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ON SOLUTIONS WITH POINT RUPTURES FOR A SEMILINEAR

ELLIPTIC PROBLEM WITH SINGULARITY∗

ZONGMING GUO† AND JUNCHENG WEI‡

Abstract. We consider the following semilinear elliptic equation with singular nonlinearity:

∆u−
λ

uν
= 0 in B, u = ψ on ∂B

where λ > 0, ν > 0 and ψ ∈ C2,α(∂B) and B is the unit ball in R
N . Under various conditions on

λ, ν and ψ, we construct solutions with one isolated zero in B.
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1. Introduction. Let B be the unit ball of R
N (N ≥ 2). The main purpose of

this paper is to construct nonnegative solutions with one isolated zero point of the
semilinear elliptic Dirichlet problem

(1.1) ∆u− λu−ν = 0 in B, u = ψ on ∂B,

where λ, ν > 0, ψ ∈ C2,α(∂B) with ψ(θ) > 0 for θ ∈ SN−1 = ∂B.
Problem (1.1) appears in several applications in mechanics and physics, and

in particular can be used to model the electrostatic Micro-Electromechanic System
(MEMS) devices. See [FMP], [GG1], [GG2], [GG3], [GPW] and the references therein.
In particular, in [GG1], [GG2] and [GG3], Ghoussoub and Guo have given a thorough
study on the following problem

(1.2)

{

ut = ∆u− λf(x)
u2 , x ∈ Ω, t > 0,

u(x, 0) = 1 for x ∈ Ω, u(x, t) = 1 for x ∈ ∂Ω

where λ > 0, f(x) is a positive function and Ω is a bounded smooth domain in R
N .

(1.1) is just the steady state of (1.2) with f(x) ≡ 1 and ν = 2. The set {x|u(x) = 0}
is called touch town set and plays an important role in MEMS.

Problem (1.1) can also be considered as steady state problem of thin films prob-
lems. Equations of the type

(1.3) ut = −∇ · (f(u)∇∆u) −∇ · (g(u)∇u)

have been used to model the dynamics of thin films of viscous fluids, where z = u(x, t)
is the height of the air/liquid interface. The zero set Σu = {u = 0} is the liquid/solid
interface and is sometimes called set of ruptures. Ruptures play a very important role
in the study of thin films. The coefficient f(u) reflects surface tension effects- a typical
choice is f(u) = u3. The coefficient of the second-order term can reflect additional
forces such as gravity g(u) = u3, van der Waals interactions g(u) = um,m < 0. For
more background on thin films, we refer to [BBD, BP1, BP2, LP1, LP2, LP3, WB,
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YD, YH] and the references therein. By choosing f(u) = up, g(u) = u−m, (1.3) is
equivalent to a fourth order equation

(1.4) ut = −∇ · (up∇(∆u− u−ν)

with ν = p+m− 1. Again, solutions to (1.1) are steady-states of (1.4).
In [GW1], we computed the Hansdorff dimension of rupture sets for

(1.5) ∆u−
λ

uν
+ h(x) = 0 in Ω

We showed that if u is a nonnegative stationary solution of (1.5) such that u ∈ H1(Ω)
and

∫

Ω
u1−νdx < ∞, then the zero set of u has locally finite Hausdorff [(N − 2)ν +

(N + 2)]/(ν+ 1)-dimensional measure. However, it is a difficult question to construct
solutions to (1.1) exhibiting point ruptures. If ν > 0, it is easy to see that there exists
a radial solution u0(x) = |x|2/(ν+1) of the problem

(1.6) ∆u− λ0u
−ν = 0 in B, u = 1 on ∂B,

where λ0 = 2(N+(N−2)ν)
(ν+1)2 > 0. On the other hand, if Ω ⊂ R

2 is convex and has two

symmetries, a solution with a point rupture was proved in [GW2].
The purpose of this paper is to construct nonnegative solutions of (1.1) with one

isolated zero point, under various conditions on ψ and ν. Our main idea is to study the
surjectivity properties of the linearized operator associated with the known rupture

solution |x|
2

ν+1 in some weighted Hölder spaces. The weighted Hölder space has been
introduced and used by Mazzeo and Pacard [MP], Mazzeo-Pacard-Uhlenbeck [MPU]
in constructing singular solutions to Yamabe type problems. It is also used by Rebai
[R1], [R2] to construct solutions singular on submanifolds.

The corresponding Neumann problem

(1.7) ∆u−
1

uν
+ h(|x|) = 0 in B,

∂u

∂n
= 0 on ∂B

has been studied by del Pino and Hernandez [DH] for ν > 1. They showed that (1.7)
has at least one nonnegative radial solution u = u(r) satisfying a1r

2/(ν+1) ≤ u(r) ≤ a2,
a1, a2 > 0.

A different kind of problem

(1.8) ∆u+ k(x)
1

uα
= 0 in Ω, u = 0 on ∂Ω

was studied in [CR, De, GHW, Go, GL] and the references therein, where k(x) > 0.
The regularity of ∇u is obtained. Problem (1.8) is fundamentally different from (1.1):
the sign of nonlinearity makes the Maximum Principle applicable to (1.8) which allow
the use of e.g. a super-sub solutions scheme. In fact the following problem

∆u+
1

uα
− h(x) = 0 in Ω, u = ψ on ∂Ω,

possesses a (unique) positive solution in case that h is, for example, positive.
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2. Preliminary computation. Let (λ0, u0) be the radial solution of (1.6). We

define the linearized operator L : w 7−→ ∆w + λ0νu
−(ν+1)
0 w. Clearly we have

(2.1) λ0νu
−(ν+1)
0 =

c0
r2
,

where c0 is a positive constant. Precisely,

c0 =
2ν(N + (N − 2)ν)

(ν + 1)2
.

It is known that the eigenvalues of the problem

(2.2) −∆θv = σv, θ ∈ SN−1

are σk = k(N+k−2), k ≥ 0 with multiplicity mk = (N−3+k)!(N−2+2k)
k!(N−2)! . In particular,

we denote that σ0 = 0, σ1 = N − 1, σ2 = N − 1, . . ., σN = N − 1, σN+1 = 2N and
ϕj(θ) (j = 0, 1, . . .) the eigenfunction corresponding to σj which is normalized in such
a way that

∫

SN−1

ϕ2
j (θ)dθ = 1.

Note that ϕ0(θ) ≡ Const.
We define the indicial roots of L by

(2.3) γ±j =
2 −N

2
±

((N − 2

2

)2

+ σj − c0

)1/2

, j ≥ 0.

We deduce the following proposition by simple computations.

Proposition 2.1. The following inequalities hold:
(1) If N = 2, then ℜ(γ±0 ) = 0, ℑ(γ±0 ) 6= 0 for ν > 0.
(2) If N = 3, then γ−0 ≤ (2 − N)/2 ≤ γ+

0 < 0 are real numbers for 0 < ν ≤
(21/28 − 11)/7; ℜ(γ±0 ) = (2 −N)/2, ℑ(γ±0 ) 6= 0 for ν > (21/28 − 11)/7.

(3) If N = 4, then γ−0 ≤ (2 − N)/2 ≤ γ+
0 < 0 are real numbers for 0 < ν ≤

(31/22 − 3)/3; ℜ(γ±0 ) = (2 −N)/2, ℑ(γ±0 ) 6= 0 for ν > (31/22 − 3)/3.
(4) If N = 5, then γ−0 ≤ (2 −N)/2 ≤ γ+

0 < 0 are real numbers for 0 < ν ≤ 1/3;
ℜ(γ±0 ) = (2 −N)/2, ℑ(γ±0 ) 6= 0 for ν > 1/3.

(5) If N = 6, then γ−0 ≤ (2 − N)/2 ≤ γ+
0 < 0 are real numbers for 0 < ν ≤

(51/2 − 1)/2, ℜ(γ±0 ) = (2 −N)/2, ℑ(γ±0 ) 6= 0 for ν > (51/2 − 1)/2.
(6) If N = 7, then γ−0 ≤ (2 − N)/2 ≤ γ+

0 < 0 are real numbers for 0 < ν ≤
(61/28 − 3)/15, ℜ(γ±0 ) = (2 −N)/2, ℑ(γ±0 ) 6= 0 for ν > (61/28 − 3)/15.

(7) If N = 8, then γ−0 ≤ (2 − N)/2 ≤ γ+
0 < 0 are real numbers for 0 < ν ≤

(71/22 + 1)/3, ℜ(γ±0 ) = (2 −N)/2, ℑ(γ±0 ) 6= 0 for ν > (71/22 + 1)/3.
(8) If N = 9, then γ−0 ≤ (2 − N)/2 ≤ γ+

0 < 0 are real numbers for 0 < ν ≤
(81/28 + 13)/7, ℜ(γ±0 ) = (2 −N)/2, ℑ(γ±0 ) 6= 0 for ν > (81/28 + 13)/7.

(9) If N ≥ 10, then γ−0 ≤ (2 −N)/2 ≤ γ+
0 < 0 are real numbers for ν > 0.

(10)

γ±1 = γ±2 = . . . γ±N =
(2 −N)

2
±

∣

∣

∣

(N + (N − 4)ν)

2(ν + 1)

∣

∣

∣
.
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Thus, for N = 2,

γ±1 = γ±2 =

{

± (1−ν)
(1+ν) if 0 < ν ≤ 1

± (ν−1)
(1+ν) if ν > 1,

which implies that

γ+
1 = γ+

2 =

{

(1−ν)
(1+ν) if 0 < ν ≤ 1
(ν−1)
(1+ν) if ν > 1,

γ−1 = γ−2 =

{

(ν−1)
(1+ν) if 0 < ν ≤ 1
(1−ν)
(1+ν) if ν > 1.

For N = 3,

γ±1 = γ±2 = γ±3 =

{

− 1
2 ± (3−ν)

2(1+ν) if 0 < ν ≤ 3

− 1
2 ± (ν−3)

2(1+ν) if ν > 3,

which implies that

γ+
1 = γ+

2 = γ+
3 =

{

(1−ν)
(1+ν) if 0 < ν ≤ 3

− 2
(1+ν) if ν > 3,

γ−1 = γ−2 = γ−3 =

{

− 2
(1+ν) if 0 < ν ≤ 3

(1−ν)
(1+ν) if ν > 3.

For N ≥ 4,

γ+
1 = γ+

2 = . . . = γ+
N =

(1 − ν)

(1 + ν)
,

γ−1 = γ−2 = . . . = γ−N =
[(3 −N)ν + (1 −N)]

(1 + ν)
.

(11)

γ+
N+1 =

(2 −N)

2
+

( (N − 2)2

4
+ 2N −

2ν(N + (N − 2)ν)

(ν + 1)2

)1/2

=
(2 −N)

2
+

( (N2 − 4N + 20)ν2 + 2(N2 + 4)ν + (N + 2)2

2(ν + 1)

)1/2

>
(2 −N)

2
+

( (N − 2)2ν2 + 2(N − 2)(N + 2)ν + (N + 2)2

2(ν + 1)

)1/2

=
(2 −N)

2
+

(N − 2)ν + (N + 2)

2(ν + 1)

=
2

(ν + 1)
.
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3. A right inverse for L. We introduce the weighted Hölder spaces as in [MP,
MPU, Re1, Re2]. For any k ≥ 0, α ∈ (0, 1) and µ ∈ R, we define some weighted
Hölder spaces Ck,α

µ as follows

Ck,α
µ = {u ∈ Ck,α

loc (B\{0}) : ‖u‖Ck,α
µ

= sup
r≤1/2

(r−µ|u|k,α,[r,2r]) < +∞},

where, by definition

|u|k,α,[r,2r] = sup
r≤|x|≤2r

(Σk
j=0r

j |∇ju|) + rk+α sup
r≤|x|,|y|≤2r;x 6=y

|∇ku(y) −∇ku(x)|

|y − x|α
.

In addition, for all j ≥ 0, we define

(3.1) C2,α
µ,j = {v ∈ C2,α

µ : v|∂B ∈ span(ϕ0(θ), . . . , ϕj(θ))}.

It follows from (2.1) that the linear operator L is well defined from C2,α
µ into C0,α

µ−2.
The proof of the following proposition is a little variant of the proof of Proposition 3
of [Re2].

Proposition 3.1. Assume that N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, and
0 < 2/(ν + 1) < µ < γ+

N+1. Then for any g ∈ C0,α
µ−2 there exists a unique solution

of Lw = g in B\{0} which belongs to the space C2,α
µ,N . In addition, the mapping

g ∈ C0,α
µ−2 → w ∈ C2,α

µ,N is bounded.

Proof. By our assumptions, we know from Proposition 2.1 that for N ≥ 3 and
ν > 0,

ℜ(γ+
0 ) < µ and ℜ(γ+

0 ) + µ+N − 3 > −1,

γ+
1 = . . . = γ+

N < µ < γ+
N+1 and µ+ γ+

1 > −1.

For N = 2 and 0 < ν ≤ 3,

ℜ(γ+
0 ) < µ and ℜ(γ+

0 ) + µ+N − 3 > −1,

γ+
1 = γ+

2 < µ < γ+
3 and µ+ γ+

1 > 0.

Choosing

wi(r) = −rγ+

i

∫ 1

r

κ1−N−2γ+

i

∫ κ

0

sN−1+γ+

i gi(s)dsdκ

for i = N + 1, N + 2, . . ., and

wi(r) = ℜ(rγ+

i

∫ r

0

κ1−N−2γ+

i

∫ κ

0

sN−1+γ+

i gi(s)dsdκ)

for i = 0, 1, . . . , N as those in the proof of Proposition 3 of [Re2], we easily know that
wi(r) exists for each i and that there exists some constant ci > 0 such that for all
r ∈ (0, 1], r−µ|wi(r)| ≤ ci‖g‖C2,α

µ−2
. Thus, this proposition can be easily obtained from

Proposition 3 of [Re2] by choosing j = N + 1.
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Let us define

(C2,α
µ ⊕ rγ+

1 span{ϕ1(θ), ϕ2(θ), . . . , ϕN (θ)})0

=
{

w ∈ C2,α
µ ⊕ rγ+

1 span{ϕ1(θ), ϕ2(θ), . . . , ϕN (θ)} : w|∂B ∈ span{1}
}

.

We easily obtain the following corollaries from the previous propositions.

Corollary 3.2. Assume that N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, and
0 < 2/(ν + 1) < µ < γ+

N+1. Then for any g ∈ C0,α
µ−2 there exists a unique solution of

Lw = g in B\{0} which belongs to the space (C2,α
µ ⊕ rγ+

1 span{ϕ1(θ), . . . , ϕN (θ)})0.

In addition, the mapping g ∈ C0,α
µ−2 → w ∈ (C2,α

µ ⊕ rγ+
1 span{ϕ1(θ), . . . , ϕN (θ)})0 is

bounded.
The same results hold for N = 2 and 1 < ν ≤ 3; N = 3 and ν > 3, if the space

(C2,α
µ ⊕ rγ+

1 span{ϕ1(θ), . . . , ϕN (θ)})0

is replaced by (C2,α
µ ⊕ rγ−

1 span{ϕ1(θ), . . . , ϕN (θ)})0.

Proof. Choosing

wi(r) = −rγ+

i

∫ 1

r

κ1−N−2γ+

i

∫ κ

0

sN−1+γ+

i gi(s)dsdκ

for i = 1, 2, . . ., and

w0(r) = ℜ(rγ+
0

∫ r

0

κ1−N−2γ+
0

∫ κ

0

sN−1+γ+
0 g0(s)dsdκ)

as those in the proof of Proposition 3 of [Re2], we easily know that wi(r) exists for
each i. We know that for i = 0, N + 1, N + 2, . . ., there exist constants ci > 0 such
that for all r ∈ (0, 1], r−µ|wi(r)| ≤ ci‖g‖C2,α

µ−2

. Thus, the first part of this corollary

can be easily obtained from Corollary 2 of [Re2].
To show the second part, we choose

wi(r) = −rγ+
i

∫ 1

r

κ1−N−2γ+
i

∫ κ

0

sN−1+γ+
i gi(s)dsdκ

for i = N + 1, N + 2, . . .;

wi(r) = −rγ−

i

∫ 1

r

κ1−N−2γ−

i

∫ κ

0

sN−1+γ−

i gi(s)dsdκ

for i = 1, 2, . . . , N ; and

w0(r) = ℜ(rγ+
0

∫ r

0

κ1−N−2γ+
0

∫ κ

0

sN−1+γ+
0 g0(s)dsdκ)

as those in the proof of Proposition 3 of [Re2]. It is easily known that, for N = 2 and
1 < ν ≤ 3; N = 3 and ν > 3, wi(r) exists for each i and, for i = 0, N + 1, N + 2, . . .,
there exist constants ci > 0 such that for all r ∈ (0, 1], r−µ|wi(r)| ≤ ci‖g‖C2,α

µ−2

.

Moreover, if 0 < 2/(ν + 1) < µ < γ+
N+1, then γ−1 < µ. Thus, the second part of this

corollary can also be easily obtained from Corollary 2 of [Re2].
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Corollary 3.3. Assume that N = 2 and ν > 3, and 0 < 2/(ν + 1) < µ <
min{γ+

1 , γ
+
3 }. Then for any g ∈ C0,α

µ−2 there exists a unique solution of Lw = g in

B\{0} which belongs to the space C2,α
µ,0 . In addition, the mapping g ∈ C0,α

µ−2 → w ∈

C2,α
µ,0 is bounded.

Proof. It is easily known from Proposition 2.1 that γ+
1 = γ+

2 > 2/(1 + ν) for
N = 2 and ν > 3. Therefore, choosing

wi(r) = −rγ+

i

∫ 1

r

κ1−N−2γ+

i

∫ κ

0

sN−1+γ+

i gi(s)dsdκ

for i = 1, 2, . . ., and

w0(r) = ℜ(rγ+
0

∫ r

0

κ1−N−2γ+
0

∫ κ

0

sN−1+γ+
0 g0(s)dsdκ)

as those in the proof of Proposition 3 of [Re2], we easily know that wi(r) exists
for each i and that there exists some constant ci > 0 such that for all r ∈ (0, 1],
r−µ|wi(r)| ≤ ci‖g‖C2,α

µ−2
. Thus, this corollary can be easily obtained from Proposition

3 of [Re2].

4. The case of ψ(θ) = 1+ζ(θ). In this section we will find nonnegative solutions
u of (1.1) with ψ(θ) = 1 + ζ(θ) and ‖ζ‖C2,α(SN−1) being sufficiently small. Moreover,
u has a nonremovable zero point. We first obtain the following theorem.

Theorem 4.1. Given N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, there
exists ǫ > 0, such that, for any η ∈ C2,α(SN−1), if ‖η‖C2,α(SN−1) < ǫ, there exist

ζη ∈ C2,α(SN−1) satisfying ‖ζη‖C2,α(SN−1) ≤ Λǫ < 1/4 (Λ > 0 independent of ǫ) and
a nonnegative solution uη of the problem

(4.1) ∆u = λ0u
−ν in B\{0}, u = 1 + η + ζη on SN−1

with a nonremovable zero at 0.

Proof. Choosing 0 < 2/(ν + 1) < µ < γ+
N+1, we have from Proposition 2.1 that

for N ≥ 3 and ν > 0 or N = 2 and 0 < ν ≤ 3,

γ+
1 = . . . = γ+

N < µ < γ+
N+1.

For any η ∈ C2,α(SN−1) we define wη(x) = χ(r)η(θ) where χ is some fixed regular
function which equals to 0 in B1/2 and equals to 1 outside B3/4.

We are going to find a solution v ∈ C2,α
µ,N of the equation

(4.2) ∆(u0 + v + wη) = λ0|u0 + v + wη|
−(ν+1)(u0 + v + wη) in B\{0}.

To this end, we define, for all (v, η) ∈ C2,α
µ,N × C2,α(SN−1)

N (v, η) ≡ ∆(u0 + v + wη) − λ0|u0 + v + wη|
−(ν+1)(u0 + v + wη).

It is easy to see that N is well defined from C2,α
µ,N × C2,α(SN−1) into C0,α

µ−2. In
addition, N (0, 0) = 0 and DN|(0,0)(v, 0) = Lv. It follows easily from the implicit
function theorem and Proposition 3.1 that all solutions of the equation (4.2) near
(0, 0) are of the form (vη, η) where η ∈ C2,α(SN−1) → vη ∈ C2,α

µ,N is a regular mapping.
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Thus, we can choose ǫ > 0 sufficiently small, which satisfies that for any η satisfying
‖η‖C2,α(SN−1) < ǫ, there is vη ∈ C2,α

µ,N satisfying ‖vη‖C2,α
µ

≤ Λǫ < 1/4, where Λ > 0

is independent of ǫ, such that uη := u0 + vη + wη is a solution of (4.2). It is easy to
see that vη(0) + u0(0) + wη(0) = 0. Since u0(x) = |x|2/(ν+1) and vη(x) ≤ |x|µ/4 with
2/(ν + 1) < µ, we know that u0(x) + vη(x) + wη(x) > 0 for x ∈ Bδ\{0}, where δ > 0
is a sufficiently small number. Note that u0(x) ≥ δ2/(ν+1) for x ∈ B\Bδ. By choosing
ǫ > 0 small enough, we obtain that

(4.3) u0 + vη + wη > 0 in B\{0}.

This implies that uη = u0 + vη +wη is a nonnegative solution of the equation in (4.1)
with uη(0) = 0. Moreover,

(4.4) uη(θ) = 1 + vη(θ) + η(θ) for θ ∈ SN−1.

Defining ζ(θ) = vη(θ), we easily see that ζ is the required function. This completes
the proof of Theorem 4.1.

From Theorem 4.1 and Corollary 3.3, we easily obtain the following corollary.

Corollary 4.2. Given N = 2 and ν > 3, there exists ǫ > 0 sufficiently small,
such that, for any η ∈ C2,α(S1), if ‖η‖C2,α(S1) < ǫ, there exist a constant cη satisfying
|cη| ≤ (Λ + 1)ǫ < 1/2 (Λ > 0 independent of ǫ) and a nonnegative solution uη of the
problem

(4.5) ∆u = λ0u
−ν in B\{0}, u = 1 + cη + η on S1

with a nonremovable zero at 0.

Theorem 4.3. Given N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, there exists
ǫ > 0 sufficiently small such that, for any y ∈ Bǫ ⊂ B, there exist ζy ∈ C2,α(SN−1)
satisfying ‖ζy‖C2,α(SN−1) ≤ (Λ+1)ǫ < 1/2 (Λ > 0 independent of ǫ) and a nonnegative
solution uy of the problem

(4.6) ∆u = λ0u
−ν in B\{y}, u = 1 + ζy on SN−1.

with a nonremovable zero at y.

Proof. Let T : B×B1/4 → B be a C2,α map which satisfies that, for all y ∈ B1/4,
T (·, y) is a C2,α diffeomorphism from the unit ball into itself. Moreover, T satisfies
that

T (x, y) =

{

x− y for all x, y ∈ B1/4,
x for all x ∈ B\B3/4 and all y ∈ B1/4

and

T (x, 0) = x.

For 0 < 2/(ν + 1) < µ < γ+
N+1, we define the nonlinear mapping

N (v, y) = ∆((u0 + v) ◦ T (·, y)) ◦ T−1(·, y) − λ0|u0 + v|−(ν+1)(u0 + v).

It is easy to see that N is well defined from C2,α
µ,N × B1/4 into C0,α

µ−2. In addition,
N (0, 0) = 0 and

DN|(0,0)(v, 0) = Lv.
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It follows easily from the implicit function theorem and Proposition 3.1 that all solu-
tions of the equation N (v, y) = 0 near (0, 0) are of the form (vy, y) where

y ∈ B1/4 → vy ∈ C2,α
µ,N

is some regular mapping. That is, we can choose ǫ > 0 which satisfies that, for any
y ∈ Bǫ there is vy ∈ C2,α

µ,N satisfying ‖vy‖C2,α
µ

≤ Λǫ < 1/4, where Λ > 0 is independent

of ǫ, such that uy := u0 + vy is a solution of the equation

(4.7) ∆(u ◦ T (·, y)) ◦ T−1(·, y) = λ0|u|
−(ν+1)u in B\{0}.

Arguments similar to those in the proof of Theorem 4.1 imply that uy = u0 + vy

satisfies uy(y) = 0 and uy > 0 in B\{y}. Define ζy(θ) = vy(θ) for θ ∈ SN−1. Then
‖ζy‖C2,α(SN−1) ≤ (Λ + 1)ǫ. This completes the proof.

From Theorem 4.3 and Corollary 3.3, we easily obtain the following corollary.

Corollary 4.4. Given N = 2 and ν > 3, there exists ǫ > 0 sufficiently small
such that, for any y ∈ Bǫ ⊂ B, there exists a nonnegative solution (λ, uy) of the
problem

(4.8) ∆u = λu−ν in B\{y}, u = 1 on S1.

with a nonremovable zero at y.

Proof. Using the same idea as in the proof of Theorem 4.3 and Corollary 3.3,
we see that there exists ǫ > 0 such that, for any y ∈ Bǫ, there exist a constant cy
satisfying |cy| ≤ 1/2 and a nonnegative solution ũy of the problem

∆u = λ0u
−ν in B\{y}, u = 1 + cy on S1.

with a nonremovable zero at y. Setting uy = ũy/(1+cy), we easily see that uy satisfies
(4.8) with λ = λ0(1 + cy)

−(ν+1). Moreover, y is a nonremovable zero point of uy.

Theorem 4.5. Given N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, there exists
ǫ > 0 sufficiently small such that, for any η ∈ C2,α(SN−1), if ‖η‖C2,α(SN−1) < ǫ, there
exist xη ∈ B; a constant cη satisfying |cη| ≤ (Λ + 1)ǫ < 1/2 (Λ > 0 independent of ǫ)
and uη a nonnegative solution of the problem

(4.9) ∆u = λ0u
−µ in B\{xη}, u = 1 + cη + η on SN−1

with a nonremovable zero at xη.

Proof. It is known from Proposition 2.1 that for N ≥ 4 and ν > 0,

γ+
1 = γ+

2 = . . . = γ+
N =

(1 − ν)

(1 + ν)
;

for N = 2 and 0 < ν ≤ 1,

γ+
1 = γ+

2 =
(1 − ν)

(1 + ν)
;

for N = 2 and ν > 1,

γ−1 = γ−2 =
(1 − ν)

(1 + ν)
;
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for N = 3 and 0 < ν ≤ 3,

γ+
1 = γ+

2 = γ+
3 =

(1 − ν)

(1 + ν)
;

for N = 3 and ν > 3,

γ−1 = γ−2 = γ−3 =
(1 − ν)

(1 + ν)
.

We choose µ such that 0 < 2/(ν + 1) < µ < γ+
N+1 and define the space M as follows:

M = span{ϕ1(θ), ϕ2(θ), . . . , ϕN (θ)}.

Thanks to Corollary 3.2, for all g ∈ C0,α
µ−2, the problem

Lw = g in B\{0}

has a solution in the space (C2,α
µ ⊕ r(1−ν)/(1+ν)

M)0. Note that for N ≥ 4 and ν > 0;

N = 2 and 0 < ν ≤ 1; N = 3 and 0 < ν ≤ 3, we use γ+
1 in Corollary 3.2. For N = 2

and 1 < ν ≤ 3; N = 3 and ν > 3, we use γ−1 in Corollary 3.2. It is clear that

∇|x|2/(ν+1) =
2

ν + 1
|x|(1−ν)/(1+ν)∇|x|.

Given a function η ∈ C2,α(SN−1) we have to find a solution (v, y) ∈ C2,α
µ,0 × R

N

of the equation

∆((u0 + wη + v) ◦ T (·, y)) ◦ T−1(·, y) − λ0f(u0 + wη + v) = 0 in B\{0}

where f(s) = |s|−(ν+1)s. We define the nonlinear mapping

N (v, y, η) = [∆((u0 + wη + v) ◦ T (·, y)) − λ0f((u0 + wη + v) ◦ T (·, y))] ◦ T−1(·, y).

Obviously, N is well defined from C2,α
µ,0 ×R

N ×C2,α(SN−1) into the space C0,α
µ−2. We

notice that N (0, 0, 0) = 0. Furthermore

DN|(0,0,0)(v, 0, 0) = Lv

and since ∆u0 = λ0u
−ν
0 in B,

DN|(0,0,0)(0, z, 0) = ∆(Du0|x ◦DyT |(x,0)(z))

+λ0νu
−(ν+1)
0 (Du0|x ◦DyT |(x,0)(z))

= L(Du0|x ◦DyT |(x,0)(z)).

Therefore,

DN|(0,0,0)(w, z, 0) = L(w +Du0|x ◦DyT |(x,0)(z)).

Since DyT |(x,0)(z) = 0 if x ∈ B\B3/4 and since DyT |(x,0)(z) = −z if x ∈ B1/4 we see

from [Re2] that (C2,α
µ ⊕ r(1−ν)/(1+ν)

M)0 = C2,α
µ,0 ⊕ span{Du0|x ◦DyT |(x,0)(z) : z ∈

R
N}.
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We can use the implicit function theorem to prove that all solutions N (v, y, η) = 0
near (0, 0, 0) are given by (vη, yη, η) where

η ∈ C2,α → (vη, yη) ∈ C2,α
µ,0 × R

N

is a regular mapping. Therefore, arguments similar to those in the proof of Theorem
4.1 imply that uη := u0 + wη + vη is a nonnegative solution of the equation in (4.9)
which satisfies that uη = u0 + wη + vη > 0 in B\{yη} and uη(yη) = 0. Moreover,
uη(θ) = 1+ cη + η(θ) for θ ∈ SN−1, where cη = vη|SN−1 is a constant. This completes
the proof.

The following corollary is an easy consequence of Theorem 4.5.

Corollary 4.6. Given N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, there exists
ǫ > 0 sufficiently small such that, for any constant ρ, if |ρ| < ǫ, there exist xρ ∈ B
and (λ, uρ) a nonnegative solution of the problem

(4.10) ∆u = λu−ν in B\{xρ}, u = 1 on SN−1

with a nonremovable zero at xρ.

Proof. It follows from Theorem 4.5 that for any constant ρ (since ρ ∈ C2,α(SN−1))
satisfying |ρ| < ǫ, there exist xρ ∈ B; a constant cρ satisfying |cρ| ≤ (Λ + 1)ǫ < 1/2
and ũρ a nonnegative solution of the problem

(4.11) ∆u = λ0u
−ν in B\{xρ}, u = 1 + cρ + ρ on SN−1

with a nonremovable zero at xρ. Defining uρ := ũρ/(1 + cρ + ρ), we have that uρ

satisfies the problem

(4.12) ∆u = λu−ν in B\{xρ}, u = 1 on SN−1

where λ = λ0(1 + cρ + ρ)−(ν+1). It is clear that xρ is a non removable zero of uρ.

5. The case of ψ(θ) = C + ζ(θ). In this section we use the results obtained in
Section 4 to consider the case that ψ(θ) = C + ζ(θ), where C > 1 or 0 < C < 1, for
θ ∈ SN−1 and ζ ∈ C2,α(SN−1) satisfying that ‖ζ‖C2,α(SN−1) is sufficiently small.

By simple calculations, we easily know that uC(x) = C|x|2/(ν+1) satisfies the
problem

(5.1) ∆u =
2Cν+1(N + (N − 2)ν)

(ν + 1)2
u−ν in B\{0}, u = C on ∂B.

Define λC = 2Cν+1(N+(N−2)ν)
(ν+1)2 and the linear operator

L : w 7−→ ∆w + λCνu
−(ν+1)
C w.

Clearly we have

(5.2) λCνu
−(ν+1)
C =

c0
r2
,

where c0 is same as in (2.1). Thus, L is exactly same as that we defined in Section
2. Thus, the indical roots of L are defined in (2.3). By arguments similar to those in
the proofs of Theorems 4.1, 4.3, 4.5, we easily obtain the following results.
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Theorem 5.1. Given N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, there
exists ǫ > 0 such that, for any η ∈ C2,α(SN−1), if ‖η‖C2,α(SN−1) < ǫ, there exist

ζη ∈ C2,α(SN−1) satisfying ‖ζη‖C2,α(SN−1) ≤ (Λ + 1)ǫ < C/2 (Λ > 0 independent of
ǫ) and a nonnegative solution uη of the problem

(5.3) ∆u = λCu
−ν in B\{0}, u = C + ζη on SN−1

with a nonremovable zero at 0.

Corollary 5.2. Given N = 2 and ν > 3, there exists ǫ > 0 sufficiently small,
such that, for any η ∈ C2,α(S1), if ‖η‖C2,α(S1) < ǫ, there exist a constant cη satisfying
|cη| ≤ (Λ + 1)ǫ < C/2 (Λ > 0 independent of ǫ) and a nonnegative solution uη of the
problem

(5.4) ∆u = λCu
−ν in B\{0}, u = C + cη + η on S1

with a nonremovable zero at 0.

Theorem 5.3. Given N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, there
exists ǫ > 0 sufficiently small such that, for any y ∈ Bǫ ⊂ B, there exist ζy ∈
C2,α(SN−1) satisfying ‖ζy‖C2,α(SN−1) ≤ (Λ+1)ǫ < C/2 (Λ > 0 independent of ǫ) and
a nonnegative solution uy of the problem

(5.5) ∆u = λCu
−ν in B\{y}, u = C + ζy on SN−1.

with a nonremovable zero at y.

Corollary 5.4. Given N = 2 and ν > 3, there exists ǫ > 0 sufficiently small
such that, for any y ∈ Bǫ ⊂ B, there exists a nonnegative solution (λ, uy) of the
problem

(5.6) ∆u = λu−ν in B\{y}, u = C on S1.

with a nonremovable zero at y.

Theorem 5.5. Given N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, there exists
ǫ > 0 sufficiently small such that, for any η ∈ C2,α(SN−1), if ‖η‖C2,α(SN−1) < ǫ, there
exist xη ∈ B; a constant cη satisfying |cη| ≤ (Λ + 1)ǫ < C/2 (Λ > 0 independent of ǫ)
and uη a nonnegative solution of the problem

(5.7) ∆u = λCu
−ν in B\{xη}, u = C + cη + η on SN−1

with a nonremovable zero at xη.

We can also obtain the existence for a class of Dirichlet problems with constant
boundary values.

Corollary 5.6. Given N ≥ 3 and ν > 0, or N = 2 and 0 < ν ≤ 3, there exists
ǫ > 0 such that, for any constant ρ, if |ρ| < ǫ, there exist xρ ∈ B and (λρ, uρ) a
nonnegative solution of the problem

(5.8) ∆u = λu−ν in B\{xρ}, u = C on SN−1
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with a nonremovable zero at xρ.

Remark. It is easily seen from Theorems 5.1, 5.3 and 5.5 that the parameter λ
depends upon the boundary value C. We can also obtain the existence for any λ > 0,
but the boundary value changes. Indeed, for any fixed λ > 0, we easily know that
(λ, uλ(r)) is a nonnegative solution, with one isolated zero at 0, of the problem

(5.9) ∆u = λu−ν in B\{0}

where

uλ(r) =
[ λ(ν + 1)2

2((N − 2)ν +N))

]1/(ν+1)

r2/(ν+1).

It is clear that the boundary value of uλ is the constant in the expression of uλ(r).
Now we define

L : w 7−→ ∆w + λνu
−(ν+1)
λ w.

It is clear that λνu
(−ν+1)
λ = c0r

−2 and L is exactly same as that we defined in Section
2. Thus, we can derive results similar to Theorems 5.1, 5.3, 5.5, but with different
boundary conditions.
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