 4.3. Let) € W, andi € {1,2,...,n—1}. Fiz (s1,...,8-1,0,8:41,...,8,-1) €
A,,. Then the following are equivalent:
(i) There exists N\g with 0 < \g < 1 satisfying

0< A< N\
= Y(AS1, o A1, L= A S, s ASu1) > A(S1, -0, 8i21,0, 841, -y Sne1),
M <A<1
= P(AS1, .y ASi—1, L= A ASii1, ey ASpm1) = AY(S1, -0, $i21,0, Si1y e v oy Snet)-



(ii) There exists Ao with 0 < Ao < 1 such that

f()\) — ¢(A81, e ,/\Si_l, 1 —)\)\, /\Si+1, Ce ’)\Sn—l)
is strictly decreasing on (0, Ao], and f(X\) is constant (= ¥ (s1,...,8i-1,0, Six1,- -, Sn—1))
on (Ao, 1].
(iii) There exists Ao with 0 < \g < 1 such that, for a; € C and (py,...,p,) € C"
satisfying that

_ |Pj+1]
1] + |pa| + - + |pica| + |piga| + - + |pal’

|p1|+-+lpi—1|+pit1]+-+lpnl
[p1|+++lpi—1]+lail+]pit1][+-+lpn] —

S

where j = 1,...,n—1 with j # i, if 0 < |p;| < |a;| and
Ao, then

H(p17 ce 7pi—17pi7pi+17 o 7pn)”1[1 < H(p17 CIC 7pi—17ai7pi+17 ce. 7pn)H’l/17

[p1|+-+|pi—1]|+|pit1|++|pn]|
[p1]+-+|pi—1|+|ai|+|piti|++|pn

(pb ey Di—1, A4y Dit1, - - 7pn)||1/1

and, if 0 < |p;| < |a;| and > Ao, then

||(p1> «e oy Pi—15Dis Pit1y - - - 7pn)||1/1 = |

5. Applications

In this section, as applications of Section 2, we study some geometrical constants
of Banach spaces. Let X be a Banach space. In 2006, Yang and Wang [17] intro-
duced the geometrical constant vx (¢) of Banach spaces in order to compute the von
Neumann-Jordan constant for Day-James spaces {5 — 1 and £, — (1:

x4+ ty||? + ||z — tyl|?
7X(t)zsup{H yll 2H yll :%yEsX}_

They also presented the following characterization for uniformly non-squareness.

Proposition 5.1 ([17]). Let X be a Banach space. Then the following are equiva-
lent:

(i) X is uniformly non-square.

(i) yx(t) < (1 +t)? for all (resp. some) t with 0 <t < 1.

Mitani and Saito in [12] generalized the notion of the geometrical constant yx(t)
by using the ¢-direct sum X @, X, as follows:

Definition 5.2. For a Banach space X = (X, || - ||x) and ¢ € Wy, let ¢-direct sum
X @y X be the direct sum X @& X equipped with the norm

[z, )l = [Nl x; [yl lle-
Then we define

Yxw(t) = sup{[[(z + ty, z — ty)lly : 2,y € Sx},



where Sx = {x € X : ||z||x = 1}.

See also [16] for the notion of ¥-direct sum. Note that in the case of ) = 1)y ()9
is the corresponding function with fo-norm || - [|2) it holds that

Txwn () = v 27x(1).

By using Theorems 3.1 and 3.2, Mitani and Saito presented the following charac-
terization for uniform non-squareness:

Theorem 5.3 ([12]). For a Banach space X and ¢ € Wy with ¥ # s, X s
uniformly non-square if and only if
Txu(t) <2(1+1)1p(1/2)
for any (resp. some) t with 0 <t < 1.
As an application of Section 1, we discuss the characteristic of convexity of (R?, || -

||l). The modulus of convexity of a Banach space X is the function ¢ : [0, 2] — [0, 1]

defined by
Tty

5X(€):inf{1— 5 H::L’,yESX,Hx—yH:é?}.
The characteristic of convexity of X is the number £y3(X) defined by
£0(X) = sup{e : dx(e) = 0}.

It is well-known that X is uniformly convex if and only if €9(X) = 0, and that X

is uniformly non-square if and only if £¢(X) < 2 (see [7, 10]). We consider the case
where sp = max{t € [0,1] : ¢¥(t) = 1 — t} and to = min{t € [0,1] : ¥(¢) = t} in the
theorems above. We shall compute the characteristic of convexity for (R, - ||4) in
terms of s, to.

Theorem 5.4. Let ¢ € Uy, Let so = max{t € [0,1] : ¥(t) = 1 —t} and ty =
min{t € [0,1] : (t) = t}. If ¢ is strictly convex on [so, to], that is, Y((s +1)/2) <
((s) +1(t))/2 for all s,t with sp < s <t <ty. then

1-1¢
(5.1) So(BE |- ) = 2max { =2, ——=1.
1-— S0 t(]
Proof. Note that

eo((R%, || - 1ly)) = sup{llz — ylly : =, 9, (x + y)/2 € Sre,14)}
= sup{||z — ylly : 2,y € Sz |,)> TY in Sz )}

because dim(R?, || - ||,) = 2 where Ty is a straight line between the point x and the
point y, that is, 7y = { Az + (1 = Ay : 0 < XA < 1}. Put the points P;(i =0,1,...,7)
in the unit sphere Sgz ||, as

Py = (1756)’ P = <t67 1)7 Py = (_t67 1)? P3 = (_1756)’

— 100 —



where s, = 2% and [, =

Py=—-Fy, Ps=—-P, Ps=—-F, Pr=-D;

1—to
to

Te— . Since 9 is strictly convex on [sg, to], it is easy to see

that the unit sphere S(R2,H-|Iw) has only straight lines P| P, P3Py, PsPs, PrPy (see
Figure 1). If z,y € P, P, then

FIGURE 1. the unit sphere S(R27||‘Hw)

Iz = ylly < I1Pr = Pally = ll(to, 1) = (=g, Dlly = 2t

If x,y € PyP;, then

lz = ylly < 1Pr = Pally = [I(1,50) = (1, =)l = 250

The rest cases are similar. Thus we have (5.1). U
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