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A generalization of Clairaut’s theorem

and umbilic foliations

Kazutoshi ASO and Shinsuke YOROZU

1. Introduction

In differential geometry, behavior of geodesics in a
Riemannian manifold is an interesting theme. One of famous and
classical results in this direction is Clairaut's theorem on
surfaces of revolution. R. L. Bishop[ 1 ) defined a Clairaut
submersion and obtained a generalization of Clairaut's theorem.
The total space of a submersion with connected fibers is
considered as a foliated manifold. In this note, we consider
Riemannian manifolds with umhilic foliations([ 2 J]) and discuss
the behavior of geodesics in such manifolds. Our result is a
generalization of Clairaut's theorem. We also give some

examples of umbilic foliations. We shall be in Cw—category.
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2. Statement of the theorem

Let (M,g,%) be an orientable, connected, p+q dimensional
manifold with a Riemannian metric g and with a transversally
orientable foliation ¥ of codimension q ([ 5 3, [ 6 1).
Then, in differential geometry of foliations, the following
fact (#) is a fundamental result which was obtained by B. L.

Reinharti 5 J:

(#) Let (M,g,¥F) be as above. If g is bundle-like
with respect to # in the sense of Reinhart(l 5 1),
then a geodesic Y in M orthogonal to the leaf at one
point of ¥y is to be orthogonal to leaves at all the

points of y .

Let H be the mean curvature field of Z , that is, H
is a vector field on M such that the restriction of H to
a leaf L of # 1is the mean curvature vector field along the
submanifold L of M (L 2 1, [ 6 1, [ 7 1). A leaf of ¥
is totally geodesic ( resp. totally umbilic ) if it is a
totally geodesic ( resp. totally umbilic ) submanifold of M

(t 21, €6 1.

Definitioncl 2 1, [ 6 1). 1If all the leaves of F are
totally geodesic, then # is called totally geodesic with
respect to g . If some of the leaves of F are totally
geodesic and others are totally umbilic, or if all the leaves

of # are totally umbilic, then F is called umbilic with
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respect to g

Let Y = v(t) be a geodesic in M , where t is an
affine parameter. The tangent vector field ?(t) on Y is

T N

decomposed into the following form: ?(t) = %(t) + ?(t) ,

where ‘}(t)T ( resp. ‘;'(t)N ) is tangent ( resp. orthogonal )

to the leaf at each point yY(t) . Thus we have
gC y(t), v(t) ) = p° = constant

We define a function o on ¥ by
02.cos? ar(t)) = gC v()T, v )

0 K o < /2 ’

and we call o the angular function of 7y with respect to Z .
For each t , oa(y(t)) is an angle between the vectors ?(t)
and '}(t)T at y(t) . We notice that, in general, the

function cos ¢ is not constant on Y . But we have

Theorem. Let (M,g,7) be as above. Suppose that g

is bundle-like with respect to F and that ¥ 1is umbilic

5
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with respect to g . Let H

F . Let 7v(t) Dbe a geodesic in M and o be the angular
function of ¥y with respect to # . Suppose that cos o
# 0 on ¥ . Then a function r ( # 0 ) on vy satisfies
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r-cos ¢« = constant
if and only if r is given by the form

r(y(t)) = C-exp{ - f gC P(t), H Yat ) ,

rYt)

where C 1is a non-zero constant.

Remark 1. The fact (#) implies that if cos a(v(to))
= 0 for some point Y(to) then cos ¢ = 0 on ¥y . Hence,

in this case, we have that r-cos ¢ = 0 on Yy .

Remark 2. 1f F 1is totally geodesic with respect to
» then o is a constant function([l 5, Theorem 4.1 ]) and

g
H=0. Thus we have that r =1 and r-cos o = constant .

Remark 3. Let S be a surface of revolution in R3
defined by x = f(v)‘cos u , y = f(v)*sin u, 2 = v , where

f 1is a positive valued function on an interval I ¢ R1 ,

veEl , and 0L u<2n . Then S = ( ( u, v ) € S1 x1)

has a metric g = f2°(du)2 + (1 + (f')2 )~(dv)2 » where f°'

= %%— . We consider a foliation F on S given by %

= ¢ sl x {v) | ve€ 1) . Then % is umbilic with reépect to

g& , and g 1is bundle-like with respect to % . We have that

- —1 £'.9 .
H= - 2’£ 'gv . Thus we have that g( v(t), )
1 + (£')

Hy o)

= - %;( log £f(v(t)) ) and - f g2C ¥(t), H ) dt

r(t)

—142—



= log f(v(t)) + C0 ( CO is a constant ). We set C0 = 0

then we have that r = f . Thus we have Clairaut's theorem.

Therefore, our result is a generalization of Clairaut's

theorem.

Remark 4. 1In the case of Clairaut foliation, r is
given as a function on M and is called the girth of F

(C 13, L 7 1.

Remark 5. In [ 7 ], Clairaut's relation is expressed in
the form: resin o(y(t)) = constant , because (y(t)) is an

angle between the vectors f(t) and ?(t)N at y(t) .

3. Proof of the theorem

We suppose that g is bundle-like with respect to Z
(L 5 1) and let ¥ be the Levi-Civita connection with respect
to g . Let L be a leaf of # . For each x € L and a flat
chart U(xi,xa) about x , we can take an orthonormal adapted

frame field { Xi, X ) on U (L 5 3, [ 7 1. Here 1 < i, j

a
<p, ptl £ a, b < p+tq . Then L is totally geodesic if
N _
( vx_xj )x = 0
i
for any x € L , where ( vx Xj )2 denotes the orthogonal
i
. N
part of the vector ( vX Xj )x at x , that is, ( Vx xj)x

i i



_ a . . R .
= Za rij(X) ( Xa )x . And L is totally umbilic if

Hx # 0 and (v

for any x € L , where 5ij denotes the Kronecker's delta,

and H 1is the mean curvature field of ¥ defined by

-1
H. = D Za gx( (2i v

X .xi)x' (X ) )'(Xa)x

X a' x
1

for each x € M (L 6 1, [ 7 1). If L is totally geodesic,

then ( V. X. )§=o and H =0 for any x € L so that

i 9

(v = §,.°H for any x € L

1) X

HZ ¥

X. )
i 3

X
Now, let ¥ = y(t) be a geodesic in M , that is,

V%(t)Q(t) = 0 . Here t 1is an affine parameter of 7y . We

suppose that # 1is umbilic ( see Definition in section 2 )

and that cos o # 0 on Y . Then we have

T T

gC V., Y)Y, vty )

rYt)

gC v, v v
Y

( since g 1is bundle-like and ¥y 1is a geodesic )
(L 7, (6.1) and (6.2) 1)

N T ST y-n y .

yt)

gC PO, gC v(b)

( since & is umbilic )
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Thus we have

(1) gC v. v, vl

1 4QP;

T T

= gC P(t), PCt)" deg( P(t), H )

Y(t)
Consider a function r # 0 on vy . Then we can set r(y(t))
= c+exp( £(y(t)) > ( ¢ is a non-zero constant ), where f
is a function defined on the geodesic ¥Y(t) . Then we have

d

p2.cos @(r ()-S50 r(r(t))-cos a(r () )

_df o2 2 2, ein o 42
-dtrp cos (2 4 r-p cos o sin &« dt

. af, . : T = T A1,
= 4t regC yat) , vt ) +r >

|n-
N
N

Thus we have

(2> p%-cos a(y (1)) -7 r(y())-cos a(¥(t)) )
= YUz vnT, vl
dt
yregC v, v, T
Yt

By (1) and (2), we have

2 a.,
p +cos o dt( r-cos o )
=r-g( PO, yerT ¢ 4 g vy, H ) )

dt Yt)
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We suppose that r-cos a = constant on ¥y , then we have

df Y =
at * g vy, Hy(t) ) =0 .

T T

Here we notice that g( ?(t) , ?(t) ) # 0 on ¥y because
cos a # 0 on vy . The above differential equation has a

solution:

) dt + ¢ ,

f(y(t)) = - I gC v(t)y, HY(t) o

where co is a constant. Thus we have

ry(t)) = C-exp{ - f g( f(t), H ) dt } ,

Y(t)
where C 1is a non-zero constant. Conversely, if r is
given as the above form then it is clear that r satisfies

r-cos o« = constant on vy .
4. Examples
We give some examples of umbilic foliations.
Example 1. Let M be a Kenmotsu manifold, that is, M

is a 2n+1 dimensional manifold with the structure tensor

fields ( ¢, €, n, g ) satisfying the following conditions:
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¢2=—I+n®€,n(€)=1v

gC (X)), oY) ) = gC( X, Y) - nX)n(Y) ,

( wa XY) = gC (XD, Y D)E - n(Y)-0o(X) ,

for any vector fields X and Y on M (L 3 1, [ 4 1). Then

dn

1}
o

(L 31, [ 4 1) and hence n = 0 defines a foliation ¥ on
M . Pitis[ 4 ] proved that g is bundle-like with respect

to ¥ , and % is umbilic with respect to g

Example 2. Let (F,g;) and (B,gp) be orientable,
connected Riemannian manifolds, and dim F = p and dim B
= q . We consider a product manifold M = F X B , and let
P, : M — F and P, : M — B be projections. We define
a metric g on M by

- n2.
gC X, Y) = h Ep( pl*x, pl*Y ) + g pZ*X. PZ*Y )

for any vector fields X and Y on M . Here h 1is a
function on M = F X B . Then we have a foliation & on M

given by

F = (F x (b)) | b €B)
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The foliation & is umbilic with respect to g and the
metric g 1is bundle-like with respect to # ([ 2 1). Such
a Riemannian manifold (M,g) is called an umbilic product

manifold([ 2 }). A warped product manifold is a special type

of umbilic product manifolds. Let (Rp+1. go) be the p+1

dimensional Euclidean space, and let Sp(r) be the p
dimensional sphere in (Rp*l,go) centered at the origin and
of radius r . Then we have a foliated Riemannian manifold

(M,8,%) , where M = RP*! - (the origin} , g = and 7

Eolm »
= (SP(r) | r >0) . We easily have that % 1is umbilic

with respect to g and g is bundle-like with respect to

7 . This manifold (M,g,%) is a warped product manifold

2 2

« SP1) x o0, +» ) , r gg + (dr)° ) ( gg : the induced

metric on Sp(l) from go ).

Example 3. Let S3(1) be a unit sphere in R4 , that

is, s = x = tahx? xS e R a? = 2 )2
=11 . Let Az( R4 ) be the set of all 2-dimensional affine

subspaces of R4 , and let A, ( R4 7 0 ) be the set of all

2-dimensional affine subspaces of R4 passing through the

origin o € R4 . The set Az( R? ; 0 ) is a subset of

Az( R4 ) . We have already known that there exists the Hopf

3 2

fibration m® : S"(1) —» S It is trivial that each fiber

of nM is a great circle in S3(1) . Thus we can obtain a

subset Ag( R4 ; 0 ) of Az( R4 ; 0 ) given by

H( R4

A,

s 0 )
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=(aeA2<R4;o)lan53(1> is a fiber of N )
We take a unit vector v € R4 and a sufficiently small &

> 0 . We consider a subset AH( R4 ;: €v ) of Az( R4 )

2
that is,
Ag( R4 s ev ) = {evy + o | aa € Ag( R4 0 ) ) .

We notice that €v + a0 denotes a 2-dimensional affine
subspace passing through the point g€v near the origin. Two
subspaces o and Egv + o0 are parallel in RY . For L3

o, € AH( R4 s 0 ) satisfying al N a2 N 83(1)‘= ¢ , we have

2 2
that (v + a,) N (8V + a,) N $3(1) = ¢ . There exists only
one o € AH( R4 s 0 ) passing through the point v . Then

o 2

{ev + ao) n 83(1) is a great circle, because the affine
subspace E€v + ao in R4 coincides with ao . If o

€ Ag( R4 ; 0 ) does not pass through the point v then

{ey + o} N 83(1) is a small circle. Let X be an arbitrary
point of S3(1) , and we regard X as a vector in R4 .

Then Y = T x 1 g “'( X - &v ) is a point of S3(1) SO

that we have only one o € Ag( R4 : 0 ) passing through the

point y . Thus §gv + o € Ag( R? ; gv ) passes through the
point X

Let -9 be the canonical metric on S3(1) induced from
the Euclidean metric in R4 . The metric go is of constant
curvature 1 . Then we have a foliation Z on S3(1) given
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by

H( R4

F=(ansd | ace A

;s 8V ) ) ,

and ¥ is umbilic with respect to go . We notice that 5
has one totally geodesic leaf and that go is not bundle-like
with respect to & .

7 4

Remark 6. The Hopf fibrations = S$"(1) — 8

15

Q : and
(1) — S8 are considered as Riemannian submersions,

15

nCay : S

which are totally geodesic foliations on S7(1) and S V(1)

with respect to the metrics, respectively. Thus, according

to Example 3, we have a foliation on S7(1) ( resp. 815(1) )

via the Hopf fibration RQ ( resp. nCa ). The new foliation

y
on S7(1) ( resp. 815(1) ) is umbilic with respect to the

metric on S7(1) ( resp. 815

s7(1) ( resp. $'°(1) ) is not bundle-like with respect to the

new foliation on S7(1) ( resp. 815(1) ).

(1) ). Moreover the metric on

Example 4. Let (M,go,ﬂ) be a foliated Riemannian
manifold with a totally geodesic foliation # with respect
to the Riemannian metric go , and let go bé bundle-like
with respect to #F . We take a positive valued and non-
constant foliated function f on M . Here a function f
is foliated if f has constant values along the leaves of
7 . We consider a metric g = fz'go » then ¥ is umbilic

with respect to g , and g 1is bundle-like with respect to
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% . For instance, the Hopf fibration mn : (S3(1),go) —_

(Sz,h) is a Riemannian submersion( see Example 3 ). Let Z

= {ansd) | ace Ag( R4

53(1) ( see Example 3 ). It is trivial that ?O is totally

geodesic with respect to go and that go is bundle-like

with respect to ?o . We take a positive valued and non-

constant function f on (Sz,h) . Then £ = f - n is a

0o

; 0 ) ) , which is a foliation on

positive valued and non-constant foliated function on

(Sa(l),go,?o) . By the above discussion, we have a foliated

Riemannian manifold (S3(1),g,7o) where g = fz-go . Then

?o is umbilic with respect to g , and g is bundle-like

with respect to ?o

Example 5. We consider two spaces:
(R2 1 2 1 2 1.2 2.2

1,gl) = ( {(X,x)! x°, x“ € R}y, (Adx"H)° + dx">X" >» ,

(Rzz,gz) ¢ (ytyHr vl y2 e ry, @yb? s wayhH?y o,

and a positive-valued, non-constant function h on (Rzz,gz)

that is invariant under rotations, for example,

hiyl,y2) = exp( (yHZ + v5H?% )

Let (X,gx) be a warped product manifold (R2 X R2

1 2’
. 2 2
h g, * &, ) and let & = { R 1 X {y) | y € R 2 }) be a
foliation on (x.gx) . Then %' is umbilic with respect to
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Ex

and gx is bundle-like with respect to ' . Let G be

the group consisting of transformations of (X,gx) :

where

G

-_ ( x1 + n, xz, (cos n@ )y1 - (sin noO )yz.

1 2

(sin n@ )y  + (cos n@ Yy° ) ,

0 =2n/3 and n = 0, %1, %2, .-+ . Each element of

is an isometry of (X,gx) . Then we have a foliated

manifold ( M = X/G, g, F ) , where % 1is the foliation on

M

on

induced from & on X and g is the Riemannian metric

induced from gx on X . Hence F is umbilic with

respect to g and g 1is bundle-like with respect to % .

We must notice that # 1is a non-regular foliation([ 5 J).

L
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