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SYMMETRY ANALYSIS OF A CANONICAL MEMS MODEL∗

J. REGAN BECKHAM† AND JOHN A. PELESKO‡

Abstract. A canonical model arising in MEMS and modeling the electrostatic deflections of
an elastic membrane with spatially varying dielectric properties is considered. Symmetry methods
are used to determine the form of the spatially varying dielectric properties that allow for invariance
under a one-parameter Lie group of transformations. In these cases it is shown how symmetry may
be used to analyze the boundary value problem and construct a bifurcation diagram for the system.
This bifurcation diagram relates back to the MEMS model; a non-dimensional version of the applied
voltage is plotted versus the maximum deflection of the membrane.
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1. Introduction. In the study of electrostatically actuated MEMS devices, the
semi-linear elliptic equation

△u =
λ

u2
in Ω (1)

u = 1 on ∂Ω (2)

has been the subject of much analysis, [3], [5], [4], [11]. This equation models the de-
flection of an elastic membrane under the influence of an applied electric field. Here,
u represents the position of the membrane and λ is a dimensionless parameter propor-
tional to the applied voltage. The equation essentially says that in the steady-state,
elastic forces and electrostatic forces must balance. The term on the left represents
the elastic forces, while the term on the right represents the electrostatic forces. Re-
cently, a generalized version of this equation where the dielectric properties of the
membrane are allowed to vary in space has been derived, [10]. This has the effect of
introducing a known function of space multiplying the term on the right hand side of
Equation (1). Of interest in applications is the effect of this spatially varying term on
the structure of the solution set of Equation (1).

Here, we study the one-dimensional version of this generalized equation, i.e.,

d2u

dx2
=

λf(x)

u2
(3)

with

u(−1/2) = 1 and u(1/2) = 1. (4)

The function f(x) appearing on the right hand side is a dimensionless version of
the spatially varying dielectric properties of the membrane. In [10] a power law
profile for the dielectric property was considered, i.e., f(x) = xα. A symmetry of
the differential equation was used in transforming the boundary value problem to an
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initial value problem. Then, that problem was analyzed in terms of its bifurcation
diagram. The symmetry of the problem is a direct result of the functional form chosen.
This naturally raises the question: Which functions give rise to a symmetry? Also,
can a similar analysis be performed, as in [10], regardless of the symmetry type?

We assume f(x) is symmetric about the origin. With this restriction we can
replace the condition u(−1/2) = 1 with the condition u′(0) = 0. We have now
reduced our problem to the interval (0, 1/2) defined by Equation (3) and boundary
conditions

du

dx
(0) = 0 and u(1/2) = 1. (5)

Due to the boundary conditions of the problem and the domain in question, there is
a possibility that functions exist which give rise to a symmetry of the equation but
are not physically relevant. Also, the particular function in [10] gives rise to a scaling
symmetry in both the independent and dependent variables. Here we explore how the
analysis and use of this method changes as the symmetries of the problem change.

The paper is organized as follows. In Section 2 we perform a symmetry analysis
of 3 to determine symmetries of the differential equation and their relationship to the
functional form of f(x). In Section 3 we give a necessary condition on f(x) to solve
the boundary value problem. In Section 4 we perform an analysis of the problem
for two particular functions which arise from the symmetries found in Section 2. For
each we use the symmetry to convert the boundary value problem to an initial value
problem and then construct the bifurcation diagram for the problem in terms of the
parameter λ and the maximum deflection of the membrane. We further analyze the
properties of the bifurcation diagram using Taylor series and phase plane techniques.
Finally, in Section 5, we discuss the findings of our paper and the physical significance
of the results. We relate the maximum stable deflection and maximum stable voltage
to the dielectric profile of the membrane and show how it changes as the dielectric
properties change.

2. Symmetry Analysis. We begin with a classical symmetry analysis of Equa-
tion (3). That is, we seek a one-parameter group of transformations,

x∗ = h(x, u, ǫ)

u∗ = g(x, u, ǫ),

that leaves Equation (3) invariant. Here f(x, u, ǫ) and g(x, u, ǫ) are called the global
form of the group. Considering an expansion of x∗ and u∗ about ǫ = 0 gives

x∗ = x + ǫ

(

dx∗

dǫ

)

ǫ=0

+ O(ǫ2)

u∗ = u + ǫ

(

du∗

dǫ

)

ǫ=0

+ O(ǫ2)

which is referred to as the infinitesimal form of the group. Keeping with standard
notation we define

ξ(x, u) =

(

dx∗

dǫ

)

ǫ=0

η(x, u) =

(

du∗

dǫ

)

ǫ=0

.
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In finding the transformations that leave Equation (3) invariant, one needs only to
find the functions ξ(x, u) and η(x, u). This is done by substitution of the above
infinitesimal form of the transformations x∗ and u∗ into the differential equation and
then requiring that the O(ǫ) terms vanish. We begin by noting

d2u∗

dx∗2 =
d

dx

(

du∗

dx∗

)

dx

dx∗

where

du∗

dx∗
=

du

dx
+ ǫ

(

∂η

∂x
+

(

∂η

∂u
− ∂ξ

∂x

)

du

dx
− ∂ξ

∂u

(

du

dx

)2
)

+ O(ǫ2).

Using the common notation

z =
du

dx

π =

(

∂η

∂x
+

(

∂η

∂u
− ∂ξ

∂x

)

du

dx
− ∂ξ

∂u

(

du

dx

)2
)

,

our governing equation becomes

d2u

dx2
+ǫ

((

∂π

∂x
+

∂π

∂u
z +

∂π

∂z

d2u

dx2

)

−
(

∂ξ

∂x
+

∂ξ

∂u
z

)

d2u

dx2

)

+ O(ǫ2)

=
λ

u2
+ ǫ

(

ξ
λf ′(x)

u2
− 2η

λf(x)

u3

)

+ O(ǫ2)

If we are to have a valid invariant transformation then the O(ǫ) terms must vanish.
That is,

(

∂π

∂x
+

∂π

∂u
z +

∂π

∂z

d2u

dx2

)

−
(

∂ξ

∂x
+

∂ξ

∂u
z

)

d2u

dx2
= ξ

λf ′(x)

u2
− 2η

λ

u3
.

Expanding the left hand side, substituting d2u
dx2 = λ/u2, and collecting powers of z

gives
(

∂2η

∂x2
+

(

∂η

∂u
− 2

∂ξ

∂x

)

λf(x)

u2
− ξ

λf ′(x)

u2
+ 2η

λf(x)

u3

)

+

(

2
∂2η

∂x∂u
− ∂2ξ

∂x2
− 3

λf(x)

u2

∂ξ

∂u

)

z

+

(

∂2η

∂u2
− 2

∂2ξ

∂x∂u

)

z2 − ∂2ξ

∂u2
z3 = 0

This gives the following system of equations for ξ and η.

∂2η

∂x2
+

(

∂η

∂u
− 2

∂ξ

∂x

)

λf(x)

u2
− ξ

λf ′(x)

u2
+ 2η

λf(x)

u3
= 0

2
∂2η

∂x∂u
− ∂2ξ

∂x2
− 3

λf(x)

u2

∂ξ

∂u
= 0

∂2η

∂u2
− 2

∂2ξ

∂x∂u
= 0

∂2ξ

∂u2
= 0
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From the last two equations we have

ξ(x, u) = g1(x)

η(x, u) = h1(x)u + h2(x)

Making this substitution into the above system and solving gives

ξ(x, u) = ax2 + bx + c (6)

η(x, u) = (ax + d)u, (7)

where a, b, c, and d are arbitrary constants and f(x) satisfies the ordinary differential
equation

f ′(x)(ax2 + bx + c) + f(x)(ax + 2b − 3d) = 0. (8)

This agrees with the results found in Chapter 5 of [6]. By taking different combi-
nations of constants, and solving Equation (8), we obtain the different forms of f(x)
which give the corresponding symmetry. Let us first relate the infinitesimals ξ(x, u)
and η(x, u) to the type of symmetry in the equation. The constant c corresponds to
a translation of the x variable. The constants b and d correspond to scalings in x and
u respectively. The constant a corresponds to a nonstandard symmetry in the x and
u variables.

Our goal is to see how the different types of symmetry affect the analysis of
the problem and whether or not we can change the boundary value problem to an
initial value problem. This idea of using the symmetry of an equation to convert a
boundary value problem to an initial value problem was introduced by Toepfer, [12],
in 1912 and was extended by Klamkin [7] and Na [8]. See Chapter 7 of [8] for a
more detailed discussion. We will consider the forms of the infinitesimals, (6) and (7),
along with the form of the solution to Equation (8). Using this information we make a
suitable change of variables to convert our boundary value problem to an initial value
problem. Bifurcation diagrams will then be constructed. The bifurcation diagrams
will be in terms of λ which represents the applied voltage, and umax = 1−u(0) which
represents the maximal deflection of the membrane. These bifurcation diagrams will
then be analyzed, with the aid of the initial value problem, using phase plane analysis
and Taylor series.

3. A necessary condition for existence. Not all solutions, f(x), to Equation
(8) give rise to a solution of Equation (3). Here we give a necessary condition for the
existence of a solution to our boundary value problem. First, we require f(x) > 0
so that u(x) is concave and has a range of (0,1]. From this we can see that u(x) is
bounded. Moreover, since u(x) does not take on the value 0, since that would mean it
comes in contact with the ground plate, we can say that 1/u2 is also bounded. Now
if we consider Equation (3),

d2u

dx2
=

λf(x)

u2
,

then we can integrate with respect to x and use u′(0) = 0 to obtain

du

dx
=

∫ x

0

λf(y)

u2
dy.



SYMMETRY ANALYSIS OF A CANONICAL MEMS MODEL 331

Upon integration again, we have

u(x) − u(0) =

∫ x

0

∫ z

0

λf(y)

u2
dydz.

From the nature of u(x), we know that the left hand side is bounded. However when
we look at the right hand side we see that

∫ x

0

∫ z

0

λf(y)

u2
dydz = λ

∫ x

0

∫ z

0

f(y)

u2
dydz

≥ λM

∫ x

0

∫ z

0

f(y)dydz.

where M is the lower bound on 1/u2. From this we can see that the only way the
right hand side can be bounded is if

∫ x

0

∫ z

0

f(y)dydz (9)

is bounded. This information will be used to determine if a given form of f(x) will
give rise to a solution to the boundary value problem. If Equation (9) is unbounded
for some f(x) then no solution to the boundary value problem (3), (5) will exist.

It is important to note here that in our particular problem f(x) is a scaled version
of the dielectric constant and thus satisfies

0 < c ≤ f ≤ 1.

In some cases the analysis can be carried through due to the boundedness of the above
integral for our given f(x) but may not satisfy the above condition for the dielectric
constant.

4. Analysis. In this section we perform a detailed analysis of two separate cases
which arise from Equation (8). For each case we use symmetry to convert our bound-
ary value problem to an initial value problem. Then we use the initial value problem
to analyze and construct the bifurcation diagram relating the parameter λ to the
maximal deflection of the membrane umax. In the first case Taylor expansions are
used to describe the end behavior of the bifurcation diagram. In the second case a
phase plane analysis is used to describe the end behavior of the bifurcation diagram.
Next, we discuss cases where the symmetry is not effective and why, as well as, the
general relationship between the symmetry and analysis technique used.

4.1. Case: a = b = 0. In this case, Equation (6) and Equation (7) reduce to

ξ = c (10)

η = du; (11)

that is the symmetry is a stretch in the u direction along with a translation of the x
variable. Solving Equation (8) and substituting into Equation (3) yields

d2u

dx2
= λ

e
3d

c
x

u2
(12)

with the conditions

du

dx
(0) = 0 and u(1/2) = 1.
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At this point we construct the global form of the group to obtain

x∗ = x + cǫ

u∗ = edǫu.

We can now exploit the symmetry by letting

u(x) = γw(ζ), (13)

where

ζ = x + β. (14)

Note that γ and β are constants. Substituting (13) and (14) into Equation (12), and
defining α = 3d

c yields the problem

d2w

dζ2
=

λ

γ3

eα(ζ−β)

w2

with the conditions

dw

dζ
(β) = 0 and γw

(

β +
1

2

)

= 1.

Next, we make the assignment

λ

γ3
e−αβ = 1 and γ =

1

w(β + 1
2 )

. (15)

Since our boundary condition is satisfied by setting γ we impose the condition w(β) =
1. This leads to the problem

d2w

dζ2
=

eαζ

w2
(16)

with

dw

dζ
(β) = 0 and w(β) = 1. (17)

We have now converted the boundary value problem to an initial value problem.
Now, using (15), we map out the bifurcation diagram, which is parameterized in

terms of β, where −∞ < β < ∞. A plot of the bifurcation diagram is seen in Figure
1 for different values of α. Notice that the initial conditions occur at β. Because of
this our initial conditions change as our parameter changes and thus a phase plane
analysis is of no use here. Since λ and umax depend on w

(

β + 1
2

)

we will consider a
Taylor expansion of w(β + x) about x = 0 and then evaluate at x = 1

2 . From here
we take our limits and determine the end behavior of the bifurcation diagram. Our
Taylor expansion gives

w(β + 1/2) = w(β) +
dw

dζ
(β)

1

2
+

d2w
dζ2 (β)

2!

1

2

2

+

d3w
dζ3 (β)

3!

1

2

3

+ · · ·. (18)
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Fig. 1. Bifurcation for −2 < α < 2

Substituting Equation (16), its differential consequences, and (17) into Equation (18)
gives

w(β + 1/2) = 1 + 0 +
eαβ

2!

1

2

2

+
αeαβ − 2eαβ

3!

1

2

3

+ · · ·. (19)

Notice that every term in the expansion involves an eαβ except for the first two. Now
for α < 0 we see that

w(β + 1/2) → 1 as β → ∞.

This means that

λ → 0 and umax → 0.

When β → −∞, w(β + 1
2 ) → ∞, so that

λ → 0 and umax → 1.

When α > 0 the behavior reverses. This agrees with the bifurcation diagram in Figure
1. Note that f(x) corresponds to a valid dielectric constant when α < 0.

4.2. Case: b = c = 0. In this case, Equation (6) and Equation (7) reduce to

ξ = ax2 (20)

η = (ax + d)u; (21)

that is, the symmetry is a nonstandard change in the x direction along with the
combination of a stretch and nonstandard change in the u direction. Solving Equation
(8) and substituting into Equation (3) gives

d2u

dx2
= λ

e−
3d

ax

xu2
(22)
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with the conditions

u′(0) = 0 and u(1/2) = 1.

At this point we construct the global form of the group to obtain

x∗ =
x

1 − ǫax

u∗ =
edǫu

1 − ǫax

This does not suggest stretches and translations as in the previous section. However,
we make an appropriate change of variables so that, in the new variables, we have
stretches and translations. Let us make the assignment

y =
u

x
and ζ =

1

x
. (23)

Notice that this assignment is suggested by the form that f(x) takes. Substituting
(23) into Equation (22) gives

d2y

dζ2
=

λeαζ

y2
(24)

where the boundary conditions become

lim
ζ→∞

(ζyζ − y) = 0 and y(2) = 2.

Then, from the global form, Equation (24) is invariant under

y∗ = edǫy

ζ∗ = ζ − aǫ.

From here we exploit our symmetry by letting

y(ζ) = γw(τ) where τ = ζ + σ (25)

Note γ and σ are constants. Substitution of (25) into Equation (24) yields

d2w

dτ2
=

λeα(τ−σ)

γ3w2
(26)

with boundary conditions

lim
τ→∞

(τ − σ)wτ − w = 0 and w(2 + σ) =
2

γ
.

Next, we let

λe−ασ

γ3
= 1 and γ =

2

w(2 + σ)
, (27)

so our problem becomes

d2w

dτ2
=

eατ

w2
(28)
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with

lim
τ→∞

(τ − σ)wτ − w = 0. (29)

Similar to previous cases we impose the condition

lim
τ→∞

w = 1. (30)

At this point we have converted our boundary value problem to an initial value prob-
lem.

Since our initial conditions occur at infinity, implementing a standard numerical
integration method to map out the bifurcation diagram is difficult. Here we use
a numerical shooting method to map out the bifurcation diagram. A plot of the
diagram for various α is seen in Figure 2.
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Fig. 2. Bifurcation for α < 0

Although we did not use the initial value problem to construct the bifurcation
diagram, it will be beneficial in analyzing the behavior of the bifurcation diagram.
Since our initial conditions do not change as the parameters change, we perform
a phase plane analysis. First, we make the problem autonomous by substituting
w(τ) = v(τ)e

ατ

3 into Equation (26) to obtain

d2v

dτ2
+

2

3
α

dv

dτ
+

α2

9
v =

1

v2
. (31)

Next, we convert to a first order system. Let p = 1/v and q = v′/v so that Equation
(31) becomes

dp

dτ
= −pq (32)

dq

dτ
= p3 − 2

3
αq − α2

9
− q2. (33)
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With this change of variables, our initial conditions convert to

lim
τ→∞

p = 0 and lim
τ→∞

q = −α

3
. (34)

By analyzing the system given by (32) and (33), we see there are two critical points,
(p, q),

P1

(

0,
−α

3

)

P2

(

(

α2

9

)1/3

, 0

)

with eigenvalues for the linearized system given by

µ1 = 0, µ2 =
α

3

µ1,2 =
−α

3
± i

α
√

2

3

respectively. From this we conclude
• P1 is a stable node.
• P2 is an unstable spiral.

Figure 3 give a plot of the phase plane for α = −1. In terms of our new variables, λ

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

P

Q P
2

P
1

Fig. 3. Phase portrait in the p-q plane when α = −1. Here P1 corresponds to a stable node,

and P2 corresponds to an unstable focus.

and umax become

λ =
8p(2 + σ)3

e2α
, (35)

umax = 1 − lim
τ→∞

2p(2 + σ)e
ατ

3

p(τ)e
α

3
(2+σ)(τ − σ)

. (36)
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To determine the behavior of umax at the ends of the bifurcation diagram, we need
to determine the behavior of p as τ → ∞. Now, as τ → ∞ we approach the point P1

in the phase plane. Since p → 0 implies 1/v2 → 0, we can set the right hand side of
Equation (31) equal to zero and solve for v. Doing this gives the solution

v(τ) = c1e
−α

3
τ + c2τe−

α

3
τ . (37)

Notice here that if τ → ∞, then v → ∞. This is consistent with our above assumption.
Substituting (37) into Equation (36) and taking the limit gives

umax = 1 − 2c2p(2 + σ)

e
α

3
(2+σ)

.

At this point we have λ and umax parameterized in terms of σ. Now as σ → −∞ we
approach the critical point P2. From the linearized system we can approximate the
solution around this point to conclude that

λ → 8α2

9e2α
and umax → 1 as σ → −∞.

Note here that our bifurcation diagram is found by mapping out a trajectory in the
phase plane and recall that the critical point P2 is a spiral. Approaching the critical

point P2 corresponds to λ → 8α2

9e2α ; therefore, we have an infinite number of folds in

the bifurcation diagram and an infinite number of solutions when λ = 8α2

9e2α . When
σ → ∞ we approach the critical point P1. From this we see that

λ → 0 and umax → 0 as σ → ∞.

This agrees with the bifurcation diagram plotted in Figure 2.

4.3. Other cases. Now we address all cases not considered in the previous
sections. If we consider the case of a = b = c = 0 then Equation (8) has the solution

f(x) = 0.

Since the right hand side of Equation (3) vanishes this case is of no interest. The case
of a = b = d = 0 gives rise to f(x) being a nonzero constant. For an indepth look at
this case see [2]. The cases a = c = d = 0, b = c = d = 0, and c = d = 0 give rise to
the solutions

f(x) =
λ

x2
, f(x) =

λ

x
, and f(x) =

λ(ax + b)

x2

to Equation (8) respectively. From Equation (9) we see that these cases do not give
rise to physically relevant solutions. The two cases, a = d = 0 and b = d = 0, do not
correspond to any type of scaling of the u variable. Because of this, the symmetry
cannot be used to convert the boundary value problem to an initial value problem. A
numerical shooting method can be used to construct the bifurcation diagram, however
we cannot use the properties of an initial value problem to analyze the bifurcation
diagram. A detailed analysis of the remaining cases can be found in [1].

Notice the dependence on the stretching of u, d 6= 0, in the ability to use the
symmetry to convert the boundary value problem to an initial value problem. For
each case considered above we used the stretching invariance of u to satisfy one of our
boundary conditions. If the stretching invariance was readily identifiable we made a
change of variables and then used the stretching invariance of the new dependent vari-
able to satisfy one of our boundary conditions. In each of the cases where symmetry
is not used the stretching invariance of u is removed, d = 0.
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5. Discussion. In this paper our goal was to explore the use of symmetry meth-
ods to analyze the electrostatic deflections of an elastic membrane with tailored dielec-
tric properties, as introduced in [10]. It was shown in the one-dimensional case that
a number of dielectric profiles, in addition to the power law profile considered in [10],
give rise to a symmetry of the differential equation. In addition, it was shown that
those symmetries containing a scaling of the dependent variable, and those which can
be put into this form via a change of variables, allow for the removal of a boundary
condition, thus changing our boundary value problem to an initial value problem. In
these cases we were able to parameterize our problem in terms of the transformation
coefficients of the independent variable and then integrate the initial value problem
to construct the desired bifurcation diagram. In addition, we were able to use phase
plane analysis and Taylor series to further analyze the problem and confirm the end
behavior of the bifurcation diagram. It was observed that without a scaling of the de-
pendent variable, the symmetry of the equation cannot be used to convert our initial
value problem to a boundary value problem. For the two-dimensional disk geometry
we observed that the power law profile considered in [10] is the only dielectric pro-
file admitting a symmetry where a physical solution is possible. This was seen by
observing that the integral of our dielectric profile must be finite.

From a physical standpoint it is interesting to note that, regardless of the dielectric
property of the membrane, that is the functional form of f(x), the pull-in voltage was
increased. In particular we consider the power law profile considered in [10] and the
exponential form when a = b = 0. For the power law profile the membrane is tailored
so that the center of the membrane, which is the most unstable, is to be more of
an insulator and the edges, where it is most stable, are to be closer to a perfect
conductor. For the exponential profile, f(x) = eαx, the tailoring is just the opposite.
In either case, the change in α results in a larger operating voltage; however, the
maximal possible deflection is reduced for the exponential profile where as the power
law profile causes the maximal possible deflection to increase.

To illustrate this, Figure 4 gives a plot of the “pull-in” voltage versus the “pull-
in” distance as the values of α are varied. The solid curve represents the power law
profile with α increasing from zero as you move along the curve from left to right.
The dashed curve represents the exponential profile with α decreasing form zero as
one moves from left to right. Recall that α must be negative in the exponential
profile to represent a valid dielectric constant. This says that making the center of
the membrane more of an insulator will cause an increase in the “pull-in” voltage and
an increase in the “pull-in” distance while making the edges of the membrane more of
an insulator will increase the “pull-in” voltage while decreasing the “pull-in” distance.
This relationship seems to hold true for the other profile considered in the analysis,
as well as those considered in [1].
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