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ON CONVERGENCE OF SEMI-DISCRETE HIGH RESOLUTION

SCHEMES WITH VAN LEER’S FLUX LIMITER FOR

CONSERVATION LAWS
∗

NAN JIANG† AND HUANAN YANG‡

Abstract. In the early 1980s, Sweby [19] investigated a class of high resolution schemes using
flux limiters for hyperbolic conservation laws. For the convex homogeneous conservation laws, Yang
[23] has shown the convergence of the numerical solutions of semi-discrete schemes based on minmod
limiter when the general building block of the schemes is an arbitrary E-scheme, and based on
Chakravarthy-Osher limiter when the building block of the schemes is the Godunov, the Engquist-
Osher, or the Lax-Friedrichs to the physically correct solution. Recently, Yang and Jiang [25] have
proved the convergence of these schemes for convex conservation laws with a source term. However,
the convergence problems of other flux limiter, such as van Leer and superbee have been open.
In this paper, we apply the convergence criteria, established in [23] [25] by using Yang’s wavewise
entropy inequality (WEI) concept, to prove the convergence of the semi-discrete schemes with van
Leer’s limiter for the aforementioned three building blocks. The result is valid for scalar convex
conservation laws in one space dimension with or without a source term. Thus, we have settled one
of the aforementioned problems.
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1. Introduction. The goal of this paper is to prove the convergence to the the
entropy solution of the semi-discrete high resolution schemes based on van Leer’s
famous flux limiter [21] for the initial value problems of hyperbolic conservation laws
with source terms:

(1.1)

{

wt + f(w)x = q(w),
w(x, 0) = w0(x),

where f ∈ C1(R) is convex, q ∈ C1(R), and w0 ∈ BV (R). Here BV stands for the
subspace of L1

loc consisting of functions z with bounded total variation

(1.2) TV (z) := sup
h 6=0

∫

R

|z(x+ h) − z(x)|

|h|
dx.

The corresponding homogeneous problems to (1.1) are

(1.3)

{

wt + f(w)x = 0,
w(x, 0) = w0(x).

It is well known that the solution of (1.1) may develop discontinuities in finite
time. Therefore, we seek weak solutions w that satisfies:

(1.4)

∫

R

∫ T

0

(wφt + f(w)φx + q(w)φ) dxdt = −

∫

R

w0(x)φ(x, 0) dx
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for all φ ∈ C1
0 (R × [0, T )). The week solutions are not necessarily unique and the

entropy conditions are required to single out the physically relevant one, which, for
all convex entropy function V and its flux F , i.e. V ′(w)f ′(w) = F ′(w), satisfies the
inequality [10] [22]

(1.5) V (w)t + F (w)x ≤ V ′(w)q(w),

in the sense of distribution. Since f is convex, the entropy inequality (1.5) for the
entropy function V (w) = w2 is sufficient to ensure the uniqueness of the solution [3].

The semi-discrete high resolution schemes we consider have the form

(1.6)
duj(t)

dt
= −

1

h
(gj+ 1

2
(t) − gj− 1

2
(t)) + q(uj(t)),

where the numerical flux g is given by

(1.7) gj+ 1
2
(t) = g(uj−p+1(t), uj−p+2(t), · · · , uj(t), · · · , uj+p(t), h),

which is Lipschitz continuous with respect to its first 2p arguments and is consistent

with the conservation law in the sense that

(1.8) g(u, u, · · · , u, h) ≡ f(u).

The scheme (1.6) is said to be self-similar if g is independent of h. In this paper, we
only consider numerical flux g that is self-similar. It should be pointed out that it
is in the case of self-similar schemes that one faces the most formidable challenge of
entropy analysis. See [23] for a comment on entropy analysis of schemes with step-size
dependant fluxes.

When q ≡ 0 in (1.6), that is

(1.9)
duj(t)

dt
= −

1

h
(gj+ 1

2
(t) − gj− 1

2
(t)),

we call the corresponding schemes (1.7)-(1.9) the homogeneous counterpart (HCP) of
(1.6)-(1.8) that approximate problems (1.3).

A scheme (1.6)-(1.8) for the Cauchy problem (1.1) converges if, for every initial
condition w0 in BV and for each sequence of initial data {uk

j (0), j ∈ Z}∞k=1 with

uniformly bounded variations that converges in L1
loc(R) to w0, the corresponding

sequence of (extended) numerical solutions {uk} generated by the scheme converges
in L1

loc(R × [0, T )) to the unique entropy solution w of the problem (1.1) provided
that the step sizes hk of uk vanish as k → ∞.

Together with MUSCL scheme, flux limiter method was pioneered by van Leer
in 1970s, aimed at combining the merits of high accuracy of classical second order
schemes such as Lax-Wendroff and Beam-Warming schemes [11] and noise(spurious
oscillations)-free shock profiles of first order monotone schemes such as Godunov [5],
Lax-Friedrichs [12], or Engquist-Osher’s [4] schemes. In 1984, guided by Harten’s
theory of high resolution schemes, Sweby [19] cast several flux limiter methods in-
cluding van Leer [21], Roe [17], and Chakravarthy and Osher’s methods [1] into a
unified framework, in which the flux limiter is a function ψ(r) where r measures the
smoothness of the solution: r ≈ 1 where the numerical solution is smooth, r is away
from one near the discontinuity and r ≤ 0 at the spatial extrema. Roughly speak-
ing, in constructing of the numerical flux, ψ(r) is one of the two factors forming the
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anti-diffusion added to the flux of a monotone scheme, or more generally a E-scheme,
which we called the building block of the scheme; the other factor is essentially the
difference of the flux of a second order central difference scheme and that of the build-
ing block. To accommodate the upwinding principle, the addition of the anti-diffusion
is split into a backward difference term and a forward difference term. Sweby noticed
that if ψ is Lipschitz continuous and its graph lies in the region defined by

(1.10) {(r, ψΦ(r)) : ψΦ(r) = max(0,min(Φr, 1),min(r,Φ)), 1 ≤ Φ ≤ 2, r ∈ R},

then the scheme is second order accurate away from discontinuity and spatial extrema,
and is TVD (total variation diminishing), and hence, is qualified to be a high resolution
scheme in the sense of Harten [7].

The successes of this class of schemes made it one of the two pillars (the other
is the MUSCL method) in the early stage of the great campaign for development of
high resolution shock capturing schemes, which has spanned about three decades since
1970s and has produced, among others, such powerful schemes as PPM schemes [2],
ENO schemes [6] [8] [18] and WENO schemes [13] [9]. This campaign is without doubt
one of the most successful stories of modern numerical analysis and computational
fluid dynamics.

Contrary to the computational successes, theoretical analysis of the flux limiter
methods has been lagged far behind. By the beginning of 1990s, there had been
no rigorous result answering the critical question of whether the numerical solutions
of the methods converge to the unique entropy solution, except that Osher [15] and
Osher and Tadmor [16] gave positive answers for some flux limiter methods modified
or designed to meet certain cell entropy inequalities. Though elegant, the method of
cell entropy inequality (CEL) demands too much, and can not be applied to settle
the convergence of the flux limiter methods in their classical form, say, described by
Sweby [19], even for the semi-discrete version.

A significant progress was made in the 1990s when Yang [23] introduced the con-
cept of wavewise entropy inequality (WEI). Based on this concept, a series of criteria
of convergence was established. For convex conservation laws, one of Yang’s criteria
points out that, a wavewise entropy inequality across the area of rarefaction where
uj ≤ uj+1 for all xj is sufficient for convergence to the entropy solution. Hence, in
convergence analysis, one may safely remove the shock area from scrutiny. Further,
even in the rarefaction area, a much weaker condition than CEI is sufficient for conver-
gence. Using this criterion, Yang proved convergence of semi-discrete high resolution
schemes based on the minmod flux limiter with an arbitrary E-flux building block, or
based on Chakravarthy-Osher flux limiter with Lax-Friedrichs, Godunov, or Engquist-
Osher building block. We would mention that Yang also established convergence of
semi-discrete generalized MUSCL scheme [23] and of explicit MUSCL scheme for a
CFL number up to 0.5 [24].

Recently, for the semi-discrete case, Yang and Jiang [25] have extended Yang’s
entire WEI framework to the non-homogeneous conservation laws provided that the
numerical flux satisfies the same conditions as in the homogeneous case. Surprisingly,
without any change, the aforementioned convergence criterion originally developed
for homogeneous conservation laws is also valid for convex conservation laws with an
arbitrary C1 source term. Hence, we were able to establish convergence of all the
aforementioned semi-discrete schemes for convex conservation laws with an arbitrary
C1 source term.

In this paper, we will use the WEI convergence criterion, formulated in [25], to
show the entropy consistency of the schemes using van Leer’s flux limiter when the
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building block of the schemes is the Lax-Friedrichs scheme, or a class of E-schemes
of which the Godunov and the Engquist-Osher schemes are special cases. The results
obtained here will be valid for convex conservation laws with or without a source
term. The paper is organized as follows. In section 2, we present the main result of
this paper. In section 3, we give the proof of the main result.

2. The main result. In [25], we have shown that the following separation prop-
erty is a sufficient condition for the schemes (1.6)-(1.8) to be TVB (total variation
bounded) schemes. This property was first derived by Tadmor [20] as a convenient
TVD condition for the schemes (1.7)-(1.9).

Assumption 2.1. The numerical fluxes gj+ 1
2
(t), j = 0, ±1, ±2, · · · , satisfy

gj+ 1
2
(t) ≥ f(uj) ≥ gj− 1

2
(t) if uj(t) − uj±1(t) ≥ 0,

and

gj+ 1
2
(t) ≤ f(uj) ≤ gj− 1

2
(t) if uj(t) − uj±1(t) ≤ 0.

We also have shown that the schemes satisfying the above assumption are ex-
tremum traceable schemes. Therefore the WEI convergence criteria, established in
[25], are applicable. Let f [w;L,R] be the linear function interpolating of f(w) at
w = L and w = R. For a convex conservation law, a pair of numbers {L,R} is
called a rarefying pair if L < R and f [w;L,R] > f(w) when L < w < R. And a
collection of data {vj}

n+p
j=−p is called a rarefying collection with respect to the pair

{L,R} if L = v0 ≤ v1 ≤ · · · ≤ vn = R, and L ≤ v−1, and R ≥ vn+1. Let
ḡj+1/2 := g(vj−p+1, vj−p+2, · · · , vj+p), where g is the function (1.7) in its self-similar
form. We are now ready to quote the following all-powerful WEI convergence crite-
rion which was first established in [23] for homogeneous conservation laws and was
extended in [25] for conservation laws with an arbitrary C1 source term.

Theorem 2.2. A scheme of the form (1.6)-(1.8) satisfying Assumption 2.1 con-

verges for convex conservation laws (1.1) if, for any rarefying pair {L,R}, there is a

constant δ > 0 such that the quadrature type inequality

(2.1)

n−1
∑

j=0

(vj+1 − vj)ḡj+1/2 + δ <

∫ R

L

f [w;L,R]dw

holds for all rarefying collections {vj}
n+p
j=−p with respect to the pair {L,R}.

Following Osher and Chakravarthy [15], we now discuss the semi-discrete version
of the high resolution schemes with flux limiters in the framework of Sweby [19]. Let
gE(·, ·) be the flux of any E-scheme (see Osher [14]), i.e., it is Lipschitz continuous,
and, for all w between wj and wj+1, it satisfies

(2.2) sgn(wj+1 − wj)(g
E(wj , wj+1) − f(w)) ≤ 0.

We borrow the following notations from [19]. Denote

(2.3) (∆fj+ 1
2
)+ := f(uj+1) − gE(uj , uj+1),
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and

(2.4) (∆fj+ 1
2
)− := f(uj) − gE(uj , uj+1).

We set

(2.5) r+j := (∆fj− 1
2
)+/(∆fj+ 1

2
)+, r−j := (∆fj+ 1

2
)−/(∆fj− 1

2
)−,

and

(2.6) (Dfj+ 1
2
)± := (∆fj+ 1

2
)±/∆uj+ 1

2
.

Let ψ be a flux limiter function. Using notations (2.3)-(2.5), the numerical flux

with the limiter ψ is defined by

(2.7) gj+ 1
2

= gE(uj , uj+1) +
1

2
ψ(r+j )(∆fj+ 1

2
)+ +

1

2
ψ(r−j+1)(∆fj+ 1

2
)−,

where gE is the numerical flux function of any E-scheme.
To facilitate the readers, we now quote the definitions of the numerical fluxes of

the aforementioned three monotone schemes.
The Godunov scheme (see [5]):

(2.8) gGod(uj , uj+1) =

{

minuj≤w≤uj+1
f(w) when uj ≤ uj+1,

maxuj≥w≥uj+1
f(w) when uj ≥ uj+1.

The Engquist-Osher scheme (see [4]):

(2.9) gEO(uj, uj+1) =

∫ uj

0

max(f ′(w), 0)dw +

∫ uj+1

0

min(f ′(w), 0)dw + f(0).

The Lax-Friedrichs scheme (see [12]):

(2.10) gLF (uj , uj+1) =
f(uj) + f(uj+1)

2
−
a

2
(uj+1 − uj),

where a ≥ max |f ′(w)|.
Let s be a sonic point: f ′(s) = 0. The Godunov and Engquist-Osher schemes

belong to a class of E-schemes that satisfies

(2.11) gE(x, y) =

{

f(x) if s ≤ x ≤ y ,
f(y) if x ≤ y ≤ s ,

and

gE(x, y) ≥(2.12)

max{f(y) − 4f ′(y)(y − x), f(x) + 4f ′(x)(y − x)} ifx ≤ s ≤ y.

The main result of this paper concerning the convergence to the entropy solution
of the semi-discrete high resolution schemes based on van Leer’s flux limiter:

(2.13) ψV L(r) =

{

0 r ≤ 0,
2r

1 + r r > 0,
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when the building block of the schemes is either the Lax-Friedrichs scheme, or the
aforementioned class of E-schemes. The main result of this paper is the following.

Theorem 2.3. The numerical solutions of the schemes (1.6)-(1.8) ((1.7)-
(1.9)resp.), for the convex problems (1.1) ((1.3) resp.), converge provided that the

numerical flux gj+ 1
2

is defined by (2.7), where ψ = ψV L is the van Leer flux limiter

given by (2.13), and gE(·, ·) is either the numerical flux of the Lax-Friedrichs scheme

or that of one of the class of E-schemes of which the numerical flux satisfies (2.11)
and (2.12).

Remark 1. Since the numerical flux (2.7) is an increasing affine functional of
the limiter ψ, the following hold: 1. if two schemes with the flux limiters ψ1 and ψ2

respectively both satisfy the WEI convergence criterion of Theorem 2.2, and c1 and
c2 are two nonnegative constants with c1 + c2 = 1, then the scheme with the flux
limiter ψ = c1ψ1 + c2ψ2 also converges. 2. if ψ1(r) ≤ ψ2(r) for r ≥ 0, and the scheme
with the flux limiter ψ2 satisfies the WEI convergence criterion of Theorem 2.2, then,
the scheme with the flux limiter ψ1 also converges.

Remark 2. We can significantly strengthen the theorem by weakening the condi-
tions of the theorem since the WEI criterion requires nothing at shock area, provided
that the Assumption 2.1 holds. Hence, the high resolution schemes still converge if
the conditions concerning the van Leer flux limiter are replaced by the following much
weaker ones:

(i) The inequality gj+ 1
2
≥ f(uj) holds if uj ≥ max(uj−1, uj+1), and gj− 1

2
≥ f(uj)

holds if uj ≤ min(uj−1, uj+1).

(ii) When uj+1 > uj, gj+ 1
2

is defined by (2.7), where ψ = ψV L is the van Leer flux

limiter given by (2.13). The following proof is for the thus strengthened Theorem 2.3.

3. Proof of the main result.

Proof. [Proof of Theorem 2.3] We first show that the scheme satisfies the As-
sumption 2.1. Let uj+1 be a spatial maximum; thus r−j+1 ≤ 0. Hence, it follows from

(2.13) that ψ(r−j+1) = 0. Therefore

gj+ 1
2

= gE(uj , uj+1) +
1

2
ψ(r+j )(∆fj+ 1

2
)+

≤ gE(uj , uj+1) + (∆fj+ 1
2
)+

= f(uj+1).

Replacing j with j−1 in the preceding inequality, we see that if uj−uj±1 ≥ 0, then
gj− 1

2
≤ f(uj). Similarly, if uj − uj±1 ≤ 0, then gj+ 1

2
≤ f(uj). These two inequalities

and condition (i) verify Assumption 2.1.

Next, let {L,R} be an arbitrary rarefying pair {vj}
n+p
j=−p and ḡj+ 1

2
be as in Theo-

rem 2.2. We keep the same notations (∆fj+ 1
2
)±, r±j , and (Dfj+ 1

2
)± for {vj} instead

of {uj} here. We also use the following notation for the divided difference:

(3.1) f ′
j+ 1

2

:=
f(vj+1) − f(vj)

vj+1 − vj
.
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We now claim that the inequality

(3.2)

n−1
∑

j=0

(Sj+ 1
2
− f̄ [vj , vj+1]) ≤ 0

holds, where

(3.3) f̄ [c, d] :=

∫ d

c

{f [w; c, d] − f(w)} dw

for c < d, and

(3.4) Sj+ 1
2

:=

∫ vj+1

vj

[ḡj+ 1
2
− f(w)]dw.

Equipped by inequality (3.2), we are able to prove the theorem. Indeed, according to
the Theorem 2.2, to prove the convergence of the scheme, it suffices to show that for
any rarefying pair {L,R}, there exists a δ > 0 such that for any rarefying collection
{vj}

n+p
j=−p with respect to the pair, the inequality (2.1) holds. Using (3.3) and (3.4),

we rewrite the inequality (2.1) as

(3.5)

n−1
∑

j=0

Sj+ 1
2
< f̄ [L,R]− δ.

Now, by the convexity of f , the following inequality holds

(3.6) f̄ [x, y] + f̄ [y, z] ≤ f̄ [x, z] for x ≤ y ≤ z.

This and (3.2) yield

(3.7)

n−1
∑

j=0

Sj+ 1
2
≤

n−1
∑

j=0

f̄ [vj , vj+1] ≤ f̄ [L, vi] + f̄ [vi, R] ≤ f̄ [L,R].

Assume that for each δ > 0 there exists a rarefying collection {vj}
n+p
j=−p, with

respect to the pair {L,R} for some positive integer n, violates (3.5). Then (3.7)
implies that there exists a sequence of rarefying collections
{vν

j , j = −p,−p+ 1, · · · , nν + p}∞ν=1 with respect to the pair {L,R} such that

(3.8) lim
ν→∞

nν−1
∑

j=0

Sν
j+ 1

2

= lim
ν→∞

nν−1
∑

j=0

f̄ [vν
j , v

ν
j+1] = f̄ [L,R].

This implies that there exists a sequence of integers {jν} satisfying 0 ≤ jν ≤ nν−1
such that

(3.9) lim
ν→∞

vν
jν = L and lim

ν→∞
vν

jν+1 = R.

For, otherwise, there would exist a constant ρ > 0, a subsequence of the rarefying
collections, still denoted by {vν

j , j = −p,−p + 1, · · · , nν + p}∞ν=1, and a sequence of
integers {iν} satisfying 1 ≤ iν ≤ nν − 1 such that
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L + ρ < vν
iν < R − ρ. Then the convexity of f , the definition of rarefying pairs, and

the inequality (3.7) would imply

nν−1
∑

j=0

f̄ [vν
j , v

ν
j+1](3.10)

≤ f̄ [L, vν
iν ] + f̄ [vν

iν , R]

≤ Hρ := max(f̄ [L,L+ ρ] + f̄ [L+ ρ,R], f̄ [L,R− ρ] + f̄ [R− ρ,R])

< f̄ [L,R].

This would contradict (3.8) because Hρ is independent of ν. Hence, we have confirmed
the existence of a sequence {jν} satisfying (3.9). Now, combining (3.6), (3.7), (3.8)
and (3.9), we obtain

f̄ [L,R] = lim
ν→∞

nν−1
∑

j=0

Sν
j+ 1

2

(3.11)

= lim
ν→∞

(

jν−1
∑

j=0

Sν
j+ 1

2

+ Sν
jν+ 1

2

+

nν−1
∑

j=jν+1

Sν
j+ 1

2

)

≤ lim
ν→∞

(f̄ [L, vν
jν ] + Sν

jν+ 1
2

+ f̄ [vν
jν+1, R])

= lim
ν→∞

Sν
jν+ 1

2

≤ f̄ [L,R].

This implies

(3.12) lim
ν→∞

Sν
jν+ 1

2

= f̄ [L,R].

However, applying (3.9) and the definition of the rarefying collections with respect to
the rarefying pair {L,R} to (2.7), we get

lim
ν→∞

ḡν
jν+ 1

2

= gE(L,R),

and hence, by (3.4),

lim
ν→∞

Sν
jν+ 1

2

≤ 0.

This contradicts (3.12) since f̄ [L,R] > 0 by the definition of the rarefying pair {L,R}.
It remains to justify the inequality (3.2). Since ψ(r) = ψV L(r) = 2r

1+r for r ≥ 0,

the numerical flux (2.7), evaluated at a rarefying collection {vj}
n+p
j=−p with respect to

any rarefying {L,R}, can be written as:

ḡj+ 1
2

= gE
j+ 1

2

+
(∆fj− 1

2
)+(∆fj+ 1

2
)+

(∆fj− 1
2
)+ + (∆fj+ 1

2
)+

+
(∆fj+ 1

2
)−(∆fj+ 3

2
)−

(∆fj+ 1
2
)− + (∆fj+ 3

2
)−
.

Now, by (2.3) and (2.4), we have

∫ vj+1

vj

[gE
j+ 1

2

−
f(vj+1) + f(vj)

2
] dw = −

(∆fj+ 1
2
)− + (∆fj+ 1

2
)+

2
∆vj+ 1

2
.
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Therefore,

n−1
∑

j=0

(Sj+ 1
2
− f̄ [vj , vj+1]) =

1

2
(P1 + P2),(3.13)

where

P1 :=

n−1
∑

j=0

(∆fj− 1
2
)+ − (∆fj+ 1

2
)+

(∆fj− 1
2
)+ + (∆fj+ 1

2
)+

(∆fj+ 1
2
)+∆vj+ 1

2
,

and

P2 :=
n−1
∑

j=0

(∆fj+ 3
2
)− − (∆fj+ 1

2
)−

(∆fj+ 3
2
)− + (∆fj+ 1

2
)−

(∆fj+ 1
2
)−∆vj+ 1

2
.

In this last part of the proof, the argument for the Lax-Friedrichs building block
are different from that for the class of E-schemes of which the numerical flux satisfies
(2.11) and (2.12). In both cases the following elementary inequality is helpful:

(3.14)
α− β

α+ β
β ≤

α− β

2
∀α, β ∈ R with α+ β > 0.

Let us first deal with the case of Lax-Friedrichs flux. Applying the inequality (3.14)
to P1 and P2, we have

n−1
∑

j=0

(Sj+ 1
2
− f̄ [vj , vj+1])(3.15)

≤
1

4

n−1
∑

j=0

[(∆fj− 1
2
)+ − (∆fj+ 1

2
)+ + (∆fj+ 3

2
)− − (∆fj+ 1

2
)−]∆vj+ 1

2
.

Noticing that (2.6) and (3.1) implies the equality

(3.16) (Dfj+ 1
2
)± = (a± f ′

j+ 1
2

)/2,

we have

n−1
∑

j=0

[(∆fj− 1
2
)+ − (∆fj+ 1

2
)+ + (∆fj+ 3

2
)− − (∆fj+ 1

2
)−]∆vj+ 1

2

= −

n−1
∑

j=0

[(∆fj+ 1
2
)+ + (∆fj+ 1

2
)−]∆vj+ 1

2

+

n−1
∑

j=0

[(∆fj− 1
2
)+ + (∆fj+ 3

2
)−]∆vj+ 1

2

= −

n−1
∑

j=0

[(Dfj+ 1
2
)+ + (Dfj+ 1

2
)−](∆vj+ 1

2
)2

+

n−1
∑

j=0

[(Dfj− 1
2
)+∆vj− 1

2
∆vj+ 1

2
+ (Dfj+ 3

2
)−∆vj+ 1

2
∆vj+ 3

2
]

= −a(∆v0+ 1
2
)2 +

a

2
∆v0− 1

2
∆v0+ 1

2
+
a

2
∆vn− 1

2
∆vn+ 1

2
+

1

2
E + C,
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where

E :=

n−1
∑

j=0

(f ′
j− 1

2

∆vj− 1
2
∆vj+ 1

2
− f ′

j+ 3
2

∆vj+ 1
2
∆vj+ 3

2
),

and

C :=

n−1
∑

j=1

[−a(∆vj+ 1
2
)2 + a∆vj− 1

2
∆vj+ 1

2
].

First, the convexity of f implies that f ′
j+ 1

2

≤ f ′
j+ 3

2

holds for 0 ≤ j ≤ n− 2, which

ensures that

E ≤ f ′
0− 1

2

∆v0− 1
2
∆v0+ 1

2
− f ′

n+ 1
2

∆vn− 1
2
∆vn+ 1

2
.(3.17)

Next, it is easy to see that

C ≤ −
1

2
a(∆vn− 1

2
)2 +

1

2
a(∆v0+ 1

2
)2.(3.18)

Therefore,

n−1
∑

j=0

[(∆fj− 1
2
)+ − (∆fj+ 1

2
)+ + (∆fj+ 3

2
)− − (∆fj+ 1

2
)−]∆vj+ 1

2
(3.19)

≤ −a(∆v0+ 1
2
)2 +

a

2
∆v0− 1

2
∆v0+ 1

2
+
a

2
∆vn− 1

2
∆vn+ 1

2

+
1

2
(f ′

0− 1
2

∆v0− 1
2
∆v0+ 1

2
− f ′

n+ 1
2

∆vn− 1
2
∆vn+ 1

2
)

−
1

2
a(∆vn− 1

2
)2 +

1

2
a(∆v0+ 1

2
)2

= −
a

2
(∆v0+ 1

2
)2 +

1

2
(a+ f ′

0− 1
2

)∆v0− 1
2
∆v0+ 1

2
−
a

2
(∆vn− 1

2
)2

+
1

2
(a− f ′

n+ 1
2

)∆vn− 1
2
∆vn+ 1

2

≤ 0

holds since ∆v0− 1
2

and ∆vn+ 1
2

are less than or equal to zero. The desired result

follows from the inequalities (3.15) and (3.19).
Finally, we deal with the case that gE(·, ·) is the numerical flux of an E-scheme

satisfying (2.11) and (2.12). It suffices to show that P1 ≤ 0 and P2 ≤ 0. We only give
the proof of the former. The proof of the latter is similar and has been omitted.

Without loss of generality, let s be the sonic point such that vk ≤ s ≤ vk+1 for
some integer k with 0 ≤ k ≤ n− 1. Then,

(∆fj+ 1
2
)+ = 0 for 0 ≤ j ≤ k − 1;

(∆fj+ 1
2
)+ = f ′

j+ 1
2

∆vj+ 1
2

for n− 1 ≥ j ≥ k + 1;

(∆fj+ 1
2
)− = 0 for n− 1 ≥ j ≥ k + 1;
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and

(∆fj+ 1
2
)− = −f ′

j+ 1
2

∆vj+ 1
2

for 0 ≤ j ≤ k − 1.

Using these and the inequality (3.14), we deduce

P1 =
n−1
∑

j=0

(∆fj− 1
2
)+ − (∆fj+ 1

2
)+

(∆fj− 1
2
)+ + (∆fj+ 1

2
)+

(∆fj+ 1
2
)+∆vj+ 1

2

= −(∆fk+ 1
2
)+∆vk+ 1

2

+
(∆fk+ 1

2
)+ − f ′

k+ 3
2

∆vk+ 3
2

(∆fk+ 1
2
)+ + f ′

k+ 3
2

∆vk+ 3
2

f ′
k+ 3

2

∆vk+ 3
2
∆vk+ 3

2

+

n−1
∑

j=k+2

f ′
j− 1

2

∆vj− 1
2
− f ′

j+ 1
2

∆vj+ 1
2

f ′
j− 1

2

∆vj− 1
2

+ f ′
j+ 1

2

∆vj+ 1
2

(f ′
j+ 1

2

∆vj+ 1
2
)∆vj+ 1

2

≤W1 +W2,

where

W1 := −(∆fk+ 1
2
)+∆vk+ 1

2
+

(∆fk+ 1
2
)+ − f ′

k+ 3
2

∆vk+ 3
2

2
∆vk+ 3

2
,

and

W2 :=
1

2

n−1
∑

j=k+2

(f ′
j− 1

2

∆vj− 1
2
− f ′

j+ 1
2

∆vj+ 1
2
)∆vj+ 1

2
.

Next, for k + 2 ≤ j ≤ n− 1, the following inequality

−
1

2
f ′

j+ 1
2

(∆vj+ 1
2
)2 ≤ −

1

4
f ′

j− 1
2

(∆vj+ 1
2
)2 −

1

4
f ′

j+ 1
2

(∆vj+ 1
2
)2

enables us to obtain an upper bound of W2

W2 =
1

2

n−1
∑

j=k+2

(f ′
j− 1

2

∆vj− 1
2
− f ′

j+ 1
2

∆vj+ 1
2
)∆vj+ 1

2

≤
1

4
f ′

k+ 3
2

(∆vk+ 3
2
)2 −

1

4
f ′

n− 1
2

(∆vn− 1
2
)2

−
1

4

n−1
∑

j=k+2

f ′
j− 1

2

(∆vj− 1
2
− ∆vj+ 1

2
)2

≤
1

4
f ′

k+ 3
2

(∆vk+ 3
2
)2,
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and therefore, by letting ∆vk+ 3
2

= c∆vk+ 1
2

P1 ≤W1 +W2

≤ −(∆fk+ 1
2
)+∆vk+ 1

2
+

1

4
f ′

k+ 3
2

(∆vk+ 3
2
)2

+
(∆fk+ 1

2
)+ − f ′

k+ 3
2

∆vk+ 3
2

2
∆vk+ 3

2

= −(Dfk+ 1
2
)+(∆vk+ 1

2
)2 +

1

2
(Dfk+ 1

2
)+∆vk+ 1

2
∆vk+ 3

2

−
1

4
f ′

k+ 3
2

(∆vk+ 3
2
)2

= Q(c)(∆vk+ 1
2
)2,

where

Q(c) = −(Dfk+ 1
2
)+ +

c

2
(Dfk+ 1

2
)+ −

c2

4
f ′

k+ 3
2

.

It is easy to see that Q(c) reaches its maximum at c0 =
(Df

k+ 1
2
)+

f ′

k+ 3
2

. Thus to show

P1 ≤ 0, it suffices to show Q(c0) ≤ 0.
Note that

Q(c0) =
(Dfk+ 1

2
)+

4f ′
k+ 3

2

[(Dfk+ 1
2
)+ − 4f ′

k+ 3
2

](3.20)

=
(Dfk+ 1

2
)+

4f ′
k+ 3

2

[(Dfk+ 1
2
)+ − 4f ′(ξk+1)],

where ξk+1 is in between vk+1 and vk+2. Next the convexity of f implies that
f ′(vk+1) ≤ f ′(ξk+1). Thus, by (2.11), f(vk+1) − gE(vk, vk+1) ≤ 4f ′(vk+1)∆vk+ 1

2
≤

4f ′(ξk+1)∆vk+ 1
2

ensures that Q(co) ≤ 0 as desired. The proof is completed.
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