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1. Introduction

A submanifold M of a Riemannian manifold M is called to be parallel if the second
fundamental form of M is parallel. Several authors have completely classified parallel
submanifolds when the ambient spaces are the Euclidean space and the symmetric spaces
of rank one except Cayley plane and its non-compact dual. Parallel submanifolds of the
Euclidean space and the sphere have been classified by D. Ferus [2], [3], [4] and those
of the real hyperbolic space by M. Takeuchi [12]. Parallel Kaehler submanifolds of the
complex projective space and the complex hyperbolic space have been classified by H.
Nakagawa and R. Takagi [11] and by M. Kon [6] respectively. H. Naitoh in [8], [9],
and [10] has classified totally real parallel submanifolds of the complex space form and
consequently has completely classified parallel submanifolds of the complex space form.
Parallel submanifolds of the quaternion projective space and its non-compact dual have
been classified by the author [13]. In this paper we will study parallel submanifolds of
Cayley plane P,y(Cay).

We need the classification of totally geodesic submanifolds of P,(Cay) to classify
parallel submanifolds of Px(Cay). On this, the following result is obtained: ‘

THEOREM (J. A. WoLF [14]). Let N be a connected complete totally geodesic submanifold
of Cayley plane P; (Cay ) with dim N=2. Then N is an r-dimensional sphere S 2=<r=<8),
a real projective plane Py (R), a complex projective plane P,(C ), or a quaternion projective

plane Py( H). Moreover, if two connected complete totally geodesic submanifolds are homeo-
mor phic, then they are equivalent under an element of Iy (Py(Cay)), where Iy(Py(Cay))
denotes the identity component of the full group of isometries of Po(Cay).

Especially maximal totally geodesic submanifolds of P,(Cay) are P,(H) and S&.

In this paper we will show the following:

THEOREM. Let f be an immersion with parallel second fundamenial form of a connect-
ed manifold M (dim M =2) into Cayley plane Po(Cay). Then there exists a totally geodesic
submanifold Po( H) or S8 of Py (Cay) which coniains the image f(M) of M by f.

By this Theorem a parallel submanifold M of P;(Cay) is reduced to either of the fol-

lowing cases:
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(a) M C Py(H) C P,(Cay),

1 2

or

(b) Mc S C Py, (Cay),
S f2

where f; is parallel and f; is totally geodesic. Meanwhile parallel submanifolds of P,(H)
and S® have already been classified. Therefore we have completely classified parallel
submanifolds of P,(Cay).

2. Preliminaries

Let M be an m-dimensional Riemannian manifold with the Riemannian connection
V and M be an n-dimensional Riemannian manifold with the Riemannian connection V.
We denote by R the curvature tensor of V. Les f be an isometric immersion of M into
M. The metrics on the tangent bundles TJ\Z TM are denoted by < ,>. The metric
and the connection on the pull back f *TM induced from < ,>and V are also denoted by
< ,>and V. We have an orthogonal decomposition:

F*TM=TM+NM,

where NM denotes the normal bundle of f. We denote by V* the normal connection on
NM induced from V. Then we have Gauss-Weingarten formulas:

%XY=VXY+0(X’ Y)’

Vx=—AX+VLE,

for vector fields X, Y on M and a normal vector field §. Here the tensor fields ¢ and Az
are called the second fundamental form and the shape operator respectively, which are

related by < Ae X, Y>=<o(X, Y), £>. We define a tensor Vo by
Vo(X, Y, Z)=Vko(Y, Z)—0(VxY, Z)—a(Y, VxZ),
for vector fields X, Y, Zon M. The isometric immersion f is said to be fotally geodesic
if =0 on M, and f is said to be parallel if Vo=0on M. For a point p & M, put
NiM={o(X,Y)EN,M, X, YE TyM}r,
which is called the first normal space. Put O},M =T,M —|—N},M, which is called the
first osculaling space. 1f f is parallel and M is connected, the dimensions of N },M and

O}DM are constant on M. Therefore N'M= U N },M and O'M= U O},M are subbun-
p=M peM

dles of f *TM. Moreover we have
Lemma 2.1 (H. Narrou [7]). If f is parallel and M is locally Riemannian symmetric,
then the following holds :

(a) R(X,Y)ZE TyM
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(b) RX, V)¢ eNLM
(c) o(V, R(X, Y)Z)—R((V, X), Y)Z—R (X, o(V, Y))Z—R(X, Y)o(V, Z)=0
(d) —ARx, e V)—R(a(V, X), Y)E—R(X, a(V, Y))E+R(X, Y)A:V=0,

for X, Y, Z, V& TyM and EENgM.

If a subspace W of the tangent space TPM at p & M satisfies R X,Y)Z& W for X,
Y, Z&W, then W is called a curvature invariant subspace. It is well-known that for a
curvature invariant subspace W at p of a Riemannian symmetric space 117, there exists a
unique complete totally geodesic submanifold N of M such that p&E N, TyN=W (S. Hel-
gason [5]). We prepare the following key lemma to prove Theorem.

Lemma 2.2 (H. Naitod [9]). Let f be a parallel immersion of a connected Rieman-
nian manifold M into a Riemannian symmelric space M. I f Oi, M is a curvature invariant

subspace of TPM for some point p & M, then there exists a unique complete totally geodesic
submanifold N of]T/I such that f(M) is contained in N and Tp N= O}J M.

In fact H. Naitoh proved this when M is the complex space form (see Theorem 2.4

in [9]). Following his proof, we see that the statement holds whenever M is a Rieman-
nian symmetric space.

3. The Cayley algebra and the curvature tensor of P;(Cay)

The set of Cayley numbers, which is denoted by Cay, is an 8-dimensional vector
space over the field R of real numbers with basis elements ¢, =1, ¢;, ..., ¢;. For these
basis elements a multiplication is defined as follows:

eiep=epei=cei, and eie; (i, = 1) is given by the following table.

e 2] €3 €4 és s e7
éi1| —¢6 €3 —& € —é —ée €6
€| —€ —¢ e s €7 —6 —6
€3 €2 —é1 —6 €7 —6 €5 —éy
€4 — €5 — & —ée7 — € €1 () é3
43 [ —e7 (43 —e1 —€p —e3 (2
€6 er () — &5 — €3 €3 —€ —e
ey — &g (4] 4 —e3 -— €2 e1 — €y

We extend the multiplication onto Cay canonically. Then Cay is a non-associative divi-

7
sion algebra, which is called the Cayley algebra. To a=agey+ 3 aiei, We associate the
i=1

— 7
conjugate Cayley number a=aye— > @iei. We define an inner product <a, b > by
1=1
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<a, b> = i}o a; fBi for a= S;“(,) aie; and b= 27:,) Biei and the norm |a| by |a|=v<a, a>.

Then similarly to the quaternion algebra H, we have ab=ba, |ab|=|al| ||b|, and a b+ba
=ab+ba=2<a, b> e.

We remark that the field R of real numbers, the field C of complex numbers, and
the algebra H of quaternions are canonically regarded as the subalgebras of the Cayley
algebra Cay. In fact, the mappings a—aey, a+Bi—aey+p e, and a+Bi+7j+0k—aey+Be;
+7rey,+des for @, B, v, d & R are injective homomorphisms of R, C, and H into Cay respec-
tively. In particular we identify the Cayley algebra Cay with pairs H+ H of quaternions

as follows: To a= ié) aiei, we attach [a, 8] €& H+ H, where a=ay+a,i+ayj+azk, B=a,
—asi—agj—aqzk. For this correspondence, the followings hold:

[, B1[r, 8]1=[ar—3 B, @ d+78]

[, Bl =[a, —5]

<[e, B, [1,0]1 > =<a, r>+<B,8>,

where a is the conjugate number of @ in H and <e, 8> is the inner product on H.
Though Cay is not associative, the following formulas hold (cf. I. Yokota [15] p.
208): For a, b, u, v & Cay,

GD  camo>=<wuar>,<ugv>=<uova>,

(3.2) a(aw)=(a a)u, a(ua)=(au)a, waa)=ua)a,
alan)y=(aa)u, a(wa)=(@n)a, u(aa)=(ua)a,

(3.3) b (au)+a(bu)=2< a, b >u=(ua)b+(ub)a,

(3.4 for an orthonormal basis ey, aj, ..., ay,
ai(ajw)y=—aj(ain) G+j), ai(aiu)y=—wu and
especially aiaj=—ajai, a?=—e,.

Let M be either Cayley plane or its non-compact dual. Then the curvature tensor R
of M is given as follows.

LeNNA 3.1 (R. B. Brown and A. Gray [1]). The tangent space T,,M at p of M is iden-
tified with Cay+Cay, viewed as pairs of Cayley numbers. Under this identification, the
metric tensor g~ at p is given by E( (a, b), (¢, d))=<a, c>+<b, d> and the curvature tensor
R al p is given by

R((a b), (¢, d)) (e, )

(3.5) ={Z_<—4 <a, &> c+4<c, > a+(ed) b—(eb) d+(ad—ch) ,

a(cf)—claf)—4<b, f>d+4<d,f>b—elad—ch)),
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where k is positive or negative according as M is Cayley plane or its non-compact dual.
We devote the rest of this section to describing curvature invariant subspaces of M
By Lemma 3.1, we identify the tangent space sz\? with Cay+Cay. We put sub-
spaces »~zs” and »2g (K=R, C, H) of TPM as follows:

725" ={(a, 0); a & W'},
where W” denotes an r-dimensional subspace of Cay (2 <r < 8) and
»zg={(a, B); a, 8 & K},

where K=R, C, or H is regarded as the subalgebra of Cay. Then by (3. 5), »72s” and »zx
(H=R, C, H) are curvature invariant subspaces. Moreover we see that the complete
totally geodesic submanifolds N of M such that T p N=2225", 722p, 222¢, and »zg are an r-
dimensional sphere S’, a real projective plane P,(R), a complex projective plane P, (C),
and a quaternion projective plane P,(H), respectively if M is Cayley plane. So we call
the curvature invariant subspaces #zs7, 72g, 72¢, and »zgin T, M S-type, Po(R)-type,
Py(C)-type, and P,(H)-type respectively. Wolf’s Theorem stated in section 1 implies
that any curvature invariant subspace of Tpllzf is equivalent to one of »2s” and »2x(K=R,
C, H) under an element of the isotropy subgroup of I (M) at p.

4. Proof of Theorem

Let M be either Cayley plane or its non-compact dual and f be an isometric immer-
sion with parallel second fundamental form of a connected Riemannian manifold M (dim
M =2)into M. If the following holds, by Lemma 2. 2 we obtain Theorem.

ProrosiTION 4. 1. For a point p & M, the tangent space T M and the first osculating
space O},M are both curvature invariant subspaces of Ty M. Moreover one of the following
cases occurs:

(1) Tp)M is S"-type (B =r < 8) and O’; M is S"-type (r < n < 8),

(2) TpyM is S?-type and O},M is S"-type (2 = n =< 5) or P2(C)-lype,
(3) TpM is Py(H )-type and O})M is equal to Tp M,

(4) TpM is Py(C)-type and O},M is equal to TpM or is Py(H )-type,
(5) TpM s Py (R)-type and O}DM is equal to TpM or is P,(C)-type.

Proof of Proposition 4.1. As usual we identify TPJLNJ with Cay+Cay. By Lemma
2.1 (a), TpM is a curvature invariant subspace of T, M. Therefore it is sufficient to
consider the following five cases:

Case 1: TpM=vsrns" (3=7r<8),

Case 2: TpM=7ss:,

Case 3: TpM=2»p,
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Case 4: TpM =77,
Case 5: TpM=7srp.

We determine the first osculating space O},M for each case.

Case 1. OlM=ses" (r<=n=<8).
Proof. In this case, we decompose the normal space NpM as follows:
NyM={(c, 0); c& (W")*}+{(0, d); d & Cay}.

We denote by ¢’ and ¢’ the components of the second fundamental form ¢ according to
this decomposition. That is,

a((a, 0), (b, 0))=(0"((a, 0), (b, 0)), "’ ((a, 0), (b, 0))),

where a, b € W7, 0’ ((a, 0), (b, 0)) & (W7)™, and ¢''((g, 0), (b, 0)) & Cay.

We shall show that ¢/’ vanishes. In fact applying Lemma 2.1 (c), we have
(@'((a, 0), R((b, 0), (¢, 0)) (d, 0)), 0""((a, 0), R((b, 0), (c, 0)Xd, 0)))
—R((@((a, 0), (b, 0)), a""((a, 0), (b, 0))), (c, 0)) (d, 0)
—R((b, 0), (o’ (@, 0), (5, 0)), a" ((a, 0, (5, 0)))) (d, 0)
—R((, 0), (¢, 0)) (@’ ((a, 0), (d, 0)), o""((a, 0), (d, 0)))=0,

fora, b,c,de= W".
By (3.5), we have

—4<b,d>d""((a, 0), (c, 0))+4 <c, d > "' ((a, 0), (b, 0))
4.1 —d(ca”’ ((a, 0), (b, 0)))+d(ba"((a, 0), (¢, 0)))
— b (ca’’((a, 0), (d, 0)))+c(ba""((a, 0), (d, 0)))=0
Putting c=a and d=b in (4.1) for an orthonormal system (e, b} of W7, we get
—40""((a, 0), (a, 0))—2b(as’'((a, 0), (b, 0)))
+b(ba’"((a, 0), (@, 0)))+a(ba’((a, 0), (b, 0)))=0
and using (3. 2),
(4.2) —34"'((a, 0), (@, 0))—2b(ac’"((a, 0), (b, 0)))
+a (b’ (a, 0), (b, 0)))=0.
Similarly we have
4.3 —30"'((b, 0), (b, 0))—2a(ba’’((a, 0), (b, 0)))
+b(aa""((a, 0), (b, 0)))=0.
Adding (4.2) and (4. 3), we obtain
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0=—3{0"((a, 0), (a, 0))+0"((d, 0), (b, 0))}
—{b(ad’'((a, 0) (b, 0)))+a(ba’"((g, 0), (b, 0))))
=—3{0""((a, 0), (a, 0))+3""((b, 0), (b, 0))}
—2<a, b>>0""((a, 0), (b, 0))
=—3{0"((a, 0), (a, 0))+a""((b, 0), (b, 0))}.
Hence we get
4.4) a’'((a, 0), (a, 0))+a’'((b, 0), (b, 0))=0.

For an arbitrary unit element ¢ © W7, we take b, c & W7 such that {a, b, ¢} is an ortho-
normal system of W”. By (4.4), we get ¢’ ((a, 0), (@, 0))=—a"'((b, 0), (b, 0))=0a"’((c, 0),
(¢, 0))=—0""((a, 0), (@, 0)) and hence o'’ ((a, 0), (@, 0))=0. Since a is arbitrary, we have
¢'’=0. Therefore the first normal space N },M is contained in {(¢, 0); c& (W")*} and

hence there exists an n-dimensional subspace W” of Cay such that W”SW?” and O, M
={(a, 0); a EW"}.

Case 2. O ,M=x2s" (2<n <5) or O3 M is equivalent to »zc.

Proof. For any 2-dimensional subspace W2 of Cay, {(g, 0); ¢ & W2} is equivalent to
{(a, 0); @ & C} under an element of the isotropy subgroup of I (ZNW )at p. Therefore we
may assume that T,M= {(a, 0); a = C}. Let gi(T p]% be the Lie algebra of all linear endo-
morphisms of T, M. We denote by & the subspace of gf (TI,JW) linearly spanned by ﬁ(X,
Y), X, Y& TpM. Since TpM is a curvature invariant subspace, £ is a Lie subalgebra of
gl (Tp M ). Moreover Tp M and N» M are invariant subspaces by the action of & An ir-
reducibly invariant subspace of N»M by the action of & is given by {(ag, 0); a & R} or
{0, 4f); A&C}, where @ and f are unit elements of Cay and <a, C > =(0}. In fact
using (3.5), we can easily see that these spaces are irreducible. Suppose that V is an ir-
reducibly invariant subspace of N»M by the action of & and 7 has an element (¢, f) such
that < @, C >= {0} and f#0. Since R ((e1, 0), (¢o, 0)) (a, f):%(o, —2¢, 1) and R ((ey, 0),

(e, 0)) (0, ey f )=—Zi(0, 2f), the subspace { (0, 4f); A& C} is contained in V. Therefore V
has to coincide with {(0, 2f); A &€ C}.

By Lemm 2.1 (b), the first normal space N },M is an invariant subspace of NpM by
the action of ® Since dim N})M < 3, the following three cases may occur: -

(i) N },M ={(a, 0); a & W1}, where W? (0 <t < 3) is a t-dimensional subspace of
Cay such that << W¢, C >= {0},
(ii) N},Mz {0, 2f); 2& C}, where f is a unit element of Cay,

(iii) N}M={(@, Af); 2€ C}+{(ad, 0); a & R}, where f and d are unit elements of
Cay and <d, C > ={0).
( i) In this case, we have O}bM =252+ clearly.




26 K. Tsukada

(ii) In this case, we can easily check that O},M is a curvature invariant subspace
and is equivalent to »zc.

(iii) This case does not occur.

We denote by g, the (d, 0)-component of the second fundamental form o.
Applying Lemma 2.1 (d), we have

R (o((e0, 0), (&0, 0)), (e1, 0)) (0, 1)
+ R ((eo, 0), 3 ((eo, 0), (e1, 0))) (0, ) E Tp M.
Since R ((a, 0), (0, 21))(0, f)E TpM  fore, AEC,
a0 ((eas 0), (e, 0)) R ((d, 0), (e1, 0)) (0, 1)
+a0((e0, 0), (e1, 0)) R ((eo, 0), (d, 0)) (0, ) € TpM.
By (3.4) and (3.5) we have
ao((eo, 0), (€0, 0) (0, d(erf) —e1(df))
+a0( (0, 0), (e1, 0)) (0, df—d f)
=(0, 20, ((eo, 0), (eo, 0))e1(df )+200 ((eo, 0), (e1, 0))df) € Tp M.

Therefore we have g, ((e, 0), (e, 0))=00((ep, 0), (€1, 0))=0.
By Lemma 2.1 (d), it follows that

R (o ((e1, 0), (e, 0)), (e1, 0)) O, f)
+R ((es, 0), o ((e1, 0), (e, O, £) E Tp M.

Computing similarly, we have g¢((e;, 0), (e;, 0))=0. Consequently o, vanishes. This is
a contradiction.

Case 3. O‘PM =TpM. That is, the second fundamental form ¢ vanishes.

Proof. We identify Cay with H+ H and we simply write « for [a, 0] if there is no
danger of confusion. For later use we prepare some formulas:

4.5)  R(@ 8, d)ED

—k (—4<a, > 7+4<r, e > at(c0) B—(e )+ (@d—7B) 1,

@ (r D)—7(@)—4 < B, A>34+4<3, 1> B—<c(ad—7B)),

4.6) R ((e B) (1, ») ([0, ], [0, 2])

=% (10, B3—-3p) e+(B7—0 @) 21, [0, (ar—ra)d+-(@d—7 B)€]),
@47 R 8),([0,71,[0,01) G D)

—E ([0, ~4<a, e>r+2F0+1@0—p7) ],

[0, —4 <8, 2> 3+2aky—e (@d—Ar)]),
where a, 8, 7, 6, ¢, A EH.
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In Case 3 the normal space NM is given by

NpM=(([0,7],[0,9]); 7,0 c H}.

We define ¢’ and ¢’/ by

a((a, &), (8, 8))=([0, ¢'({a, a"), (B, 8))], [0, 0""((a, @), (8, 8)) 1),

where @, @/, 8, 8/ € H o'((2, @), (8, B)), o’"((e, '), (8, 8)) € H. Applying Lemma 2.1

(c), we have

a((a, a), R((8, B, (1, 7)) (3, ) —R(a((a, a’), (B, B)), (r, 1)) (3, &)
_’E((ﬁy :8/)’ G((Ol, d/>, (T’ ‘r/>)) (5a a/)_k ((ﬂ: 18/>’ (T’ Tl))”((“y a,)’ (a; a,))
=0

Using (4.5), (4.6), and (4.7), we get

(4.8)

o((a, @), (—4< B, 0 >1+4<71,8> B-+3r' B —38'y +(Br — 1B,
Brd' —7Bd —4< B, 8 >7'+4<y, 8 > B —3(Br'—7B")))

+([0, —4<7,3 >0 ((a, @), (B, B)) + 27" 30" ((e, @), (B, B"))

+ &' (va''((a, @), (8, BN—7"d"((a, &), (B, B)))],

[0, —4<7/, "> 0" ((a, @), (B, B))+2730'((e, @), (B, B"))
—3(70""((a, a’), (8, B"))—7"0"((a, @), (B, B))) 1)

—([0, —4<< 8, 3>d'((a, &), (r, 1)) +28'00"' (e, @), (r, 7))

+3" (Bo""((a, @), (v, 1)) —B'0'((a, @), (r, 7)) ],

[0, —4 < B, 8 >a""((a, &), (r, 7)) +280'0'((, a’), (v, "))
—3(Ba""((a, ), (v, 7)) — B0’ (@, @), (r, 7)) 1)

—([0, (B'r'—7")a((e, &), 3, 8) +(B 7—71'B)’ (e, @), (3, 8)) ],
[0, (87— 7 B)a’"((a, a’), (3, 8"))+(Br' —7B") 0’ ((a, @), (3, 8"))])

=0.

Putting 8=ea, =7, a’=8'=7y'=34"=0 in (4. 8) for an orthonormal system {«, v} in H, we

have

Therefore

0=(T0, ¢'((e, 0), (4, 0))], [0, o"’((a, 0), (4, 0))])

+([0, —40'((e, 0), (&, 0))], [0, —7(ro’'((e, 0), (2, 0)))])

—(0, [0, r(ad’’((a, 0), (r, 0)))1)—(O, [0, (a7 —7a)"((a, 0), (7, 0))1)
=(0, [0, 30" ((a, 0), (a, 0))—a7e’'((a, 0), (1, 0)) 1.

30”((a, 0), (&, 0))—ara”((a, 0), (r, 0))=0.
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Similarly we have 3¢”’((7, 0), (r, 0))—7ad’’'((a, 0), (1, 0))=0. Adding two equations, we
have

0=30""((a, 0), (@, 0))+3¢""((7, 0), (, 0))—2<a, v > 0" ((a, 0), (7, 0))
=30"'((a, 0), (a, 0))+30"'((7, 0), (7, 0)).

For an arbitrary unit element @« & H, we take 8, ¥y € H such that {a, 8, r} is an ortho-
normal system in H. Then we have

a''((a, 0), (2, 0))=—0"((B, 0), (8, 0))=0""((7, 0), (1, 0))=—0""((<, 0), («, 0))

and hence a'((a, 0), (o, 0))=0,
Since ¢’/ is symmetric, we have

(4.9) a’((¢, 0), (B, 0))=0  fore, BE H.

Putting f’'=a’, 8’=7’, a=B=7r=0=0 in (4. 8) for an orthonormal system {e’, v’} in H, we
have

30’((0, a’), (0, a’))—3a’y’a’((0, a”), (0, ¥))=0.
By the similar computation, we obtain
(4.10) a’((0, a’), (0, ")=0  fore’, B’ € H.
Putting a=r=8'=8"=0, y'=a’, 3=4 in (4. 8), we have
0=— ([0, <B, 8>0((0, @), (0, ")) ], [0, < B, B>3"((0, a"), (0, 2")) ])
+ ([0, 2a’Ba’’((0, @), (B, 0)) ], [0, Ba’a’((0, a’), (B, 0))])
— ([0, =4 <TB, B>0'((0, @), (0, ")) ], [0, — < B, B>0"((0, "), (0, 2"))])
— ([0, —a’Ba”((0, @), (8, 0))1, [0, Ba’a’ ((0, @), (8, 0)) 1)
=([0, 3a’ Ba"’((0, a’), (B, 0))], 0).
Hence we have
(4.11) a’’'((0, @), (B, 0))=0 for o/, B EH.
Putting ¢’ =7'=8=0=0, r=a, 3’=p’ in (4. 8), we have
(4.12) o' ((a, 0), (0, 8))=0 fore, ' = H.
By (4.11) and (4. 12), we have
(4.13) o((e, 0), (0, 3))=0 fore, B H.
Next putting @’=y'=p=34=0and ¢’=1 in (4. 8), we have
([0, o' (e, 0), (=78, 0))], 0)—([0, =80’ ((a, 0), (1, 0))], B)=0

and hence
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a’'((a, 0), (78, 0))=p"0"((a, 0), (7, 0)).

Particularly it follows that ¢’((e, 0), (vij, 0))=jo'((a, 0), (71, 0))=7id’((a, 0), (7, 0))
and o’((a, 0), (vij, 0)=ijo’ ((a, 0), (7, 0)).
Consequently we have

4.14) a’((a, 0), (7, 0))=0 fora, v & H.
Calculating similarly we get
(4.15) a'’((0, a'), (0, 7"))=0  for o/, v € H.

By (4.9) and (4. 14), we have a((a, 0), (7, 0))=0 and by (4. 10) and (4. 15), ¢((0, a’), (0, ¥"))
=0.
Consequently the second fundamental form ¢ vanishes.

Case 4. O, M=TpM or O,M is equivalent to »zp.

Case 5. O, M=TpM or OLM is equivalent to »zc.

~ Similarly to Case 2, we denote by & the subspace of gI(Tple) linearly spanned by
F‘(X, Y), X, Y& Tp)M. Then R is a Lie subalgebra of gl (TpM ). We can prove Case 4
and Case 5 by the same argument as Case 2.
Proof of Case 4. If V is an irreducibly invariant subspace of Ny M by the action of
R, then dim V=4 and V is given by V= {(ac, f¢); @, 8 & C}, where c is a unit element
of Cay and < ¢, C >={0}. Moreover TpM+V is a curvature invariant subspace which
is equivalent to ~zg. In fact, the subspace of Cay spanned by e, ey, ¢, eic is a subalgebra
of Cay which is isomorphic to H. Since N }D M is an invariant subspace of NpM by the

action of ® and since dim N }, M <10, it follows that dim N},M =0or 4 or8 If dim
NiM=0, we have O\M=T,M. If dim N} M=4, by the above fact, O}, M is a curvature

invariant subspace which is equivalent to »zg. If dim N },M =8, applying Lemma 2.1 (d)
we can show that this case does not occur. Its proof is quite similar to that of Case 2-
(iii).

Proof of Case 5. If V is an irreducibly invariant subspace of N»M by the action of
R®, then dim V' =2 and V is linearly spanned by (e, ) and (—f, e) such that the real part
of e = the real part of f=0 and ||e|?+]f |?>=1. Here if eand f are linearly dependent
in Cay, then TpM + V is a curvature invariant subspace of TPM which is equivalent to
#2z¢.  Actually in this case V is given by V={(ae, Be); o, 8 & R}, where e is a unit ele-
ment of Cay such that the real part of e=0. Moreover the subspace of Cay spanned by
¢o and e is a subalgebra of Cay which is isomorphic to C.

Since N,M is invariant in NpM by the action of & and since dim N, M < 3, it fol-

lows that dim N;M:O or 2. If dim N}DM=O, we have O},M: TpM. If dim N;M-——Z,

then N},M is linearly spanned by (e, f) and (—f, e) such that the real part of ¢ = the real
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part of f=0and | e|?2+|fI?=1. We shall show that e and f are linearly dependent. If

it is shown, by the above argument, O} M is a curvature invariant subspace which is
equivalent to 2. We assume that e and f are linearly independent. We denote by o,
and g, the (e, f)-component and (— f, e)-component of the second fundamental form ¢
respectively, that is,

0'(((1, AB)) (T) 3)):0‘1(((1, B)) (T, 6))(2) f)+02((a, AB)’ (ry a)) <_f’ e)

for a, ﬂy 7, ] E R’ 0'1((d, 58)1 (T; 6)), 0'2<((¥. ‘8), (T: 6)) e R'
Applying Lemma 2.1 (c), we have

a((e, 0), R ((0, &), (e, 0)) (0, e0))— R(a((es, 0), (0, e0)), (eo, 0)) (0, ev)
—R (0, e0), 7((er, 0), (e0, 0))) (0, e0)—R((0, e), (er, 0)) @ (e, 0), 0, o))
=0.

By (3.5), we get
—a1((eo, 0),(e0, 0)) (e, )—02((eq, 0), (€0, 0)) (— 1, e)
+a1((eo, 0), (0, e0)) ( f, 2e)—ax((en, 0), (0, €)) (—e, 2f)
+a1((eo, 0), (20, 0)) (e, 41 )—03((eo, 0), (e, 0)) (f, —4e)
+a1((eo, 0), (0, €0)) (—f, &)—02((es, 0), (0, €0)) (¢, £)=0

and hence
3{o2((eo, 0), (eo, 0))+01((eo, 0), (0, &)) } e
+3{a1((eo, 0), (eo, 0))—02((eo, 0), (0, &)) } f =0.

Since e and f are linearly independent, we have

4.16) { ay( (e 0), (eo, 0))=0((eo, 0), (0, ¢o))
a5((eo, 0), (€0, 0))=—01((eo, 0), (0, €o)).

Similarly we get
a((0, e0), R ((ev, 0), (0, e0)) (e0, 0))—R (7 ((0, o), (e0, 0)), (0, €0)) (e, 0)
—R ((eo, 0), 5((0, eo), (0, €0))) (0, O)—R((eq, 0, (0, €0)) 7((0, o), €0, 0))
=0

and by the same computation as above we obtain
01((0, ep), (0, e))=—a((en, 0), (0, €))
a5((0, eo), (0, e0))=01((eo, 0), (0, ep)).

By (4.16) and (4. 17), we may select ¢ and f in Cay such that

(4.17)
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O-(<eO’ 0)) (e07 0)):;0( (0’ eO)) (0’ eO)):’2 (e’ f) and
0'((60, O)’ (O’ eO)):’Z(ff? e>’

where 4 is a non-zero real number.
Applying Lemma 2. 1 (d), we have

R (a((ev, 0, (eo, 0)), (0, ) (¢, /)+R ((eo, 0), 7((eo, 0, (0, e))) (e, f) € TpM
and hence
R((e, 1) 0, e)) (e, F)+R (e, 0), (—1, &) (e, ) E TpM.
By (3.5), we get
(—3ef, =4S, F>e—<e, e>eq)+(—4<f, e>ep—ef, 2<f, [ >e— e, e>>e)) & TpM.

Consequently ef is a real number and hence ¢ and f are linearly dependent. This is a
contradiction. ‘

Since the above proof is valid for the non-compact dual of Cayley plane, the follow-
ing holds.

COROLLARY 4.2. Lot M be the non-compact dual of Cayley plane whose curvature tensor
is given by (3.5) and f be an immersion with parallel second fundamental form of a con-
nected manifold M (dim M = 2) into M. Then there exists an 8-dimensional totally geodesic
submanifold N of M in which the tmage f (M) of M by f is contained. Here N is the non-
compact dual of P.(H) or the 8-dimensional real hyperbolic space with constant sectional

curvature k.
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