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NONLINEAR NONLOCAL TRANSPORT-DIFFUSION
EQUATIONS ARISING IN PHYSIOLOGY

NoBUYUKI KATO AND TOSHIYUKI YAMAGUCHI

ABSTRACT. We study a transport-diffusion initial value problem arising in mathematical models
of muscle contraction. The equation has the transport term whose coefficient is a time function
depending on the solution in a nonlinear and nonlocal way. In this paper, we investigate the
unique existence of a strong solution in a function space BUC. Our results allow the inhomo-
geneous term to depend on the solution in a nonlinear way, such as v(t) f(z)(1 — u?) — g(z)u?

and v(¢)f(2)(1 - u)? — g(z)u’.
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1. INTRODUCTION

In this paper we study the initial value problem for a nonlinear nonlocal transport-diffusion
equation with a small diffusion coefficient € € ]0, 1]:

U — EUzy + 2' (Dur = @(z,t, 2(t),u), (z,t) € R x][0,T], (1.1)
(1) = L( /R w(zyu(z,t)dz), t€0,T], (12)
u(z,0) = uo(z), z€R. (1.3)

Here v : R x [0,7] —» R and z : [0,7] — R are unknown functions, 2’ stands for the
time-derivative. The functions ¢, L, w and ug are given functions specified later.

Study of the above equation is related to the nonlinear nonlocal first order hyperbolic
problem: Find v : R x [0,7] — R and 2z : [0,7] — R for which

us + 2 (H)uy = p(a,t,2(t),u), (z,t) € R x[0,T] (1.4)

and (1.2)-(1.3) are satisfied. This hyperbolic problem is formulated as a rheological model
describing the so-called cross-bridge dynamics observed in the muscle contraction phenom-
ena in physiology. For the model problem, see [1, 4, 5, 7, 8] and the references therein.
The constitutive unit of muscle structure is called a sarcomere which consists of particles
of myosin (thick filament) and actin (thin filament). The cross-bridges are chemical links
between myosin and actin filaments. According to the sliding filament theory of Huxley [8],
the phenomenon of muscle contraction is a consequence of relative sliding motion between
these two filaments and this sliding occurs when the cross-bridges attach the actin filaments



and act as springs. The quantity «(z,t) essentially represents a density of cross-bridges at-
tached to an actin at distance z from the equilibrium position and time ¢. The function z
stands for the contractile movement of filaments which is determined by the contractile force
Jg w(z)u(z,t)dz.

In the model problem (1.1)-(1.3), the “slipping effect”, which is represented as a viscosity
term —eu,,, is taken into account. See [2, 3] for such models. In the case of bounded
domain in R, Colli and Grasselli [2] have shown the local existence of a strong solution
of (1.1)-(1.3) under the Dirichlet boundary condition. In the case of the whole space R,
Colli and Grasselli [3] have shown the global existence of weak solutions for the special case
o(z,t,z,u) = F(z,t,z) — G(z,t, z)u.

In this paper we shall establish the global existence and uniqueness of strong solutions to
(1.1)—(1.3) by using the approach employed in [3] together with the theory of abstract semi-
linear evolution equations. Although we require certain stronger regularity assumptions of ¢
and ug than those in [2, 3], our setting allows ¢ to have more general forms: for instance, it is
possible to take not only the form ¢(z,t, z,u) = ¥(t) f(z)(1 —u) — g(z)u (which was originally
introduced by Huxley) but also its generalizations v(t)f(z,z)(1 — |u|?~u) — g(z, 2)|u|? u
and v(t) f(z, 2)|1 — ulP~1(1 — u) — g(z, z)|u|?" u which involve power nonlinearities. Further,
it is expected that when ¢ tends to zero, the solution of (1.1)—(1.3) approaches to the solution
of (1.2)~(1.4). Concerning such limiting behaviour, we shall discuss it in the forthcoming
paper [9].

The paper is organized as follows. In Section 2 we formulate our problem and give our
assumptions and main result. Section 3 is devoted to solving semilinear evolution problems
obtained from (1.1) and (1.3) by regarding z as a fixed given function. Then we introduce
equivalent formulations to the problem (1.1)—(1.3) in Section 4. In Section 5 we verify the
uniqueness and global existence of strong solutions to (1.1)-(1.3) by applying the contraction
mapping principle argument in a successive way. Section 6 is devoted to the proofs of some
technical lemmas containing a priori estimates of z, which is important in the argument of
previous section. In this paper we treat the above-mentioned problems in the function space
BUC with the Holder continuity. For the convenience of the readers, we contain a detailed
explanations on such spaces in Appendix.

2. TRANSPORT-DIFFUSION PROBLEM

In this section we make assumptions for the given functions and data, give a precise
formulation of the transport-diffusion problem (1.1)-(1.3), and then state the main results
concerning the existence and uniqueness of solutions. In what follows, BUC stands for the
space of bounded and uniformly continuous functions and BUC™#% for the space of Holder
continuous functions in BUC of two variables. The space of Hélder continuous functions
will be denoted by C%7 with 0 < n < 1; by C%! we mean the space of Lipschitz continuous
functions. For the precise definitions and properties, see Appendix.

Let T > 0 be fixed. We assume the following hypotheses.

(H1) L: ]a,b[ — R is a continuous, strictly decreasing function, where —oo < a < 0 < b <
+00, and its inverse function A (:= L™') : R — Ja, b[ satisfies A(0) = 0, A\(¢) — a
(resp. — b) as £ — +oo (resp. — —o0). Moreover, for any R > 0, there exists a
constant M;(R) > 0 such that

€1 — &2 S My(R)|A(&1) — M&2)|  for all &, &2 € [-R,R].



(H2) w € C*(R) is an increasing function satisfying w(0) = 0 and dw/dz € W1 *°(R).
(H3) ¢ € C(Rx [0,T] x R x R) has the following properties:
(i) for some 7 € 10,1], ¢(-,-,z,u) € BUC™ (R x [0, T]) uniformly for (z,«) in bounded
subsets of R x R (see Appendix for the definition);
(i1) for any R > 0, there exists a constant M;(R) > 0 such that

I‘P(‘Tata Zl,u) - (P(«'L',t,Zg,u)l < M2(R)|zl - Z2|

for all (z,t,21,u), (2,t,22,u) € R x [0,T] x [-R, R] X [-R, R];

(ii1) ¢ has the partial derivative 8, with respect to v which is uniformly continuous and
bounded on R x [0,T] x [-R, R] x [—R, R] for any R > 0;

(iv) ¢ is decreasing in u on [0, +oo] ;

(v) for any (z,t,z) € R x [0,T] x R,

e(z,t,z,u) 20 fu<0 and ¢(z,t,2,u)<0 fuzxl;

(vi) there exists a nonnegative function F € L°(Rx]0, T[) which satisfies z2F € L>°(0, T}
L'(R)) and
‘p(m’tv Z, u) < ‘7:('7"1 t)

for a.e. (z,t) € Rx]0,T[,z€e Rand 0 S u < 1;
(vii) for any R > 0 there exists a constant M3(R) > 0 satisfying

e(z,t,z,u) 2 —M3(R)(1+ |z))u f0<u<1

for (z,t,z) e R x [0,T) x [-R, R] ;
(viii) for any R > 0, there exist ¢ > 1 and h € L%(0,T) such that for any function
u € L™(R) satisfying z?u € L'(R) and ||u|| L= (®) < R,

/R (1+ 2Dl + 21,8, 21, u(2)) = @(@ + 22,1, 22, u(2)) da
<Ol = al{1+ [+ leDluCe)lde

for a.e. t € ]0,T[ and z; € [-R,R],t1 =1, 2.
(H4) The initial value uy belongs to BUC(R) and satisfies 0 < uo < 1 on R, z%uo € L}(R)
and

a< /Rw(a:)uo(x)da: < b.

Remark 2.1. (1) By z2F € L*(0,T; L'(R)) and z?uq € L'(R), we mean [, 2*F(z, )dz €
L>(0,T) and [ z%uo(x)dx < 400, respectively.

(2) From (H2), we see that w is Lipschitz continuous. We denote by C,, the Lipschitz
constant of w.

(3) Condition (H3 iii) implies that for any R > 0 there exists a constant M4(R) > 0 such
that

lp(z,t, z,u1) — @(a,t, z,uz)| < My(R)|uy — usg]



for (z,t,z,uy), (z,t,2z,u2) € R x [0,T] x [-R, R] x [-R, R].

(4) It is easily seen from (H3 vi) and (H4) that 7 € L*°(0,T; L?(R)) and v, € L?(R) for
any p > 1. (See Lemma 3.3 in Section 3.) Besides, the integral in (H4) makes sense, since w
is Lipschitz continuous, w(0) = 0, and [; |z|uo(z)dz < +oo.

(5) Conditions (H1), (H2), (H3 v), and (H4) are similar to those in [2] or [3], although we
have required stronger regularities for ¢ and uy than those in [2, 3] to treat the case in which
 i1s nonlinear in u.

Examples. As a function ¢ satisfying (H3), one may take functions of the form

‘P(wsta Z,U) = 7(t)f($’ Z)(l - |u|p—lu) - g(x'l z)lu’lq_lu
and  @(z,t,2,u) = (1) f(z,2)|1 — ulP 7 (1 - u) — g(z, 2)|ul! .

Here it suffices to assume that p, ¢ € (1, +oo[, and that the functions v, f and g are nonnega-
tive and satisfy the following conditions: v € C%%[0,T] (0 < 5 < 1), f(,), g(=z,-) € CZ}(R)

loc

uniformly in z € R, and f(-,z), g(-,2) € BUC"(R) uniformly in z on bounded subsets of
R. Further, f € L®(R?), z?||f(z, )|z~ (r,) € L'(Rz) and for any R > 0 there is a constant
C(R) > 0 such that

/nz(l + lyDIf(y + 21, 21) — f(y + 22, 22)|dy < C(R)|z1 — 23],
lg(z + z1,21) — g(z + 22, 22)| < C(R)|z1 — 22|

forallz € R and z; € [-R,R] (: = 1,2).
In these cases, one can take F(z,t) = ¥(t)||f(z, )||L=(r.), h(t) = Crmax{v(t),1} with
Cr = C(R)max{RP + 1,R?"'} and Cgr = C(R) max{(R + 1)?, R97'}, respectively.

We are now in a position to formulate the transport-diffusion problem.

Problem (P;). Given initial function u, satisfying (H4).

Find u € BUC(R x [0,T]) N BUC?**"%(R x [6,T]) for any 6 € ]0,T) and z € C*'[0, T
such that u(z,-) € C%![4, T] uniformly for € R and any é € ]0,T), u(-,t) € BUC(R) for
ae.t€0,T[, wu € L*(0,T; L*(R)), and such that

a< / w(z)u(z, t)dz < b, te[0,T), (2.1)
R

(t) = I( /R w(z)u(z, )dz), t€0,T) (2.2)

ur(z,t) — euge(z,t) + 2’ (t)us(x,t) = o(x, ¢, 2(¢),u(z,t)), z€R, ae. t€]0, T, (2.3)

where 2’ = dz/dt, and
u(z,0) = uo(z), =z €R. (2.4)

Our main result is then stated as follows:



Main Theorem. Assume that conditions (H1)—(H3) are satisfied and let uo satisfy (H4).
Then there exists a unique solution (u,z) of Problem (Py). Moreover, 0 < u < 1 on Rx [0, T].

By change of variables z +— 2 + z(t), the equations (2.2)-(2.4) are transformed into

z(t) = L(/R w:(l',t)v(:v,t)dm), t € [0,T); (2.5)
vi(x,t) — v (2, 1) = i(z,t,v(z,t)), (z,t) € Rx]0,T), (2.6)
v(z,0) = uo(z + 2(0)), ze€R. (2.7)
Here for ¢ € C[0, T,
ei(z,t,€) = oz + (1), 1,¢(8),€), (z,t,€) € Rx[0,T] xR, (2.8)

wi(z,t) = w(z +{(t), (z,t)€eRx[0,T]

This transformation has an advantage that the resultant equations (2.5)—(2.7) make sense
if z is only continuous because the derivative z' disappears. Therefore, instead of equations
(2.2)—(2.4), we deal with equations (2.5)—(2.7). Accordingly, our subsequent discussions may
be organized in the following way:
I. Given z € C[0,T], we solve the semilinear problem (2.6)—(2.7). (Section 3)
II. We reformulate the original problem (P;) as equivalent problems in conjunction with
(2.5)—(2.7). (Section 4)
III. Finally, we seek z € C[0,T] which solves the equivalent problems. (Section 5)

3. SEMILINEAR PROBLEMS

We begin by considering the following semilinear problem :

Bt S
v.(z,r) =w(z), z€R,

ov, v, "
{ Ve _ il = ¢;(z,t,v;), (z,t) € Rx]r,T], (Pyryw)

where z is given in C[0,7],0 < r < T and w € BUC(R). To solve the problem (P,;r,w), we
employ a theory of abstract semilinear evolution equations (cf. [6, 10]). For this purpose, we
prepare some technical propositions.

Lemma 3.1. Let z € C[0,T). Assume that z € C%8[r,T] for some B with % < B <1 Then
the function pi(z,t,u) defined by (2.8) has the following properties:

(i) »: € C(R x [0, T} x R);

(ii) @*(-,-,u) € BUCT (R x [r, T]) uniformly for u in bounded subsets of R;

(iii) the partial derivative O,¢p% with respect to u ezxists and is uniformly continuous and

bounded on R x [0,T] x [-R, R] for each R > 0.

Proof. (i) By the continuity of ¢ and z, it is easily seen that ¢ is continuous. |
(ii) By (H3 1), it is straightforward to check that ¢%(-,-,u) € BUC(R x [0,T]) uniformly
for u in bounded subsets of R. Let R > 0, (z,t), (y,s) € R x [0,T], and |u| < R. By (H3



i-i1) we have

loZ(z,t,u) — 03(y, s, u)| = lo(z + 2(t), 1, 2(), u) — o(y + 2(s), s, 2(s), u)]
< el +2(8), 8, 2(2), u) — @(y + 2(2), 5, 2(2), u)|

+ ,‘p(y + Z(t), &, Z(t), u) - cp(y + Z(t)’s’ 2(3)7u)|

+ le(y + 2(2), s, 2(s), u) — p(y + 2(s), 8, 2(s), u)]
< sup  [p(s 5 €, 0)IR, 0,170, 2 (I = |7 + [t — s|F) + Cil2(t) — 2(s)]

l€ILlizllr
[v|<R
+ sup [@(,, & V)R [0,17,9,2|2(2) — 2()]"
feIizlir
[v|[<R

where C; depends on ||z||; hereafter ||z||7 stands for ||z|cjo,7). For the quantity
[e(-, -,f,v)]my[o,n,,’,%, see Appendix. Since z is Holder continuous on [r, T| with exponent 3

with 7 < 8 < 1, we obtain
|¢:($stvu) - so:(y,s, u)l < Cg(l:t - yl" + It - SI%), (:L‘,t), (yvs) € R x [1‘, T]
for |u| < R, where C; is independent of z, y, t, s, and u.
(iii) From (H3 iii) the assertion is obvious. W

Set Xo := BUC(R), X, := {u € Xy | uz; exists in X} and let X, := (X0, X1)% 00 be the
interpolation space between X, and X, for 0 < a < 1 (see [6, 4.11 Definition, p.50] for the
definition). For z € C[0, T), define an operator F, : [0,T] x Xo — X, by

F(tu)(z) := ¢i(z,t,u(z)), z€R

for t € [0,T] and u € X,.
Proposition 3.1. The operator F, is well-defined and has the following properties:

(i) There ezists an increasing function p, : [0, 4+00[ — [0, 400[ such that for any R > 0,

1 F2 (¢, w) = Fe(t,v)lx, < pz(R)||lu — vl x,

for allt € [0,T] and u, v € Xy with ||u||x,, ||v|lx, < R.

(ii) If in addition z € C%P[r, T| with % < B < 1, then there is an increasing function
pr,z : [0, +00[ — [0, +00[ such that for any R > 0,

I1F:(t,u) = Fu(s, )l x0 < pro(R)(It — 8|F + [lu—v]Ix,)

for allt, s € [r,T] and u, v € Xy with ||ullx,, ||v|x, < R.
Proof. (i) This is an easy consequence of (H3 iii). See Remark 2.1 (3).

(ii) By virtue of Lemma 3.1, the assertion follows from [6, Proposition 15.16 and Remark
15.18 (b)]. W

Defining an operator A with domain D(A) = X; by
Au:=¢eu,, for u € D(A),

the initial value problem (P,;r,w) can be rewritten as the following abstract initial value
problem in Xj:
dv.
W(t) = Al/z(t) + Fz(t, Vz(t)), t € ]7‘, T] (APZ, T,w)
v.(r) =w € X,.

The next proposition is well known. See (6, Theorem 1.5].



Proposition 3.2. The operator A generates an analytic semigroup {T(t)}+>0 of contractions
on Xo. Moreover, T(t) is given by

(T(t)u)(z) = /I;KE(:L‘ —y,Hu(y)dy, z€R, t>0 (3.1)

for u € Xy, where
2

exp(—:l%), z€R, t>0.

1
K (z,t) =
«(@:1) Viémet
Definition 3.1. (i) By a classical solution of (P,;r,w), we mean a function » € BUC(R x
[r,T) N BUC*!(R x [6,T)) for all é € ]r, T satisfying (P;;r,w).
(ii) By a regular solution of (P;;r,w), we mean a function v € BUC(R x [r,T]) N
BUC*m1+3(R x [6,T]) for all § € |r, T), satisfying (P.;7,w).

Definition 3.2. (i) If w € X,, a function v € C([r, T); X&) N C'(Jr, T); Xo) (0 € @ < 1)
satisfying (AP;;r,w) for each t € |r,T) is called a classical solution of (AP;;T,w).
(i1) A function v € C([r, T]; Xo) is called a strong solution of (AP;;r,w), if v(?) is differen-
tiable for a.e. t €]r, T[ and v(t) € X, for t € |r, T[ and satisfies (AP;;r,w) for a.e. t € |r, T
(iii) A function v € C([r, T); Xo) satisfying

v(t) =Tt —r)w+ /t T(t — s)F.(s,v(s))ds r<t<T,

is called a mild solution of (AP;;r,w).

Proposition 3.3.
(i) Each classical solution of (AP;;r,w) is a strong solution of (AP;;r,w).
(ii) Each strong solution v of (AP,;r,w) is a mild solution of (AP;;r,w).
(iii) There ezists at most one mild solution of (AP;;r,w).

Proof. (i) is clear from Definition 3.2. The proof of (ii) is obtained in a standard way. (iii)
is a consequence of Proposition 3.1 (i) and Gronwall’s Lemma. B

Proposition 3.4. Suppose that z € C[0,T]N C*#[r, T}, + < B < 1. Then

(i) each classical solution of (P,;r,w) is a classical solution of (AP;;r,w);

(i) each classical solution of (AP,;r,w) with initial value w € X4, 0 < @ < 1, is a regular
solution of (P,;r,w).

Proof. Owing to Lemma 3.1 and Proposition 3.1 (i), the assertions are derived from [6,
Theorem 25.2 and Remark 25.3 (a)]. B

Proposition 3.5. Let z € C[0,T)NC*#[r,T], 3 <A< 1landw € Xo, 0< a < 1. Then
(i) (AP;;r,w) has a unique classical solution v,;
(ii) the problem (P,;r,w) with 0 < w(z) < 1 has o unique regular solution v, satisfying
0Lv,<1lonRx[rT]

Proof. Due to [6, Section 25], (i) follows from Lemma 3.1. Part (i) together with Proposition
3.4 (ii) yields the existence of a unique regular solution v, of (P;;r,w). By virtue of (H3 v),
it is easily seen that v = 0 (resp. v = 1) is a super-(resp. sub-)solution of (P,;r,w). Since
0 < w(z) < 1 for z € R, it follows from [6, Theorem 25.6] that 0 < v, < 1. W

When z is given to be a continuous function, we have:



Theorem 3.1. For z € C[0,T] and w € Xo with 0 < w < 1, the problem (AP.;r,w) has a
unique mild solution v, € C([r,T]; Xo) satisfying

vi(wt) = [ Kela = unt = roty)dy (3:2)
+ /t/ K. (x—y,t —7)o3(y, 7 v:(y,7))dydr, (z,t) € Rx |r, T,
r JR .

and 0 < v, < 1 on Rx[r,T]. Moreover, suppose that z, € C*#[r, T), -;— <B<1,and z, = z
in C[r,T] and that w, — w in Xy and 0 < wn(z) < 1. Let v, be a classical solution of
(AP.,;r,wp), which exists by Proposition 3.5 (i). Then v, — v, in C([r,T]; Xo) as n — oco.

Proof. Let z, € C%#[r, T, % < B <1,andlet z, = z in C[r,T)], and w, — w in X,. Let
Vn be a unique classical solution of (AP, ;r,w,). Then, v, is also a mild solution, i.e.,

vp(t) =Tt — r)wn + /t T(t — s)F;, (s,vn(s))ds, r<t<T, (3.3)

and from Propositions 3.4 and 3.5, v, satisfies 0 < vn(z,t) < 1 for (z,t) € R x [r, T]. Since
T'(t) is a contraction semigroup on Xy, it follows from (3.3) that

t
“Vn(t) - Vm(t)”Xo < ”wn - wm“Xo +/ ”an (37 Vn(s)) - Fzm(s’ Vm(s))”Xods
t
< lwn — wmllxs + / 1Fs (5, a(s)) = Fi(s, va(s))llx0ds (3.4)

+ [ UF(20(5) = Fulovm(eDllxeds + [ N6, vm() = Fan (o)) xods

for t € [r,T]. Using the relations 0 < v, < 1, the uniform boundedness of z,(s) and (H3
i-ii), we have

12, (8, () — Fz(s,vn(s))llxo < Csllzn — 2y, 1y, s € [, T] (3.5)
for all n € N. On the other hand, it follows from Proposition 3.1 (i) that
1 F=(s,va(s)) = Fz(s,vm(s))llxo < p2(D)llvn(s) = vm(s)lx,, s € [r, T} (3.6)
for all n, m. From (3.4)~(3.6) we obtain for any ¢ € [r, T,
[n(t) = vm ()l xo < llwn — wmllxo + CsT(ll2n — 2l|G, 1y + l2m ~ 2llE77)
+05() [ 1a(6) = vm (),
By Gronwall’s Lemma,

”Vn(t) - Vm(t)”Xo
< {llwn = wmllxy + CsT(lon = Wy + llom = 2lyy.m)} exp(pe(UT). ¢ € [T,



" Taking the supremum over ¢ € [r,T] and then passing to the limit as n, m — oo, we find
that {v,} is a Cauchy sequence in C([r, T]; Xo), and so there exists v € C([r,T); Xo) such
that v, — v, in C([r,T); Xo) as n — co. Since v,(z,t) is the uniform limit of vn(z,1), v.
satisfles 0 < v; < 1on R x [r, 7).

Let us prove that v, is a mild solution of (AP,;r,w). It follows from Proposition 3.1 (i)
and (3.5) that

/ T(t — s)F,, (s,vn(s))ds — / T(t — s)F.(s,v:(s))ds

T

Xo

t
< / 1Fs (5, vn(s)) = Fi(s, vs(8))l| xods

t t
< [ 1 (osnl)) = Fulsmm(eDlxods + [ 1o, vm(6)) = FulovaloDllxods
< TCyllzn = oty + To:Dlvn = illoqrmxy  — 0 asn =

Hence, letting n — oo in (3.3), we have
. .
vi(8) = T(t — 1w + / T(t — 8)Fu(s,vs(s))ds, t€ [rTl. (3.7)

Thus v, is a mild solution of (AP;;r,w). Since the mild solution of (AP;;r,w) is unique by

Proposition 3.3 (iii), v, does not depend on the choice of {z,}. Finally, (3.2) is a consequence
of (3.1) and (3.7). &

In the rest of this section, we give some properties of the solutions v, to (AP;;0,w) or
(P2;0,w) with w(-) = uo(- + 2(0)) for later use.

Lemma 3.2. Let v, be a mild solution of (AP;;0,w) with w = uo(-+2(0)). Then there ezists
a constant Cy > 0, independent of z and €, such that for any z € C[0,T] and a € [0, 2],

/|:c|°‘uz(:z,t)da; < Ca(1+]I2%), teo,T).
R

Corollary 3.1. (i) For any R > 0, there is a constant Ms(R) > 0 such that for any
z € C[0,T)] with ||z||r < R and a € [0,2],

/ |z|*v.(z,t)dz < Ms(R), te€[0,T].
R

(ii) For each z € C[0,T), wiv, € L*(0,T; L'(R)).

Proof of Corollary 3.1. (i) is obvious from Lemma 3.2. Let z € C[0,T]. Recalling Remark
2.1 (2), we get

lwi(z, t)v:(2,t)] = lw(z + 2(t))|v:(z,t) < Cullz] + [2(t)])v:(2,t)

for (z,t) € R x [0,T). Thus it follows from Lemma 3.2 that wiv, € L>(0,T; L*(R)). m

Before proving Lemma 3.2, we recall the following elementary fact:



Lemma 3.3. If f € L=(R) and 22f € L}(R) then f € LP(R) for any 1 < p < oo and

AN, < IANG 2 Fll + 201 £l o)
18 satisfied; moreover zf € L'(R).

Proof of Lemma 3.2. Since |¢|* < 1+2? for a € [0,2], it suffices to show that there exists
a constant C5 > 0, independent of z and ¢, such that

/ 2%v,(z, t)dz < Cs(1+ ||z||3), ¢ € [0,T] (3.8)
R

for z € C[0,T]. Indeed, (3.8) implies 22v, € L=(0,T; L*(R)); then since 0 < v, < 1, it
follows from Lemma 3.3 that

/ |z|%v,(z,t)dz < /(1 + 2%)v,(z, t)dz < 2(/ v, (z,t)dz + 1),
R R R

which implies the desired estimate.
Let us show that (3.8) holds. Using (3.2), (2.8) and (H3 vi), we have

/R:vzuz(:c,t)d:z: =<4x2/n;K€(:v—y,t)uo(y+z(0))dyd.1:
+ [ 2 [ K= wt =)oty + 2001, ), (v, ) eyrda
g[Ruo(y+z(0))4wzlfe(x—y,t)d:cdy

t
+/ /f(y+z(r),1')/:c2K¢(z —y,t —7)dzdydr, te[0,T).
0 R R

By a change of variables,
22Kz — = L 2,
/R K.(z —y,t)dz ﬁA(@£+y) et d¢
<Cs /]R (4et€? + y?)e=€ de < Cr(1 +?)

for all y € R and t € [0, T). Hence,

/R:czuz(:c,t)d:c <Cy /R(l + y*)uo(y + 2(0))dy + C'-,v/0 /m(l + ¥®)F(y + z(7), 7)dydr

= -z 2u —z 2 T T

= crf [+ (€= =0 uatorte + [ [+ (€~ =17 e }

< e+ ] [+ o@de+ [ [0+ errie rdear )

for all t € [0, T). Since ug, z2uo € L'(R) and F, 22F € L'(0,T; L'(R)) by (H4) and (H3 vi),
we obtain (3.8). W

If v is a regular solution of (P,;0,w) with w = ug(- + z(0)), we obtain the following

— 10 —



Lemma 3.4. Let v be a regular solution of (P;;0,uo(- + 2(0))) satisfying 0 < v < 1 on
R x [0,T]. Then v € L>=(0,T;L'(R)) and

Nz 0,00 ®)) < llwollzrwy + 1 F | 2t (w0, 7p)-

Proof. Let 0 < 6§ <t < T. Multiply the equation by 1,,(z) := exp(—2%/m) (z € R,m € N)
and then integrate the result to obtain

¢
/V(x,t)z/)m(w)d:c—/V(:c,&)z/)m(a:)dx—s/ dr/uu(a:,r)z/)m(m)da:
R R 5 R
¢
= [ [ o mvte,om(e)ds,
6 R
Integration by parts and (H3 vi) yields that
/ v(z,t)Ym(z)dr (3.9)
) ‘ P Ym
S/V(x,6)¢m(x)dm+6/ dT/V(:L',T)——T(.Z')da?-l-”f”Ll(Rx]o’T[).
R 6 R dz
Since v € BUC(R x [0,T]) and ¥, € L*(R),
lim/ v(z,8)Ym(z)de =/u0(x+z(0))t/)n,(w)dx.
‘ 610 R R
Thus letting 6 | 0 in (3.9) yields
/ v(z,t)Ym(z)de
R
i d*tm
< [ vol + =(0))m(z)ds +¢ / dr [ vie, ) G @)z + | FlLamgn o
S lollzswy + [ dr [ e, S e)de + 1721 asgo (3.10)

for all t € 0,7} and m € N.
Now we claim that there exists a constant Cy > 0, independent of m, z, e, such that

/ dT/ u(z, T)| (o )‘d . (3.11)
A simple calculation shows |(d%/dz?)y,(z)| < (2/m)Ym(z) — (2/m)z(d/dx)pm(x). Thus by

integration by parts in space variable, we have

dr [ v(z,T )d 1/)"1 dr dzz,bm( )|da
[ o [ Grfae s [[ar [ |5

= x)dr — — 1.%2: T _‘_lz z _£ 6—62
T{m/szm( Yda mA«dw()d}—mA¢m(.)da_ﬁ A de,




as claimed. From (3.10) and (3.11), we get

C
/RV(I, t)pm(z)dz < |luollLr(ry + —\/;in—- + I Fll L1 <o, )

for all t € ]0,T] and m € N. Since the positive function v(z,t)y,,(z) converges increasingly
to v(z,t) as m — oo for each 2 € R and ¢ € |0, T, by the Beppo-Levi Monotone Convergence
Theorem, we have v(-,t) € L!(R) and

/R vz, t)dz < luollzry + 11| 2o,y

for all ¢ €]0, T]. This proves the lemma. W

4. EQUIVALENT PROBLEMS

In view of the previous sections, we can reduce Problem (P;) to the following problem (P;).
Actually, in the last of this section, we will find that Problems (P;) and (P,) are equivalent
in conjunction with another problem (P;).

Problem (P.). Find v € BUC(R x [0,T])N BUC?*"1+%(R x [6, T)) for each § € ]0,T] and
z € C*1[0, T] such that wiv € L*°(0,T; L'(R)) and satisfying

a< / wy(z,t)v(z,t)de < b, te€(0,T), (4.1)

R
2(t) = L(/IR wz(:v,t)v(z,t)da:), t €[0,T); (4.2)
ve(x,t) — evao(2,t) = i(z,t,v(a, 1)), (z,t) € Rx]0,T], (4.3)
v(z,0) = uo(z + 2(0)), =z e€R. (44)

Here ¢} and w} are the functions defined by (2.8).

Notice that Problem (P;) has a meaning even if we only ask for z € C[0,T], while that is
no longer true for Problem (P,).

Proposition 4.1. Suppose that a pair (v, z) solves Problem (P;). Then setting
u(z,t) := v(z — 2(t),t), (z,t) e Rx[0,T], (4.5)
the pair (u, z) solves Problem (P,). '

Proof. It is easily checked that v € BUC?*"%(R x [6,T]) for each 6 € ]0,T]. Since v €
BUC?*m1+3(R x [6,T]) and z € C%1[0, T}, we have u(x,-) € C®'[6, T] uniformly for z € R.
Since z is differentiable a.e. on ]0, T,

ug(z,t) = =2 (t)vg(x — 2(t),t) + ve(z — 2(2), 1) (4.6)

forall z € R, a.e. t €]0,T[; and hence u(-,t) € BUC(R) for a.e. t € |0, T since v, (- —z(t), ),
ve(- — 2(t),t) € BUC(R) for every t € ]0,T]. By changing variables,

/]R|w(w)u(x,t)|dx = /R lw(z + 2(¢))u(z + 2(¢), t)|dz = /]R lwi(z,t)v(z,t)|dx
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for each t € [0,T), which leads to wu € L*®(0,T;L'(R)) since wiv € L>(0,T;L'(R)).
Also, by changing variables, (2.1) and (2.2) hold from (4.1) and (4.2), respectively. From
(4.5)-(4.6), and (4.3), one easily obtains
ue(2,t) — eugz(a,t) + 2 (tug(a,t) = ve(x — 2(t), 1) — evaz (v — 2(1), 1)
= iz — 2(1),t, 2(t), v(z — 2(1), 1)) = e(z, 1, z(t), u(x, 1))
for all z € R, a.e. t € ]0,T[, and (2.3) follows. Finally, due to (4.4) and (4.5), u(z,0) =
v(z — 2(0),0) = uo(z) for = € R, and the proof is complete. B
We now define a function u, for each z € C[0,T] by

pa(z,t) = v.(z — 2(¢),t), (z,t) € Rx[0,T], (4.7)

where v, is the mild solution of (AP,;0,ug(- + 2(0))) defined by Theorem 3.1. Then we have

Proposition 4.2. (i) For any z € C%'[0,T] the function . defined by (4.7) satisfies p, €
BUCR x [0,T))NBUC?*"%(R x [6,T)) for all 6 € 10,T), p.(z,-) € C*[8, T] uniformly for
z €R and § € 10,T), du.(-,t)/0t € BUC(R) for a.e. t € |0, T, and fulfills

ot

2
Ok () 4y — 6%(&0,0 + z'(t)—a—a%(x,t) = o(z,t,2(t), z(z, 1)), = €R, a.e. t €10,T],
pz(z,0) = uo(z), =z €R.

(4.8)

(ii) For z € C[0,T), the function u, satisfies wp, € L°(0,T;L'(R)) and 0 < p, < 1 on

R x [0,T]. Moreover, for every R > 0, there ezists a constant Mg(R) > 0 such that for any
z € C[0,T) with ||z]]r < R and for any « € [0,2], the inequality

/ 21 po(2, )z < Mo(R)
R

holds for allt € [0,T).

Proof. (i) is obtained quite similarly to Proposition 4.1. The assertion (ii) is an easy con-
sequence of Corollary 3.1. B

We introduce the following problem which is shown to be mutually equivalent to Problems
(Py) and (P,).
Problem (Ps). Find z € C%![0, T] satisfying

a < / w(z)u.(z,t)de < b, te€l0,T], (4.9)
R

2(t) = L(L w(a:)uz(a:,t)d:c), t €[0,T], (4.10)

where u, is the one defined by (4.7).
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2

(1) of (u, z) solves (Py), then z solves (P3) and u, = u;

(i1) of z solves (P3), then (v.,z) solves (Py);

(iii) of (v, z) solves (Py), then (u,z) defined by (4.5) solves (Py) and v, = v,

where p. is defined by (4.7) and v is the regular solution of (P.;0,w) with w = uo(-+2(0))
defined in Proposition 3.5 (ii).

Theorem 4.1. Problems (Py), (Pz) and (P3) are mutually equivalent in the following sense:

Proof. (i) Let (u,z) solves (P;). Then it is clear that z solves (P;). Let us prove that
Bz = u. Set

v(z,t) :=u(z + 2(¢t),t), (z2,t) € Rx[0,T]. (4.11)

Then, as in the proof of Proposition 4.1, we find that v € BUC(R x [0,T]) N BUC?**™"3(R x
[6,T)) for all 6 € ]0,T], v(z,-) is differentiable almost everywhere on ]0, T[ for each = € R,
and v(-,t) € BUC(R) for a.e. t € ]0,T[; and

ve(x,t) — eve(z,t) = @3(x,t,v(z,t)), z€R, ae. t€]0,T],
v(z,0) = uo(z + 2(0)), =z €R.

Since v¢(+,1),v22(,t) € X for a.e. t € ]0,T[ and v € C([0,T); Xo), v is a strong solution of
(AP;;0,uo(-+2(0))). Hence v is also a mild solution by Proposition 3.3 (ii). Since v, defined
by Theorem 3.1 is a unique mild solution of (AP;;0,uo(- + 2(0))), we find v = v,; and so
u = pu; by (4.7) and (4.11).

(ii) This is clear from (4.7), Proposition 3.5 (ii) and Corollary 3.1 (ii).

(iii) This is a consequence of Proposition 4.1, part (i) of this proposition and (4.7). W

Remark. Like Problem (P;), Problem (P;) has a meaning even when z € C[0, T, since u,
is defined for z € C[0, T by (4.7).

5. PROOF OF MAIN THEOREM
First, we prove the uniqueness result.
Proposition 5.1. Problem (P;) (i =1, 2, 3) has at most one solution.

Proof. By virtue of Theorem 4.1, it suffices to prove only for (P;). Note that if z is a
solution of (P3), then (v,,z) is a solution of (P,).

Suppose that ¢ and 6 are solutions of (P3). Put K := max{||¢||T, |07} ¥ ¢(¢) < o(t)
(0 <t <T), then it follows from (H1)-(H2) that

My(R)7IC() — 6(8)] < ML) — A1)
= [ote +¢(0) - wle + 0Nl e + [ (e + 8O)ecz,1) = vz, )z

< [ ute + 86D el 1) — volz, )
R

< Cu(1+K) /R (1+ leDlve(z, t) — vo(, 1)l da. (5.1)
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Notice that v and vg are mild solutions of (AP¢;0,uo(- + ¢(0))) and (APs;0,uo(- + 6(0)))
respectively (defined by Theorem 3.1) and ((0) = L(fR w(:z:)uo(a:)d:v) = 6(0). Then we have

L+ leDloce ) = vo(a, 01
< [ [ 1otw 47,1 v, = ity + 87, 0, vl )
x /R(1 + DKz — gt — T)dedydr
for t € [0,T]. By changing variables, it is easily checked that

/(1 + |z K (2 —y,t)dz < Cro(1 + |yl), y €R, te0,T],
R

where C)y is independent of y, t (see the proof of Lemma 3.2). Hence, due to Corollary 3.1,
(H3 viii) and Remark 2.1 (3), we have

/ (1 + [2])lve(@ 2) — vo(z, )lda

R

< Cio j /R (14 [WDle(y + (), 7 ¢, ey 7)) — @y + 6(7), 7, 6(7), e (y, 7))l dydr
+C1o / /R (1+ [WDle(y + 8(7), 7, 6(7), vy, 7)) — 9y + 6(r), 7, 6(7), ve(y, 7))ldydr

< Cuo [ he(r) - 6<r>|{1 + [a+ |y|)v<<y,r>dy}dr

+ CroMy(K + 1)/0 /R(l + lyDlve(y, ) — vo(y, 7)|dydr.

By the Gronwall Lemma, we have
[+ leDlve(e,t) = voe, s
< Cio exp(CuiT) /Ot R(P)C(r) = 6(7‘)]{1 + /R(1 + |:c|)u<(:v,r)d:1:}dr
for t € [0, T], where Cy; = C1oMy(K +1). Returning to (5.1), we have
[(t) — 6(t)] < My(K)Cu(1 + K)Croexp(C11 T)
X /Ot h(T){l + /R(l + le)Vc(:v,T)dw}IC(T) = 0(r)|dr

for each t € [0,T]. Again, by the Gronwall Lemma, we conclude that ( =6 on [0,7]. W

Remark 5.1. Notice that we use only the continuity of # and ( and they need not be

Lipschitz continuous.
In order to prove the existence result, we need the following four technical lemmas, whose
proofs are done in the next section.
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Lemma 5.1 (A PRIORI ESTIMATE). There ezists a constant N > 0, independent of €, such
that any solution (u,z) of Problem (P;) satisfies

lzllr < K, (5.2)

a < MK) < / w(z)u(z,t)dz < AM(-K)< b, tel0,T)], (5.3)
R

where A is the inverse function of L (see (H1)).
Lemma 5.2. Let 8,¢ € C[0,T] satisfy

max{||¢||r, |[<lT} < 2K, (5.4)

where K is defined in Lemma 5.1. Suppose that for some 0 < r < T, 6(t) = {(t) fort € [0,r].
Then there are constants o € ]10,1[ and Cy12 > 0, depending on K but not on ¢,r,0,(, such
that

t
/ /R (1 + [2)lpt(@, 7 vo(z, 7)) — 93z, 7, ve(w, T))dedr < Cralt - r)7IIC — 6]l

for each t € [r,T], where ¢ 18 defined by (2.8), ve and v; are the mild solutions of
(AP5;0,uo(- + 6(0))) and (AP¢;0,uo(- + ¢(0))) respectively defined by Theorem 3.1.

For any ¢ € C[0, T}, define a function I'; : ]0,T[x]0,T[ — R by

Jrwiz,t) g Ke(z =y, t — T)i(y, 7, v¢(y, 7))dydz if 0 <7 <t<T;
0 otherwise,

Le(t,7) = {

where v¢ is a mild solution of (AP;; 0, uo(: + ¢(0))) defined in Theorem 3.1. Then we have

Lemma 5.3. Let ( € C[0,T]. Then the function I'¢ is well-defined and has the following
properties:
() If [[<llT < 2K, then there exzists a constant Cy3 > 0, depend only on K but not on ¢
and (, such that
IT¢(t, )| < Cis forallt, v €]0,TY.

(ii) For any c € [0,T[, the function t — f: T¢(t, 7)dT is continuous on [c,T).

Lemma 5.4. Let 6 and ¢ be the same as in Lemma 5.2. Then there ezists a constant
Ci14 > 0, depending on K but not on ¢, r, 8, {, such that

t
/ |I‘<(t, T)ldT < 014(t - 'I‘),

/ IT¢(t, ) — To(t, T)ldr < Cra(t —r)7|IC — 6,

for each t € [r,T], where o is the constant defined in Lemma 5.2.

We shall show the existence of the solution z of (P3) by applying the contraction mapping
principle step by step in time as done in [3]. Since each time interval will have the same
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width d > 0 (to be specified later), we can conclude that the solution exists on the whole
given interval [0, T.

Let » € [0, T[ be arbitrary and assume only the continuous function z satisfying (4.9)—(4.10)
to be known in [0,7]. We introduce the function space

X, :={CeClo,r+d]:{(=2zin[0,7], |[{|lr4+a < 2K}

as a complete metric space, where I is the constant defined by Lemma 5.1. The equation
(4.10) is rewritten as

Ae0) = [ e +2(0) [ Koo =yt = vy r)dyds
R R
t
+ / w(ax + z(t))/ / Ke(z —y,t — )iy, 7, v:(y, 7))dydrde (5.5)
R r JR
since v, satisfies

v(z,t) = / K. (z —y,t —r)v.(y,r)dy
R
t
+ [ [ Kea =it = Doty iy (5.6)

for t € [r, T] (see Definition 3.2 and Proposition 3.2). We now define

AN=2K)—¢—-2K if €< —2K ;
AR (E) =S A(§) if €] < 2K ;
A2K) - €+ 2K if € > 2K,

K K —_ r iiw T -r —2(r))azx
ME(€,1) == A (€) /Ru,(y, )/Rﬁ (20 VEE=7) +y + € — =(r))dzdy

for (¢,t) € R x [r, T]. Then, by the definition of I, and (5.5), we have

AR (z(t),t) = /tI‘z(t, r)dr, te€|[r,T).

Lemma 5.5. The function AKX (£,t) is continuous and strictly decreasing in € for fized t and
satisfies

lé-l - 52' £ M|)‘£\(€lat) - )\,,I_((éz,t)i, £i €R (Z = 1’ 2)» te [T,T], (57)
where M = max{1, M;(2K)}.

Proof. Since ) is continuous, A" is obviously continuous. We put

g(6,1) = /R ey, m) /R ﬁ w(2e/et—1) +y + € — 2(r))ddy.

By using the Lipschitz continuity of w and Proposition 4.2 (i), g(&,t) is shown to be con-
tinuous, and so AX(&,t) = AN (€) — g(€,1) is also continuous. Since A is strictly decreasing
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and w is increasing, £ — A (€, t) is strictly decreasing. One can easily check that (5.7) holds
from (H1). W

We denote by LI, the inverse function of ¢ — AN(£,t). Notice that (5.7) implies the
Lipschitz continuity of Ll‘t We define an operator S} : X, — X, as follows:

z(t) for t € [0,7[;

.K .—
(57 (ON®) = { LY, (f: I‘((t,r)dr) for t € [r,r + d],

for ( € X,. We shall show that for sufficiently small d > 0, which does not depend on r, Sk
is well-defined and is a contraction mapping in X,. Then SX has a unique fixed point in X,
which is shown to be the solution of (P;).

Proposition 5.2. For sufficiently small d > 0, SK : X, — X, is well-defined and is a
contraction mapping.

Proof. First, let us ascertain that S¥ is well-defined. Let ¢ € X,. Then it is obvious from
the definition that [SF(¢)](t) = z(t) is continuous in t € [0,r[. Using (5.7) and Lemma 5.3
(i), we obtain that for ¢y € [r,r + d],

M7HSEOI®R) - [SF(ON0)] < [NE(ISE(OIE), t) = AE(ISK(O)](to), 2) | (5.8)
<PFASEOND, 1) = AK(ISF(ON(0)st0)| + [AE(ISE(Q)](20), t0) — AKX (ISE(O](to),2)]

[ pettiridr = [ ety + EISE Qo). t0) = ME (S (Olta), )] — 0

T T

as t — to, which implies that [S,K(C )I(t) is continuous on [r,r + d]. From the definition of
AKX and (4.10), we find that AX(z(r),r) =0 = J7 T¢(r,7)dr, and hence,

Lfr (/;r LCe(r, r)dr) = z(r).

Thus, we see that S/(¢) € C[0,r + d] and SX(¢) = z on [0,7]. Let r < t < r + d. Letting
to =r in (5.8), we have

M7HSFONE) — 2(r)| = M7YISK(OI®) - [SF())(r)]

< / Le(t,m)dr| + [AE((SE(OIr),r) = AE((SE(QO)(r), )|
- / Te(t,r)dr| + NE(2(r),r) = AE(2(r), ). (5.9)

Since dw/dx € W'*°(R) (see (H2)), from Taylor’s formula we get
w(2zy/e(t — 1) + y) — w(y)
d 2z\/e(t—r)
= ﬁ(y) 2z/e(t — 1)+ /

0

&
(22/e(t — 1) — E)ﬁ(y + £)dE.

— 18 —



Thus, noting that [ x exp(—a?)dz = 0 and [ 2? exp(—2?)dz = \/7/2, we have

AR (z(r),m) = A (2(r), )]
= "[sz(‘y,r)/‘; —\—/—_7T—{w(2:v et—r)+y)— w(y)}d:vdy‘

[watwr) [ :/_ / VT e et —é)—‘f,———(yu)dgdady
< el Lt [ [ i i

- ﬁ’bw_flle(R)/Rm(y,y-)dy : / 2?e~dr - e(t — 1) < ||d2“’ ||L i, Mo(2EOe(t = 7).
So, putting Cis := ||d?*w/dz?|| L« r)Ms(2K), we have
IAE(2(r),r) = AT (2(r), 8)] < Cas(t — ). (5.10)
It then follows from (5.9)-(5.10) and Lemma 5.4 that
|[SE(OI(t) — 2(r)] < Colt — 1) (5.11)

for each t € [r,r + d], where Cy4 := M(Cy4 + Cy5). Choose d > 0 such that
d< Ci K.
Then it follows (5.11) and (5.2) that
ISEOI] < [ISKOIE) = 2(r)] +12()] < Cuod + Jo(r)] < 2K

for all ¢ € [r,r+d]. Hence SK(¢) € X, for every ¢ € X,, which shows that SE is well-defined.
Next, we show that SX is a contraction. Let ¢,6 € X,. For t € [r,r + d], using (5.7), the
definitions of SK and Lft, and Lemma 5.4, we obtain that

|[SF(O1®) = [SEOND] < MIAF(ISF(OI®), 1) = AT (IS5 (O)I(2), 1)

¢ t
/Fc(t,r)dr—/ To(t,7)dr

Noting that SX(¢) = SX(8) = z on [0, r], take the supremum over [0, + d] to obtain

=M < MCia(t —r)7|I¢ — 6]l < MC14d?||C — 6e.

ISK () = SE(O)llr+a < MC14d”||C = 6]|r+a-
Consequently, choosing d so small that
0 < d<min{C'K, (MCi4)7/°}, (5.12)

the operator SI is well-defined and a contraction mapping in X,. B
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Now, we are ready to prove our main theorem.

Proof of Main Theorem. Since the uniqueness is shown in Proposition 5.1, we have only
to show the existence result. In what follows, fix d > 0 as (5.12) is fulfilled. Then by
Proposition 5.2, S has a unique fixed point € X,. Note that # satisfies Z € C[0,r + d],
z==zin [0,7], ||Z||r+4 < 2K and

0 = (KN = L5 ( [ Tetrar), e +d,

Since Li‘t is the inverse function of A% (-, ), we see that

t
Aﬁ"(f(t),t):/ Ts(t,7)dr, te€[r,r+d].

Therefore, by the definitions of AKX and T';,
360 = [ wie + 200 [ Ko = vt = sty
R R

t
+ [ [ Ko —wt =ttt r))dydf}dx (5.13)
r R

for t € [r,r + d]. Note that # = z and v; = v, in [0,r]. Since v; satisfies (5.6) in [r,r + d], it
follows from (5.13) that

A(2(t)) = /Rw(:v + z(t))vi(z,t)dz, te€[r,r+d].

Hence, # satisfies (4.9)—(4.10) in [r,7 + d]. On the other hand, z satisfies (4.9)—(4.10) in [0, r]
from our assumptions. Consequently, Z satisfies (4.9)—(4.10) in [0,r + d].

Next, we show that 7 is Lipschitz continuous in [r,r + d]. For each s € [r,r + d], let
2, € X, ={C€C0,s+d]:¢(=7%in[0,s], ||{[ls+a < 2K} be the fixed point of SX. Note
that z, satisfies (4.9)—(4.10) in [0, s + d] and

[[SK (2,)](2) — 2(s)| < Cr6(t — 5)

for each t € s, s+ d] (see (5.11)). Since continuous function satisfying (4.9)—(4.10) is unique
(see Proposition 5.1 and Remark 5.1), we have z, = Z in [0, + d]. Consequently, for each
t, s € [r,r + d] with s < ¢,

12() — 3(s)] = |za(t) — 5(s)] = [[SK(2))(2) = £(s)| < Cuo(t — 9).

This implies that Z is Lipschitz continuous in [r,r +d]. Since r is arbitrary, we can construct
step by step a Lipschitz continuous function z on [0, T'] satisfying (4.9)-(4.10), i.e., a solution
of (P3) [ |

Remark 5.2. Note that the Lipschitz constant of the solution z of (P3) is independent of ¢
because
[2(t) = ()| < Crolt 5|

for all t, s € [0,T], and Ci; is independent of e.
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6. PROOFS OF TECHNICAL LEMMAS 5.1-5.4
In this section we give proofs of Lemmas 5.1-5.4.

Proof of Lemma 5.1. The proof is split into five steps.
Step 1: Set

W(z) = /orw(ads, r€R; Aly) = /Oymc)de, yeR.

In view of (H2) and (H1), it is easily seen that there exists a constant Ci7 > 0 such that
0K W(z) < Crr2?, z€R (6.1)
and that A is nonpositive and satisfies
—A(y) = 400 as |y| — +oo. (6.2)

Let (u,z) be a solution of Problem (P;). Then z solves (P;) and u, = u satisfies (4.8) by
Proposition 4.2 (i) and Theorem 4.1. Let 0 < § < t < T and set Y (z) := exp(—z?/m)
and ¢m(z) := W(z)Ym(z) (z € R,m € N). Then from (6.1), one can find that ¢, €
LY(R) N L=(R). Since du./dz, 8?*u,/d8z% € L>*°(Rx]$,T[) (by Proposition 4.2 (i)), and
z' € L>(0,T), we have 2'(0u./02)pm, (8%p:/02*)bm € L*(Rx]6,T[). Let @.(z,t,() =
o(z,t,2(t),¢). Then ¢,(-,+, pt:)¢m € L*(Rx]0,T[). In fact, since 0 < g, < 1, we have by
(H3 vi-vii) that

lo:(z, 7, tz(z, 7)) bm ()| < Fla, 7)m(2) + Ma(l|2llT)(L + |2Dpz(z, 7)dm(z)
for a.e. (z,7) € Rx]0,T[. Since (1 + |z|)pt:¢m € L*(Rx]0,T[) (see Proposition 4.2 (ii)), the

function ¢, (:,-, iz)¢m is integrable on Rx]0,T[. Multiplying the equation (4.8) by ¢m and
then integrating over Rx]é, ¢[, we have

/Rfﬁm@)ﬂz(w,t)dw = /R (2,8 4 /6 “r /R
‘/; 2'(T)/R%’;’(w,r)%(w)dxdw/; dTA(p(x,T,Z(T),yz(;z;,»r))qsm(x)dw'

A%y,
8:52 (z,7)Pm(z)dz (6.3)

Step 2 (letting 6 | 0): First note that 0 < ¢m(x) — 0 and |dém(z)/dz| — 0 as |z| — +oo.
Then by integrating by parts, (6.3) becomes

| N L
/D;d)m(a,)uz(m,t)dx—]R¢m_(1)uz(a,,b)dm+€/6 d /R T2 (z)p.(z, 7)de (6.4)

t t
+/ z'(r)/ d—(b-"l(a;)uz(:c,r)dwdr +/ d'r/ e(z,7,2(7), . (x, 7)) pm(z)dx.
6 r dz 5 R
Since u, € BUC(R x [0,T]) c C({0,T); Xo), Xo = BUC(R), and p,(-,0) = ug, we obtain

/d)m(:v),uz(:c,é)dm — / dm(z)uo(x)dr as 6 | 0.
R R
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Taking the limit in (6.4) as ¢ | 0, we have

A¢nz(ﬂ')u2($,t)d$= A¢n1($)‘UQ($)d$+€Ath/Rd;f;l(@')ﬂz(m,T)dilf (6.5)

+/0t z'(T)/]R dj;"(x)uz(x,r)dwdr+/ot dr/mgp(x,r, (1), a2, 7)) dm(2)d.

Step 3: A simple calculation shows that

wm i ' ke i 3
z€R ()‘—V ’ zelR dz()’\me m’

sup
Since d?¢p, /da? = (dw/dz)m + 2w - dipm/dz + W - d*3hp, /d2?, we have from (6.5) that

/m Sm(z)pz(z,t)de < / Sm(z)uo(z)dz + / dr / d—w(x)zbm(w)nz(w,r)dw
+ 92 [Car [lw@lnstenide + 22 [ar [ stporyee
+/0 z'(T)/R j:(a:)p,(a:,r)dzdr+/o dT/R}'(a:,T)d)m(:c)dx (6.6)

for t € [0,T], m € N, where C}g and Cj9 are independent of m. Here we have used (6.1) and
(H3 vi).
Step 4 (letting m — o00): By using (6.1) and Proposition 4.2 (ii), we find

| #nt@ste)ds < O [ #ua(e,)de < CrMaleli)

for each t € [0, T], m € N, where C17Ms(||z||7) is independent of m. Besides the nonnegative
function ¢ (z)p.(z,t) = W(zx)exp(—2?/m)u.(z,t) converges increasingly to W (z)u.(z,t)
as m — oo for each z € R, ¢t € [0,T]. Then by the Beppo-Levi Monotone Convergence
Theorem,

/qﬁm(x),uz(x,t)dx — / W(z)u.(z,t)dz asm — oo
R R
for each t € [0,T]. By (6.1), (H4) and the Monotone Convergence Theorem,

/R¢m(:v)uo(x)d:c — / W(z)up(z)dz asm — oo.

Recalling (H2) and Proposition 4.2 (ii), we can use again the Monotone Convergence Theorem
to obtain ‘

t t !
/ dT/ d—w(:v)z/Jm(a:)uz(x,r)dx —>/ (lT/ d—w(w)p.z(a:,r)d:v as m — o0o.
0 R dz 0 R do

Further, by (6.1) and the Monotone Convergence Theorem,

/Otdrfmf(:c,rwm(z)dm — /otdr/n;f(x,T)W(m)dz as m — oo,
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Note that |2/ (d¢m/dz)u.| < ||2']| L 0,1)(Crwlz|tt: + Caoz?u,) by (6.1), where Cy is indepen-
dent of m. Recalling Proposition 4.2 (ii), we can use the Lebesgue Dominated Convergence
Theorem to obtain

/Ot z'(T)A%(w)y;(m,r)dmdr — /01 z'(T)/Rw(:v)y,z(:lr,T)d:ch as m — 0o.

Since wy,, #%u.€ L'(Rx]0, T[) (by Proposition 4.2 (ii)), taking the limit in (6.6) as m — oo
leads to

/T/V(:c)uz(:v,t)dm-—/tz'(T)/w(ar)yz(w,r)dwdr (6.7)
R 0 R .
< /RI/V(:L')uO(n;)d:c+/Oth/IR_%%(x)ﬂz(w,T)dw+/; dT/Rf(IL',T)W(:L‘)dSL'

for each t € [0,T].
Step 5 (a priori estimate): It follows from (4.10) and the definition of A that

A(z(t)):/o z'('r)/Rw(a:)uz(m,T)d:ch+A(z(0)), t € [0,T].

By (6.7), we get

T w
0 < —A(z(2)) < /R W (z)uo(z)dz + /0 dr /R Z_x(w)yz(m’T)(lw
T
+/0 dTAf(x,T)W(w)dx—A(z(O)), te[0,T).

It follows from (4.7) and Lemma 3.4 that

T dw T
/ CIT/ —‘-(il,‘)ll'z(’l:, T)d$ S Cw/ dT/ VZ(:E - z(T),T)dél?
0 R d.’l: 0 R

T
= Cw/ dT/ v.(y, 7)dy < CmT(”Uo”Ll + ||.7-'||L1).
0 R

Noting that A(z(0)) is actually independent of z, we can take a constant C3;, independent

of z and ¢, satisfying
0 < —A(2(t)) < Ca1, te(0,T]

Hence by (6.2), we obtain (5.2). Finally, (5.3) is a direct consequence of (H1), (4.10) and
(5.2). m

Proof of Lemma 5.2. The proof is split into six steps.

Step 1 (approximation): Let 3 < 8 < 1 and take 6, € C%8[r, T] such that ,(r) = 6(r)
and 6, — 6 in C[r,T] as n — oo.

Let v, be a regular solution to (APs;r,vg(-,7)). By Theorem 3.1, we have vg, — vg in
C([r,T); Xo) as n — co. For (, the same fact holds, that is, there exists a sequence {(,} in
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C%#[r, T) such that (.(r) = ((r), o — ¢ in C[r,T] as n — oo, and we have ve, — V¢ in
C([r,T); Xo) as n — oo, where v, is a regular solution of (AP¢;r,v¢(+,7))).
Setting v, 1= v, — vy, , it is easy to see that v, satisfies

ov, o%v, . . . .
o — a3 e (e tve,) — i, (2.t ve,) = @7 (2.t ve,) — w5 (2,t,vs,) (6.8)
ot Oz

for (z,t) € Rx]r,T]. Furthermore, we have v,(-,r) = 0. Indeed, since § = ¢ on [0,r] and
both v and v are the mild solutions of (APy; 0, uo(- + 6(0))) on [0, 7], the uniqueness of the

mild solution yields vg = v¢ on [0, r]; in particular, vg, (r) = ve(r) = v¢(r) = v, (7).
Step 2: Set Y, (2) := exp(—22/m), ¢(2) := 2 + z tanh 2, and

U(z,t) := ¢(2)Ym(a) tanh(mr,(z,t)), &,.(z) :=/ tanh(m¢)d¢
0
forz € R, t € [r,T], m € N. Then it follows that

1+ 2| < é(x) < 2(1 + |2)), (6.9)

0< ®n(z) < || (6.10)
Let r < 6 <t < T. Multiplying (6.8) by ¥ and then integrating over Rx]é, ¢[, we obtain

t %, .
/]Rqu,b,,,CI)m(z/,,(t))cl.ar:—‘/l[;¢n/),,,(I>,,,(1/,,(6))cla;—z»:/’s dT/R‘I’Wdl
t
+/6 dT/R\II(z:,T)[cpzn(a:,T, Vg")—<p2”(m,r,u¢”)]dx
=/ dr/\P(x,r)[gozﬂ(z,r,ug")-—(,o;(a:,r,uo,_)]da:. (6.11)
6 R

Here we have used (0/07)®m(vn) = (8vn/87) tanh(mv,). By integration by parts yields the
third term of the left-hand side of (6.11) becomes

e/t d'r/ méYm
s R cosh?(muv,)

Thus we have

Ovn
oz

2 t d2
d:z:—e/6 dr‘éém(un)w(qbzﬁm)d:c.

2

Ovy
oz

A¢¢m@m(Vn(t))dx+eLt d-r/R m$Ym

cosh?(muy,)

t
+/; dT/R\I/(IB,T)[(pEn(:l‘,T,Ugn)—Lpzn(it,’r,l/(n)]d:l?

. ¢ d?
- /R $bm @ (va(6))dz + € /6 dr /R B (V) 7 ($om)da

t
+ / dr / Y(z,7)|pe, (2,7 v8,) — @3, (z,7,vs, )|dz. (6.12)
) R
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Step 3: By (6.9), one can check that

d%(¢($)¢m(w))| <Cn(1+ ;—i) $(@)pm(2),

where C,, is independent of m. Hence the second term of the right-hand side of (6.12) is
estimated by

t t
6'22/ dr/ D (vn)PYmda + 93;/ dr/@m(un)mzqﬁwmdm.
5 R m* Js R

Furthermore, by using (5.4), (6.9)—(6.10) and Corollary 3.1,
t t
/ d'r/@m(un(:v,T))w2¢(:v)'xpm(a;)d:z: S/ dr/ IVn(m,T)IqS(:L'):vze"z/"‘d:b
6 R 6 R
m [
< —/ dr/(l + |z|)|vn(z, T)|dz
e Js R

t
< -Teﬁ/ dT/(]. + 12D (Jvea (2, 7)| + lve, (2, 7)) dz < 4me ' TMs(2K + 1).
6 R

Therefore, we find that the second term of the right-hand side of (6.12) is majorized by

t
C22/ dT/ (bm(Vn)qs“/)mdw'*‘ _C_'Zi’
] R m

for sufficiently large n, where Cy3 is independent of , 8, {, € ,m, n, and é.
We next estimate the third term of the right-hand side of (6.12). In view of Corollary 3.1,
it follows from (H3 viii) that for some h € L9(0,T) with 1 < g < oo,

'/6" dr /n; U(z,7)[pe, (2,7, r/gnb) — s, (2,7,v,)|dx
<2 [ ar [+ Il + ()7 (o), v 2 7)
- 90(‘77 + 6n(T)’ T, 9"(7')’ Von(x’ T))Idx
<2 [ BOlGar) = 8ur {1+ [+ [elva, 7)o far
< 2[l¢n = bnllcpngll + 2Ms(2K + 1)]/5 h(T)dr

< CZ4||Cn - on”C[r,t](t - 5)01

where n is large enough, 0 := 1 — ¢~ ! and Cyyq := 2{1 + 2Ms(2K + 1)}||k||Le(0,7)- Since the
second term of the left-hand side of (6.12) is nonnegative, we get

t
/‘ﬁt/fmcbm(un(t))d:wr/ dr/dn/)m tanh(mvy)[@?, (2,7, v8,) — ¢¢, (2,7, v¢, )]de
R & R
t
< /R $tm B m(vn(8))dx + Co2 fa dr /R @ (vn)dpmde

C o -
+ —7-7123 + C24(t - b)a“Qn - on”C[-r,t]' (613)
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Step 4 (passage to the limit as & | »): Since vp(2,7) = 0, we have

}'/IR;¢(-’C)‘/’m($)¢m(yn(m’6))(13:

< onl &)l xe /R #(2)pm(z)ds =0 as 6| 1.

Then letting é | r in (6.13) leads to

t
/ PV m P (vn(t))dz + / dr / $Ym tanh(muv,)[p? (z,7,v,) — we, (2,7, )de
R r R
t
C
< 022/ CIT/ Qm(’/n)¢¢md$ + % + C24(t - 7')0”4n - on”C[r,t] (614)
T R

for each t € [r,T) and m, n large enough.

Step 5 (passage to the limit as m — oo): Noting that the second term of the left-hand
side of (6.14) is nonnegative since ¢(z,1,z,-) is decreasing on [0, +oo[ by (H3 iv), it follows
in particular that

023

m

t
/ & (va())$bmdz < Caz / dr / B (v (7))$pmde +
R r R
+ Ca4(t — 7)°||n — Onllcrr,g

for each t € [r,T]. Put fn(t) := Caam™! + Cyy(t — 7)7l[¢n — Onllc(r,g- Noting that the
mapping ¢ — fn(t) is increasing, we apply the Gronwall Lemma to get

/R & (vn(£))$md < fin(t) exp{Caa(t — 1)}

for each t € [r, T]. Therefore, returning to (6.14), we have

t
/ dr /}; ¢¥m tanh(muy)[pg (2, 7,ve,) — w¢(z, 7, ve,))dz
t
<Cn [ fn(r)exp{Cualr = r)}dr + fm(t)
< fm(t)(exp{C22(t — )} — 1) + fm(t) < exp(C22T) fm(t) (6.15)
for t € [r, T]. By using (H3 iii), it is known that
gom(2,7) 1= $(@Wbmn(2) tanh(mun(z, TgE, (2,7, v6,) — 08, (27, v2,)]

converges increasingly to ¢(z)|pg (z,7,ve,(z,7)) — w¢, (z, v, (2,7))| for a.e. (x,7) €
Rx]r,T[ as m — oo. Thus we can apply the Monotone Convergence Theorem and we obtain
from (6.15) that

t
/ dr /]R H(@)et, (2,7, von (2,7)) — 0. (2, 7, v, (2, 7))l da

t
= Jim_ ["ar [ gn(z,7)de < Cas(t =17 Nea ~ Oulctra

m—00

— 2 —



for each t € [r,T], where C55 is independent of r, t, z, €, n.
Step 6 (passage to the limit as n — 00): By Fatou’s Lemma,

/r dT/R¢(fL')|9¢’Z-(:l:,T, V9(177T))-—QOZ(IB,T71/C(;L-’T))‘d:U

t

< liminf/ d‘r/ d(2)|e?, (z,7,v6, (2, 7)) — @, (2,7 v, (2,7))|d
n—oo Jr R ‘

< Cas(t —1)7|IC — O¢

Noting (6.9), we arrive at the desired estimate. l

Proof of Lemma 5.3. (i) Let 0 < 7 <t < T. By changing variables,
—¢2
Net) = [ [ Smuly+26VEl =) +CO)eiv,m vl dedy,  (616)
—¢2
= [ [ Smwly+26v/EE =)~ ) + Oy T (), il ),
RJR VT

where p. is defined by (4.7). Let us denote the integrand above by f(£,y,t,7). Using (H2),
(H3 vi-vii), and Proposition 4.2 (ii), we have for R 2 ||¢||T,

/]R de /]R F(6, 2t 7)Idy
< 3; /R € /R (ly] + 21EVEE =) + 1)+ KD ey, 7 C(7 ), ey 7)\dydé
< fj’; /R e de /R (1vl + 2R) (. 7 C(7), pe(y, 7))ldy

2C VT / 2
+ === et d/ , T, C(7), ,7))|dyd
v €1d€ IR|<p(y ¢(7)s p¢(y, 7))|dydg
< Cao [ (41+ 2R+ 1D{F(0,7) + Ma(R)(L + lyDisc(y, )}, (6.17)
where Cy6 = C\, +2C,V/T/+/7. Due to (H3 vi) and Proposition 4.2 (ii), the above inequality
shows that (6.16) is well-defined and the assertion of (i) holds true by taking R = 2K.

(ii) Let c < to < T. If 7 € ¢, to[, then f(&,y,t,7) is continuous in ¢t € [r,T] and in view of
(6.17), one can use the Lebesgue Dominated Convergence Theorem to obtain

[ [ revrnacy — [ [ sty ast—to
R JR R JR
Since [¢(t,7) = [ fR fl&,y,t,7)dédy if T < t, the above fact shows that

tlint1 Le(t,7) =T¢e(to,7), <7<ty
—1lo

This combined with (i) yields

to to
tlintl/ Fc(t,T)dT=/ Ce(to, T)dr.
—to Je c
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Consequently,

t to
/ Ce(t, m)dr — / TC¢(to, 7)dr
‘ t ‘ to
/ Ce(t,7)dr — / Ce(t,7)dr
o] c
to

to
/ Fc(t, T)dT' - FC(th T)dT

c

to

to
/ Ce(t,m)dr — Ce¢(to, 7)dT

c

< +

<C13|t—to|+ — 0 a,St'—)to.

This completes the proof. B

Proof of Lemma 5.4. The first estimate is an easy consequence of Lemma 5.3 (i). Let us
show the second estimate. By (6.16) that

/ [T¢(t,7) — To(t, T)|dr

</rt/R/Re;|w(y+2eJ?@—_ﬂ—<(r)+<(t))
—w(y +26Ve(t — 1) — ((7) + 0) |lec(y, 7o pe(y, T))ldydédr
+/:/R/R%lw(y+2£\/é(—t—7)+0(t))l
X |oe(y, 7, ve(y, 7)) — wo(y, T, vo(y, 7))|dydédr
+[/R/Re\;:lw(y+2£\/5(t_—7)+9(t))l

X |pe(y, T, v (y, 7)) — wey, 7, ve(y, 7))|dydédT

for t € [r,T). We denote by I;(t), I2(t) and I3(t), the three terms in the right-hand side,
respectively. Due to (H2), (H3 vi-vii), (5.4) and Proposition 4.2 (ii), we have

Il<t><\c/—; / /R /}R € 1¢(t) — OB [F(y, 7) + Ma(2E)(L + lylsc(y, 7)|dydédr

< Cull¢ - 6, / /R [F(y, ) + My(2K)(1 + [yl (y, 7))dydr

< ColllFlle (o, ) + 2Ms(2K)Ms(2K)T 7 (t ~ )7 |I¢ — 6l
for t € [r,T). Next it follows from (H2), (H3 viii), (5.4), and Corollary 3.1 that

Cw ¢ —¢? -
L(t) < ﬁ/ /R/Re (ly| + 2|¢|VT + 2K)
X lpz(y, 7, ve(y, 7)) — wo(y, 7, ve(y, 7))|dydEdT

<Cor [ [+ 1WDlety + <0 m 6 valur)
Zply + 6(r), 7, 0(r), vo(y, )| dydr

t
< [ Wle(r) - e(r)l{l + [a+ |y|)w(y,r)dy}dr
< Cor {1+ 2M5(2K + 1) }HIA| Loo, 1 (t = 7)°|IC — 6l:



for each t € [r, T], where Cy7 := 277 2CW(1 + VT + K) Jr(1 + |€]) exp(—£€?)d€. Finally, we

obtain from Lemma 5.2 that

t
I3(t) < sz/ /(1 + lyDles(y, 7, ve(y, 7)) — @iy, 7, ve(y, 7)) |dydr
r R
< C7Cra(t —7)7||C — 0]|¢

for each t € [r,T]. Consequently, we get the desired estimate. W

APPENDIX

For the reader’s convenience, we give definitions and notations of some function spaces used
in this paper. Let M, N and L be subsets of R™, R™ and R/, respectively. Let 5, o € 0, 1].
By BUC(M) we denote the space of all bounded and uniformly continuous functions on M
with the supremum norm || - ||eo. For any function f: M — R, put

— |f(z) — f(y)l
e
z#y

The space of all Holder continuous functions with exponent 5 € |0, 1[ is denoted by C*"(M),
that is, f belongs to C%7(M) if and only if f is continuous and [f]a,, is finite. And then
we set BUC"(M) := BUC(M)N C%"(M) for n € ]0,1[. We denote by C%!(M) the space of
Lipschitz continuous functions on M.

For a function f : M x N — R, we say that f(-,y) € BUC"(M) uniformly for y in a subset
N' of N if supyen: [|£(5, ¥)lloo < 00 and supyen:[f(-,y)]M,n < co. For f: M x N — R, put

|f(z1,91) — f(z2,y2)l
fIM, N0 = su : :
Lf] e (x,-,y.-)er)wa |zg — 22| + |y1 — y2|”
(1‘1,!!1)95(12,3/2)

and define

BUC" (M x N):= {u € BUC(M x N) : [ulm,N,5,0 < 0}
Let L' be a subset of L. For a function f : M x N x L — R, we say that f(-,-,2) €
BUC™?(M x N) uniformly for z in L' if

Sl'lp ||-f(" ) z)||°° < oo a'rld Su'p [.f(" y z)]M,NJI:U < Q.
ze€L’ zeL!

Let k; be nonnegative integers and M, subsets of R™: i = 1,2. Denote by Ckvkz( My x M)
the space of all functions u having partial derivatives af"u up to the order k;, : = 1,2, which
are continuous on M; x M,;. The space BU C"""’(Ml x Mj) is defined as a subspace of

Ckrk2 (M, x M,) consisting of all functions u having partial derivatives 8:‘11. up to the order
ki, i =1,2,in BUC(M; x M,). Finally, we define

BUCK*mketo (A x My) := {u € BUCY*2(My x M,): 8fu € BUC™ (M x My)
whenever 0 < I; < k; (¢ =1,2)}.
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