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THE SUBDIVISION OF THE WINDOW

DERIVED FROM FINITE SUBSEQUENCES
OF FIBONACCI SEQUENCES

HIROKO HAYASHI AND KAZUSHI KOMATSU

Abstract. The Fibonacci sequences can be identified with 1-dimensional quasiperi-

odic tilings by the canonical projection method. We divide the window of the

canonical projection method into smaller intervals by using local configurations.

Then, we show that the intervals which appears in the window are divided into

the ratio at 1 : 1/τ : 1 ad infinitum.

1. Introduction

Fibonacci sequences are a well-known example of 1-dimensional quasiperiodic tilings.

The Fibonacci sequences can be obtained by several methods. The Fibonacci substi-

tution rule σ is defined on bi-infinite two-symbol sequences with an alphabet {A,B}
by replacing A by AB and B by A. We say that a sequence S ′ is a predecessor of a

sequence S with respect to the substitution rule σ if σS ′ = S. Fibonacci sequences

are defined as bi-infinite two-symbol sequences that have an infinite number of pre-

decessors with respect to σ ([1], [2], [3]).

Another method for constructing the Fibonacci sequences is the canonical pro-

jection method ([1], [2]). In this method, we consider the standard lattice Z2 in

R2 and 1-dimensional subspace E of R2 with the slope 1/τ ( τ = (1 +
√
5)/2)

and its orthogonal complement E⊥. We take a interval W in E⊥. We call the in-

terval W the window. Let π : R2 → E be the orthogonal projection onto E, and

π⊥ : R2 → E⊥ the orthogonal projection onto E⊥. Then, 1-dimensional space E is

divided into countable many line segments by the point set π((s+ Z2) ∩ (W ×E)),

where s+Z2 denotes the translation of Z2 by a vector s in E⊥. These line segments

have 2 kinds of the lengths. We identify longer one with the symbol A and shorter

one with the symbol B. Here we put W = (− cos θ, sin θ] , where tan θ = 1/τ (see
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Fig. 1). Then we obtain Fibonacci sequences for all s in E⊥ (see Fig. 2). We call a

point v ∈ π((s+ Z2) ∩ (W × E)) a vertex of a Fibonacci sequence.

Fig. 1. the canonical

projection method

Fig. 2. a Fibonacci se-

quence by the canonical

projection method

We consider a finite subsequence X−n . . . X−2X−1 · X1X2 . . . Xn in a Fibonacci

sequence, where Xk denotes the symbol A or B and “·” denotes the position of

a vertex v. We put v0 = v. For k > 0, we take vertices vk−1, vk such that a line

segment vk−1vk is identified with the symbol Xk. For k < 0, we take vertices vk, vk+1

such that a line segment vkvk+1 is identified with the symbol Xk. By identifying

s+ Z2 with the square tiling, e(1) and e(2) denote a horizontal edge and a vertical

edge of the square tiling respectively. A line segment corresponding to A is obtained

as the image π(e(1)) of a horizontal edge e(1) of square lattice s+Z2. A line segment

corresponding to B is obtained as the image π(e(2)) of a vertical edge e(2). Since

π|(s+Z2) is injective, there exists unique point uk in (s+Z2)∩ (W ×E) such that

π(uk) = vk for each−n ≤ k ≤ n. We define the interval U(X−n . . . X−1·X1X2 . . . Xn)

for X−n . . . X−1 ·X1X2 . . . Xn by U(X−n . . . X−1 ·X1X2 . . . Xn) = {π⊥(u) +m ∈ W |
m+ V ⊆ W,m ∈ E⊥}, where V =

∪n
i=−n{π⊥(ui)} and m+ V = {m+ x | x ∈ V }.

The finite subsequence with the length 2n on both sides of a vertex v isX−n . . . X−1·
X1X2 . . . Xn if and only if π⊥(u) ∈ U(X−n . . . X−1 ·X1 . . . Xn), where u in (s+Z2)∩
(W × E) such that π(u) = v.

For each n, the window W is divided into the intervals U(X−n . . . X−1 ·X1 . . . Xn).

Since the Fibonacci sequences form a local isomorphism class, we have the same

division up to scale of the window for any Fibonacci sequence.

The point setDn is defined to be the set of the end-points of intervals U(X−n . . . X−1·
X1 . . . Xn) for all finite subsequences X−n . . . X−1 · X1 . . . Xn with the length 2n.

Note that Dk ⊂ Dk+1. For example, all finite subsequences with the length 2

are A · B, A · A and B · A. Then we can see that U(A · B) = (− cos θ,− sin θ/τ ],

U(A·A) = (− sin θ/τ, 0] and U(B ·A) = (0, sin θ], and that D1 = {− sin θ/τ, 0, sin θ}.
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Let S be the Fibonacci sequence obtained by the canonical projection method

with respect to the window W = (− cos θ, sin θ] and s + Z2, and S ′ be the bi-

infinite two-symbol sequence with an alphabet {A,B} with respect to the window

W ′ = (−1/τ)W = [− sin θ/τ, sin θ) and s + Z2. It is well-known that S ′ is the

predecessor of the Fibonacci sequence S and that S ′ is a Fibonacci sequence (cf. [3]).

By a similar way, we can define intervals U(X−n . . . X−1 ·X1 . . . Xn) and the point

set Dn with respect to the window W ′ = (−1/τ)W = [− sin θ/τ, sin θ) and s+ Z2.

We define the point set D1:1/τ :1 by the following process: We divide the window

into 3 intervals in ratio 1 : 1/τ : 1. Then, we divide each one of the intervals which

appears in the window into 3 intervals in ratio 1 : 1/τ : 1. We continue this process

ad infinitum, and denote the set of the dividing points by D1:1/τ :1.

We obtain the following theorem:

Theorem 1.1. The subdivision of the window has the following properties (1)–(4):

(1)
∪∞

n=1Dn = D1:1/τ :1 (see Fig. 3 ).

(2) The subdivision of the window (−1/τ)W is the restriction to (−1/τ)W of

the subdivision of the window W .

(3) The lengths of the intervals in the division by Dn take two or three values

for any n.

(4) The points of Dn+1−Dn divide intervals with the longest length which appear

in the division by Dn for any n.

Fig. 3. the subdivision of the window
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2. Proof of Theorem

By scaling up and translating, we can set that W = (0, 1 + τ ] and that π⊥(e(1))

has the length 1 and π⊥(e(2)) has the length τ . For simplicity, we use this setting

in the argument that follows, and for convenience, we use the previous symbols and

notations.

We consider a finite subsequence ·X1X2 . . . Xn in a Fibonacci sequence, where Xk

denotes the symbol A or B and “·” denotes the position of the vertex v. We put

v0 = v. For k = 1, 2, . . . , n, we take vertices vk−1, vk such that a line segment vk−1vk
is identified with the symbol Xk.

Since π|(s+Z2) is injective, there exists unique point uk in (s+Z2)∩(W×E) such

that π(uk) = vk for each k = 0, 1, . . . , n. We define the interval UR(·X1X2 . . . Xn)

for ·X1X2 . . . Xn by UR(·X1X2 . . . Xn) = {π⊥(u) +m ∈ W | m+ V ⊆ W,m ∈ E⊥},
where V =

∪n
i=0 π

⊥(ui) and m+ V = {m+ x | x ∈ V }. For each n, the window W

is divided into the intervals U(·X1 . . . Xn).

For a subsequence ·A, a line segment corresponding to A is obtained as the image

of a horizontal edge e(1) of s + Z2. Then, π⊥(e(1)) = [π⊥(u0) − 1, π⊥(u0)], where

u0 ∈ (s + Z2) ∩ (W × E)) such that v = π(u0). For a subsequence ·B, a line

segment corresponding to B is obtained as the image of a vertical edge e2 of s+Z2.

Then, π⊥(e(2)) = [π⊥(u0), π
⊥(u0) + τ ], where u0 ∈ (s + Z2) ∩ (W × E)) such that

v = π(u0). Note that π
⊥(u0)−1 = π⊥(u0)+τ (modulo 1+τ). The point 1 divides the

window into U(·A) = (1, 1 + τ ] and U(·B) = (0, 1]. Since any Fibonacci sequence

has n + 1 kinds of finite subsequences with the length n, we see that {(sR)k(1 +

τ)}nk=0 divides the window into intervals U(·X1X2 . . . Xn) for finite subsequences

·X1X2 . . . Xn, where sR : (0, 1 + τ ] → (0, 1 + τ ] is defined by sR(x) = x+ 1 (modulo

1 + τ)(see Fig. 4).

By a similar way, when symbols are added to the left of the vertex v, we can see

that {(sL)k(1 + τ)}nk=0 divides the window into intervals UL(X−n . . . X−2X−1·) for

finite subsequences X−n . . . X−2X−1·, where sL : (0, 1 + τ ] → (0, 1 + τ ] is defined by

sL(x) = x− 1 (modulo 1 + τ).

Hence, we obtain that Dn = {(sR)k(1+τ)}nk=0∪{(sL)k(1+τ)}nk=0 (see Fig. 5). We

putDR = {(sR)k(1+τ)}∞k=0 andDL = {(sL)k(1+τ)}∞k=0. Then,
∪∞

k=1Dk = DR∪DL.

(1) We need the following lemma in the proof of (1).

Lemma 2.1. For n ∈ N with n ≥ 1,

1

τn
= (−1)n+1(an−1(1 + τ)− an+1)

where an are Fibonacci numbers with the recurrence relation an+1 = an + an−1 and

a0 = a1 = 1.
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Fig. 4. the division of the

window W into the inter-

vals UR(·X1 . . . Xn)

Fig. 5. the division of the

window W by DR ∪DL

Proof of Lemma 2.1. For n = 1, we have that 1/τ = −1+ τ = (−1)2(a0(1+ τ)−a2)

by τ 2 − τ − 1 = 0. For n = 2, we have that 1/τ 2 = 2− τ = (−1)3(a1(1+ τ)− a3) by

1/τ = −1 + τ . We assume that the equation of Lemma 2.1 is true for n = k − 1, k.

By 1/τ k+1 = 1/τ k−1 − 1/τ k and the assumption, 1/τ k+1 = (−1)k(ak−2(1 + τ) −
ak)− (−1)k+1(ak−1(1 + τ)− ak+1) = (−1)k+2((ak−2 + ak−1)(1 + τ)− (ak + ak+1)) =

(−1)k+2(ak(1 + τ)− ak+2)

Hence, the equation of Lemma 2.1 is true for n = k + 1. �

We prove that D1:1/τ :1 = DR ∪DL. First, we show that D1:1/τ :1 ⊆ DR ∪DL. Two

points 1 and τ divide the window W into 3 intervals (0, 1], (1, τ ] and (τ, 1 + τ ] in

ratio at 1 : 1/τ : 1, and one end-point of each 3 intervals is in DR and the other is

in DL.

We assume that an interval (α, β] appears in the division of the window in ratio

at 1 : 1/τ : 1, and that α ∈ DL, β ∈ DR if (α, β] has the length 1/τ 2k (k ≥ 0), and

that α ∈ DR and β ∈ DL if (α, β] has the length 1/τ 2k+1 (k ≥ 0). We have only to

show that we can take two points γ, δ which divide (α, β] into 3 intervals in ratio

at 1 : 1/τ : 1, and that one end-point of each 3 intervals is in DR and the other

is in DL. By Lemma 2.1 we have the equation −1/τ 2k+1 = a2k+2 (modulo 1 + τ).

If (α, β] has the length 1/τ 2k (k ≥ 0), then we can take γ = β − (1/τ 2k+1) ∈ DR,

δ = α + (1/τ 2k+1) ∈ DL. By Lemma 2.1 we have the equation 1/τ 2k+2 = a2k+3

(modulo 1 + τ). If (α, β] has the length 1/τ 2k+1 (k ≥ 0), then we can take γ =

β − (1/τ 2k+2) ∈ DL, δ = α + (1/τ 2k+2) ∈ DR.

Next, we show that D1:1/τ :1 ⊇ DR ∪ DL. We give the proof that D1:1/τ :1 ⊇ DR.

By using the similar argument, we can prove that D1:1/τ :1 ⊇ DL. For any positive

integer n, we can take ki (ki+1 > ki ≥ 1) such that n = akm +akm−1 + · · ·+ak1 . Then

we have the equation n = (−1)k1−1/τ k1−1 + · · ·+ (−1)km−1/τ km−1 (modulo 1 + τ).

We put C(j) = (−1)k1−1/τ k1−1 + · · · + (−1)kj−1/τ kj−1 for 1 ≤ j ≤ m . We show

that C(j) is in D1:1/τ :1 (modulo 1 + τ) by the induction on j.
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Assume that C(j − 1), C(j) are in D1:1/τ :1 (modulo 1 + τ) for 2 ≤ j. By the

definition of D1:1/τ :1, C(j − 1), C(j) satisfy one of the following cases (a)–(d) in the

process of dividing the window in ratio 1 : 1/τ : 1 repeatedly. :

(a) C(j), δ (C(j) < δ) divide (C(j − 1), β] into 3 intervals in ratio at 1 : 1/τ : 1

for some β, δ ∈ D1:1/τ :1.

(b) γ, C(j) (γ < C(j)) divide (C(j − 1), β] into 3 intervals in ratio at 1 : 1/τ : 1

for some β, δ ∈ D1:1/τ :1.

(c) γ, C(j) (γ < C(j)) divide (α,C(j − 1)] into 3 intervals in ratio at 1 : 1/τ : 1

for some β, δ ∈ D1:1/τ :1.

(d) C(j), δ (C(j) < δ) divide (α,C(j − 1)] into 3 intervals in ratio at 1 : 1/τ : 1

for some β, δ ∈ D1:1/τ :1.

If an interval (a, b] with length 1/τ k appears in the process, a+(1/τ j) and b−(1/τ j)

are in D1:1/τ :1 for any j > k by the definition of D1:1/τ :1. Then we can see that

C(j + 1) = C(j) + (−1)kj+1/τ kj+1 ∈ D1:1/τ :1 (modulo 1 + τ).

Hence we obtain that n ∈ D1:1/τ :1 (modulo 1+ τ). By a similar way, we can show

that −n ∈ D1:1/τ :1 (modulo 1 + τ).

(2) In the original setting, W = (− cos θ, sin θ] and (−1/τ)W = [− sin θ/τ, sin θ).

In the present setting, W ′ = [1, 1 + τ) is corresponding to (−1/τ)W .

We define s′L : W ′ → W ′ by s′L(x) = x− (1/τ) (modulo τ). Since W ′ = [1, 1 + τ)

and s2R(1 + τ) = −1/τ (modulo 1 + τ), we see that W ′ ∩ {(sR)k(1 + τ)}nk=0 =

{(s′L)k(1 + τ)}nk=0.

We define s′R : W ′ → W ′ by s′R(x) = x+ (1/τ) (modulo τ). Since W ′ = [1, 1 + τ)

and sL(1 + τ) = 1 + 1/τ (modulo 1 + τ), we see that W ′ ∩ {(sL)k(1 + τ)}nk=0 =

{(s′R)k(1 + τ)}nk=0.

These imply that the subdivision of the window (−1/τ)W is the restriction to

(−1/τ)W of the subdivision of the window W by the similar argument of the proof

of (1) of Theorem1.1.

(3) As mentioned above, when the window W is divided into the intervals

U(X−n . . . X−1·X1 . . . Xn), the windowW is divided in 2n+1 pointsDn = {(sR)k(1+
τ)}nk=0 ∪ {(sL)k(1 + τ)}nk=0. We see that {(sR)k(1 + τ)}nk=0 ∪ {(sL)k(1 + τ)}nk=0 =

{(sR)k((sL)n(1 + τ))}2nk=0 which is obtained by sR starting from snL(1 + τ).

By the three distance theorem (see [4] and also [5]), the lengths of the intervals in

the division byDn take at most three values. By (1) of Theorem 1.1, an interval with

the length 1/τn is divided into an interval with the length 1/τn+1 and an interval

with the length 1/τn+2. So, the lengths of the intervals cannot take one value.

(4) We need the following lemma in the proof of (4).

Lemma 2.2. For n ∈ N with n ≥ 1,
an+1

τn−1
+

an
τn

= 1 + τ,
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where {an} is Fibonacci number.

Proof of Lemma 2.2. For n = 1, we have that a2/τ
0 + a1/τ = 2/1 + 1/τ = 1 + (1 +

(1/τ)) = 1 + τ . For n = k, we assume that ak+1/τ
k−1 + ak/τ

k = 1 + τ . Then,

ak+2/τ
k + ak+1/τ

k+1 = (ak + ak+1)/τ
k + ak+1/τ

k+1 = ak/τ
k + ak+1(1/τ

k + 1/τ k+1)

= ak/τ
k + ak+1/τ

k−1 = 1 + τ Hence, the equation of Lemma2.2 is true for n =

k+1 �

Assume that the points of Dn+1 − Dn does not necessarily divide intervals with

the longest length which appear in the division by Dn. Since the lengths of the

intervals take two or three values before and after dividing, the following two cases

(i), (ii) might be left.

(i) The lengths of the intervals take two values and there are 1 interval with the

length 1/τ k+2 and some intervals with the length 1/τ k+1. Now, we divide

the interval with the length 1/τ k+2.

(ii) The lengths of the intervals take three values and there are 1 interval with the

length 1/τ k+2 and some intervals with the lengths 1/τ k+1 or 1/τ k+3. Now,

we divide the interval with the length 1/τ k+2.

If the case (i) occurs, then we have the equation 1/τ k+2+m/τ k+1 = 1+τ (m ∈ N).
By Lemma 2.2 we have 1/τ + 2/1 = 1 + τ . However, we actually check the case

correspondind to this equation and we can see that the interval with the length

1/τ k+1 = 1 is divided. This implies the contradiction.

If the case (ii) occurs, then we have the equation 1/τ k+2 +m1/τ
k+1 +m2/τ

k+3 =

1+τ　 for some m1,m2 ∈ N. By 1/τ k+1 = 1/τ k+2+1/τ k+3, we have (m1+1)/τ k+2+

(m1 +m2)/τ
k+3 = 1 + τ . By Lemma 2.2 we have the equations ak+4 = m1 + 1 and

ak+3 = m1 +m2. So, we get that ak+2 ≤ 0. This implies the contradiction. Hence

the points of Dn+1 − Dn divide intervals with the longest length which appear in

the division by Dn.
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