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INVERSE PROBLEMS FOR NONLINEAR DELAY SYSTEMS*

H. T. BANKS!, KERI REHM', AND KARYN SUTTONT

Abstract. We consider inverse or parameter estimation problems for general nonlinear nonau-
tonomous dynamical systems with delays. The parameters may be from a Euclidean set as usual,
may be time dependent coefficients or may be probability distributions across a population as arise
in aggregate data problems. Theoretical convergence results for finite dimensional approximations
to the systems are given. Several examples are used to illustrate the ideas and computational results
that demonstrate efficacy of the approximations are presented.
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1. Introduction. Delay differential equations have been a topic of much interest
in the mathematical research literature for more than 50 years. Contributions range
from classical applications and theoretical and computational methodologies [BaT79,
Ba82, BBul, BBu2, BKap, BellCook, Cushing, Diekmann, Driver, Gorecki, JKHI,
JKH2, JKH3, Kap82, KapSal87, KapSal89, KapSch, Kuang, Minorsky, Webb, Wright]
to modern applications in biology [BBJ, BBH, MSNP, NMiP, NMuP, NP]. In this
paper we return to a topic that has become increasingly relevant in current research: a
theoretical and computational approach for inverse problems involving nonlinear delay
systems. One approach that is by now classical dates back to the 1970’s [Ba79, BBul,
BBu2, BKap]. In this approach one approximates solutions to the infinite dimensional
state systems such as (1) below by first converting them to an abstract evolution
equation in a functional analytic state space setting. One can approximate solutions
in finite dimensional subspaces spanned by pre-chosen basis elements (e.g., piece-wise
linear or cubic splines) in a Galerkin approach which is equivalent to a finite element
approximation framework (as is classically used for partial differential equations). One
is then able to numerically calculate the generalized Fourier coefficients of approximate
solutions relative to the splines, and with these coefficients, recover an approximation
to the solutions of delay systems (1).

Here we turn to the mathematical aspects of these nonlinear FDE systems and
present an outline of the necessary mathematical and numerical analysis foundations.
Thus we provide an extension (to treat time dependent coefficients and general param-
eters including probability measures) of arguments for approximation and convergence
in inverse problems found in [Ba82].

For nonlinear delay systems such as those discussed here, approximation in the
context of a linear semigroup framework as presented [BBul, BBu2, BKap] is not
direct. However one can use the ideas of that theory as a basis for a wide class of non-
linear delay system approximations. Details in this direction can be found in the early
work [Ba79, Kap82] which is a direct extension of the results of [BBul, BBu2, BKap] to
nonlinear delay systems. The new theoretical results presented here are extensions of
these earlier ideas to general nonlinear, nonautonomous delay systems; specifically we
extend the ideas of [Ba82] to treat nonlinear systems with time dependent coefficients
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and/or parameters that may be probabilistic in nature (i.e., probability distributions
as treated in [BBoIP, BBPP]). Several current application areas are used to illustrate
the theory with examples.

We consider general systems of the form

(1) 73(75):f(taz(t)aztaz(t_71)7"'7Z(t_7m)7Q)+f2(t)a 0<t<T, 2z=¢

where f = f(t,n, 0, y1,- - Ym,q) : [0,T] x X x R" x Q — R". Here X = R" x
Lo(—7,0;R™), 0 < 7y <...< Ty =7, 2z denotes the usual function z,(0) = z(t + 0),
—r <60 <0, and ¢ € H'(—7,0). Here the admissible parameter set Q is a subset of
a metric space (possibly infinite dimensional — i.e., some set of functions).

Associated with this system is an ordinary least squares [BDSS, BT] cost func-
tional to be minimized. That is, we consider the problem of minimizing over ¢ € Q
the ordinary least squares output functional

K

(2) T(g,d) =) | Ca(tizq) —dif*,

i=1

where C' is an observation operator and {d;} is a given data set.
As we shall see below, one can rewrite (1) as

) = Alt,qz(t) + f(t)

T
z(0) = x,

3)

for states x(t) = (z(t),2:) in an abstract space X. One can then develop theoretical
and computational methodologies to treat finite dimensional approximations in spaces
XY and QM. These ideas are the focus of our presentation below.

2. Inverse or parameter estimation problems.

2.1. Approximation and convergence. For more details on general inverse
problem methodology in the context of abstract distributed systems, the reader may
consult [BK, BSW]. The book [BK] contains a general treatment of inverse prob-
lems for partial differential equations in a functional analytic setting. Here we treat
nonlinear delay systems with a general family of probabilistic parameters.

The minimization in general abstract parameter estimation problems for (3) in-
volves an infinite dimensional state space X and an infinite dimensional admissible
parameter set Q (generally of functions or even probability distributions). To obtain
computationally tractable methods, we thus consider Galerkin type approximations.
Let XV be a sequence of finite dimensional subspaces of X, and O™ be a sequence
of finite dimensional sets approximating the parameter set Q. We denote by PN the
orthogonal projections of X onto XV. Then a family of approximating estimation
problems with finite dimensional state spaces and parameter sets can be formulated
by seeking ¢ € QM which minimizes

K

i=1
where 2V (¢t;q) € X is the solution to a finite dimensional approximation of (3))

given by

e (t) = AN(t, @)z (1) + PNV f(t)
(5) #N (0) = PNa,.



INVERSE PROBLEMS FOR NONLINEAR DELAY SYSTEMS 333

For the parameter sets Q and QM. and state spaces X%, we make the following
hypotheses.

(A1M) The sets Q and OM lie in a metric space Q with metric d. It is assumed that
Q and QM are compact in this metric and there is a mapping M. 9 oM
so that QM = i (Q). Furthermore, for each ¢ € Q, i*(¢q) — ¢ in O with the
convergence uniform in ¢ € Q.

(A2N) The finite dimensional subspaces X* satisfy the approximation: For each
r€X,|lx—PVNz|x - 0as N — .

Solving the approximate estimation problems involving (4),(5), we obtain a se-
quence of parameter estimates {(jN M }. Tt is of paramount importance to establish
conditions under which {g""™} (or some subsequence) converges to a solution for the
original infinite dimensional estimation problem involving (2),(3). Toward this goal
we have the following results.

THEOREM 1. To obtain convergence of at least a subsequence of {gV"™} to a
solution q of minimizing (4) subject to (5), it suffices, under assumption (A1M), to
argue that for arbitrary sequences {q™M} in QM with ¢N"M — q in Q, we have

(6) N (VM) = a(t; q).

Proof. Under the assumptions (AIM), let {g"™} be solutions minimizing
(4) subject to the finite dimensional system (5) and let ¢V € Q be such that
iM(gNM) = gV'M . From the compactness of Q, we may select subsequences, again
denoted by {¢gV'"M} and {gV-M}, so that ¢VM — g€ Q and ¢VM — G (the latter
follows from the last statement of (A1M)). The optimality of {gV**} guarantees that
for every q € Q

(7) JN(@M,d) < TN (i (q), d).

Using (6), the last statement of (A1M) and taking the limit as N, M — oo in the
inequality (7), we obtain J(g,d) < J(q,d) for every ¢ € Q, or that ¢ is a solution
of the problem for (2),(3). We observe that under uniqueness assumptions on the
problems (a situation that we hasten to add is not often realized in practice), one can
actually guarantee convergence of the entire sequence {g""™} in place of subsequential
convergence to solutions.

We note that the essential aspects in the arguments given above involve compact-
ness assumptions on the sets QM and Q. Such compactness ideas play a fundamental
role in other theoretical and computational aspects of these problems. For example,
one can formulate distinct concepts of problem stability and method stability as in
[BK] involving some type of continuous dependence of solutions on the observations
z, and use conditions similar to those of (6) and (A1M), with compactness again play-
ing a critical role, to guarantee stability. We illustrate with a simple form of method
stability (other stronger forms are also amenable to this approach—see [BK]).

We might say that an approrimation method, such as that formulated above
involving QM XV and (4)-(5), is stable if

dist(§"M (d*), 4(d*)) — 0

as N, M,k — oo for any d* — d* (in this case in the appropriate Euclidean space),
where G(z) denotes the set of all solutions of the problem for (2)-(3) and ¢¥-*(d)
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denotes the set of all solutions of the problem for (4)-(5). Here “dist” represents the

usual distance set function. Under (6) and (A1M), one can use arguments very similar

to those sketched above to establish that one has this method stability. If the sets

QM are not defined through a mapping ™ as supposed above, one can still obtain

this method stability if one replaces the last statement of (A1M) by the assumptions:

(i) If {g™} is any sequence with ¢™ € QM then there exist ¢* in Q and subse-
quence {gM*} with ¢™* — ¢* in the Q topology.

(ii) For any q € Q, there exists a sequence {¢™} with ¢ € QM such that

¢ = ¢in Q.

Similar ideas may be employed to discuss the question of problem stability for the
problem of minimizing (2) over Q (i.e., the original problem) and again compactness
of the admissible parameter set plays a critical role.

Compactness of parameter sets also plays an important role in computational
considerations. In certain problems, the formulation outlined above (involving Q™ =
iM(Q)) results in a computational framework wherein the QM and Q all lie in some
uniform set possessing compactness properties. The compactness criteria can then
be reduced to uniform constraints on the derivatives of the admissible parameter
functions. There are numerical examples (for example, see [BI86]) which demonstrate
that imposition of these constraints is necessary (and sufficient) for convergence of
the resulting algorithms. (This offers a possible explanation for some of the numerical
failures [YY] of such methods reported in the engineering literature.)

The sets (spaces) Q and OM in the inverse problem framework above are an
important component in any problem formulation and may involve constant vector
parameters, time or spatially dependent functions or even probability measures. In
many widely encountered problems the set of admissible parameters Q may consist of
simply some compact subset of finite dimensional Euclidean space. In this case one
does not need the additional family of sets Q™ in the above theory (i.e., the above
formulation and theory holds with oM = Q for all M ). However in an increasing
number of applications (for example in the three examples outlined below) the pa-
rameters sought are functions of time or space. Then one often uses approximation
families to construct the family Q™. For example, in Example 1 below, some of the
parameters to be estimated are time dependent coefficients in ordinary differential
equation dynamical systems. In this case one might choose some set of functions Q
on a time interval [0, 7] and then choose piecewise linear splines for the approximating
families QM (see [BBJ] for details) and use spline approximation properties (e.g., see
[BK]) to argue that the conditions of (A1M) hold.

Problems with uncertainty in parameters (or parameters representing some dis-
tribution across a population in the case of aggregate data [BBi, BBH, BBPP, BD,
BDTR, BDEHADB, BDEHAD, BFPZ, BG1, BG2, BPi, BPo]) pose even more inter-
esting and challenging possibilities. Several choices may arise for an underlying finite
dimensional Euclidean set @: (i) @ is a compact subset of R?; (ii) Q = [—r,0] is a set
of possible delay times 7 in some dynamical process. In these cases a frequent choice
is

Q=P(Q)={P:Q— R : Pis a probability distribution on Q},

i.e., Q is the set of all probability distributions on (. To investigate theoretical,
computational and approximation issues for these problems, it is necessary to put
a topology on the space of probability measures: a natural choice for P(Q) is the
Prohorov metric p topology (see [Bi, Hu, P]). Convergence in this metric p(Py, P) — 0
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is equivalent to fQ 9dPy(q) — fQ gdP(q) for all bounded, continuous g : Q — R*.
Thus if we view P(Q) as a subset of the topological dual of the bounded continuous
functions on @, i.e., P(Q) C Cp(Q)*, convergence in the Prohorov metric is equivalent
to weak™ convergence and the weak™® topology is metrizable with the Prohorov metric.
Then one must construct families QM = PM(Q) to approximate the distributions
Q = P(Q) in the Prohorov metric.

To pursue this, it is useful to formulate methods to yield finite dimensional sets
PM(Q) over which to minimize J(P). Of course, we wish to choose these methods so
that “PM(Q) — P(Q)” in some sense so that the conditions (AIM) can be satisfied.
This can be done in the context of a framework one based on the Prohorov metric
[BBPP, BBi] of weak* convergence of measures.

A general theoretical framework is given in [BBPP] with specific results on the
approximations we use here given in [BBi, BPi]. Briefly, ideas for the underlying
theory are as follows:

1. One argues continuity of P — J(P) on Q@ = P(Q) with the Prohorov metric
P;

2. If Q is compact then Q = P(Q) is a complete metric space, indeed compact,
when taken with Prohorov metric;

3. Approximation families Q™ = PM(Q) are chosen so that elements PM ¢
PM(Q) can be found to approximate elements P € P(Q) in Prohorov metric;

4. Well-posedness (existence, continuous dependence of estimates on data, etc.)
is obtained along with feasible computational methods.

The desired results can be developed using several approximation theories that
have been recently developed and used in the context of problems other than those
with delay systems. The first, developed in [BBi] and based on Dirac delta measures,
is summarized in the following theorem.

THEOREM 2. Let QQ be a complete, separable metric space, B the class of all Borel
subsets of Q and P(Q) the space of probability measures on (Q,B). Let Qo = {q;}32;
be a countable, dense subset of Q. Then the set of P € P(Q) such that P has finite
support in Qo and rational masses is dense in P(Q) in the p metric. That is,

k k

Po(@Q) ={PeP@Q): P=> piAg. k€N, g €Qo, p; rational,y _p; =1}

J=1 Jj=1

is dense in P(Q) taken with the p metric, where Ay, is the Dirac measure with atom
at q;-

It is rather easy to use the ideas and results associated with this theorem to de-
velop computationally efficient schemes. Given Qq = 3, @m with Qu = {q]M ]-Ail
(a “partition” of @) chosen so that @, is dense in @, define

M M
QM =PM(Q)={PeP(Q): P= ijAq;u,q]M € Qnm, pj rational,z:pj =1}

j=1 j=1

Then we find
(i) QM = PM(Q) is a compact subset of Q = P(Q) in the p metric,
(i) PM(Q) c PM+L(Q) whenever Qpr41 is a refinement of Qay,
(iii) “PM(Q) — P(Q)” in the p topology; that is, for M sufficiently large, elements
in P(Q) can be approximated in the p metric by elements of P.



336 H. T. BANKS, K. REHM AND K. SUTTON

A second class of approximations was developed and used in [BPi] for problems
where one assumes that the probability distributions to be approximated possess
densities in L?. These involves approximation with piecewise linear splines at the
level of the densities.

THEOREM 3. Let F be a weakly compact subset of L*(Q), Q compact and let
Pr(Q)={PeP(Q): P =p, pe F}. Then Q =Px(Q) is compact in Q = P(Q) in
the p metric. Moreover, if we define {65”} to be the linear splines on Q corresponding
to the partition Qur, where |J,, Qu is dense in Q, define

PM = (pM . pM = Zb;”ﬁ;”,b;w rational }
J

and if
OM = Pry ={Py € P(Q) : Py = /pM, pM e pM},

we have | J,; Prum is dense in Q = Pr(Q) taken with the p metric.

A study comparing the relative strengths and weaknesses of these two classes of
approximation schemes in the context of inverse problems is given in [BD].

Thus we have that compactness of admissible parameter sets play a fundamen-
tal role in a number of aspects, both theoretical and computational, in parameter
estimation problems. This compactness may be assumed (and imposed) explicitly as
we have outlined here, or it may be included implicitly in the problem formulation
through Tikhonov regularization as discussed for example by Kravaris and Seinfeld
[KS], Vogel [Vog] and widely by many others. In the regularization approach one
restricts consideration to a subset Q; of parameters which has compact embedding in
Q and modifies the least-squares criterion to include a term which insures that min-
imizing sequences will be Q; bounded and hence compact in the original parameter
set Q.

After this short digression on general inverse problem concepts, we return to the
convergence (6).

2.2. State approximation and convergence for nonlinear systems. We
consider the general system

(8) Z.(t):f(t,Z(t),Zt,Z(t*Tl),...,Z(t*’rm),q)+f2(t), OStSTa 20:¢

where f = f(t,n, 0, Y1, Ym,q) : [0,T] x X x R" x Q — R". Here X = R" x
Lo(—7,0;R™), 0 < 71 < ... < Ty = 7, 2z denotes the function z:(0) = z(t + 0),
—r <60 <0, and ¢ € H(—r,0). We shall make use of the following hypotheses
throughout our presentation.

(H1) The function f satisfies a global Lipschitz condition:

|f(tan7w7y1a"'7ymaQ) - f(tagalzgawla-'-;wrﬁaq” §
K (In—€l+ [ = 9]+ X7 ly —wi)

for some fixed constant K and all (n,¢,y1,...,Ym), (&, b,we, ... , W) In X X
R™™ uniformly in ¢ and in ¢ € Q.
(H2) The function f(-,-+,¢q) : [0,T] x X x R™ — R" is differentiable for each q.
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(H3) The function ¢ — f(-,, q) is continuous on Q.

REMARK 1. If we define the function F : [0,7] x R™ x C(—r,0;R") x Q C
[0,7] x X x Q@ — R™ given by

(9) F(t,l’,q) = F(@Uﬂ/’v‘]) = f(tanawaw(f’rl)a s aw(me)aQ)

we observe that even though f satisfies (H1), F' will not satisfy a continuity hypothesis
on its domain in the X norm.

We define the nonlinear operator A(t;q) : D(A) C X — X by

D(A) = {(¥(0), ) | v € H' (-r,0)}

At 9)(4(0),4) = (F(t,4(0), ¢, 9), DY)

where here D1 = 1)'. Note that D(A) is independent of ¢ and g. We then may write
the system (8) in abstract form

o(t) = Alt;q)z(t) + (f2(1),0)
(10) £(0) = C=(6(0).0)

)

for states x(t) = (2(t), z) in the abstract space X.

THEOREM 4. Assume that (H1) holds and let x(t; ¢, f2) = (2(t; b, f2), 2:(P, f2)),
where z is the solution of (8) corresponding to ¢ € H', fo € La. Then for ¢ =
(6(0), @), x(t; &, f2) is the unique solution on [0,T] of

(11) x(tiq) = C+ / (A(o: q)z(o; ) + (f2(0), 0)]do.

Furthermore, fo — x(t; ¢, f2) is weakly sequentially continuous from Lo (weak) to X
(strong).

These results can be established (we do not do so here) in one of several routine
ways: fixed point theorem arguments [JKH4| or Picard iteration arguments. Either
of these approaches can be used to establish existence, uniqueness and continuous
dependence of solution of (11). For existence, uniqueness and continuous dependence
of solution of (8), we note that our condition (H1) is a global version of the local
hypothesis of Kappel and Schappacher in [KapSch], so that their results also yield
immediately the desired result for (8) in the autonomous case.

The uniqueness of solutions to (11) follows in the usual manner once we establish
that A satisfies a dissipative inequality. We do this in a space X, that is topologically
equivalent to X. Renorm X by the weighting function g defined on [—r,0), where
g(&) = j for £ € [~Tm—j+1,—Tm—j), J = 1,2,...,m (we define 79 = 0). Define the
Hilbert space X, = R" x La(—r,0; g; R™) to be the elements of X with this new inner
product

0

(12) <(m:9), (G ¥) >x, =<0, >rn + [ G(EY(§)g(§)dE.

—r
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This gives rise to an equivalent topology to that of X as long as g(§) > 0 for all £ €
[-7,0) (see [BBu2, p. 186], [BKap, Webb] for more details). Then the nonlinear
operator A(t; q) is dissipative if for some x > 0 we have

(13) (Alt; g)r — At Qu, ¢ —w)x, < KT —w,z —w)x

g

for all z,w € D(A) and all ¢t and ¢ € Q. This can be used to immediately argue
uniqueness of solutions. We outline the arguments to establish the fundamental in-
equality (13). We have for 2 = (¢(0), ¢), w = ((0), )

< A(t7q)$ - A(t,q)w,ac —w >Xg =< F(ta¢(0)5¢) - F(t7¢(0)7¢)7¢(0) - w(o) >Rn
+ < D¢ - Dwa ¢ - w >L2(7T,0;Q;R")
=< F(ta ¢(0)’ d)) - F(taw(o)vw)a(b(o) - T/)(O) >Rn

0

+ (¢(§) — () (D(§) — ¥(€))g(§)dE

—r

=< F(ta ¢(0)’ d)) - F(taw(o)vw)a(b(o) - T/)(O) >Rn

+> D(9(&) — $(©)(9(&) — ¥ (©)g(€)de.

—Tm—j+1

(14)

Consider the last term and denote Ap—j = (¢ — V) (Tm—j) = ¢(—Tm—j;) — Y(—Tm—j)
for j =0,1,...,m. Then for A(§) = ¢(&) — ¥ (§) we have

I
NE
7 N
NI
>
3
d
S
NS
P>
i
i
T
N—

j=1
1 m ' ) 1 m—1 ) '
:§ZJ|AW—J| §Z(k+1)|Am—k| (fork=j—1)
j=1 k=0
1 1 m—1 1 m—1 1
_ 2 . g2 1 2 1 2
— 3l 5 3 1A = 5 Y O+ DAl = 1A
7j=1 k=1
1 1 1
_ 2 - 2 = 2
= Sl = 3 37 1A = 1Al
J=1
m—1 m
1 1 m+1 1
- §m|A0|2 5 Z |A—j|? = T|A0|2 3 Z |Amjl?.
j=0 §=0
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Returning to (14), we have

< A(t;q)z — Alt; Qu, . —w >x,
< | < F(t ¢(0),¢) — (t ¥(0),%), ¢(0) — ¥(0) >gn |

m+1
—— 140 IQ*—ZIAm il?

<K <|AO| +]A|+ Z |Ai|> | A

1=1
m+1
—— Ao |2——Z|Am]|2
m
K2
< KA+ AR + = |A2 + =S 1A 2 + 22 A2
< |0|+2||+2|0|+2;| I“ + 2|0|
m+1
—— Ao |2——Z|Am]|2

K? +1
< <K+m er_) |Ag |2+—|A|L2

2

K2 1
. <K+ m2 +ﬁ) NG

< Klz — w|?x

< R|CE - U}|%(g,

using the definition of the inner product. Therefore choosing

2
mK n m+ 1,
2 2
we have that A(¢; ¢) is dissipative in X, uniformly in ¢ and ¢ .
Turning next to the approximation of (8) through approximation of (11), we let
X" be the spline subspaces of X discussed in detail in [BKap]. We briefly outline
the results for the piecewise linear subspaces Xi¥ (see Section 4 of [BKap]) given by

k=K+

XN = {(#(0),¢)| ¢ is a continuous first-order spline function
with knots at té-v =—jr/N,j=0,1,...,N}.

A careful study of the arguments behind our presentation reveals that the ap-
proximation results given here hold for general spline approximations. For example,
if one were to treat cubic spline approximations (X2 of [BKap]), one would use the
appropriate approximation analogues of Theorem 2.5 of [Schultz] and Theorem 21 of
[SchuVarg] (e.g., see Theorem 4.5 of [Schultz]). Hereafter, when we write X, the
reader should understand that we mean X{¥ of [BKap).

Let PN = P;V be the orthogonal projection (in (, )4 = (, )x,) of X onto X%
so that as we have already discussed it immediately follows that PNz — z for all
x € X. Similar to the approach in [BKap] as extended in [Ba82], for arbitrary {¢"'}
with ¢V — ¢ we define the approximating operator

AN () = PN A(t; ¢V PN
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and consider the approximating equations in X~ given by
t

(15) ) = PVt |40V (o) + P (1a(0). 0)do
0

which, because X is finite-dimensional, are equivalent to
(16) N (E) = AN (02" (1) + PN (f(0),0), 2V (0) = PN

Note that 2V (t) = 2™ (¢;¢"). From (13) and the definition of A% in terms of the self-
adjoint projections PV, we have at once that under (H1) the sequence { AN} satisfies
on X a uniform dissipative inequality

(17) (AN )z — AN (Hw, z — w), < k(T —w,x — w),.

Uniqueness of solutions of (15) then follows immediately from this inequality. Upon
recognition that (16) is equivalent to a nonlinear ordinary differential equation in
Euclidean space with the right-hand side satisfying a global Lipschitz condition, one
can easily argue existence of solutions for (16) and hence for (15) on any finite interval
[0,7]. Our main result to be discussed here, which ensures that solutions of (16)
converge to those of (8), can now be stated.

THEOREM 5. Assume (H1), (H2), (H3) and ¢~ — q in Q. Let ¢ = (¢(0), ),
¢ € H' and fo € La(0,T) be given, with o and x the corresponding solutions on
[0,T] of (16) and (8), respectively. Then xN(t) — x(t) = (2(t; b, f2), 2:(d, f2)), as
N — o0, uniformly in t on [0,T].

REMARK 2. One can actually obtain slightly stronger results than those given in
Theorem 5. One can consider solutions of (8) and (16) corresponding to initial data
(2(0), 20) = (n,¢) = ¢ with n € R™, ¢ € Lo (i.e., ¢ € X) and argue that the results of
Theorem 5 hold also in this case.

To indicate briefly our arguments for Theorem 5, we consider for given initial
data ¢ and perturbation f» the corresponding solutions z and xV of (11) and (15).
Define AN (t) = 2V (t) — x(t) and Fy(t) = (f2(t),0), we obtain immediately that

18) AN@#) = (PN —I)¢+ /O [AN ()2 (0) — A(0)2(0) + (PN — ) Fy(0)] do.

We next use a rather standard technique for analysis of differential equations (see
[Barbu]), the foundations of which we state as a lemma since we shall refer to it
again.

LEMMA 3. If X is a Hilbert space and x : [a,b] — X is given by

then
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This lemma is essentially a restatement of the well-known result [Barbu, p. 100]
that in a Hilbert space

d (1 .\ .

% (510P) = G000,
Applying Lemma 3 to (18), we obtain
AN = (PN = I)P

+2 [{{AN (0)zN (0) — A(0)z(a) + (PN = I)Fy(0), AN (0))do

(PN = I)¢2 42 AN ()2 (0) — AN (0)a(0), AN (0))do

+2 [ {(AN(0) = A(0))z(0) + (PN — I)Fa(0), AN (0))do.
If we use (17) on the first integral term in this last expression, we then have

AN@P < (PN = D) +2 [y w|AN (0)]2do

+2 [T (AN (0) — A(0))z(0) + (PN — ) Fy(0), AN (0))do

IN

(PN = I)¢? + 2 [y w| AN (0)|do

= (PN = D)) + [§ (AN (o) — A(0))z(0) | do + [} |(PN — I)F3(0)|* do

+2(w + 1) f5 |AN (0)*do.
An application of Gronwall’s inequality to this then yields the estimate
(19) AN < [er(N) + e2(N) + ea(N)] exp (2(w + 1)8),
where

a(N) = (PN = I)¢P,

&) = [ (4% (0) = Ale)a(o)] do

e3(N) = /O (PN = I)Fy(0)|” do.

Since PN — I strongly in X and the convergence |(PY — I)Fy(c)| — 0 in e3 is
dominated, to prove Theorem 5 it suffices to argue that e2(N) — 0 as N — oo. To
that end, we state the following sequence of lemmas.
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LEMMA 4. Assume (H1), (H3) and let X = {x = (¢(0),¢) | 6 € H?}. Then for
each t, AN (t)x — A(t)x as N — oo for each v € X.

LEMMA 5. For fizedq € Q, let Cy = {(¢, f2) € D(A)x L2(0,T) | ¢ € H?, fo € H',
with $(0) = F(0,¢,q) + f2(0) where ¢ = (6(0),¢)}. Assume that (H1), (H2) hold.
Then for (¢, fa) € Cq the corresponding solution o — x(0) = (2(0), 25) of (11) (2 is
the solution of (8)) satisfies x(o) € X for each o € (0,T].

LEMMA 6. Assume (H1), (H2), (H3) and let (¢, f2) € C, with 2N and = the
corresponding solutions of (15) and (11). Then z™(t) — =(t) uniformly in t on
[0,T].

LEMMA 7. Assume (H1). Then the solutions of (11) and (15) depend continu-
ously (in the X x Lo topology) on (, f2) € D(A) x Lo, uniformly in t on [0,T].

LEMMA 8. For each q € Q, the setCy defined in Lemma 5 is dense in D(A) X Ly C
X x L2.

We obtain the convergence of Theorem 5 by combining Lemmas 6, 7 and 8. The
proof of Lemma 7 employs Lemma 3 along with Gronwall’s inequality in much the
same way as above in deriving (19) from (18). We note that Lemma 5 requires
hypothesis (H2) in order to obtain enough smoothness of solutions = of (11) so that
z(o) € X for each o, which then permits the convergence arguments of Lemma 6.

In developing the estimates to establish Lemma 6 (which, by our above remarks,
requires only that we argue e2(N) — 0), we use heavily the standard spline estimates
found in [Schultz] and [SchuVarg]. Lemmas 4 and 5 yield that AN (0)z(0) — A(0)z(0)
for each o so that to prove Lemma 6 one only need show that this convergence is
dominated, thereby guaranteeing e2(N) — 0. In making the arguments for Lemma 6,
one obtains at the same time error estimates on the convergence in Theorem 5. For
example, one readily finds the following: for ¢ € H?, f satisfying (H1), (H2), <Z>(O) =
F(4(0),¢) and fo = 0, the convergence z(t) — x(t) is O(1/N). For higher-order
splines and higher-order convergence estimates (e.g., cubic splines with convergence
O(1/N3)), one of course needs additional smoothness (beyond (H2)) on f.

The convergence given in Theorem 5 yields state approximation techniques for
nonlinear FDE systems based on the spline methods developed in [BKap]. These
results can be applied directly to control and identification problems, the latter of
which are discussed in [Ba82].

REMARK 9. Results for special classes of the systems above can actually be ob-
tained from the arguments for nonautonomous nonlinear delay systems in [Ba79]. In
that approach, one requires all discrete delays to appear in the linear part of the sys-
tem dynamics while continuous delays may appear in the nonlinear part. One then
writes the system dynamics as an autonomous linear part plus a nonlinear perturba-
tion. The linear part generates a linear semigroup as in [BBul, BBu2, BKap]. One
then uses the linear semigroup in a variation of parameters implicit representation
of the solution to the nonlinear system. Mathematical tools used then are Picard
iterates for existence, and the Trotter-Kato theorem [BBul, BBu2, BKap] (for the
linear semigroup) plus a Gronwall inequality. An alternative (and more general) ap-
proach given in [Ba82] eschews use of the Trotter-Kato theorem in treating general
nonautonomous nonlinear delay systems which allows discrete delays in the nonlinear
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components of the system. As we have seen, the main mathematical tools are dissi-
pative properties of the general nonlinear operator A(t) representing the system and
direct approximation AN (t) — A(t) (no Trotter-Kato!) along with a Gronwall in-
equality. Finally, a nonlinear semigroup (with dissipative generators) approach along
with a corresponding nonlinear Trotter-Kato convergence result are given by Kappel
in [Kap82]. With these results one can treat directly general autonomous nonlinear
delay systems in the spirit of a linear semigroup approach [Pa].

3. Examples. We present three examples from diverse applications to illustrate
use of the above theoretical and computational framework. The first two applications
have been discussed in detail in other presentations and hence we give only brief
summaries. However, the third example is particularly novel, representing current
efforts in an area where dynamical mathematical modeling is virtually nonexistent in
the research literature. Thus we illustrate the above theory in a little more detail for
this application and present some specific new and preliminary findings.

3.1. Example 1: Insect/Insecticide models. We describe here a non-
autonomous delay system arising in insect/insecticide investigations [BBDS2, BBJ].
Mathematical models that are suitable for field data with mixed populations should
consider reproductive effects and should also account for multiple generations, con-
taining neonates (juveniles) and adults and their interconnectedness. This suggests
the need at the minimum for a coupled system of equations describing two separate
age classes. Additionally, due to individual differences within the insect population,
it is biologically unrealistic to assume that all neonate aphids born on the same day
reach the adult age class at the same time. In fact, the age at which the insects reach
adulthood varies from as few as five to as many as seven days. Hence one must include
a term in any model to account for this variability, leading one to develop a coupled
differential equation model including distributed delays for the insect population dy-
namics. We consider the delay between birth and adulthood for neonate pea aphids
and present a mathematical model that treats this delay as a random variable.

Let a(t) and n(t) denote the number of adults and neonates, respectively, in the
population at time ¢. We lump the mortality due to insecticide into one time varying
parameter p,(¢) for the adults, p,(¢) for the neonates, and denote by d,(t) and d,,(t)
the background or natural mortalities for adults and neonates, respectively. We let
b(t) be the time varying rate at which neonates are born into the population.

We suppose that there is a time delay for maturation of a neonate to adult life
stage. We further assume that this time delay varies across the insect population
according to a probability distribution P(7) for 7 € [T}, 0] with corresponding den-
sity k(r) = dz(:). Here we tacitly assume an upper bound on 7, for the maturation
period of neonates into adults. Thus, we have that k(7), 7 < 0, is the probability per
unit time that a neonate who has been in the population —7 time units becomes an
adult. Then the rate at which such neonates become adults is n(t + 7)k(7). Sum-
ming over all such 7’s, we obtain that the rate at which neonates become adults is
fETw n(t + 7)k(7)dr. Using the biological knowledge that the maturation process

varies between five and seven days (i.e., k vanishes outside [—7, —5]), we obtain the
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functional differential equation (FDE) system

E(t) f 7 n(t—l—r)k( VAT — (da(t) + pa(t)) a(t)
(20) (Zl_?(t) = ( a(t) (dn t)-i-pn t) nt f75 t_|_7- ( )dT

a(0) = @(0), n(0) =), 96[ 7,0)

a’(o) = 0/07 n(O no,

where k is now a probability density kernel which we have assumed has the property
k(r) > 0 for 7 € [-7,—5] and k(7) =0 for 7 € (—o0, —7) U (—5,0].

In this problem the parameters to be estimated are time dependent coefficients
do(t),pa(t),b(t), dn(t), pn(t) as well as the probability density maturation kernels k(7).

In summary, the authors of [BBJ] present a time delay differential equation model
with time dependent parameters as well as probability density maturation kernels
that might be used to investigate mixed neonate/adult multi-generational popula-
tions. The formulation includes these models as special cases of a class of abstract
differential equations with function space parameters (including probability densities)
which are readily approximated by finite element systems (the spaces QM are piece-
wise linear splines for time varying coefficients as well as density kernels). The inverse
problems are formulated in the context of both ordinary and generalized least squares
frameworks, and computations are carried out (including an uncertainty analysis with
confidence intervals via asymptotic error analysis involving approximate sampling dis-
tributions) with simulated noisy data to demonstrate both efficiency and efficacy of
the methodologies.

3.2. Example 2: HIV infection dynamics. We next consider classes of non-
linear functional or delay differential equation models which arise in attempts to de-
scribe temporal delays in HIV pathogenesis. These models, first developed in [BBH]
consider incorporation of variability (i.e., general probability distributions) for these
delays into systems that cannot readily be reduced to a finite number of coupled ordi-
nary differential equations (as is done in the method of stages). In [BBH], the authors
introduced several classes of nonlinear models (including discrete and distributed de-
lays), and presented discussions of theoretical and computational approaches. The
models were validated with in vitro experimental data [RWE] in successful inverse
problem efforts. This was supported by statistical significance tests for the impor-
tance of including delays in the dynamics.

The underlying biology is discussed in some detail in [BBH] to which we refer
interested readers. Viruses are obligate intra-cellular parasites with a multitude of
pathways for infecting and reproducing within their target hosts. The Human Im-
munodeficiency Virus (HIV) is a lentivirus that is the etiological agent for the slow,
progressive, and fatal Acquired Immunodeficiency Syndrome (AIDS) for which there
is currently no known cure.

For HIV, the core of the virus is composed of single-stranded viral RNA and pro-
tein components. As depicted in Figure 1, when an HIV virion comes into contact
with an uninfected CD4 target cell, the viral envelope glycoproteins fuse to the cell’s
lipid bilayer at a CD4 receptor site and the viral core is injected into the cell. Once
inside, the protein components enable transcription and integration of the viral RNA
into viral DNA and then incorporation into the cellular DNA (provirus). With its
altered cellular DNA, the cell produces capsids and protein envelopes and transcribes
multiple copies of viral RNA. The cell assembles a virion by then encasing the newly
produced viral RNA in a capsid followed by a protein envelope. The new HIV virion
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pushes out through the cell membrane budding off in chains of virions (though some-
times single virions do float away into the plasma). The time from viral infection to
viral production (sometimes called the eclipse phase) is not instantaneous, and (as
indicated in the figure) it is estimated that the first viral release occurs approximately
24 hours after the initial infection.

Within the HIV modeling community, there has been considerable debate on the
proper compartment definitions in models. The multi-compartment model introduced
and employed in [BBH] describes pathways from the moment a virion contacts the
appropriate receptor site as the beginning of acute infection. If the acutely infected
cell survives through its first viral release, roughly 3 hours later the physiological
characteristics of the cell change and it is subsequently classified as a chronically
infected cell. Note that in the chronic stage, it is possible for the cells to continue to
divide (albeit at a much slower rate than acutely infected or non-infected cells) and
to produce virions.

In the course of developing the models, one employs a delay to mathematically
represent the temporal lag between the initial viral infection and the first release of new
virions. We concentrate on the mathematical modeling of viral dynamics, focusing in
particular on the mathematical aspects and biological nature of the delays in primary
infection. The models are extensions of previous modeling work on HIV infection
dynamics for in vitro laboratory experiments from the (continuous) delay differential
equations developed in [BGHKNS], which in turn were based on a discrete dynamical
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Notation Description

c Infectious viral clearance rate

na Infectious viral production rate for acutely
infected cells

ne Infectious viral production rate for chronically
infected cells

vy Rate at which acutely infected cells become
chronically infected

Ty Birth-rate for virally infected cells

Ty Birth-rate for uninfected cells

A Death-rate for acutely infected cells

dc Death-rate for chronically infected cells

Ou Death-rate for uninfected cells

6 Density dependent overall cell death-rate

P Rate of infection

S Constant rate of target cell replacement

TABLE 1
in vitro model parameters

system from [HE]. Our primary interest here is to present the functional differential
equations required when treating cellular level data containing significant variability
as a specific example to which the theory developed in this paper is applicable. In
this example, a major part of the efforts involved estimation of parameters that are
probability densities.

A central focus of the modeling efforts have been on attempting to obtain rea-
sonable mathematical representations of these delays. The problem of how to mathe-
matically represent these phenomena is decidedly nontrivial and includes issues such
as how to account for intra-individual variability (e.g., intercellular variability aris-
ing within a single infected individual or laboratory assay) and/or inter-individual
variability arising between individual subjects or data from multiple assays. These
issues are highly significant and dealing with the levels of variability and the resulting
mathematical ramifications is of primary interest.

The basic model involving delays has the form

V(i) = —cV(t) + naA(t — 1) + ncC(t) — pV ()T (t)
(21) A(t) = (ry —0a— X () A(t) — YA(t — 11 — 2) +pV ()T (1)
o) = (ro =60 = 0X(1))C(t) +YA(t — 11 — T2)

T(t) = (ru = bu = 0X(t) = pV())T(t) + 5,

where the state variables are given by V =infectious viral population, A=acutely
infected cells, C'=chronically infected cells, T'=uninfected or target cells, X = A +
C' + T=total cell population (infected and uninfected), and the parameters are given
in Table 1. In this model, it is assumed that the delays 7, 75 are fixed for each cell,
and that one can precisely describe the capacity of each member of the population
(of infected cells) to produce virions as a function of time. More precisely, exactly 7
units of time after a cell becomes infected, it begins producing virus. Exactly 75 units
of time later, that same cell then becomes chronically infected (assuming it lives to
this stage).

From a biological viewpoint, it is unlikely that all cells have precisely the same
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delay times in their production characteristics or conversion to a chronically infected
stage. To accommodate some variability expected in such biological populations,
let the delay in the first equation in (21) be modeled by treating the delay time 7
between acute infection and viral production as a probabilistic quantity (i.e., a random
variable) with distribution P; () so that the first equation in (21) is replaced by (see
the appendix of [BBH] for a more detailed discussion of the foundations underlying
such an equation)

0
(22) V()= —eV(t) +na / A(t 4+ 7)dPy(r) + neC(t) — p(V(8), T(1)).

— 0o
The function p(V,T), where x — p(z), x = (V,T), is globally Lipschitz as hypothe-
sized in (H1) in Section 2 above. For the efforts here and in [BBH], the function p is
assumed to be locally bilinear, i.e., p(V,T) = pVT before saturation and constant or
linear thereafter (see [BBH]).

Likewise, let the delay between acute infectivity and chronic infectivity (with

distribution P, (7)) be represented in altered forms of the second and third equations
of (21) by

0

(23) A(t) = (ry — 04 — 06X (1)) A(t) —~ /_ At + 7)dPy (1) + pV ()T(t)
(24) C(t) = (ry — dc — 6X (1))C(t) + 7/_0 A(t 4+ 7)dPs(7) .

The resulting model becomes the special case

—cV () +na [ Alt + T)ki(T)dT + neC(t) — pV (E)T(t)
= (ro— 04— 0X()A() — v [° A(t + 7)ka(7)dr + pV ()T (t)
(1o — 8¢ — SX()C(t) + [° L A(t + T)ka(7)dr

(ru — 64 — 6X () — pV()T(t) + S ,

o~
~—
I

whenever P, P, possess probability densities k1, ko respectively. In the discussions
in [BBH], all numerical simulations for each of the systems of functional differential
equations given above were performed using the methods described in Section 2 with
piecewise linear splines for the states. There it was found, not surprisingly, the pres-
ence of nonzero delays has a dramatic effect upon the simulations. Issues related to
the exact nature of 7 and whether or not it should be modeled as a fixed value for
every cell or distributed across the cell populations and how this distribution can be
represented, as well as further evidence of the statistical significance of the presence
of the delays are the focus of discussions in [BBH].

The variables V' and C' in the above model are actually expected values. To
explain this, we first consider the delay between initial acute infection and initial
chronic infection of a cell. It is biologically unrealistic to expect an entire population
of cells to simultaneously change infection characteristics fia = 71 + 72 (fi2 > 0) hours
after initial viral infection. Therefore, suppose that the delay between initial acute
infection and chronic infection varies across the cell population (thus mathematically
characterizing the intercellular variability) according to a probabilistic distribution
P, with density k2. We denote by C(t;7) the subpopulation consisting of chronically
infected cells that either maintained their acute infection characteristics for 7 time
units or are the progeny of those same cells. In other words, for some 7 > 0, there
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exists a subpopulation C(¢;7) of the chronically infected cells which either spent T
hours as acutely infected cells (before converting to chronically infected cells) or are
descendants of cells that spent exactly 7 hours as acutely infected cells. Thus, as
derived carefully in [BBH] one has

(26) C(t) = &CHEN] = [ Cltn)k(r)dr,

where

Ct;m)=(rv —dc —6X (1) C(t;7) +7vA(t — 1),
with
X(@t)=A@)+C@t)+T(t).

Integration of this equation over the distribution P, over all possible delays, yields
the equation for C, the expected value of the population of chronic cells, given by

C(t) = &[C ()] -
(27) = (r—=0c—06XW))CWH)+~ [ At —1) ks (7)dr
c0) = C,

where Cj is the initial condition for the total chronically infected cell population. A
simple change of variables in the integral term as described below results in the third
equation of (25).

A similar argument can be made for the delay between viral infection and viral
production for the acutely infected cells A (¢). One supposes that the delay between
infection and production (for acutely infected cells A(t)) varies across the population
with probability distribution P; and corresponding density k; and partitions the ex-
pected total viral population V into those virions V4 produced by acutely infected
cells and those virions Vi produced by chronically infected cells. We then denote by
Va(t;7) the subpopulation of virus which are produced by an acutely infected cell
7 hours after being infected. Thus, the rate of change in this subgroup of virions is
governed by

Va(t;r) = —cVa(t;7) + naA(t — 1) — pVa(t; 7)T(¢) .

To obtain the (expected) number of virus at time ¢ that have been produced by acutely
infected cells, we must integrate over the distribution Pj, over all possible delays

Va(t) = &4 [Va(t: )] = / Va(ts 7Y (r)dr
0
which yields the governing equation for this larger subpopulation of virions
Va(t) = E1[Va(t; 7)]

oo
= —cVa(t) + nA/ At — 1)k (1)dT — pVa(t)T (1) .
0
To account for the chronically infected cells as a source of virions, we denote V¢ as the

subpopulation of virions produced by chronically infected cells. Thus the equation
describing the rate of change in the size of this subpopulation is

Vo(t) = —cVe(t) + neC(t) — pVe(H)T (1),
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where the expected value C' of the total population of chronically infected cells is
defined in (26). Therefore, the governing equations for the total population of virus
are described by

V(t) = &[Valt;T) + Ve(t)
= —e(Va(t) + Volt) +na /O YAl = ) (P dr £ noC()
—p(Va(t) + Ve (t)T'(t)
=—cV(t)+na /OOO A(t — 1)k (T)dT +ncC(t) — pV ()T (t)
V(0)="Vo,

where Vj is the initial condition for the total virions population.
If one assumes that the A and T subclasses have no subpopulation structures,
and are therefore governed by

A(t)(rchA5X(t))A(t)'y/OOOA(tT)I_cQ(T)dT

+pV () T (¢)
A(0) = A
Tt)=(ry—06u—0X ) —pV ()T () +S
T(0)="To,

with initial conditions Ay and Ty, we are subsequently led to the model equations
(25) by making the change of variables k;(£) = k;(—&) so that the densities are now
defined on (—o0,0) instead of (0,00) .

In summary, the theoretical and approximation methodology of Section 2 provide
a sound foundation for inverse problem investigations such as those of [BBH]. Among
the important findings for the models developed are: (i) an excellent fit to in witro
experimental data; (ii) a rigorous model comparison statistical analysis to support
importance of delays (statistical significance in improving fits-to-data) in the models;
(iii) analysis to show that the models with discrete delays yield essentially similar
dynamic responses to those from models with continuous delays. This last finding
is important biologically since it is highly unlikely that all cells in a population can
respond with fixed uniform delays.

3.3. Example 3: The drinking behavior control system (DBCS). Re-
searchers studying alcohol abuse and addiction have collected vast amounts of informa-
tion on substance use, participant’s willingness to change behavior, and participant’s
success in a particular treatment. Many hypotheses have been formulated concerning
possible (difficult-to-measure) factors that control a patient’s motivations and behav-
ior, such as the relative importance of drinking in their lives, commitment to reducing
their alcohol consumption, and recognition of reasons to not use a substance, to name
a few. However, the relative contributions of these possible mechanisms for behavior
change are unclear. The interplay among these factors as they change over time is a
natural, albeit difficult, question to address via dynamical mathematical models. In
order to better understand these ideas in a quantitative context and to identify un-
derlying mechanisms governing drinking behavior in problem drinkers during therapy,
we have, in joint efforts [BRSDHKM] with a team of psychologists at Columbia Uni-
versity, attempted to model behavior control systems informed by a dataset, Project
MOTION. We present here an initial model developed in these collaborations.
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Further details on Project MOTION and the data collected can be found in
[BRSDHKM]. Briefly, approximately 90 participants were assigned to one of three
therapy-based treatment groups. In addition to attending the four therapy sessions
over an eight week period, patients were directed to call an interactive voice recording
(IVR) system and answer a survey of 41 questions every day during the evening for
eight weeks. Our modeling efforts focused on the data from the IVR surveys since
there are numerous longitudinal time points, which we anticipated would be more
informative of the underlying dynamic processes.

The 41 questions of the IVR are divided into topical groups in the survey form.
Each group has its own scale by which a participants’ numerical responses are inter-
preted. Since it is prohibitive to construct an initial model from so many variables, we
averaged responses from similar categories which led to conceptual variables. Among
the conceptual variables we considered based on the IVR data were stressful events,
pleasant events, pressure to drink, current mood, perceived stress, desire to drink,
commitment to not drink for the next 24 hours, confidence and commitment to re-
duce drinking for the next 24 hours, guilt concerning drinking behavior, and alcohol
consumption. The models were then developed based on these variables. During the
formulation of these models based on the longitudinal data, we determined that delays
and cumulative effects are important and should be included in order to accurately
reflect the dynamic changes in a person’s behavior.

In one of our preliminary models, we focused on three state variables: desire to
drink or Desire, denoted as D(t); the extent to which the subject feels their drinking
over the recent past was excessive, referred to in short as Guilt, G(¢); and alcoholic
beverage consumption rate or Alcohol, A(t). The alcohol consumption function A(¥)
describes the rate at which the participant is consuming alcoholic beverages and has
units of drinks/time. In contrast the other two state variables are unit-less, measuring
the extent to which a subject agrees with a statement on the intensity of their feelings
on a particular subject. One preliminary simplified model had the form

d 0 ’
EA(t) = —ajo ( G+ s)m(s)ds) + a13x{p>0y D(t)

T

d
(28) EG(t) = a21 (A(t - Tl) - AE;)
d 1/ .
ED(t) = —agz |exp | =— G(t+ s)ka(s)ds | — Gps|,
D1 J—r
where r1(s) = 2, ky(s) = %, and r = 2, indicating that behavior over the past

two days has an impact on current behavior. We included an indicator function x(p~o)
to reflect that only when a person desires alcohol does his/her drinking behavior
change. Additionally, we enforced the conditions A(t) > 0 and G(¢) > 0, where for
all variables a value of 0 indicates a neutral value (the scaled variables had values in
the range [—2,2]). For example D(t) = 0 indicates neither a desire nor a dislike for
alcohol, and G(t) = 0 indicates that a person feels no particular feelings of guilt or
virtue.

Interestingly, it appeared that one patient’s drinking pattern could be reasonably
described when considering just two variables: the alcohol consumption rate A(t),
and the guilt G(t). A key observation was that the individual’s drinking was driven
by an innate reward/desire mechanism. This mechanism is the ingrained desire for
drinking that separates problem drinkers from those who drink casually (or less). It is
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known that animals and human beings in particular yearn for something representing
a reward, with the specific reward varying among individuals. Examples include food
for some people, smoking for others, etc. In addition, it is known that individuals
learn to turn this desire off when the reward is unavailable or they have decided they
cannot indulge. So in addition to being a mechanism for desire it can also have the
effect of controlling or limiting one’s intake of alcohol.

The model resulting from analysis of the data for this patient in such a context
is given by

d
EA(t) = —a12x{g>a+}(G(t) — G*) + a13h(t)

0
(29) %G(t) = ax U A(t + s)ds — (1 + exqw (o)) A"

-r

where the function h(t) represents the subject’s desire/reward mechanism, which in-
creases going into the weekend (to turn it ‘on’), and decreases coming out of the
weekend (thereby turning it ‘off’). This particular individual allowed himself to drink
on the weekend as long as he refrains during the week, so h(t) has the form

2(t—1.5) 15<i<2 (Friday a.m. through Friday p.m.)

—2(t—25) 2<t<25 (Friday p.m. through Saturday a.m.)
h(t) =< —2(t—-35) 35<t<4 (Sunday a.m. through Sunday p.m.)

2(t —4.5) 4<it<45 (Sunday p.m. through Monday a.m.)

0 otherwise,

where { =t mod 7.

The effect of ‘guilt’ decreases the individual’s drinking rate only once it surpasses
a certain ‘threshold’ level G*. In contrast, the effect of alcohol, or specifically the
number of drinks consumed in the recent past f_or A(t 4+ s)ds can decrease one’s
guilt if it is below a certain acceptable level, A* during the week and (1 + ¢)A*
during the weekend (this is implemented through the week/weekend characteristic
function x(w())). If it surpasses these levels which the individual has rationalized
as acceptable, he feels that his drinking was excessive, with the extent of that feeling
proportional to how much his recent drinking has surpassed those levels.

3.3.1. Simulated inverse problem. Not surprisingly, most of the parameters
are unknown in the above delay model, and it is of great interest to be able to estimate
them using longitudinal data. To investigate our ability to do so, we generated some
data with various levels of added noise, representative of that in the IVR, on the
drinks consumed over the past day dj ~ f'(t;) = f81 A(t; + s)ds and the extent to
which they felt that was excessive d? ~ f%(t;) = G(tj). The generated data has been
computed as

k
d} = fl(tj) + rmmeanj{fl(tj)}j\/’(ov 1),

k
d? = f2(tj) + 1—00meanj{f2(tj)}~/\/’(07 1),

where j =1,..., K, and k = 1,5, or 10, corresponding to 1%, 5% or 10% error. Here
N(0,1) is a standard Gaussian with mean zero and unity variance. All computations,
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including the generation of data for use in the inverse problem, were done using
piecewise linear splines with N = 32 to solve the delay system. The relevant timescale
for the IVR data appears to be ‘triweekly’, as daily data exhibits too much variation
so that the trends were not obvious, and too much information was lost if the daily
responses were averaged over a week. We note that averaging is preferred to summing
with these data, to lessen the impact of missing responses. Drinking behavior with
most individuals is starkly different on the weekends as opposed to weekdays, so one
of the time intervals of the triweekly time scale begins on Fri evening and lasts to
the time of the call on Sun evening. The other two time intervals are Sun evening
to Wed evening, and then Wed evening to Fri evening. A comparison of noise-less
(0% error) data and that with 10% error is shown in Figure 2. Parameter values and
initial conditions used to generate these data are given in Table 2.

a2 0.15 A* 1.5
ais 16 r 1
a1 0.8 A(O) 1
¢ | 425 | GO) | =05
TABLE 2

Parameter values and initial conditions used to generate the data. Initially, A(¢) =1, G(¢) =
—0.5 for ¢ € [-1,0).

12 3
0% error 0% error
10 ® 10% error 2 ® 10% error
Ld 1
8
R = 0
£ 6 S
=
[a) O
4
-2
2 -3
°
y— > -4
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (days) t (days)

Fic. 2. Generated data with 0% and 10% error. Contained in the left panel is the number of
drinks over a day d]l, ~ f_ol A(tj + s)ds and in the right is the guilt d? ~ G(tj). These are compared
to the model solution (solid lines) with no noise.

Specifically, we discuss here our ability to estimate parameters § = (a13,a21)”
and 6 = (ay3,7)T where r is the length of time that the drinking may influence the
individual’s ‘guilt’. The period of time over which the individual may be reflecting to
influence that response may not always be known.

Estimates 6 to parameters are obtained by minimizing the ordinary least squares
functional

K
J(0) =" |db — fH(t;:0)|" + |d2 — f2(t5:0)]

j=1

over the feasible parameter set © C R2,
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Values of estimates for § = (a3, agl)T with known cumulative effect » = 1, and
for @ = (a13,7)T are contained in Table 3 for 1,5, and 10% noise, respectively. Since
parameter estimates are relatively close to their ‘true’ values, or the values that were
used to generate the data, it appears that we could reasonably expect to estimate
these parameters from similar data. The fit to 10% noisy data is shown in Figure 3
when estimating the length of time interval r and parameter a13. Fits when estimating
either 6 = (a13,a21)” or @ = (a13,7)T are comparable, as suggested by the RSS values.

The many influences behind drinking behavior are difficult to identify and relate
in a quantitative manner. However, our initial modeling efforts have shown behavior
similar to that seen in data from Project MOTION. Performing the inverse problem
on simulated data from the models such as (28) and (29) is not a trivial task, but
the above results and other computational results suggest that this will be feasible
with appropriate data. Current investigations into the sensitivity of the model with
respect to the parameters and discrete delays will provide information regarding which
parameters are most influential on model behavior.

a13 a21 RSS a3 r RSS
True value 16 0.8 16 1
Initial guess 14 1 14 1.2
o) 15.999 | 0.8001 | 0.0397 || 15.9994 | 1.0001 | 0.03967
6®) 16.011 | 0.79928 | 0.688 15.9942 | 1.00196 | 0.6746
6(10) 15.9880 | 0.80119 | 3.588 16.0043 | 1.0001 3.5865
TABLE 3

Parameter estimates 6 = (dlg,dm)T on the left, and 6= (&13,TA)T on the right and the resid-
ual sum of squares RSS from fitting generated data with 1, 5, and 10% error, respectively. The
superscript in the symbol 0 indicates the level of error.

12 3
Mbdel drinks [ A(s)ds Model G(t)
10 ® Data drinks [ A(s)ds 2 ® Data Qt)
o 1
8
2 - 0
S -
5 CEl
4
-2
2 -3
°
°
ol® -4

60 0 60

20 30 40 20 30 40
t (days) t (days)

Fic. 3. Best fit solutions when estimating §(10) — (a13,7)T compared to generated data with
10% error.

4. Concluding remarks. In this paper we have presented new theoretical re-
sults for inverse problems involving general nonlinear nonautonomous delay systems
with functional (time-dependent rate functions, probability distributions) parameters.
An approximation framework that entails approximation of both the infinite dimen-
sional dynamical state spaces and infinite dimensional parameter sets is given. This
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provides a rigorous foundation for a wide class of problems arising in applications. We
illustrate the ideas by brief discussions of examples from insect populations with time
dependent maturation and death rate, cellular level HIV models with uncertainty in
process delays, and models for changing behavior in response during alcohol therapy.
We also demonstrate the efficacy of the approximation methods with computations
for the behavioral models.
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