Nihonkai Math. J. Vol.2(1991),139-153

A generalization of Clairaut's theorem and umbilic foliations

Kazutoshi ASO and Shinsuke YOROZU

1. Introduction

In differential geometry, behavior of geodesics in a Riemannian manifold is an interesting theme. One of famous and classical results in this direction is Clairaut's theorem on surfaces of revolution. R. L. Bishop[1] defined a Clairaut submersion and obtained a generalization of Clairaut's theorem. The total space of a submersion with connected fibers is considered as a foliated manifold. In this note, we consider Riemannian manifolds with umbilic foliations([2]) and discuss the behavior of geodesics in such manifolds. Our result is a generalization of Clairaut's theorem. We also give some examples of umbilic foliations. We shall be in C[∞]-category.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 57R30.

2. Statement of the theorem

Let (M,g,\mathcal{F}) be an orientable, connected, p+q dimensional manifold with a Riemannian metric g and with a transversally orientable foliation \mathcal{F} of codimension q ([5], [6]). Then, in differential geometry of foliations, the following fact (#) is a fundamental result which was obtained by B. L. Reinhart[5]:

(#) Let (M,g,\mathcal{F}) be as above. If g is bundle-like with respect to \mathcal{F} in the sense of Reinhart([5]), then a geodesic γ in M orthogonal to the leaf at one point of γ is to be orthogonal to leaves at all the points of γ .

Let H be the mean curvature field of \mathcal{F} , that is, H is a vector field on M such that the restriction of H to a leaf L of \mathcal{F} is the mean curvature vector field along the submanifold L of M ([2], [6], [7]). A leaf of \mathcal{F} is totally geodesic (resp. totally umbilic) if it is a totally geodesic (resp. totally umbilic) submanifold of M ([2], [6]).

Definition([2], [6]). If all the leaves of \mathcal{F} are totally geodesic, then \mathcal{F} is called <u>totally geodesic</u> with respect to g. If some of the leaves of \mathcal{F} are totally geodesic and others are totally umbilic, or if all the leaves of \mathcal{F} are totally umbilic, then \mathcal{F} is called <u>umbilic</u> with

respect to g.

Let $\gamma=\gamma(t)$ be a geodesic in M, where t is an affine parameter. The tangent vector field $\dot{\gamma}(t)$ on γ is decomposed into the following form: $\dot{\gamma}(t)=\dot{\gamma}(t)^T+\dot{\gamma}(t)^N$, where $\dot{\gamma}(t)^T$ (resp. $\dot{\gamma}(t)^N$) is tangent (resp. orthogonal) to the leaf at each point $\gamma(t)$. Thus we have

$$g(\dot{\gamma}(t), \dot{\gamma}(t)) = \rho^2 = constant$$
.

We define a function α on γ by

$$\rho^{2} \cdot \cos^{2} \alpha(\gamma(t)) = g(\dot{\gamma}(t)^{T}, \dot{\gamma}(t)^{T})$$

$$0 \le \alpha \le \pi/2$$

and we call α the angular function of γ with respect to $\mathcal F$. For each t, $\alpha(\gamma(t))$ is an angle between the vectors $\dot{\gamma}(t)$ and $\dot{\gamma}(t)^T$ at $\gamma(t)$. We notice that, in general, the function $\cos\alpha$ is not constant on γ . But we have

Theorem. Let (M,g,\mathcal{F}) be as above. Suppose that g is bundle-like with respect to \mathcal{F} and that \mathcal{F} is umbilic with respect to g. Let H be the mean curvature field of \mathcal{F} . Let $\gamma(t)$ be a geodesic in M and α be the angular function of γ with respect to \mathcal{F} . Suppose that $\cos\alpha$ α α on α . Then a function α α on α satisfies

 $r \cdot \cos \alpha = constant$

if and only if r is given by the form

$$r(\gamma(t)) = C \cdot exp\{-\int g(\dot{\gamma}(t), H_{\gamma(t)})dt\}$$

where C is a non-zero constant.

Remark 1. The fact (#) implies that if $\cos\alpha(\gamma(t_O))$ = 0 for some point $\gamma(t_O)$ then $\cos\alpha=0$ on γ . Hence, in this case, we have that $r \cdot \cos\alpha=0$ on γ .

Remark 2. If ${\cal F}$ is totally geodesic with respect to g , then α is a constant function([5, Theorem 4.1]) and H = 0 . Thus we have that r = 1 and r·cos α = constant .

Remark 3. Let S be a surface of revolution in \mathbb{R}^3 defined by $x = f(v) \cdot \cos u$, $y = f(v) \cdot \sin u$, z = v, where f is a positive valued function on an interval $I \subset \mathbb{R}^1$, $v \in I$, and $0 \le u < 2\pi$. Then $S = \{(u, v) \in S^1 \times I\}$ has a metric $g = f^2 \cdot (du)^2 + (1 + (f')^2) \cdot (dv)^2$, where $f' = \frac{df}{dv}$. We consider a foliation \mathcal{F} on S given by \mathcal{F} = $\{S^1 \times \{v\} \mid v \in I\}$. Then \mathcal{F} is umbilic with respect to g, and g is bundle-like with respect to \mathcal{F} . We have that $H = -\frac{1}{1 + (f')^2} \cdot \frac{f}{f} \cdot \frac{\partial}{\partial v}$. Thus we have that $g(\dot{\gamma}(t), H_{\gamma(t)})$ = $-\frac{d}{dt}(\log f(v(t)))$ and $-\int g(\dot{\gamma}(t), H_{\gamma(t)}) dt$

= $\log f(v(t)) + C_0$ (C_0 is a constant). We set $C_0 = 0$, then we have that r = f. Thus we have Clairaut's theorem. Therefore, our result is a generalization of Clairaut's theorem.

Remark 4. In the case of Clairaut foliation, r is given as a function on M and is called the girth of \mathcal{F} ([1], [7]).

Remark 5. In [7], Clairaut's relation is expressed in the form: $\mathbf{r} \cdot \sin \omega(\gamma(t)) = \text{constant}$, because $\omega(\gamma(t))$ is an angle between the vectors $\dot{\gamma}(t)$ and $\dot{\gamma}(t)^N$ at $\gamma(t)$.

3. Proof of the theorem

We suppose that g is bundle-like with respect to \mathcal{F} ([5]) and let ∇ be the Levi-Civita connection with respect to g. Let L be a leaf of \mathcal{F} . For each $x \in L$ and a flat chart $U(x^i, x^a)$ about x, we can take an orthonormal adapted frame field $\{X_i, X_a\}$ on U([5], [7]). Here $1 \le i$, j $\le p$, $p+1 \le a$, $b \le p+q$. Then L is totally geodesic if

$$(\nabla_{X_i} X_j)_{X}^{N} = 0$$

for any $x \in L$, where $(\nabla_{X_i} X_j)_x^N$ denotes the orthogonal part of the vector $(\nabla_{X_i} X_j)_x$ at x, that is, $(\nabla_{X_i} X_j)_x^N$

= $\Sigma_a \Gamma_{ij}^a(x) \cdot (X_a)_x$. And L is totally umbilic if

$$H_{x} \neq 0$$
 and $(\nabla_{X_{i}}X_{j})_{x}^{N} = \delta_{ij}\cdot H_{x}$

for any x \in L , where δ_{ij} denotes the Kronecker's delta, and H is the mean curvature field of ${\mathcal F}$ defined by

$$H_{x} = \frac{1}{p} \Sigma_{a} g_{x} ((\Sigma_{i} \nabla_{X_{i}} X_{i})_{x}, (X_{a})_{x}) \cdot (X_{a})_{x}$$

for each $x \in M$ ([6], [7]). If L is totally geodesic, then $(\nabla_{X_i} X_j)_x^N = 0$ and $H_x = 0$ for any $x \in L$ so that $(\nabla_{X_i} X_j)_x^N = \delta_{ij} \cdot H_x$ for any $x \in L$.

Now, let $\gamma=\gamma(t)$ be a geodesic in M , that is, $\nabla_{\gamma(t)}\dot{\gamma}(t)=0$. Here t is an affine parameter of γ . We suppose that $\mathcal F$ is umbilic (see Definition in section 2) and that $\cos\alpha\neq0$ on γ . Then we have

$$g(\nabla_{\dot{\gamma}(t)}^{\dot{\gamma}(t)^{T}}, \dot{\gamma}(t)^{T})$$

$$= g(\dot{\gamma}(t)^{N}, \nabla_{\dot{\gamma}(t)^{T}}^{\dot{\gamma}(t)^{T}})$$

$$= g(\dot{\gamma}(t)^{N}, \nabla_{\dot{\gamma}(t)^{T}}^{\dot{\gamma}(t)^{T}})$$

$$= g(\dot{\gamma}(t)^{N}, g(\dot{\gamma}(t)^{T}, \dot{\gamma}(t)^{T}) \cdot H_{\gamma(t)}^{\dot{\gamma}(t)^{T}}) \cdot H_{\gamma(t)}^{\dot{\gamma}(t)^{T}}$$

$$= g(\dot{\gamma}(t)^{N}, g(\dot{\gamma}(t)^{T}, \dot{\gamma}(t)^{T}) \cdot H_{\gamma(t)}^{\dot{\gamma}(t)^{T}}) \cdot H_{\gamma(t)}^{\dot{\gamma}(t)^{T}}$$

$$= (\sin ce^{-\beta} is umbilic)$$

Thus we have

(1)
$$g(\nabla \dot{\gamma}(t)^{T}, \dot{\gamma}(t)^{T})$$
$$\dot{\gamma}(t) = g(\dot{\gamma}(t)^{T}, \dot{\gamma}(t)^{T}) \cdot g(\gamma(t), H_{\gamma(t)})$$

Consider a function $r \neq 0$ on γ . Then we can set $r(\gamma(t))$ = $c \cdot \exp(f(\gamma(t)))$ (c is a non-zero constant), where f is a function defined on the geodesic $\gamma(t)$. Then we have

$$\rho^{2} \cdot \cos \alpha(\gamma(t)) \cdot \frac{d}{dt} (r(\gamma(t)) \cdot \cos \alpha(\gamma(t)))$$

$$= \frac{df}{dt} \cdot r \cdot \rho^{2} \cdot \cos^{2} \alpha - r \cdot \rho^{2} \cdot \cos \alpha \cdot \sin \alpha \cdot \frac{d\alpha}{dt}$$

$$= \frac{df}{dt} \cdot r \cdot g(\dot{\gamma}(t)^{T}, \dot{\gamma}(t)^{T}) + r \cdot \frac{1}{2} \cdot \frac{d}{dt} (\rho^{2} \cdot \cos^{2} \alpha) .$$

Thus we have

(2)
$$\rho^{2} \cdot \cos \alpha(\gamma(t)) \cdot \frac{d}{dt} (r(\gamma(t)) \cdot \cos \alpha(\gamma(t)))$$

$$= \frac{df}{dt} \cdot r \cdot g(\dot{\gamma}(t)^{T}, \dot{\gamma}(t)^{T})$$

$$+ r \cdot g(\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)^{T}, \dot{\gamma}(t)^{T}).$$

By (1) and (2), we have

$$\rho^{2} \cdot \cos \alpha \cdot \frac{d}{dt} (r \cdot \cos \alpha)$$

$$= r \cdot g(\dot{\gamma}(t)^{T}, \dot{\gamma}(t)^{T}) \cdot \{ \frac{df}{dt} + g(\dot{\gamma}(t), H_{\gamma(t)}) \}$$

We suppose that $r \cdot \cos \alpha = \text{constant}$ on γ , then we have

$$\frac{df}{dt} + g(\dot{\gamma}(t), H_{\gamma(t)}) = 0.$$

Here we notice that $g(\dot{\gamma}(t)^T, \dot{\gamma}(t)^T) \neq 0$ on γ because $\cos \alpha \neq 0$ on γ . The above differential equation has a solution:

$$f(\gamma(t)) = -\int g(\dot{\gamma}(t), H_{\gamma(t)}) dt + c_0$$

where c_0 is a constant. Thus we have

$$r(\gamma(t)) = C \cdot exp(-\int g(\dot{\gamma}(t), H_{\gamma(t)}) dt \}$$
,

where C is a non-zero constant. Conversely, if r is given as the above form then it is clear that r satisfies $r \cdot \cos \alpha = \text{constant}$ on γ .

4. Examples

We give some examples of umbilic foliations.

Example 1. Let M be a Kenmotsu manifold, that is, M is a 2n+1 dimensional manifold with the structure tensor fields (φ , ξ , η , g) satisfying the following conditions:

$$\varphi^2 = -1 + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

$$g(\varphi(X), \varphi(Y)) = g(X, Y) - \eta(X) \cdot \eta(Y),$$

$$(\nabla_X \varphi)(Y) = g(\varphi(X), Y) \cdot \xi - \eta(Y) \cdot \varphi(X),$$

for any vector fields X and Y on M ([3], [4]). Then

 $d\eta = 0$

([3], [4]) and hence $\eta=0$ defines a foliation $\mathcal F$ on M. Pitis[4] proved that g is bundle-like with respect to $\mathcal F$, and $\mathcal F$ is umbilic with respect to g.

Example 2. Let (F,g_F) and (B,g_B) be orientable, connected Riemannian manifolds, and dim F=p and dim B=q. We consider a product manifold $M=F\times B$, and let $p_1:M\longrightarrow F$ and $p_2:M\longrightarrow B$ be projections. We define a metric g on M by

$$g(X, Y) = h^2 \cdot g_F(p_{1*}X, p_{1*}Y) + g_B(p_{2*}X, p_{2*}Y)$$

for any vector fields X and Y on M. Here h is a function on $M = F \times B$. Then we have a foliation $\mathcal F$ on M given by

$$\mathcal{F} = \{ F \times \{b\} \mid b \in B \} .$$

The foliation $\mathcal F$ is umbilic with respect to g and the metric g is bundle-like with respect to $\mathcal F$ ([2]). Such a Riemannian manifold (M,g) is called an umbilic product manifold([2]). A warped product manifold is a special type of umbilic product manifolds. Let (R^{p+1}, g_0) be the p+1 dimensional Euclidean space, and let $S^p(r)$ be the p dimensional sphere in (R^{p+1}, g_0) centered at the origin and of radius r. Then we have a foliated Riemannian manifold (M,g, $\mathcal F$), where $M=R^{p+1}$ - (the origin), $g=g_0|_M$, and $\mathcal F$ = $(S^p(r) \mid r>0)$. We easily have that $\mathcal F$ is umbilic with respect to g and g is bundle-like with respect to $\mathcal F$. This manifold (M,g, $\mathcal F$) is a warped product manifold ($S^p(1) \times (0, +\infty)$), $r^2 g_S + (dr)^2$) (g_S : the induced metric on $S^p(1)$ from g_0).

Example 3. Let $S^3(1)$ be a unit sphere in R^4 , that is, $S^3(1) = \{ x = {}^t(x^1, x^2, x^3, x^4) \in R^4 \mid \|x\|^2 = \sum_{i=1}^4 (x^i)^2 = 1 \}$. Let $A_2(R^4)$ be the set of all 2-dimensional affine subspaces of R^4 , and let $A_2(R^4)$ be the set of all 2-dimensional affine subspaces of R^4 passing through the origin $o \in R^4$. The set $A_2(R^4)$ is a subset of $A_2(R^4)$. We have already known that there exists the Hopf fibration $\pi: S^3(1) \longrightarrow S^2$. It is trivial that each fiber of π is a great circle in $S^3(1)$. Thus we can obtain a subset $A_2(R^4)$ or $A_2(R^4)$ or $A_3(R^4)$ or $A_3(R^4)$

$$A_2^H (R^4; o)$$

= { $\alpha \in A_2(\mathbb{R}^4; 0) \mid \alpha \cap S^3(1)$ is a fiber of π }.

We take a unit vector $\mathbf{v} \in \mathbb{R}^4$ and a sufficiently small ϵ > 0 . We consider a subset $\mathbf{A}_2^H(\ \mathbf{R}^4\ ;\ \epsilon\mathbf{v}\)$ of $\mathbf{A}_2(\ \mathbf{R}^4\)$, that is,

$$A_2^H(R^4; \epsilon v) = \{ \epsilon v + \alpha \mid \alpha \in A_2^H(R^4; o) \}$$
.

We notice that $\mathbf{E}\mathbf{v}+\alpha$ denotes a 2-dimensional affine subspace passing through the point $\mathbf{E}\mathbf{v}$ near the origin. Two subspaces α and $\mathbf{E}\mathbf{v}+\alpha$ are parallel in \mathbf{R}^4 . For α_1 , $\alpha_2\in \mathsf{A}_2^H(\ \mathbf{R}^4\ ;\ \mathbf{o}\)$ satisfying $\alpha_1\cap\alpha_2\cap \mathsf{S}^3(1)=\emptyset$, we have that $(\mathbf{E}\mathbf{v}+\alpha_1)\cap (\mathbf{E}\mathbf{v}+\alpha_2)\cap \mathsf{S}^3(1)=\emptyset$. There exists only one $\alpha_0\in \mathsf{A}_2^H(\ \mathbf{R}^4\ ;\ \mathbf{o}\)$ passing through the point \mathbf{v} . Then $(\mathbf{E}\mathbf{v}+\alpha_0)\cap \mathsf{S}^3(1)$ is a great circle, because the affine subspace $\mathbf{E}\mathbf{v}+\alpha_0$ in \mathbf{R}^4 coincides with α_0 . If $\alpha\in \mathsf{A}_2^H(\ \mathbf{R}^4\ ;\ \mathbf{o}\)$ does not pass through the point \mathbf{v} then $(\mathbf{E}\mathbf{v}+\alpha)\cap \mathsf{S}^3(1)$ is a small circle. Let \mathbf{x} be an arbitrary point of $\mathbf{S}^3(1)$, and we regard \mathbf{x} as a vector in \mathbf{R}^4 . Then $\mathbf{y}=\frac{1}{\|\ \mathbf{x}-\mathbf{E}\mathbf{v}\ \|}\cdot(\ \mathbf{x}-\mathbf{E}\mathbf{v}\)$ is a point of $\mathbf{S}^3(1)$ so that we have only one $\alpha\in \mathsf{A}_2^H(\ \mathbf{R}^4\ ;\ \mathbf{o}\)$ passing through the point \mathbf{y} . Thus $\mathbf{E}\mathbf{v}+\alpha\in \mathsf{A}_2^H(\ \mathbf{R}^4\ ;\ \mathbf{e}\mathbf{v}\)$ passes through the point \mathbf{x} .

Let ${\bf g}_O$ be the canonical metric on ${\bf S}^3(1)$ induced from the Euclidean metric in ${\bf R}^4$. The metric ${\bf g}_O$ is of constant curvature 1. Then we have a foliation ${\cal F}$ on ${\bf S}^3(1)$ given

$$\mathcal{F} = \{ \widetilde{\alpha} \cap S^3(1) \mid \widetilde{\alpha} \in A_2^H(\mathbb{R}^4 ; \varepsilon v) \}$$
,

and ${\mathcal F}$ is umbilic with respect to ${\bf g}_{\rm O}$. We notice that ${\mathcal F}$ has one totally geodesic leaf and that ${\bf g}_{\rm O}$ is not bundle-like with respect to ${\mathcal F}$.

Remark 6. The Hopf fibrations $\pi_Q: S^7(1) \longrightarrow S^4$ and $\pi_{Cay}: S^{15}(1) \longrightarrow S^8$ are considered as Riemannian submersions, which are totally geodesic foliations on $S^7(1)$ and $S^{15}(1)$ with respect to the metrics, respectively. Thus, according to Example 3, we have a foliation on $S^7(1)$ (resp. $S^{15}(1)$) via the Hopf fibration π_Q (resp. π_{Cay}). The new foliation on $S^7(1)$ (resp. $S^{15}(1)$) is umbilic with respect to the metric on $S^7(1)$ (resp. $S^{15}(1)$). Moreover the metric on $S^7(1)$ (resp. $S^{15}(1)$) is not bundle-like with respect to the new foliation on $S^7(1)$ (resp. $S^{15}(1)$).

Example 4. Let (M,g_O,\mathcal{F}) be a foliated Riemannian manifold with a totally geodesic foliation \mathcal{F} with respect to the Riemannian metric g_O , and let g_O be bundle-like with respect to \mathcal{F} . We take a positive valued and nonconstant foliated function f on M. Here a function f is foliated if f has constant values along the leaves of \mathcal{F} . We consider a metric $g=f^2\cdot g_O$, then \mathcal{F} is umbilic with respect to g, and g is bundle-like with respect to

 \mathcal{F} . For instance, the Hopf fibration $\pi:(S^3(1),g_O)\longrightarrow (S^2,h)$ is a Riemannian submersion (see Example 3). Let \mathcal{F}_O = { $\alpha\cap S^3(1) \mid \alpha\in A_2^H(R^4;o)$ }, which is a foliation on $S^3(1)$ (see Example 3). It is trivial that \mathcal{F}_O is totally geodesic with respect to g_O and that g_O is bundle-like with respect to \mathcal{F}_O . We take a positive valued and nonconstant function f_O on f_O . Then f_O is a positive valued and nonconstant foliated function on f_O 0. By the above discussion, we have a foliated Riemannian manifold f_O 1. Then f_O 2 is umbilic with respect to f_O 3, and f_O 3 is bundle-like with respect to f_O 3.

Example 5. We consider two spaces:

$$(R_{1}^{2},g_{1}) = (\{(x^{1},x^{2}) \mid x^{1}, x^{2} \in R\}, (dx^{1})^{2} + (dx^{2})^{2}),$$

 $(R_{2}^{2},g_{2}) = (\{(y^{1},y^{2}) \mid y^{1}, y^{2} \in R\}, (dy^{1})^{2} + (dy^{2})^{2}),$

and a positive-valued, non-constant function h on (R^2_2,g_2) that is invariant under rotations, for example,

$$h(y^1, y^2) = \exp((y^1)^2 + (y^2)^2)$$
.

Let (X,g_X) be a warped product manifold $(R^2_1 \times R^2_2, h \cdot g_1 + g_2)$ and let $\mathcal{F}' = \{R^2_1 \times \{y\} \mid y \in R^2_2\}$ be a foliation on (X,g_X) . Then \mathcal{F}' is umbilic with respect to

 g_{X} and g_{X} is bundle-like with respect to \mathcal{F}' . Let G be the group consisting of transformations of (X,g_{X}) :

$$(x^1, x^2, y^1, y^2)$$

$$\longrightarrow (x^1 + n, x^2, (\cos n\theta)y^1 - (\sin n\theta)y^2,$$

$$(\sin n\theta)y^1 + (\cos n\theta)y^2),$$

where $\theta=2\pi/3$ and $n=0,\pm 1,\pm 2,\cdots$. Each element of G is an isometry of (X,g_X) . Then we have a foliated manifold $(M=X/G,g,\mathcal{F})$, where \mathcal{F} is the foliation on M induced from \mathcal{F}' on X and g is the Riemannian metric on M induced from g_X on X. Hence \mathcal{F} is umbilic with respect to g and g is bundle-like with respect to \mathcal{F} . We must notice that \mathcal{F} is a non-regular foliation ([5]).

References

- [1] R. L. Bishop, Clairaut submersions, Differential

 Geometry, in honor of K. Yano, Kinokuniya, Tokyo,

 1972, 21-31.
- [2] R. H. Escobales, Jr. and P. E. Parker, Geometric consequences of the normal curvature cohomology class in umbilic foliations, Indiana Univ. Math. J. 37 (1988), 389-408.
- [3] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103.

- [4] Gh. Pitis, Feuilletages et sous-variétés d'une classe de variétés de contact, C. R. Acad. Sci. Paris 310 (1990), 197-202.
- [5] B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132.
- [6] Ph. Tonduer, Foliations on Riemannian manifolds,
 Universitext, Springer-Verlag, New York, 1988.
- [7] S. Yorozu, Behavior of geodesics in foliated manifolds with bundle-like metrics, J. Math. Soc. Japan 35 (1983), 251-272.

K. ASO

Ishikawa College of Technology Tsubata, Ishikawa 929-03 Japan

S. YOROZU

Department of Mathematics
Miyagi University of Education
Aoba, Sendai 980
Japan

Received June 21, 1991