EXISTENCE OF NONEXPANSIVE RETRACTIONS AND MEAN ERGODIC THEOREMS IN HILBERT SPACES

KOJI NISHIURA and WATARU TAKAHASHI

Abstract

Let C be a nonempty closed convex subset of a Hilbert space H. Let S be a semigroup and let $S = \{T_t : t \in S\}$ be an asymptotically nonexpansive semigroup on C such that the set F(S) of common fixed points of S is nonempty. We consider the existence of an ergodic retraction and prove that if $\{\mu_{\alpha}\}$ is an asymptotically invariant net of means, then for each $x \in C$, $\{T_{\mu_{\alpha}}x\}$ converges weakly to an element of F(S).

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Then, a mapping $T:C\to C$ is said to be Lipschitzian if there exists a nonnegative real number k such that

$$||Tx - Ty|| \le k||x - y||$$
 for every $x, y \in C$.

T is said to be nonexpansive if k = 1. Let S be a semigroup. Then, a family $S = \{T_t : t \in S\}$ of mappings from C into itself is said to be a Lipschitzian semigroup on C with Lipschitz constants $\{k_t : t \in S\}$ if it satisfies the following:

(1) for each $t \in S$, there exists a nonnegative real number k_t such that

$$||T_t x - T_t y|| \le k_t ||x - y||$$
 for every $x, y \in C$;

(2) $T_{st}x = T_sT_tx$ for every $s, t \in S$ and $x \in C$.

We denote by F(S) the set of common fixed points of S. S is said to be a nonexpansive semigroup on C if $k_t = 1$ for every $t \in S$. S is also said to be an asymptotically nonexpansive semigroup on C if $\inf_s \sup_t k_{ts} \leq 1$ and $\sup_t k_t < \infty$. In particular, S is said to be a one-parameter asymptotically nonexpansive semigroup on C if $S = [0, \infty)$ and for each $x \in C$, the mapping $t \mapsto T_t x$ from S into C is continuous.

The first nonlinear ergodic theorem for nonexpansive mappings was established in 1975 by Baillon [1]: Let C be a closed convex subset of a Hilbert space and let T be a

nonexpansive mapping of C into itself. If the set F(T) of fixed points of T is nonempty, then for each $x \in C$, the Cesàro means

$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converge weakly to some $y \in F(T)$. In this case, putting y = Px for each $x \in C$, P is a nonexpansive retraction of C onto F(T) such that PT = TP = P and $Px \in \overline{\operatorname{co}}\{T^nx:$ $n=1,2,\ldots$ for every $x\in C$, where $\overline{\operatorname{co}}A$ denotes the closure of the convex hull of A. Such a retraction is said to be an ergodic retraction. Hirano and Takahashi [3] provided nonlinear ergodic theorems for a one-parameter asymptotically nonexpansive semigroup in a Hilbert space. In [8], Takahashi proved the existence of an ergodic retraction for an amenable semigroup of nonexpansive mappings in a Hilbert space: If S is an amenable semigroup, C is a nonempty closed convex subset of a Hilbert space H and $S = \{T_t : t \in T_t : t \in T_t \}$ S is a nonexpansive semigroup on C such that F(S) is nonempty, then there exists a nonexpansive retraction P of C onto F(S) such that $PT_t = T_t P = P$ for every $t \in S$ and $Px \in \overline{\operatorname{co}}\{T_tx : t \in S\}$ for every $x \in C$. Further, Takahashi [9] provided a necessary and sufficient condition for the existence of an ergodic retraction in a Hilbert space: If S is a right reversible semigroup and C, H and S are as above, then $\bigcap_{s \in S} \overline{\operatorname{co}}\{T_{ts}x : t \in S\} \cap F(S)$ is nonempty for every $x \in C$ if and only if there exists a nonexpansive retraction P of C onto F(S) such that $PT_t = T_t P = P$ for every $t \in S$ and $Px \in \overline{\operatorname{co}}\{T_t x : t \in S\}$ for every $x \in C$. Mizoguchi and Takahashi [6] extended this result to the case when S is an asymptotically nonexpansive semigroup. Takahashi's result was also extended to the case when S is not a directed system by Lau, Nishiura and Takahashi [4]. Further, Lau, Shioji and Takahashi [5] extended this result to a uniformly convex Banach space whose norm is Fréchet differentiable. Rodé [7] also found a sequence of means on a semigroup, generalizing the Cesàro means and extended Baillon's theorem: If S, C, H and S are as in Takahashi [8] and $\{\mu_{\alpha}\}$ is an asymptotically invariant net of means, then for each $x \in C$, $\{T_{\mu_{\alpha}}x\}$ converges weakly to an element of $F(\mathcal{S})$.

In this paper, we prove the existence of an ergodic retraction for an asymptotically nonexpansive semigroup in a Hilbert space and then establish a mean convergence theorem of Rodé's type. These results are generalizations of Takahashi [8] and Rodé [7]. We also provide a necessary and sufficient condition for the existence of an ergodic retraction in a Hilbert space. This result is a generalization of Lau, Nishiura and Takahashi [4].

2 Preliminaries

Throughout this paper, we assume that a Hilbert space is real. Let S be a semigroup and let B(S) be the Banach space of all bounded real-valued functions on S with supremum norm. For each $s \in S$ and $f \in B(S)$, we define elements $l_s f$ and $r_s f$ of B(S) by $(l_s f)(t) = f(st)$ and $(r_s f)(t) = f(ts)$ for all $t \in S$. Let X be a subspace of B(S) containing constants and let X^* be its dual. Then, an element μ of X^* is said to be a mean on X if $\|\mu\| = \mu(1) = 1$. Occasionally, we use $\mu_t(f(t))$ instead of $\mu(f)$ for $\mu \in X^*$ and $f \in X$. Let K be K0 and K1 invariant, i.e., K2 invariant, i.e., K3 invariant, i.e., K4 invariant, i.e., K5 invariant, i.e., K6 invariant, i.e., K8 invariant, i.e., K9 invariant, i.e., K

Then, a mean μ on X is said to be *left invariant* (resp. right invariant) if $\mu(l_s f) = \mu(f)$ (resp. $\mu(r_s f) = \mu(f)$) for every $f \in X$ and $s \in S$. A mean μ on X is said to be *invariant* if it is both right and left invariant. X is said to be *amenable* if there exists an invariant mean on X. A net $\{\mu_{\alpha}\}$ of means on X is said to be asymptotically invariant if for each $f \in X$ and $s \in S$,

$$\lim_{\alpha}(\mu_{\alpha}(l_{s}f)-\mu_{\alpha}(f))=0 \ \ \text{and} \ \ \lim_{\alpha}(\mu_{\alpha}(r_{s}f)-\mu_{\alpha}(f))=0.$$

Let C be a nonempty closed convex subset of a Hilbert space H. Let S be a semigroup and let $S = \{T_t : t \in S\}$ be an asymptotically nonexpansive semigroup on C with Lipschitz constants $\{k_t : t \in S\}$. For each $x \in C$, define the set

$$Q(x) = \bigcap_{s \in S} \overline{\operatorname{co}}\{T_{ts}x : t \in S\}.$$

Let X be a subspace of B(S) such that $1 \in X$ and the function $t \mapsto ||T_t x - y||^2$ is an element of X for every $x \in C$ and $y \in H$. Then, by the Riesz representation theorem, for any $\mu \in X^*$ and $x \in C$ there exists a unique element x_0 of H such that

$$\mu_t \langle T_t x, y \rangle = \langle x_0, y \rangle$$

for every $y \in H$. We write such x_0 by $T_{\mu}x$. See [8] for more details.

3 Lemmas

In this section, we prove two lemmas which are crucial in the proofs of our theorems.

LEMMA 3.1 Let C be a nonempty closed convex subset of a Hilbert space H. Let S be a semigroup and let $S = \{T_t : t \in S\}$ be an asymptotically nonexpansive semigroup on C with Lipschitz constants $\{k_t : t \in S\}$ such that F(S) is nonempty. Let X be a subspace of B(S) such that $1 \in X$, the function $t \mapsto ||T_t x - y||^2$ is an element of X for every $x \in C$ and $y \in H$ and X is l_s -invariant for every $s \in S$. If μ is a left invariant mean on X, then for each $x \in C$, $T_{\mu}x \in F(S)$.

Proof. Let μ be a left invariant mean on X. Let $\varepsilon > 0$ and $x \in C$. From $\inf_s \sup_t k_{ts} \le 1$, there exists $s_0 \in S$ such that $\sup_t k_{ts_0}^2 < 1 + \varepsilon^2$. For each $y \in H$ and $s, t \in S$, since

$$2\langle T_s x - y, T_t x - y \rangle = ||T_s x - y||^2 + ||T_t x - y||^2 - ||T_s x - T_t x||^2,$$

we have

$$||T_{\mu}x - y||^{2} = \mu_{s}\langle T_{s}x - y, T_{\mu}x - y \rangle$$

$$= \mu_{s}(\mu_{t}\langle T_{s}x - y, T_{t}x - y \rangle)$$

$$= \frac{1}{2}\mu_{s}(||T_{s}x - y||^{2} + \mu_{t}||T_{t}x - y||^{2} - \mu_{t}||T_{s}x - T_{t}x||^{2})$$

$$= \mu_{s}||T_{s}x - y||^{2} - \frac{1}{2}\mu_{s}(\mu_{t}||T_{s}x - T_{t}x||^{2}).$$

Putting $y = T_{\mu}x$, we have

$$\frac{1}{2}\mu_s(\mu_t || T_s x - T_t x ||^2) = \mu_s || T_s x - T_\mu x ||^2$$

Since μ is left invariant, we have, for each $t \in S$,

$$||T_{\mu}x - T_{ts_0}T_{\mu}x||^2 = \mu_s ||T_sx - T_{ts_0}T_{\mu}x||^2 - \frac{1}{2}\mu_s(\mu_w ||T_sx - T_wx||^2)$$

$$= \mu_s ||T_{ts_0s}x - T_{ts_0}T_{\mu}x||^2 - \mu_s ||T_sx - T_{\mu}x||^2$$

$$\leq (k_{ts_0}^2 - 1)\mu_s ||T_sx - T_{\mu}x||^2$$

$$\leq 4d^2\varepsilon^2,$$

where $d = \sup\{||T_t x|| : t \in S\}$, and hence

$$||T_{\mu}x - T_{t}T_{\mu}x|| \leq ||T_{\mu}x - T_{tts_{0}}T_{\mu}x|| + ||T_{tts_{0}}T_{\mu}x - T_{t}T_{\mu}x||$$

$$\leq 2d\varepsilon + 2k_{t}d\varepsilon$$

$$= 2(1 + k_{t})d\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we obtain

$$||T_{\mu}x - T_tT_{\mu}x|| = 0$$

for every $t \in S$. This implies that $T_{\mu}x \in F(S)$. \square

LEMMA 3.2 Let C be a nonempty closed convex subset of a Hilbert space H. Let S be a semigroup and let $S = \{T_t : t \in S\}$ be an asymptotically nonexpansive semigroup on C with Lipschitz constants $\{k_t : t \in S\}$. Then for each $x \in C$, $y \in Q(x) \cap F(S)$ and $z \in F(S)$,

$$\sup_{s \in S} \inf_{t \in S} \langle T_{ts} x - y, y - z \rangle \ge 0.$$

Proof. Let $x \in C$, $y \in Q(x) \cap F(S)$ and $z \in F(S)$. Let $\varepsilon > 0$. We choose $\delta > 0$ so small that

$$((1+\delta)^4-1)d^2+\frac{1}{4}(1+\delta)^2\delta<\varepsilon^2 \text{ and } \delta<\varepsilon,$$

where $d = \sup\{\|T_t x\| : t \in S\}$. From $\inf_s \sup_t k_{ts} \leq 1$, there exists $s_0 \in S$ such that $\sup_t k_{ts_0} < 1 + \delta$. Since $\inf_s \sup_t \|T_{ts_0 s} x - y\|^2 \leq (1 + \delta)^2 \inf_s \|T_s x - y\|^2$, there also exists $s_1 \in S$ such that

$$||T_{ts_0s_1}x - y||^2 < (1+\delta)^2 ||T_sx - y||^2 + \delta$$

for every $s, t \in S$. Then, we have, for each λ with $0 \le \lambda \le 1$ and $s, t \in S$,

$$\begin{aligned} &\|\lambda T_{ts_{0}ss_{0}s_{1}}x + (1-\lambda)y - T_{ts_{0}}(\lambda T_{ss_{0}s_{1}}x + (1-\lambda)y)\|^{2} \\ &= (1-\lambda)\|T_{ts_{0}}(\lambda T_{ss_{0}s_{1}}x + (1-\lambda)y) - y\|^{2} \\ &\quad + \lambda\|T_{ts_{0}}(\lambda T_{ss_{0}s_{1}}x + (1-\lambda)y) - T_{ts_{0}ss_{0}s_{1}}x\|^{2} - \lambda(1-\lambda)\|T_{ts_{0}ss_{0}s_{1}}x - y\|^{2} \\ &\leq \lambda(1-\lambda)(1+\delta)^{2}\|T_{ss_{0}s_{1}}x - y\|^{2} - \lambda(1-\lambda)\|T_{ts_{0}ss_{0}s_{1}}x - y\|^{2} \\ &\leq \frac{1}{4}\left((1+\delta)^{2}((1+\delta)^{2}\|T_{ts_{0}ss_{0}s_{1}}x - y\|^{2} + \delta) - \|T_{ts_{0}ss_{0}s_{1}}x - y\|^{2}\right) \\ &\leq ((1+\delta)^{4} - 1)d^{2} + \frac{1}{4}(1+\delta)^{2}\delta < \varepsilon^{2} \end{aligned}$$

and hence

$$\begin{aligned} &\|\lambda T_{ts_{0}ss_{0}s_{1}}x + (1-\lambda)y - z\| \\ &\leq &\|\lambda T_{ts_{0}ss_{0}s_{1}}x + (1-\lambda)y - T_{ts_{0}}(\lambda T_{ss_{0}s_{1}}x + (1-\lambda)y)\| \\ &+ &\|T_{ts_{0}}(\lambda T_{ss_{0}s_{1}}x + (1-\lambda)y) - z\| \\ &< &\varepsilon + (1+\varepsilon)\|\lambda T_{ss_{0}s_{1}}x + (1-\lambda)y - z\|. \end{aligned}$$

So, we have

$$\inf_{s} \sup_{t} \|\lambda T_{ts} x + (1 - \lambda)y - z\|$$

$$\leq \inf_{s} \sup_{t} \|\lambda T_{ts_0 s s_0 s_1} x + (1 - \lambda)y - z\|$$

$$\leq (1 + \varepsilon) \inf_{s} \|\lambda T_{s s_0 s_1} x + (1 - \lambda)y - z\| + \varepsilon$$

$$\leq (1 + \varepsilon) \sup_{s} \inf_{t} \|\lambda T_{ts} x + (1 - \lambda)y - z\| + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we obtain

$$\inf_{s} \sup_{t} \|\lambda T_{ts} x + (1-\lambda)y - z\| \le \sup_{s} \inf_{t} \|\lambda T_{ts} x + (1-\lambda)y - z\|$$

for every λ with $0 \le \lambda \le 1$. Let $\varepsilon > 0$ and $0 \le \lambda \le 1$. Then, there exists $s_2 \in S$ such that

$$\|\lambda T_{ws_2}x + (1-\lambda)y - z\| < \inf_{t} \sup_{t} \|\lambda T_{ts}x + (1-\lambda)y - z\| + \varepsilon$$

for every $w \in S$. From $y \in \overline{\operatorname{co}}\{T_{ws_2}x : w \in S\}$, we have

$$||y-z|| \leq \inf_{s} \sup_{t} ||\lambda T_{ts}x + (1-\lambda)y - z|| + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we obtain

$$||y-z|| \le \inf_{s} \sup_{t} ||\lambda T_{ts}x + (1-\lambda)y - z||$$

for every λ with $0 \le \lambda \le 1$. For each λ with $0 < \lambda \le 1$ and $t \in S$, since

$$||y-z+\lambda(T_tx-y)||^2 = ||y-z||^2 + 2\lambda\langle T_tx-y,y-z\rangle + \lambda^2||T_tx-y||^2,$$

we obtain

$$0 \leq \inf_{s} \sup_{t} \|\lambda T_{ts} x + (1 - \lambda) y - z\|^{2} - \|y - z\|^{2}$$

$$\leq \sup_{s} \inf_{t} \|\lambda T_{ts} x + (1 - \lambda) y - z\|^{2} - \|y - z\|^{2}$$

$$\leq 2\lambda \sup_{s} \inf_{t} \langle T_{ts} x - y, y - z \rangle + 4\lambda^{2} d^{2}$$

and hence

$$0 \le \sup_{s} \inf_{t} \langle T_{ts}x - y, y - z \rangle + 2\lambda d^{2}.$$

It follows that

$$0 \leq \sup_{s} \inf_{t} \langle T_{ts}x - y, y - z \rangle$$
 as $\lambda \downarrow 0$. \square

4 Ergodic Theorems

In this section, we establish our nonlinear ergodic theorems.

THEOREM 4.1 Let C be a nonempty closed convex subset of a Hilbert space H. Let S be a semigroup and let $S = \{T_t : t \in S\}$ be an asymptotically nonexpansive semigroup on C with Lipschitz constants $\{k_t : t \in S\}$. Let $x \in C$. Then $Q(x) \cap F(S)$ contains at most one point.

Proof. Let $y, z \in Q(x) \cap F(S)$ and $\varepsilon > 0$. By Lemma 3.2, there exists $s_0 \in S$ such that

$$\langle T_{ts_0}x - y, y - z \rangle > -\varepsilon$$

for every $t \in S$. Since $z \in \overline{co}\{T_{ts_0}x : t \in S\}$, it follows that

$$\langle z - y, y - z \rangle \ge -\varepsilon$$

and, hence $||y-z||^2 \le \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we have y = z. \square

Using Lemma 3.1 and Theorem 4.1, we show a nonlinear ergodic theorem for an asymptotically nonexpansive semigroup in a Hilbert space. This generalizes the results of Takahashi [8] and Rodé [7].

THEOREM 4.2 Let C be a nonempty closed convex subset of a Hilbert space H. Let S be a semigroup and let $S = \{T_t : t \in S\}$ be an asymptotically nonexpansive semigroup on C with Lipschitz constants $\{k_t : t \in S\}$ such that F(S) is nonempty. Let X be a subspace of F(S) such that F(S) such that F(S) is an element of F(S) for every F(S) and F(S) such that F(S) is amenable, then there exists a unique nonexpansive retraction F(S) onto F(S) such that F(S) is an asymptotically invariant net of means on F(S) for every F(S) converges weakly to F(S).

Proof. Assume that X is amenable. Then, there exists an invariant mean μ on X. Since μ is a mean on X, it follows from the separation theorem that $T_{\mu}x \in \overline{\operatorname{co}}\{T_tx : t \in S\}$ for every $x \in C$; see [8] for details. Since μ is right invariant, we have, for each $x, y \in C$

$$||T_{\mu}x - T_{\mu}y||^{2} = \langle T_{\mu}x - T_{\mu}y, T_{\mu}x - T_{\mu}y \rangle$$

$$= \mu_{t}\langle T_{t}x - T_{t}y, T_{\mu}x - T_{\mu}y \rangle$$

$$= \mu_{t}\langle T_{ts}x - T_{ts}y, T_{\mu}x - T_{\mu}y \rangle$$

$$\leq \sup_{t} ||T_{ts}x - T_{ts}y|| ||T_{\mu}x - T_{\mu}y||$$

$$\leq (\sup_{t} k_{ts})||x - y|| ||T_{\mu}x - T_{\mu}y||$$

for every $s \in S$, and hence

$$||T_{\mu}x - T_{\mu}y||^{2} \leq (\inf_{s} \sup_{t} k_{ts})||x - y|| ||T_{\mu}x - T_{\mu}y||$$

$$\leq ||x - y|| ||T_{\mu}x - T_{\mu}y||.$$

So, T_{μ} is nonexpansive. Let $x \in C$. Since μ is right invariant, we also have

$$\langle T_{\mu}x, y \rangle = \mu_{t} \langle T_{t}x, y \rangle$$

$$= \mu_{t} \langle T_{t}x, y \rangle$$

$$= \mu_{t} \langle T_{t}T_{s}x, y \rangle$$

$$= \langle T_{\mu}T_{s}x, y \rangle$$

for every $y \in H$ and $s \in S$. So, $T_{\mu}T_s = T_{\mu}$ for every $s \in S$. By Lemma 3.1, $T_sT_{\mu} = T_{\mu}$ for every $s \in S$. Therefore, we have

$$\langle T_{\mu}^{2}x, y \rangle = \mu_{t} \langle T_{t}T_{\mu}x, y \rangle$$
$$= \mu_{t} \langle T_{\mu}x, y \rangle$$
$$= \langle T_{\mu}x, y \rangle$$

for every $y \in H$. So, $T_{\mu}^2 = T_{\mu}$. Putting $P = T_{\mu}$, we have that P is a nonexpansive retraction of C onto F(S) such that $PT_t = T_tP = P$ for every $t \in S$ and $Px \in \overline{\operatorname{co}}\{T_tx : t \in S\}$ for every $x \in C$. For each $x \in C$ and $s \in S$, we have

$$Px = PT_s x \in \overline{\operatorname{co}}\{T_{ts} x : t \in S\}.$$

So by Theorem 4.1, we obtain

$${Px} = Q(x) \cap F(S)$$

for every $x \in C$. Hence such P is unique.

Let $\{\mu_{\alpha}\}$ be an asymptotically invariant net of means on X. Let μ be a cluster point of $\{\mu_{\alpha}\}$ in the weak* topology. It is obvious that μ is a mean. We show that μ is invariant. Let $\varepsilon > 0, f \in X$ and $s \in S$. Then, there exists α_0 such that

$$|\mu_{lpha}(f) - \mu_{lpha}(l_s f)| < rac{arepsilon}{3}$$

for every $\alpha \geq \alpha_0$. Since μ is a cluster point of $\{\mu_{\alpha}\}$, we can choose $\alpha_1 \geq \alpha_0$ such that

$$|\mu_{\alpha_1}(f) - \mu(f)| < \frac{\varepsilon}{3}$$

and

$$|\mu_{\alpha_1}(l_s f) - \mu(l_s f)| < \frac{\varepsilon}{3}.$$

So, we have

$$|\mu(f) - \mu(l_s f)| \le |\mu(f) - \mu_{\alpha_1}(f)| + |\mu_{\alpha_1}(f) - \mu_{\alpha_1}(l_s f)| + |\mu_{\alpha_1}(l_s f) - \mu(l_s f)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we obtain

$$\mu(f) = \mu(l_s f).$$

This implies that μ is left invariant. Similarly, μ is right invariant. Let $\{T_{\mu_{\alpha_{\beta}}}x\}$ be a subnet of $\{T_{\mu_{\alpha}}x\}$ such that $\{T_{\mu_{\alpha_{\beta}}}x\}$ converges weakly to some $z \in C$ and let λ be a cluster point of $\{\mu_{\alpha_{\beta}}\}$ in the weak* topology. Since λ is also a cluster point of $\{\mu_{\alpha}\}$, λ is an invariant mean. So, we obtain

$$z = T_{\lambda}x = Px$$
.

This implies that $\{T_{\mu_{\alpha}}x\}$ converges weakly to Px. \square

Finally, we show a necessary and sufficient condition for the existence of an ergodic retraction for an asymptotically nonexpansive semigroup in a Hilbert space.

THEOREM 4.3 Let C be a nonempty closed convex subset of a Hilbert space H. Let S be a semigroup and let $S = \{T_t : t \in S\}$ be an asymptotically nonexpansive semigroup on C with Lipschitz constants $\{k_t : t \in S\}$ such that F(S) is nonempty. Then the following are equivalent:

- (1) for each $x \in C$, the set $Q(x) \cap F(S)$ is nonempty;
- (2) there exists a nonexpansive retraction P of C onto F(S) such that $PT_t = T_t P = P$ for every $t \in S$ and $Px \in \overline{\operatorname{co}}\{T_t x : t \in S\}$ for every $x \in C$.

Proof. (1) \Rightarrow (2). If for each $x \in C$, the set $Q(x) \cap F(S) \neq \emptyset$, then by Theorem 4.1, $Q(x) \cap F(S)$ contains exactly one point Px. Then, clearly, P is a retraction of C onto F(S) such that $T_tP = P$ for every $t \in S$ and $Px \in \overline{\operatorname{co}}\{T_tx : t \in S\}$ for every $x \in C$. Also, if $u \in S$ and $x \in C$, we have

$$\bigcap_{s \in S} \overline{\operatorname{co}}\{T_{ts}x : t \in S\} \subset \bigcap_{s \in S} \overline{\operatorname{co}}\{T_{tsu}x : t \in S\}$$

and hence

$$Q(x) \cap F(S) = Q(T_u x) \cap F(S).$$

This implies $PT_t = P$ for every $t \in S$. Finally we show that P is nonexpansive. Let $x, y \in C$ and $\varepsilon > 0$. From $\inf_s \sup_t k_{ts} \le 1$, there exists $s_0 \in S$ such that $\sup_t k_{ts_0} < 1 + \varepsilon$. By Lemma 3.2, we have

$$\sup_{s}\inf_{t}\langle T_{ts}T_{s_0}x-Px,Px-Py\rangle\geq 0.$$

Then, there exists $u \in S$ such that

$$\langle T_{tu}T_{s_0}x - Px, Px - Py \rangle > -\varepsilon$$

for every $t \in S$. By Lemma 3.2, we also have

$$\sup_{s} \inf_{t} \langle T_{ts} T_{us_0} y - P T_{us_0} y, P T_{us_0} y - P x \rangle \ge 0.$$

So, there exists $v \in S$ such that

$$\langle T_{tv}T_{us_0}y - PT_{us_0}y, PT_{us_0}y - Px \rangle > -\varepsilon$$

for every $t \in S$. Then, from $PT_{us_0}y = Py$, we have

$$\langle T_{tv}T_{us_0}y - Py, Py - Px \rangle > -\varepsilon$$

for every $t \in S$. Therefore, we obtain

$$-2\varepsilon < \langle T_{uvus_0}x - Px, Px - Py \rangle + \langle T_{uvus_0}y - Py, Py - Px \rangle$$

$$\leq ||T_{uvus_0}x - T_{uvus_0}y|| ||Px - Py|| - ||Px - Py||^2$$

$$\leq (1+\varepsilon)||x-y|| ||Px - Py|| - ||Px - Py||^2.$$

Since $\varepsilon > 0$ is arbitrary, this implies $||Px - Py|| \le ||x - y||$. (2) \Rightarrow (1). Let $x \in C$. Then it is obvious that $Px \in F(S)$. Since

$$Px = PT_s x \in \overline{\text{co}}\{T_t T_s x : t \in S\} = \overline{\text{co}}\{T_{ts} x : t \in S\}$$

for every $s \in S$, we have

$$Px \in \bigcap_{s \in S} \overline{\operatorname{co}}\{T_{ts}x : t \in S\} = Q(x). \ \Box$$

References

- [1] J. B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), 1511-1514.
- [2] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
- [3] N. Hirano and W. Takahashi, Nonlinear ergodic theorems for nonexpansive mappings in Hilbert spaces, Kodai Math. J. 2 (1979), 11-25.
- [4] A. T. Lau, K. Nishiura and W. Takahashi, Nonlinear ergodic theorems for semigroups of nonexpansive mappings and left ideals, Nonlinear Anal. 26 (1996) 1411-1427.
- [5] A. T. Lau, N. Shioji and W. Takahashi, Existence of nonexpansive retractions for amenable semigroups of nonexpansive mappings and nonlinear ergodic theorems in Banach spaces, to appear in J. Funct. Anal.

- [6] N. Mizoguchi and W. Takahashi, On the existence of fixed points and ergodic retractions for Lipschitzian semigroups in Hilbert spaces, Nonlinear Anal. 14 (1990), 69-80.
- [7] G. Rodé, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl. 85 (1982), 172-178.
- [8] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.
- [9] _____, A nonlinear ergodic theorem for a reversible semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 97 (1986), 55-58.
- [10] _____, Fixed point theorem and nonlinear ergodic theorem for nonexpansive semi-groups without convexity, Can. J. Math. 44 (1992), 880-887.

DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES TOKYO INSTITUTE OF TECHNOLOGY OH-OKAYAMA, MEGURO-KU, TOKYO 152-8552, JAPAN

Received November 10, 1998