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Systems of global surfaces of section for

dynamically convex Reeb flows on the 3-sphere

Umberto L. Hryniewicz

We characterize which closed Reeb orbits of a dynamically con-
vex contact form on the 3-sphere bound disk-like global surfaces of
section for the Reeb flow, without any genericity assumptions. We
show that these global surfaces of section come in families, orga-
nized as open book decompositions. As an application we obtain
new global surfaces of section for the Hamiltonian dynamics on
strictly convex three-dimensional energy levels.

1. Introduction

Our goal is to study the existence question for global surfaces of section for
Reeb dynamics associated with a dynamically convex contact form on S3,
initiated by Hofer, Wysocki and Zehnder [12–15].

Recall that a 1-form λ on a 3-manifold M is a contact form if λ ∧ dλ
never vanishes. Associated with λ is a (co-oriented) contact structure given
by the 2-plane distribution

(1) ξ = kerλ,

and a vector field R which is uniquely determined by the equations

(2) iRdλ = 0, iRλ = 1.

It is called the Reeb vector field and its flow φt is referred to as the Reeb
flow. By a periodic Reeb orbit P we mean a pair (x, T ) where T > 0 and x
is a T -periodic trajectory of φt, which is called prime or simply covered if
T is its minimal positive period. Pairs with the same geometric image and
period are identified, and the set of equivalence classes will be denoted by
P. When c1(ξ) vanishes on π2(M) one can associate with any contractible
P ∈ P its Conley–Zehnder index μCZ(P ) ∈ Z even when P is degenerate,
see 2.1.1 and 2.1.2 in section 2.1 for two equivalent definitions. This is an
invariant of the linearized dynamics at P which is lower semi-continuous for
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C1 perturbations of the linearized Reeb flow, in particular lower bounds for
μCZ are preserved under such perturbations. In [14] we find the following
important definition.

Definition 1.1 (Hofer, Wysocki and Zehnder). The contact form λ
is dynamically convex if c1(ξ) vanishes on π2(M) and μCZ(P ) ≥ 3 for every
contractible periodic Reeb orbit P .

A global surface of section for a flow without rest points on a closed con-
nected 3-manifold is a compact connected embedded surface Σ such that ∂Σ
consists of periodic trajectories, Σ \ ∂Σ is transverse to the flow, and every
trajectory not in ∂Σ hits Σ infinitely many times in the future and in the
past. We shall also consider families of global surfaces of section organized
as an open book decomposition. Recall that an open book decomposition
of a closed 3-manifold M is a pair (K,Π), where K ⊂M is an oriented
link and Π :M \K → R/Z is a (smooth) fibration such that each Π−1(ϑ) is
the interior of a compact embedded oriented surface Sϑ satisfying ∂Sϑ = K
(orientations included). K is called the binding and Π−1(ϑ) is called a page.

Definition 1.2. An open book decomposition (K,Π) of M is adapted to
the contact form λ if the Reeb vector field is positively tangent to K and
the pages are global surfaces of section for the Reeb flow.

The following remarkable statement is the main result of [14].

Theorem 1.3 (Hofer, Wysocki and Zehnder). Let λ be a dynamically
convex contact form on S3. Then there exists an embedded disk D0 ↪→ S3

that is a global surface of section for the Reeb flow. Its boundary ∂D0 = P0
is a closed Reeb orbit satisfying μCZ(P0) = 3, and D0 \ ∂D0 is a page of an
open book decomposition of S3 adapted to λ.

Theorem 1.3 has very strong consequences for the dynamics. Since the
Poincaré first return map to D0 \ ∂D0 is well-defined and preserves the finite
area form ω0|D0\∂D0

, results of J. Franks [3] on area-preserving disk maps
can be applied.

Corollary 1.4 (Hofer, Wysocki and Zehnder). The Reeb dynamics
of a dynamically convex contact form on S3 admit either two or infinitely
many geometrically distinct periodic orbits.

It should be noted that dynamical convexity of a contact form also
imposes restrictions on the contact manifold. Recall that an embedded disk
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F on a contact 3-manifold (M, ξ) is overtwisted if T∂F ⊂ ξ and TpF �= ξp,
∀p ∈ ∂F . The contact structure ξ is called tight if there are no overtwisted
disks and, when M is closed Hofer et al. show in [12] that if ξ = kerλ for
some dynamically convex contact form λ then ξ is tight and π2(M) vanishes.

Let us describe a well-known family of examples. Equipping R
4 with

coordinates (q1, p1, q2, p2), the Liouville form

λ0 =
1
2
(q1dp1 − p1dq1 + q2dp2 − p2dq2)

restricts to a contact form on the boundary S of a smooth bounded domain of
R
4 which is star-shaped with respect to the origin. Writing S = {√f(x)x :

x ∈ S3} for some smooth f : S3 → R
+ then Ψ∗(λ0|S) = fλ0|S3 where Ψ :

S3 → S is the diffeomorphism given by Ψ(x) =
√
f(x)x. In this case, we say

fλ0|S3 comes from S. The integral leaves of the associated characteristic line
bundle

L =
⋃
p∈S

(TpS)ω0 , where (TpS)ω0 = {v ∈ R
4 | ω0(v, w) = 0 ∀w ∈ TpS},

coincide with the integral curves of the Reeb flow associated with λ0|S . In [14]
Hofer et al. show that λ0|S is dynamically convex when S is strictly convex.
By a theorem of Eliashberg every tight contact form on S3 is diffeomorphic
to a contact form coming from some star-shaped domain.

Motivated by Theorem 1.3, one may ask which closed orbits of the Reeb
dynamics associated with a tight contact form on S3 bound global disk-like
global surfaces of section. This was answered in [18] when the contact form
is non-degenerate, that is, when the infinitesimal Poincaré return map asso-
ciated with any orbit in P does not have 1 as an eigenvalue. The conditions
also depend on contact-topological properties of the closed Reeb orbit seen
as a transverse knot, encoded in its self-linking number.

Definition 1.5. Let L ↪→ (M, ξ) be a transverse knot, that is TL � ξ, and
Σ ↪→M be a Seifert surface1 for L. The vector bundle ξ|Σ admits a non-
vanishing section Z. If exp is any exponential map on M and ε > 0 is small
then p ∈ L 	→ exp(εZp) is a diffeomorphism between L and an embedded
loop L′ ↪→M satisfying L ∩ L′ = ∅. An orientation for Σ also orients L
which, in turn, orients L′. The self-linking number sl(L,Σ) ∈ Z is defined as
the oriented intersection number of L′ and Σ; it is independent of all choices.

1A compact connected orientable embedded surface satisfying ∂Σ = L.
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If c1(ξ) vanishes on π2(M), P = (x, T ) is a periodic Reeb orbit and D
is an embedded disk spanning x(R), then sl(x(R), D) is independent of the
choice of the disk with these properties and will be denoted by sl(P ).

Theorem 1.6 ([18]). Let λ be a non-degenerate tight contact form on S3.
Then a prime closed Reeb orbit P bounds a disk-like global section for the
Reeb flow if, and only if, P is unknotted, μCZ(P ) ≥ 3, sl(P ) = −1 and P is
linked to every orbit P ′ satisfying μCZ(P ′) = 2. Moreover, one finds an open
book decomposition with disk-like pages of S3 adapted to λ with binding P .

In particular, when λ is a non-degenerate dynamically convex contact
form on S3 then a prime closed Reeb orbit bounds a disk-like global surface
of section if, and only if, it is unknotted and has self-linking number −1.
This fact was first proved in [17]. Our first result reads as follows.

Theorem 1.7. Let λ be any dynamically convex contact form on S3. Then
a prime periodic Reeb orbit P̄ bounds a disk-like global surface of section if,
and only if, it is unknotted and sl(P̄ ) = −1. Moreover, one can find an open
book decomposition with disk-like pages of S3 adapted to λ with binding P̄ .

In the case of a contact form on S3 that comes from an ellipsoid, one
easily sees that the axes are bindings of adapted open book decompositions
as in Definition 1.2. However, when this ellipsoid is not the round 3-sphere,
only one open book is detected by Theorem 1.3, namely, the one with the
axis of smaller action as binding. The other prime orbit (with larger action)
has Conley–Zehnder index > 3. As an application of Theorem 1.7 we show
that the same global picture holds in general.

Theorem 1.8. Let λ be any dynamically convex contact form on S3 and let
D0 be any disk-like global surface of section for the Reeb flow of λ. Consider
any Reeb orbit P1 associated with a fixed point of the first return map to
D0 \ ∂D0. Then P1 is unknotted, sl(P1) = −1 and, consequently, bounds a
disk-like global surface of section D1 which is a page of an open book decom-
position of S3 adapted to λ.

Brouwer’s translation theorem implies the existence of a fixed point of
the first return map to the disk D0 from Theorem 1.3, so that Theorem 1.7
gives new disk-like global sections, geometrically distinct from D0. Thus,
the Hamiltonian flow is globally twisting in two “independent” directions:
around ∂D0 and around ∂D1; see Figure 1.
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Figure 1: S \ ∂D0 gets identified with the interior of a solid torus, the flow
is globally twisting with respect to ∂D0 and ∂D1 in a monotone fashion.

It should be noted that the Reeb dynamics of tight contact forms on
S3 are conjugate or semi-conjugate to the Hamiltonian dynamics on certain
energy levels of many important classical Hamiltonian systems with two
degrees of freedom. For example, in a recent paper [1] Albers, et al. obtain
disk-like global sections in the planar restricted 3-body problem. After a
special transformation, a component of the levels slightly below the first
Lagrange value is covered by a compact component of an energy level of the
transformed Hamiltonian to which Theorem 1.3 can be applied. Theorem 1.7
can be applied as well to study the existence of new disk-like global sections
in this case.

These results are examples of results in Symplectic Dynamics, as exp-
lained by Bramham and Hofer [2]. Symplectic Dynamics has roots in the
work of Poincaré, but recent techniques have proved to be extremely suc-
cessful to uncover new global phenomena in Hamiltonian dynamics. Among
these we would like to emphasize methods from holomorphic curve theory
introduced in symplectic geometry by Gromov [6]. The proofs of the above-
mentioned results are based on a holomorphic curve theory in symplectiza-
tions introduced by Hofer in [7], further developed by Hofer et al. [8–11] and
later by many other authors.

Outline of main arguments. If the periodic orbit P̄ bounds a disk-like
global surface of section then, clearly, it must be unknotted. In Proposition
2.1 of [17], we show that sl(P̄ ) = −1; this follows since P̄ bounds a disk
transverse to the Reeb flow. Necessity in Theorem 1.7 follows, and sufficiency
remains to be addressed. In view of Theorem 1.6, we only need to pass to
the degenerate case, which will be done by following [14, 17, 18] closely.
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It is always possible to find non-degenerate contact forms λk admitting P̄
as a closed Reeb orbit and satisfying λk → λ in C∞. We will obtain finite-
energy pseudo-holomorphic planes ũk (with respect to a suitable almost
complex structure induced by λk) which project onto pages of an open book
decomposition adapted to λk, and then pass to the limit as k →∞ to show
that these planes converge to pages of the desired open book adapted to
λ. However, Theorem 1.6 does not apply directly to λk and P̄ since there
could be closed λk-Reeb orbits with very high action which have Conley–
Zehnder index = 2 and are not linked to P̄ . So we need to carefully revisit
the arguments from [14, 17, 18] to circumvent this difficulty. For details we
refer to Section 3. Theorem 1.8 follows from the fact that any orbit P1 given
by a fixed point of the return map has self-linking number −1. This is the
content of Proposition 4.1 which is proved in Section 4.

2. Preliminaries

2.1. Descriptions of the Conley–Zehnder index in
three-dimensions

Here we recall the basic facts about the Conley–Zehnder index, and from the
theory of pseudo-holomorphic curves in symplectizations. The reader may
skip this section on a first read, referring back only for the notation.

Consider the set Σ∗ of smooth paths ϕ : [0, 1]→ Sp(1) of symplectic 2×
2 matrices satisfying ϕ(0) = I and det(ϕ(1)− I) �= 0. As explained in [15],
the Conley–Zehnder index μ : Σ∗ → Z is uniquely determined by the follow-
ing axioms:

• Homotopy: If {ϕs} is a homotopy of paths in Σ∗ then μ(ϕs) ≡ μ(ϕ0).
• Maslov Index: If ψ : ([0, 1], {0, 1})→ (Sp(1), I) is a smooth closed
loop and ϕ ∈ Σ∗ then μ(ψϕ) = 2Maslov(ψ) + μ(ϕ).

• Inversion: If ϕ ∈ Σ∗ then μ(ϕ−1) = −μ(ϕ).
• Normalization: μ(t ∈ [0, 1] 	→ eiπt) = 1.

Assuming c1(ξ) vanishes on π2(M), the Conley–Zehnder index of a
contractible periodic Reeb orbit P = (x, T ) is defined as follows. Choose a
disk map F : D→M satisfying F (ei2πt) = x(Tt), fix a smooth dλ-symplectic
trivialization Ψ of F ∗ξ and consider ϕ = Ψei2πt · dφTt|x(0) ·Ψ−11 . Then ϕ ∈ Σ∗
if, and only if P is non-degenerate. The integer μ(ϕ) is independent of F
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and Ψ, allowing one to define

(3) μCZ(P ) = μ(ϕ).

Below we discuss how it is possible to extend the Conley–Zehnder index to
periodic orbits of arbitrary contact forms, following [14].

In our applications, we need two concrete descriptions of the integer μ
satisfying the axioms described in the Introduction section.

2.1.1. The geometrical description. For any smooth path ϕ : [0, 1]→
Sp(1) satisfying ϕ(0) = I there exist unique smooth functions r, θ : [0, 1]×
[0, 2π]→ R satisfying ϕ(t)eis = r(t, s)eiθ(t,s), r > 0, θ(0, s) = s. The image
of the map

Δ : [0, 2π]→ R, s 	→ θ(1, s)− s
2π

is a closed interval I(ϕ) with length2 < 1/2.

Lemma 2.1. ∂I(ϕ) ∩ Z �= ∅ ⇔ ϕ �∈ Σ∗(1).

Proof. Assume Δ(s̄) = inf Δ ∈ Z. Then θ(1, s̄) ∈ s̄+ 2πZ and 0 = 2πΔ′(s̄) =
θs(1, s̄)− 1. We must have ϕ(1)eis̄ = r(1, s̄)eis̄ and ϕ(1)ieis̄ = d

ds |s=s̄ϕ(1)eis =
rs(1, s̄)eis̄ + r(1, s̄)θs(1, s̄)ieis̄. Thus 1 = detϕ(1) = r(1, s̄)2θs(1, s̄) = r(1, s̄)2

shows that r(1, s̄) = 1 is an eigenvalue of ϕ(1). If supΔ ∈ Z the argument
is analogous. This proves ∂I(ϕ) ∩ Z �= ∅ ⇒ ϕ �∈ Σ∗(1).

Now assume ϕ �∈ Σ∗(1) and choose s0 ∈ [0, π) such that ϕ(1)eis0 = eis0 ,
or equivalently, θ(1, s0) = s0 + 2kπ for some k ∈ Z. If ϕ(1) = I then I(ϕ) ⊂
Z and we are done, so we also assume ϕ(1) �= I. The final matrix ϕ(1)
must be a symplectic shear satisfying ϕ(1)ei(s0+π/2) = ei(s0+π/2) + ceis0 with
c �= 0. By linearity we have θ(t, s0 + π) = θ(t, s0) + π ∀t and s ∈ (s0, s0 +
π)⇒ θ(t, s0) < θ(t, s) < θ(t, s0) + π ∀t. In particular s0 + 2kπ < θ(1, s) <
s0 + (2k + 1)π ∀s ∈ (s0, s0 + π). Moreover, θ(1, s) �= s+ 2kπ ∀s ∈ (s0, s0 +
π) since, otherwise, c = 0 and ϕ(1) = I. It is clear that c > 0⇔ θ(1, s) < s+
2kπ ∀s ∈ (s0, s0 + π) and c < 0⇔ θ(1, s) > s+ 2kπ ∀s ∈ (s0, s0 + π). The
first case implies sup I(ϕ) = k, the second case implies inf I(ϕ) = k. �

2In fact, suppose |Δ(s2)−Δ(s1)| = 1/2. We may assume 0 ≤ s1 < s2 < π with-
out loss of generality. Defining g(t) = θ(t, s2)− θ(t, s1) we have g(1) = g(0)± π. By
continuity there must be a value t∗ ∈ (0, 1) satisfying g(t∗) ∈ {0, π}, which implies
ϕ(t∗)eis2 ∈ Rϕ(t∗)eis1 . We conclude Δ(s1) = Δ(s2) by linearity of the equation and
uniqueness of solutions, a contradiction.
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On the set of closed intervals J of length <1/2 satisfying ∂J ∩ Z = ∅ we
may consider the function

(4) μ̂(J) =

{
2k if k ∈ J,
2k + 1 if J ⊂ (k, k + 1).

One checks that μ(ϕ) = μ̂(I(ϕ)) satisfies the required axioms for the Conley–
Zehnder index of paths in Σ∗(1). The function μ̂ may be extended to the set
of all closed intervals of length <1/2 by

(5) μ̂(J) = lim
ε→0+

μ̂(J − ε).

This induces an extension μ(ϕ) = μ̂(I(ϕ)) of the Conley–Zehnder index to
the set of all smooth paths ϕ : [0, 1]→ Sp(1) satisfying ϕ(0) = I. Clearly μ
is lower semi-continuous if the space of such paths is endowed with the C0-
topology, since small variations of ϕ induce small variations of the end-points
of I(ϕ).

2.1.2. A description via self-adjoint operators. A smooth path ϕ :
[0, 1]→ Sp(1) satisfies a differential equation −iϕ′ − Sϕ = 0, for some
(unique) smooth path of symmetric matrices S(t), t ∈ [0, 1]. We may con-
sider the unbounded self-adjoint operator L on L2(R/Z,R2) given by

(6) Lv = −iv′ − Sv, where i �
[
0 −1
1 0

]
.

It has compact resolvent, its spectrum σ(L) is a discrete set of real eigen-
values accumulating at ±∞, geometric and algebraic multiplicities coincide,
and all eigenvalues have multiplicity at most 2. A non-trivial eigenvector
v(t) = r(t)eiθ(t) associated with some λ ∈ σ(L) never vanishes, so the total
winding θ(1)− θ(0) is well-defined. This number does not depend on the
eigenvector for λ, and we have an integer wind(λ) := (θ(1)− θ(0))/2π. It
turns out that for each k ∈ Z there are precisely two (multiplicities counted)
eigenvalues with wind = k, and that λ ≤ μ⇒ wind(λ) ≤ wind(μ). For more
details see Section 3 from [9].

Let us denote λ− = max{λ ∈ σ(L) | λ < 0}, λ+ = min{λ ∈ σ(L) | λ ≥
0}. Set p = 0 if wind(λ−) = wind(λ+), or p = 1 if wind(λ−) = wind(λ+)− 1.
In case ϕ ∈ Σ∗(1), we have 0 �∈ σ(L), so λ+ > 0 and one checks that

(7) μ(ϕ) = 2wind(λ−) + p
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also satisfies the axioms for the Conley–Zehnder index; see [9] for the proof.
Even in case ϕ �∈ Σ∗(1), Hofer et al. define μ(ϕ) by (7), which provides an
extension to all smooth paths in Sp(1) starting at I. When the space of such
paths is endowed with the C1-topology, small variations of ϕ induce C0-
small variations of S, which in turn induce small variations of the spectrum,
as explained in [19]. It becomes clear that the extension of μ described above
is lower-semicontinuous since μ(ϕ) either stays constant or jumps up (by 1
or 2) under small variations of the spectrum.

2.1.3. Comparing both extensions.

Lemma 2.2. Both extensions of μ described in 2.1.1 and 2.1.2 coincide.

Proof. We need only to consider a path ϕ �∈ Σ∗(1). We denote by μ1(ϕ) the
extension described in 2.1.1, and by μ2(ϕ) the one from 2.1.2.

Let I(ϕ) = [a, b] be the “winding interval” described in 2.1.1. Consider
also some pair of eigenvalues ν+ > 0 and ν− < 0 of the operator L = −i∂t −
S (S = −iϕ′ϕ−1). We claim that wind(ν+) > a and wind(ν−) < b. To prove
the first inequality choose an eigenvector v(t) satisfying Lv = ν+v and con-
sider u(t) = ϕ(t) · v(0). Then the vector z(t) = v(t)u(t) satisfies

(8) −iż = (Sv)ū− v(Su) + ν+z.

Whenever v ∈ R
+u we have z ∈ R and (Sv)ū− v(Su) ∈ iR. Then, writing

z(t) = ρ(t)eiϑ(t), we must have ϑ ∈ 2πZ⇒ ϑ̇ = ν+ > 0. Thus the total angu-
lar variation ϑ(1)− ϑ(0) of z is strictly positive, in other words, the total
angular variation of v is strictly larger than that of u, as we wanted to show.
The other inequality is proved analogously.

By Lemma 2.1 one finds k ∈ Z such that {k} = I(ϕ) ∩ Z = ∂I(ϕ) ∩ Z.
The eigenvalue 0 of the operator L must have winding precisely k. Note that

ϕ(1) = I ⇔ I(ϕ) = {k} ⇔ 0 has multiplicity two as an eigenvalue of L.

The first equivalence is obvious, and the second follows from the fact that
two non-colinear eigenvectors of L for the eigenvalue 0 are pointwise linearly
independent. In this case, the windings of the largest negative eigenvalue and
that of the smallest positive eigenvalue are k − 1 and k + 1, respectively.
According to the definitions explained in 2.1.1 and 2.1.2 and the spectral
properties of L we have μ1(ϕ) = μ2(ϕ) = 2k − 1.

It remains to handle the cases where ϕ(1) �= I. If a = k and b > a, then
μ1(ϕ) = 2k. As proved above, the winding of the smallest positive eigenvalue
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of L is >k. The spectral properties of L explained in 2.1.2 imply that this
winding is precisely k + 1. Since 0 is a simple eigenvalue, the winding of the
largest negative eigenvalue must also be k, proving μ2(ϕ) = 2k.

If b = k and a < b then μ1(ϕ) = 2k − 1. As before, the winding of the
largest negative eigenvalue of L is <k and, consequently, it must be precisely
k − 1. Thus μ2(ϕ) = 2k − 1. �

2.2. Pseudo-holomorphic curves in symplectizations

Let us recall the basic definitions and facts of the theory as introduced by
Hofer in [7]. Throughout we fix a contact form λ on the closed 3-manifoldM ,
with Reeb vector R and induced contact structure ξ = kerλ. The projection
R×M →M onto the second factor is denoted by πM . Consider also

(9) π : TM → ξ

the projection along the Reeb direction.

2.2.1. Almost complex structures. A complex structure J on ξ is said
to be dλ-compatible if dλ(·, J ·) is a metric. The space of these complex
structures, which is well known to be contractible, is denoted by J (ξ, dλ).
Any J ∈ J (ξ, dλ) induces an almost complex-structure J̃ on R×M by

(10) J̃ · ∂a = R, J̃ |ξ = J.

Above we see TM and ξ as (R-invariant) subbundles of T (R×M), and
denote by a the R-coordinate.

2.2.2. Finite-energy curves. Let us consider J̃ as in (10) induced by
some J ∈ J (ξ, dλ).
Definition 2.3 (Hofer). Let (S, j) be a closed Riemann surface and Γ ⊂ S
a finite set. A finite-energy curve is a map ũ : S \ Γ→ R×M satisfying the
Cauchy–Riemann equations

(11) ∂̄J̃(ũ) =
1
2

(
dũ+ J̃(ũ) · dũ · j

)
= 0

and an energy condition 0 < E(ũ) <∞. The energy is defined as

E(ũ) = sup
φ∈Λ

∫
S\Γ

ũ∗d(φλ),

where Λ = {φ : R→ R smooth | 0 ≤ φ ≤ 1, φ′ ≥ 0}.
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Solutions of (11) are called J̃-holomorphic maps. Each integrand in the
definition of the energy is non-negative, and a quick calculation shows ũ is
constant when E(ũ) = 0. The elements of Γ are the so-called punctures.

Remark 2.4 (Cylindrical coordinates). Fix z ∈ Γ and choose a holo-
morphic chart ψ : (U, z)→ (ψ(U), 0), where U is a neighborhood of z. We
identify [s0,+∞)× R/Z with a punctured neighborhood of z via (s, t) �
ψ−1(e−2π(s+it)), for s0 � 1, and call (s, t) positive cylindrical coordinates
centered at z. We may also identify (s, t) � ψ−1(e2π(s+it)), where s < −s0
and, in this case, (s, t) are negative coordinates. In both cases, we write
ũ(s, t) = ũ ◦ ψ−1(e−2π(s+it)) or ũ(s, t) = ψ−1(e2π(s+it)).

Let (s, t) be positive cylindrical coordinates centered at some z ∈ Γ, and
write ũ(s, t) = (a(s, t), u(s, t)). E(ũ) <∞ implies

(12) m = lim
s→+∞

∫
{s}×R/Z

u∗λ

exists. This number is the mass of ũ at z, and does not depend on the choice
of coordinates. The puncture z is called positive, negative or removable
when m > 0, m < 0 or m = 0, respectively, and ũ can be smoothly extended
to (S \ Γ) ∪ {z} when z is removable. Moreover, a(s, t)→ ε∞ as s→ +∞,
where ε is the sign of m.
2.2.3. Asymptotic operators and asymptotic behavior. Let P =
(x, T ) be a closed Reeb orbit and consider the bundle ξP = x∗T ξ → R/Z,
where xT (t) = x(Tt). Let k ∈ Z

+ be its multiplicity, that is, T = kTmin where
Tmin is minimal positive period of x. A choice of J ∈ J (ξ, dλ) induces an
inner-product

〈η, ζ〉 =
∫ 1

0
(dλ)x(Tt)(η(t), Jx(Tt)ζ(t))dt

of pair of sections η, ζ of ξP . The corresponding space of square integrable
sections is denoted by L2J(ξP ).

Definition 2.5. The asymptotic operator at P is the unbounded self-
adjoint operator AP on L2J(ξP ) defined by

(13) AP (η) = J(−∇tη + T∇ηR),
where ∇ is any symmetric connection3 on M and ∇t denotes covariant
derivative along the curve xT (t).

3AP does not depend on ∇.
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Remark 2.6. A dλ-symplectic frame for ξP presents AP as an operator of
the form −J(t)∂t − S(t), where J(t) is the representation of Jx(Tt) and S(t)
is symmetric with respect to 〈·,−iJ(t)·〉. If the frame is (dλ, J)-unitary then
the AP takes the form −i∂t − S(t) where S(t) is symmetric. It follows that
AP has all the spectral properties described in 2.1.2.

Consider coordinates (θ, x, y) ∈ R/Z× R
2 and the contact form α0 =

dθ + xdy.

Definition 2.7. A Martinet tube for a simply covered T -periodic orbit P is
a pair (U,Ψ) where U is a neighborhood of x(R) inM and Ψ : U → R/Z×B
is a diffeomorphism (B ⊂ R

2 is an open ball centered at the origin) satisfying

(1) Ψ∗(fα0) = λ where the smooth function f : R/Z×B → R
+ satisfies

f |R/Z×0 ≡ T and df |R/Z×0 ≡ 0.

(2) Ψ(x(Tt)) = (t, 0, 0).

Remark 2.8. According to [8] Martinet tubes always exist. We note that
if P is simply covered and η is any non-vanishing section of ξP then (U,Ψ)
can be constructed so that Ψ∗η = ∂x.

Let ũ = (a, u) be as in Definition 2.3, z ∈ Γ be a non-removable puncture,
and (s, t) be positive cylindrical coordinates centered at z. Letm be the mass
of ũ at z and ε be its sign.

Definition 2.9. We call z a non-degenerate puncture of ũ if there exists a
periodic Reeb orbit P = (x, T ) and constants c, d ∈ R such that

(1) supt∈R/Z |a(s, t)− εTs− d| → 0 as s→ +∞.
(2) u(s, t)→ x(εT t+ c) in C0(R/Z,M) as s→ +∞.
(3) If π · du does not vanish identically, then π · du(s, t) �= 0 when s� 1.

(4) If we write u(s, t) = expx(εT t+c)(ζ(s, t)) for sufficiently large values of
s, then supt∈R/Z e

bs|ζ(s, t)| → 0 as s→ +∞, for some b > 0.

We also say that ũ has non-degenerate asymptotic behavior at z.

The above definition is independent of the choice of ψ and exp. If P is
as above then we say ũ is asymptotic to P at z. When every non-removable
puncture is non-degenerate we simply say ũ has non-degenerate asymptotics.

Here is a partial description of the asymptotic behavior from [8].
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Theorem 2.10 (Hofer, Wysocki and Zehnder). If λ is non-degenerate
then every finite-energy J̃-holomorphic curve, for any J ∈ J (ξ, dλ), has
non-degenerate asymptotics.

A much more precise description of the asymptotic behavior is given
in [8]. Let ũ = (a, u) be asymptotic to P = (x, T ) at the non-degenerate
puncture z. Consider cylindrical holomorphic coordinates (s, t) centered at
z, positive if z is positive or negative if z is negative. Choose a Martinet
tube (U,Ψ) for the underlying prime orbit, as described above. The frame
{e1 � ∂x/

√
f, e2 � (−x∂θ + ∂y)/

√
f} of ξ on U is dλ-symplectic and can be

used to represent AP � L = −J(t)∂t − S(t), as explained in Remark 2.6.
The functions

a(s, t) ∈ R, θ(s, t) ∈ R/Z and z(s, t) = (x(s, t), y(s, t)) ∈ R
2

given by (idR ×Ψ) ◦ ũ = (a, θ, x, y) are well defined for |s| � 1. Let ε = ±1
be the sign of the puncture z.

The following theorem gives a precise description of the asymptotic
behavior of a finite-energy surface near a non-removable puncture when
the contact form is non-degenerate. It incorporates a refinement due to R.
Siefring [22] of the original asymptotic formula of Hofer et al. [8]; see also
E. Mora’s dissertation [20].

Theorem 2.11. Assume that λ is non-degenerate and that
∫
u∗dλ > 0.

One finds b > 0, μ ∈ σ(L) such that εμ < 0, an eigenvector v of L satisfying
Lv = μv, and constants c, d ∈ R such that

lim
|s|→∞

sup
t
eb|s|

(
|Dβ[a− Ts− d]|+ |Dβ[θ − kt− c]|

)
= 0

for every multi-index β, and

z(s, t) = eμs (v(t) + Δ(s, t))

where lim|s|→∞ supt |DβΔ| = 0 ∀β. Here k ≥ 1 is the multiplicity of P .

The eigenvalue μ ∈ σ(AP ) and the eigenvector of AP corresponding to
v as in the above statement will be loosely referred to as the asymptotic
eigenvalue and asymptotic eigenvector of ũ at z, respectively.

In [11] it is proved that the conclusions of Theorem 2.11 also hold under
the assumption that λ is only Morse–Bott. In [17] we prove the following
lemma.
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Lemma 2.12. Let λ be any contact form on M , fix any J ∈ J (ξ, dλ),
and let ũ be a finite-energy J̃-holomorphic curve in R×M asymptotic to P
at the non-degenerate puncture z, in the sense of Definition 2.9. Then the
conclusions of Theorem 2.11 are true.

2.2.4. Some algebraic invariants. We need to recall a few definitions
from [9]. Let J ∈ J (ξ, dλ) induce J̃ as in (10), (S, j) be a closed Riemann
surface, and ũ = (a, u) : S \ Γ→ R×M be a finite-energy J̃-holomorphic
curve, where Γ ⊂ S is a finite set of non-removable punctures. Assume also
that every z ∈ Γ is a non-degenerate puncture as in Definition 2.9.

The section π · du of E = ∧0,1T ∗(S \ Γ)⊗C u
∗ξ satisfies the Cauchy–

Riemann-type equation

π · du · j = J(u) · π · du.

This follows from (11). Thus either π · du vanishes identically or its zeros
are isolated. In the second case, one defines

(14) windπ(u) = algebraic count of zeros of π · du,

where E is oriented by its natural complex structure.

Remark 2.13 (Winding numbers). Let E → R/Z be an oriented rank-2
real vector bundle, and consider two non-vanishing sections Z and W of E.
A choice of complex structure J inducing the orientation of E gives unique
functions a, b : R/Z→ R satisfying W = aZ + bJZ. The function f = a+
ib : R/Z→ C does not vanish and we define

(15) wind(W,Z) = deg
f

|f | ∈ Z.

This integer depends only on the homotopy class of non-vanishing sections
of Z and W , and on the orientation of E. When E is symplectic, we use the
induced orientation.

Let Z be a non-vanishing section of u∗ξ and assume π · du does not
vanish identically. If (s, t) are positive cylindrical coordinates centered at
some z ∈ Γ then set

wind∞(ũ, z, Z) := lim
s→+∞wind(t 	→ π · ∂su(s, εt), t 	→ Z(s, εt))
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where ε = ±1 is the sign of the puncture z. Splitting Γ = Γ+ � Γ− into
positive and negative punctures, Hofer et al. define in [9]

(16) wind∞(ũ) =
∑
z∈Γ+

wind∞(ũ, z, Z)−
∑
z∈Γ−

wind∞(ũ, z, Z).

Clearly this number does not depend on Z.

Definition 2.14. A finite-energy plane ũ : C→ R×M will be called fast
if ∞ is a non-degenerate puncture, the asymptotic limit P of ũ is a simply
covered (prime) Reeb orbit and windπ(ũ) = 0.

We do not make any non-degeneracy assumptions on λ or P in the above
definition.

An application of the argument principle proves the following important
identity.

Lemma 2.15 (Hofer, Wysocki and Zehnder). windπ(ũ) = wind∞(ũ)−
χ(S) + #Γ.

The following statement will be left without proof.

Lemma 2.16. Let ũ = (a, u) be a J̃-holomorphic finite-energy surface, z
be a non-degenerate puncture of ũ with sign ε = ±1, and P = (x, T ) be the
asymptotic limit of ũ at z. Fix holomorphic cylindrical coordinates (s, t)
centered at z with sign ε. For any smooth non-vanishing section Z of x∗T ξ
there is a smooth section Z of u∗ξ defined near z such that Z(s, t)→ Z(t)
in C0(R/Z, ξ) as εs→ +∞.

Remark 2.17. Suppose λ is non-degenerate and that the finite-energy
plane ũ is asymptotic to the closed Reeb orbit P = (x, T ). It follows from
Theorem 2.11, Lemma 2.16 and (16) that the winding of the asymptotic
eigenvector with respect to a trivialization of x∗T ξ induced by the capping
disk given by ũ is precisely wind∞(ũ).

2.2.5. Curves with vanishing dλ-energy. Let Γ ⊂ S be finite, J ∈
J (ξ, dλ) and ũ = (a, u) : S \ Γ→ R×M be a finite-energy J̃-holomorphic
surface. The integral

(17)
∫
S\Γ

u∗dλ

is non-negative, bounded by E(ũ) and vanishes if, and only if, π · du ≡ 0.
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Theorem 2.18 (Hofer, Wysocki and Zehnder). If Γ ⊂ C is finite, ũ :
C \ Γ→ R×M is as above, Γ consists of negative punctures and

∫
C\Γ u

∗dλ =
0, then one finds a non-constant polynomial p : C→ C and a closed Reeb
orbit P = (x, T ) such that p−1(0) = Γ and ũ = FP ◦ p. Here FP : C \ {0} →
R×M is defined by FP (e2π(s+it)) = (Ts, x(Tt)).

Corollary 2.19. If Γ = ∅ then
∫

C
u∗dλ > 0.

2.2.6. Bubbling-off points. The basic tool for the bubbling-off anal-
ysis is the following lemma, where norms are taken with respect to any
R-invariant metric on R×M and the euclidean metric on C.

Lemma 2.20. Let Γ ⊂ C be finite and Un ⊂ C \ Γ be an increasing sequence
of open sets such that ∪nUn = C \ Γ. Let ũn = (an, un) : (Un, i)→ (R×M, J̃)
be J̃-holomorphic maps satisfying supnE(ũn) = C <∞, and zn ∈ Un be a
sequence such that |dũn(zn)| → +∞. If zn stays bounded away from Γ �
{∞}, or if some Um is a neighborhood of ∞ and zn stays bounded away
from Γ, then there exist subsequences {ũnj

} and {znj
}, sequences z′j ∈ C

and rj ∈ R, and a contractible periodic Reeb orbit P̂ = (x̂, T̂ ) such that
|znj
− z′j | → 0, rj → 0+, T̂ ≤ C and

lim sup
j→+∞

∫
|z−z′j |≤rj

u∗nj
dλ ≥ T̂ .

The proof is standard and will be omitted.

3. Passing to the degenerate case

Our goal here is to prove Theorem 1.7. We assume, without loss of generality,
that the dynamically convex contact form λ on S3 is of the form fλ0|S3 ,
where f : S3 → (0,+∞) is smooth and λ0 = 1

2

∑
qdp− pdq is the standard

Liouville form on R
4. As before, the Reeb vector is denoted by R, its flow

by φt and the standard contact structure on S3 by ξ = kerλ0. From now
on we assume P̄ = (x̄, T̄ ) is a closed Reeb orbit of λ as in the statement of
Theorem 1.7.

3.1. A suitable spanning disk for P̄

Recall that on any embedded oriented surface S ⊂ S3 there is a singular
distribution

(18) (ξ ∩ TS)⊥
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called the characteristic distribution of S, where here ⊥ denotes the dλ-
symplectic orthogonal (with respect to any defining contact form λ for ξ). It
equals ξ ∩ TS except at the singular points where ξ = TS and (ξ ∩ TS)⊥ =
{0}. If S is in a regular level set of some function H, then equations

(19) iV λ = 0, iV dλ = dH − (iRdH)λ

define a vector field V on S that parametrizes the characteristic distribution.
A singular point p ∈ D is called non-degenerate when the linearization DVp
is an isomorphism. Then p is called elliptic or hyperbolic if the determinant
of DVp is positive or negative, respectively. The space TpS = ξ|p has two
orientations: op induced by the given orientation of S, and o′p induced by dλ.
The singular point p is positive if op = o′p, and negative otherwise. Following
Hofer [7], we call p nicely elliptic if it is elliptic and the eigenvalues of DVp
are real.

Below we only consider the case where ∂S �= ∅ is a knot transverse to
ξ and, in this case, S will always be oriented by λT∂S > 0. Applying argu-
ments from [12, 13] (which use Giroux’s elimination lemma from [4]) to our
situation one proves

Theorem 3.1 (Hofer, Wysocki and Zehnder). Let L ⊂ (S3, ξ) be a
transverse unknot spanned by an embedded disk D0 ⊂ S3 satisfying sl(L) =
−1. Then there exists another embedded disk D1 spanning L such that the
characteristic distribution of D1 has precisely one singularity, which is a
positive nicely elliptic point. Moreover, the disk D1 can be obtained by a
smooth and arbitrarily C0-small perturbation of D0 supported away from L.

In order to consider special Bishop families of pseudo-holomorphic disks
we need suitable boundary conditions provided by the following statement.

Lemma 3.2. Consider a sequence of smooth functions hk : S3 → R
+ satis-

fying hk ≡ 1, dhk ≡ 0 on x̄(R) and hk → 1 in C∞. There exists an embedded
disk D ⊂ S3 spanning x̄(R) for which we can find k0 and a neighborhood O
of ∂D = x̄(R) in D such that RRk|p ∩ TpD = 0, ∀ p ∈ O \ x̄(R) and k ≥ k0.
Here Rk denotes the Reeb vector of hkλ.

Note that, by the assumptions on hk, t 	→ x̄(t) is T̄ -periodic trajectory
of the vector fields Rk.
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Proof. Let D0 ⊂ S3 be an embedded disk spanning x̄(R) and

t ∈ R/Z 	→W (t) ∈ (TD0 ∩ ξ)|x̄(T̄ t)

be a non-vanishing vector along the curve x̄T̄ . Let us denote λk = hkλ. We
claim that there exists an embedding

(20) ψ : (1− ε, 1]× R/Z→ S3

and an integer k0 ≥ 1 satisfying the following properties:

(i) ψ(1, t) = x̄(T̄ t).

(ii) Denoting S = ψ((1− ε, 1]× R/Z), let t 	→ N(t) be a non-vanishing
vector field satisfying N(t) ∈ (TS ∩ ξ)|x̄(T̄ t), ∀t. Then wind(N(t),
W (t)) = 0.

(iii) If k ≥ k0 then {∂rψ, ∂tψ,Rk ◦ ψ} is a basis of Tψ(r,t)S3 when 1− ε <
r < 1.

Let U be a small neighborhood of x̄(R) in S3 and Φ : U → R/Z×B
be a diffeomorphism, where B ⊂ R

2 is the unit ball centered at the origin,
satisfying Φ(x̄(T̄ θ)) = (θ, 0, 0) ∀θ ∈ R/Z, Φ∗λ|R/Z×(0,0) = T̄ dθ and
Φ∗(dλ)|R/Z×(0,0) ≡ dx ∧ dy. Here (θ, x, y) are standard coordinates in R/Z×
R
2. Note that Φ∗W (t) ∈ 0× R

2 for every t. The map Φ can also be arranged
so that Φ∗W (t) and ∂x|(t,0,0) do not wind with respect to each other.

In these coordinates, the linearized λ-Reeb flow along x̄(R) � R/Z×
(0, 0) is represented as

dφT̄ t|x̄(0) �
(
1

ϕ(t)

)
,

where ϕ : [0, 1]→ Sp(1) is a path of symplectic matrices satisfying ϕ(0) = I.
Note that

μ(ϕ) = μCZ(P̄ ) + 2sl(P̄ ) ≥ 1,

where sl(P̄ ) = −1 is the self-linking number of P̄ . Let I(ϕ) be the winding
interval of ϕ defined as in 2.1.1. In view of the geometric description of
the μ-index, we know I(ϕ) ⊂ R

+ and ϕ(1) = I ⇔ I(ϕ) ⊂ Z
+. One of the

following cases hold:
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(a) σ(ϕ(1)) = {a, a−1} with a > 0, a �= 1. In this case, we set

Y =
(
ln a 0
0 − ln a

)
and find T ∈ Sp(1) such that ϕ(1) = T−1eY T .

(b) σ(ϕ(1)) = {1} and ϕ(1) �= I. In this case, we find a ∈ R \ {0} and T ∈
Sp(1) such that ϕ(1) = T−1eY T where

Y =
(
0 a
0 0

)
.

(c) σ(ϕ(1)) = {e±iγ} for some γ ∈ (0, 2π) \ {π}, or ϕ(1) = −I with γ = π,
or ϕ(1) = I with γ = 0. In this case, we set

Y =
(
0 −γ
γ 0

)
and, perhaps after changing γ by 2π − γ, we find T ∈ Sp(1) such that
ϕ(1) = T−1eY T .

(d) σ(ϕ(1)) = {a, a−1} with a < 0, a �= −1. In this case, we set

Y =
(
ln(−a) 0
0 − ln(−a)

)
and find T ∈ Sp(1) such that −ϕ(1) = T−1eY T .

(e) σ(ϕ(1)) = {−1} and ϕ(1) �= −I. In this case, we find a and Y as in
case (b) such that −ϕ(1) = T−1eY T .

After composing Φ with the linear diffeomorphism⎛⎝θx
y

⎞⎠ 	→
⎛⎝ θ

T

(
x
y

)⎞⎠
in each case, we could have assumed that Φ satisfies all the properties
mentioned before and, moreover, that ϕ(1) = eY in cases (a) and (c) or
ϕ(1) = −eY in cases (d) and (e). In cases (a)–(c), we set K(t) = etY , and in
cases (d) and (e) we set4 K(t) = eiπtetY , so that K(1) = ϕ(1) in all cases.

4We may denote the matrix
(
cos y − sin y
sin y cos y

)
by eiy.



810 U.L. Hryniewicz

We need to understand in detail the index μ(K) and the winding interval
I(K) of the path t 	→ K(t).

• In case (a): I(K) contains 0 in its interior and μ(K) = 0.

• In case (b): if a < 0 then I(K) = [0, c] for some 0 < c < 1/2 and μ(K) =
0, if a > 0 then I(K) = [c, 0] for some −1/2 < c < 0 and μ(K) = −1.
• In case (c): I(K) = {γ/2π} ⊂ [0, 1). If γ > 0 then μ(K) = 1, if γ = 0
then μ(K) = −1.
• In case (d): I(K) contains 1/2 in its interior and μ(K) = 1.

• In case (e): I(K) contains 1/2 in its boundary and μ(K) = 1.

We shall now construct an embedding (20) satisfying conditions (i) and (ii)
above which is transverse to R in ψ((1− ε, 1)× R/Z) in each case separately.
Then, after this is done, we will check condition (iii). For simplicity we will
assume that T̄ = 1 in the following, without loss of generality.

Case (a). The loop

(21) M(t) = K(t)ϕ−1(t)

satisfies Maslov(M) = −k, where μ(ϕ) = 2k for some k ≥ 1. Note that
t ∈ R/Z 	→M(t) ∈ Sp(1) is a smooth map (since so is ϕ′ϕ−1). We still
write (θ, x, y) for the new coordinates obtained by composing Φ with the
diffeomorphism

(22) H :

⎛⎝θx
y

⎞⎠ 	→
⎛⎝ θ

M(θ)
(
x
y

)⎞⎠ .

The linearized λ-Reeb flow dφT̄ t : ξ|x̄(0) → ξ|x̄(T̄ t) along P̄ is now represented
by (

1
K(t)

)
and the differential of the λ-Reeb vector by

DR(θ, 0, 0) =
(
0

K ′K−1 = Y

)
=

⎛⎝0 0 0
0 ln a 0
0 0 − ln a

⎞⎠ .
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We consider ε > 0 small and a map F : (1− ε, 1]× R/Z→ R/Z×B of
the form

(23) F (r, t) = (t, (1− r) cos b(t), (1− r) sin b(t))

for some smooth function b : R→ R satisfying b(t+ 1) = b(t)− 2πk. Before
describing b(t) in detail we make some a priori computations. First, the Reeb
vector can be written as

(24)

R ◦ F (r, t) = R(t, 0, 0) + (r − 1)DR(t, 0, 0)∂rF (1, t) +O(|1− r|2)

=

⎛⎝ 1

(1− r)Y
(
cos b(t)
sin b(t)

)⎞⎠+O(|1− r|2)

for r ∼ 1. Consider the function

(25) d(r, t) = det(∂rF (r, t), ∂tF (r, t), R ◦ F (r, t)).

Then

d(r, t) = det

⎛⎝ 0 1 1
− cos b (r − 1)b′ sin b (1− r)(ln a) cos b
− sin b (1− r)b′ cos b (r − 1)(ln a) sin b

⎞⎠+O(|1− r|2)

= −(1− r)(b′ + (ln a) sin 2b) +O(|1− r|2)

for r ∼ 1. We found

(26) ∂rd(1, t) = b′ + (ln a) sin 2b.

Since −2πk ≤ −2π the function b ∈ [−2πk, 0] 	→ sin 2b changes sign, and we
find an non-empty open interval J ⊂ (−2πk, 0) such that b ∈ J ⇒ (ln a)
sin 2b < 0. If α < 0 satisfies |α| > | ln a|, then we may take b(t) satisfying
b′ < 0 and b′ ≥ α⇔ b ∈ J . Thus b′(t) + (ln a) sin 2b(t) < 0 for every t ∈ R,
and d(r, t) �= 0 if 1− r is small and positive. It follows that the Reeb vector
is transverse to the embedded (open) strip F ((1− ε, 1)× R/Z) when ε is
small. Setting

(27) h(r, t) = H−1 ◦ F (r, t)

then

∂rh(1, t) =

⎛⎝ 0

M(t)−1
(− cos b(t)
− sin b(t)

)⎞⎠
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and the non-vanishing vector t 	→ dπ0 · ∂rh(1, t) has winding number equal to
0 around the origin in R

2. Here π0 : R/Z× R
2 → R

2 is the projection onto
the second factor. This follows since Maslov(M−1) = k and b(1)− b(0) =
−2πk. Setting ψ(r, t) = Φ−1 ◦ h(r, t), ψ satisfies the required conditions.

Case (b). Assuming a > 0 we have μ(ϕ) = 2k + 1 for some k ≥ 0 and the
loop

M(t) = ei2πtK(t)ϕ−1(t)

satisfies Maslov(M) = −k. As before, t ∈ R/Z 	→M(t) ∈ Sp(1) is smooth.
Composing with the diffeomorphism H (22) we obtain new coordinates,
still denoted (θ, x, y), where the linearized λ-Reeb flow dφT̄ t : ξ|x̄(0) → ξ|x̄(T̄ t)
along P̄ is represented by ei2πtK(t) and the differential of the λ-Reeb vector
by

DR(θ, 0, 0) =
(
0

i2π + ei2πtY e−i2πt

)
,

where

i2π + ei2πtY e−i2πt =
(−a sin(2πt) cos(2πt) −2π + a cos2(2πt)

2π − a sin2(2πt) a sin(2πt) cos(2πt)

)
= S(t).

Set F (r, t) as in (23) where the smooth function b : R→ R satisfying b(t+
1) = b(t)− 2πk and b(0)=0 will be defined a posteriori. We compute
similarly to (24)

R ◦ F (r, t) = R(t, 0, 0) + (r − 1)DR(t, 0, 0)∂rF (1, t) +O(|1− r|2)

=

⎛⎝ 1

(1− r)S(t)
(
cos b(t)
sin b(t)

)⎞⎠+O(|1− r|2).

If d(r, t) is the function defined as in (25), then

d(r, t) = det

⎛⎝ 0 1 1
− cos b (r − 1)b′ sin b (1− r)(Seib)11
− sin b (1− r)b′ cos b (1− r)(Seib)21

⎞⎠+O(|1− r|2)

= det

⎛⎝ 0 1 1
−1 0 (1− r)(e−ibSeib)11
0 (1− r)b′ (1− r)(e−ibSeib)21

⎞⎠+O(|1− r|2)

= −(1− r)[b′ − (e−ibSeib)21] +O(|1− r|2)
= −(1− r)[b′ − 2π + a sin2(2πt− b(t))] +O(|1− r|2)
= −(1− r)[β′ + a sin2 β(t)] +O(|1− r|2),
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where β(t) = b(t)− 2πt. Let α < 0 satisfy |α| � a. In view of the condi-
tion β(1) = −2(k + 1)π ≤ −2π we may choose δ > 0 small and define β(t)
satisfying

• β′ < 0 and β′(t) �= α⇔ β(t) ∈ [−π − δ,−π].
• β′ < −a sin2 β when β(t) ∈ [−π − δ,−π].

Here we strongly use that sin2 β = (β + π)2 +O(|β + π|4) when β → −π. In
fact, consider C > 0 and δ0 > 0 small so that |x2 − sin2(−π − x)| ≤ Cx4
if 0 ≤ x ≤ δ0. Take 0 < δ < δ0 satisfying Cδ4 < δ2/2 and −δ + 3aδ2 < 0.
Let 0 < t0 < t1 < 1 be defined by αt0 = −π and −2π(k + 1) + α(t1 − 1) =
−π − δ. Note that t0 → 0+ and t1 → 1− as α→ −∞. There exists a smooth
function β : [t0, t1]→ R satisfying

• β(t0) = −π and β(t1) = −π − δ,
• β′(t0) = β′(t1) = α and β(j)(t0) = β(j)(t1) = 0 ∀j ≥ 2 and

• β′(t) ≤ − δ
2(t1−t0) ∀t ∈ [t0, t1].

If we extend β to [0, 1] by β(t) = αt on [0, t0] and β(t) = −2π(k + 1) + α(t−
1) on [t1, 1] then β is C∞ and we can estimate for t ∈ [t0, t1]:

β′(t) + a sin2 β(t) ≤ − δ

2(t1 − t0) + a(β(t) + π)2 + aC(β(t) + π)4

≤ −δ
2
+ aδ2 + aCδ4 ≤ −δ

2
+
3aδ2

2
< 0.

If α is close to −∞ then the same inequality is satisfied for all t ∈ [0, 1].
Thus b′ − 2π + a sin2(2πt− b(t)) �= 0 and ∂rd(1, t) �= 0 for every t. As

before we define h(r, t) as in (27) and ψ = Φ−1 ◦ h(r, t).
The case a < 0 is much simpler since μ(ϕ) = 2k for some k ≥ 1 and we

may consider the closed loop M(t) = K(t)ϕ−1(t) which has Maslov index
−k. The argument is entirely analogous.

Case (c). We assume γ ∈ (0, 2π) \ {π}, the cases ϕ(1) = ±I are left to
the reader. The loop M(t) = K(t)ϕ−1(t) has Maslov index −k ≤ 0 in this
case, where k is given by μ(ϕ) = 2k + 1 ≥ 1. This is so since μ(K) = 1.
Again we change coordinates by composing with the diffeomorphism (22),
and the linearized λ-Reeb flow dφT̄ t : ξ|x̄(0) → ξ|x̄(T̄ t) becomes represented
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by t 	→ K(t). Consequently, the differential of the Reeb vector field is

DR(t, 0, 0) =
(
0

K ′K−1 = iγ

)
.

We define F (r, t) as in (23) with some smooth function b : R→ R satis-
fying b(t+ 1) = b(t)− 2πk to be constructed a posteriori, and d(r, t) by (25).
As before we have

R ◦ F (r, t) = R(t, 0, 0) + (r − 1)DR(t, 0, 0)∂rF (1, t) +O(|1− r|2)

=

⎛⎝ 1
(r − 1)γ sin b(t)
(1− r)γ cos b(t)

⎞⎠+O(|1− r|2).

Thus

d(r, t) = det

⎛⎝ 0 1 1
− cos b (r − 1)b′ sin b (r − 1)γ sin b(t)
− sin b (1− r)b′ cos b (1− r)γ cos b(t)

⎞⎠+O(|1− r|2)

= det

⎛⎝ 0 1 1
−1 0 0
0 (1− r)b′ (1− r)γ

⎞⎠+O(|1− r|2)

= −(1− r)(b′ − γ) +O(|r − 1|2).

In this case, we simply set b(t) = −2πkt, so that b′ − γ = −2πk − γ < 0 for
every t. Again we achieved ∂rd(1, t) �= 0, ∀t. As in cases (a) and (b) we set
h(r, t) as in (27) and ψ = Φ−1 ◦ h(r, t).

Case (d). The loopM(t) = K(t)ϕ−1(t) has Maslov index −k ≤ 0 where k is
given by μ(ϕ) = 2k + 1 ≥ 1. This is so since μ(K) = 1. Composing with the
diffeomorphism (22) we obtain new coordinates and the linearized λ-Reeb
flow dφT̄ t : ξ|x̄(0) → ξ|x̄(T̄ t) becomes represented by t 	→ K(t). Consequently,
the differential of the Reeb vector field is

DR(t, 0, 0) =
(
0

K ′K−1

)
.

We define F (r, t) as in (23) with some smooth function b : R→ R satis-
fying b(t+ 1) = b(t)− 2πk and b(0) = 0 to be constructed a posteriori, and
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d(r, t) by (25). As before we have

R ◦ F (r, t) = R(t, 0, 0) + (r − 1)DR(t, 0, 0)∂rF (1, t) +O(|1− r|2)

=

⎛⎝ 1

(1− r)K ′K−1
(
cos b(t)
sin b(t)

)⎞⎠+O(|1− r|2).

Thus

d(r, t) = det

⎛⎝ 0 1 1
− cos b (r − 1)b′ sin b (1− r)(K ′K−1eib)11
− sin b (1− r)b′ cos b (1− r)(K ′K−1eib)21

⎞⎠+O(|1− r|2)

= det

⎛⎝ 0 1 1
−1 0 (1− r)(e−ibK ′K−1eib)11
0 (1− r)b′ (1− r)(e−ibK ′K−1eib)21

⎞⎠+O(|1− r|2).

Substituting

e−ibK ′K−1eib = e−ib(iπ + eiπtY e−iπt)eib

=
(

ln(−a) cos(2πt− 2b) −π + ln(−a) sin(2πt− 2b)
π + ln(−a) sin(2πt− 2b) − ln(−a) cos(2πt− 2b)

)
we get

d(r, t) = −(1− r)[b′ − π − ln(−a) sin(2πt− 2b)] +O(|1− r|2)
= −(1− r)[β′ + ln(−a) sin 2β(t)] +O(|1− r|2),

where β(t) = b(t)− πt. The condition b(1) = −2πk forces β(1) = −(2k +
1)π ≤ −π, so sin 2β is forced to change sign. Let J ⊂ (−(2k + 1)π, 0) be
an non-empty open interval so that β ∈ J ⇒ ln(−a) sin 2β < 0, and pick a
number α < 0 satisfying |α| > | ln(−a)|. We can find a function β(t) satisfy-
ing β′ < 0, β′ �= α⇔ β(t) ∈ J , β(0) = 0 and β(1) = −(2k + 1)π. It follows
that β′(t) + ln(−a) sin 2β(t) < 0 for every t ∈ [0, 1], and that b(t) can be
smoothly extended to R by b(t+ 1) = b(t)− 2πk. Finally, we set h(r, t) as
in (27) and ψ = Φ−1 ◦ h(r, t).

Case (e): This case is similar to case (b).

In all cases the embedding ψ : (1− ε, 1]× R/Z→ S3 was obtained by
the formula ψ(r, t) = Φ−1 ◦H−1 ◦ F (r, t) and we checked that d(r, t) = det
(∂rF, ∂tF,R ◦ F ) satisfies ∂rd(1, t) �= 0, ∀t (here R is the representation



816 U.L. Hryniewicz

of the λ-Reeb vector in local coordinates). Now consider, for each k, the
function

dk(r, t) = det(∂rF, ∂tF,Rk ◦ F ).
Then dk → d in C∞loc so that, in each case, we find k0 large and c > 0 satisfy-
ing k ≥ k0 ⇒ |∂rdk(1, t)| ≥ c, ∀t. Thus, possibly after taking ε smaller, the
embedding ψ is transverse to Rk if 1− ε < r < 1 and k ≥ k0, as required.

Finally note that since wind(N,W ) = 0 the strip S can be glued with
the disk D0 (away from their common boundaries) to obtain an embedded
disk D with all the required properties. �

Lemma 3.3. Let hk : S3 → R be a sequence of smooth functions satisfying
hk ≡ 1, dhk ≡ 0 on x̄(R) and hk → 1 in C∞. There exists a spanning disk
D ⊂ (S3, ξ) for x̄(R) such that

• The characteristic distribution of D has precisely one singularity. This
singularity is a positive nicely elliptic point.

• There is a neighborhood O ⊂ D of x̄(R) such that Rk|p �∈ TpD for every
p ∈ O \ x̄(R), when k is large enough.

Here Rk is the Reeb vector of hkλ = hkfλ0. If we further assume that the
hkλ are non-degenerate contact forms, then the disk D may be arranged to
satisfy the above properties, and also y(R) �⊂ D whenever y is a periodic
trajectory of Rk satisfying y(R) �= x̄(R), for k large enough.

Proof. Combining Theorem 3.1 with Lemma 3.2 we get a disk D satisfying
the first two conditions. Suppose that the hkλ are non-degenerate contact
forms and let f : D→ S3 be a smooth embedding satisfying D = f(D) and
f(0) = e, and fix δ > 0 small. Then

X = {g ∈ C∞(D, S3) | g(z) = f(z) if |z| ≤ δ or 1− δ ≤ |z| ≤ 1}

is closed in the complete metric space C∞(D, S3). Taking δ small and k0 large
we may assume all Rk are transverse to f({z ∈ D : |z| ≤ δ or 1− δ ≤ |z| ≤
1}) if k ≥ k0. Here we used the properties of D near the boundary given
by Lemma 3.2. For fixed k ≥ k0 and periodic trajectory y of Rk satisfy-
ing y(R) �= x̄(R) consider Xk,y = {g ∈ X | y(R) ⊂ g(D)}. The Rk have only
countably many geometrically distinct periodic orbits since the hkλ are non-
degenerate, and one easily checks that each (Xk,y)c is open and dense in X
since y(R) �= x̄(R). By Baire’s category theorem (

⋃
k,yXk,y)c is dense in X.

Consequently, after a further C∞-small perturbation of D supported away
from {e} ∪ ∂D, we may assume D satisfies all the required properties. �
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3.2. Bishop families and fast planes

Consider the set

(28) F = {h ∈ C∞(S3,R+) | hλ is non-degenerate}.

F is residual in C∞(S3,R+). Well-known arguments show that there exists
a sequence hk : S3 → R of smooth functions satisfying

(29) hk ∈ F , hk ≡ 1, dhk ≡ 0 on x̄(R) and hk → 1 in C∞.

In the remainder of Section 3 Rk denotes the Reeb vector of λk = hkλ. As
noted before, t 	→ x̄(t) is a T̄ -periodic orbit of Rk.

We now recall how arguments from [12, 13] and [17, 18] prove the fol-
lowing existence result for fast planes asymptotic to P̄ . The sets J (ξ, dλk)
and J (ξ, dλ) all coincide with J (ξ, dλ0) and will be simply denoted by J .

Theorem 3.4. For every k large enough there exists some J ∈ J and an
embedded fast J̃k-holomorphic finite-energy plane ũk : C→ R× S3 asymp-
totic to P̄ .

The almost complex structure J̃k is defined by (10) using J and the Reeb
vector field Rk. The remainder of this subsection is devoted to the proof of
Theorem 3.4.

Let D be the special spanning disk for x̄(R) given by applying Lemma 3.3
to the sequence hk (29), which has a unique singular point e. For each k
define

(30) areadλk
(D) = sup

{∫
U
dλk : U ⊂ D is open

}
.

Since λk → λ we have areadλk
(D)→ areadλ(D). Applying Darboux’s theo-

rem we find a fixed small neighborhood V of e and embeddings Ψk : V → R
3

satisfying Ψk(e) = (0, 0, 0), Ψ∗k(dz + xdy) = λk. By arguments from [7] the
disk D may be perturbed to another spanning disk Dk for x̄(R) so that

e ∈ Dk, Dk \ V = D \ V and Dk ⊂ {z = −1
2xy} near e.

Moreover, this perturbation can be constructed so that e is the only singu-
larity of the characteristic foliation of Dk and

(31) sup
k
areadλk

(Dk) = C <∞.
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Since V can be chosen arbitrarily small, Dk still satisfies all the properties
obtained by Lemma 3.3.

For each J ∈ J and k consider the setMk(J) of solutions of the following
boundary-value problem:

(32)

⎧⎪⎨⎪⎩
ũ = (a, u) : D→ R× S3 satisfies ∂̄J̃k

(ũ) = 0,

ũ is an embedding, a ≡ 0 on ∂D and u(∂D) ⊂ Dk \ {e},
u(∂D) winds once and positively around e.

D is equipped with its standard complex structure i and its usual orientation,
while D is oriented by λ0|T∂D > 0. Here J̃k is determined by J and Rk as
in (10).

Lemma 3.5 (Hofer). For every k, the set of J ∈ J such thatMk(J) �= ∅
contains an non-empty open subset of J .

Proof. There exists some J that satisfies J · ∂x = −x∂z + ∂y near e in the
coordinates (x, y, z) given by the Darboux chart Ψk. Then the maps ũτ =
(aτ , uτ ) : D→ R× S3 defined by

aτ (s+ it) = τ2

4 (s
2 + t2 − 1), Ψk ◦ uτ (s+ it) =

(
τs, τt,− τ2

2 st
)

form a 1-parameter family of elements of Mk(J), which converges to the
constant map (0, e) as τ → 0+. It is shown in [7] that the linearization of
the Cauchy–Riemann operator ∂̄J̃k

at a given element ofMk(J) is automat-
ically surjective, with respect to a Fredholm theory of disks with boundary
on Dk. Thus if Mk(J) �= ∅ for some J then Mk(J ′) �= ∅ for every J ′ in a
neighborhood of J in J . �

Since λ is dynamically convex we find k0 such that if k ≥ k0 then all
closed λk-Reeb orbits satisfying μCZ ≤ 2 have action strictly larger than
the constant C in (31). Consider for given k ≥ k0 and J ∈ J the setM∗

k(J)
of non-constant finite-energy J̃k-holomorphic embeddings

ũ = (a, u) : D \ Γ→ R× S3,
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where Γ ⊂ D \ ∂D is some non-empty finite set, satisfying

(33)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a ≡ 0 on ∂D and u(∂D) ⊂ Dk \ {e},
u(∂D) winds once and positively around e,
every z ∈ Γ is a negative puncture and∫

D\Γ
u∗dλk > 0.

Theorem 3.6 (Hofer, Wysocki and Zehnder). If k is large enough then
there exists a dense set Jgen(k) such that if J ∈ Jgen(k) then M∗

k(J) = ∅.

The above theorem, which is proved in [10], roughly follows from the fact
that the elements ofM∗

k(J) are solutions of a (finite) number of Fredholm
problems for which the expected dimension of the solution set is negative.
Here we strongly use that, by Stokes theorem, any given ũ ∈M∗

k(J) with
k ≥ k0 is asymptotic at a negative puncture z ∈ Γ to a closed λk-Reeb orbit
Pz with action ≤C and, consequently, satisfies μCZ(Pz) ≥ 3.

The fundamental result regarding the above-defined Bishop families of
disks is

Theorem 3.7 (Hofer, Wysocki and Zehnder). For each k large enough
there exists J ∈ J and a sequence {ũn = (an, un)} ⊂ Mk(J) satisfying
ũn(D) ∩ (R× x̄(R)) = ∅ ∀n and ũn → FP̄ in C∞loc(D \ {0},R× S3). Here FP̄ :
D \ {0} → R× S3 is the map FP̄ (e

2π(s+it)) = (T̄ s, x̄(T̄ t)).

Sketch of Proof. We fix three leaves l1, li, l−1 of the characteristic foliation
of Dk. They have finite length and connect e to the boundary ∂Dk. By
Lemma 3.5 and Lemma 3.6 we find J ∈ Jgen(k) such thatMk(J) �= ∅. For
each ũ = (a, u) ∈Mk(J) the curve u(∂D) ⊂ Dk \ {e} hits every leaf of the
characteristic foliation transversely and once. Thus we may define τ(ũ) ∈ R

+

to be the length of the piece of l1 connecting e to u(∂D) with respect to
some metric. Let ũ0 ∈Mk(J) be close to the point (0, e), as described
in Lemma 3.5. The connected component Y ⊂Mk(J) containing ũ0 is a
trivial principle Möb(D)-bundle over the open real interval I = τ(Y) with
projection τ : Y → I, where Möb(D) denotes the group of holomorphic self-
diffeomorphisms of D. This is proved using the implicit function theorem,
see [7] for details. There is a unique global section t ∈ I 	→ ũt = (at, ut) sat-
isfying τ(ũt) = t, u(z) ∈ lz for z ∈ {1, i,−1}. Let t∗ = sup I and t̄ be the
length of l1. We follow [12, 13] closely. A non-trivial intersection argument
shows that ũ(D) ∩ R× x̄(R) = ∅ for every ũ ∈ Y, and a bubbling-off analysis
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proves that the family {ũt} has uniform C∞-bounds on a fixed neighborhood
of ∂D. Take {tn} ⊂ I, tn → t∗. If the sequence {ũtn} is C1-bounded then, up
to a subsequence, we may assume ũtn → ũ. It is possible to show that ũ ∈ Y
and, by the implicit function theorem, τ takes values larger than t∗ on Y,
a contradiction. Thus bubbling-off occurs and one finds a non-empty finite
set Γ ⊂ D \ ∂D and a non-constant finite-energy J̃k-holomorphic map ṽ =
(b, v) : D \ Γ→ R× S3 such that, up to selection of a subsequence, ũtn → ṽ
in C∞loc(D \ Γ) as n→∞. Note that E(ṽ) ≤ supnE(ũtn) ≤ C. Moreover,
v(∂D) ⊂ Dk \ {e} winds positively and once around e and ṽ is an embedding.
Then

∫
v∗dλk = 0 since J ∈ Jgen(k) and k was fixed large enough. It follows

that v(D \ Γ) ⊂ x̂(R) for some periodic λk-Reeb orbit and, by the proper-
ties of Dk, we must have x̂(R) = x(R) and #Γ = 1. Up to reparametrization
by an element of Möb(D) we may assume Γ = {0}. Hence t∗ = t̄ and the
argument is complete. �

From now on we follow closely the arguments from [17, 18]. We fix k
large and consider J and the sequence ũn = (an, un) ∈Mk(J) given by The-
orem 3.7. Let σ(C) > 0 be small enough so that

• Every closed λk-Reeb orbit has action strictly larger than σ(C).
• If P ′ = (x′, T ′) and P ′′ = (x′′, T ′′) are closed λk Reeb orbits satisfying
T ′, T ′′ ≤ C and T ′ �= T ′′ then |T ′ − T ′′| > σ(C).

Fix ε > 0 small enough so that∣∣∣∣∣
∫
Bε(0)

u∗ndλk − T̄
∣∣∣∣∣ ≤ σ(C)/2, for n� 1.

Note that ε exists sincemr = limn→∞
∫
Br(0)

u∗ndλk exists for every r > 0 and
mr → T̄ as r → 0. Following [15], we take zn ∈ D satisfying an(zn) = infD an
and δn > 0 such that u∗ndλk integrates to σ(C) over Bε(0) \Bδn

(0). Then
zn → 0 and δn → 0. Choose Rn →∞ such that δnRn → 0 and define

(34) ṽn = (bn, vn) : BRn
(0)→ R× S3

by bn(z) = an(zn + δnz)− an(zn + 2δn) and vn(z) = un(zn + δnz). Up to the
choice of a subsequence we find a finite set Γ1 ⊂ C and a finite-energy J̃k-
holomorphic map ṽ = (b, v) : C \ Γ1 → R× S3 such that

ṽn → ṽ in C∞loc(C \ Γ1).
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Clearly E(ṽ) ≤ supnE(ṽn) ≤ supnE(ũn) ≤ C. Γ1 consists of negative punc-
tures and E(ṽ) > 0 if Γ1 �= ∅. If Γ1 = ∅ then

T̄ ∼
∫
Bε(0)

u∗ndλk =
∫
Bε(0)\Bδn (0)

u∗ndλk +
∫
Bδn (0)

u∗ndλk → σ(C) +
∫

D

v∗dλk,

which proves E(ṽ) > 0 in this case as well. By Theorem 2.10, ṽ is asymptotic
to some closed λk-Reeb orbit at the (unique) positive puncture∞, and using
results of finite-energy cylinders with low dλk-area one can prove that this
asymptotic orbit is P̄ . Here it is crucial that λk is non-degenerate.

Lemma 3.8.
∫

C\Γ1
v∗dλk > 0.

Proof. If not then, by Theorem 2.18, there is a non-constant polynomial
p : C→ C such that Γ1 = p−1(0) and ṽ = FP ◦ p. Here P = (x, T ) is some
simply covered λk-Reeb orbit and FP : C \ {0} → R× S3 is the map z =
e2π(s+it) 	→ (Ts, x(Tt)). It is easy to see that 0 ∈ Γ1 since bn(0) = infBRn (0)

bn
and points of Γ1 are negative punctures. Since P̄ is simply covered we have
P̄ = P and p(z) = Az for some A �= 0. We can estimate as above

σ(C)
2
≥
∫
Bε(0)

u∗ndλk − T̄ =
∫
Bε(0)\Bδn (0)

u∗ndλk +
∫
Bδn (0)

u∗ndλk − T̄

→ σ(C) +
∫
∂D

v∗λk − T̄ = σ(C) + T̄ − T̄ = σ(C),

which is a contradiction. �
Let us fix a non-vanishing global section

(35) Z : S3 → ξ.

Lemma 3.9. Consider the projection πk : TS3 → ξ along the Reeb direction
RRk. Then πk · dun is nowhere vanishing over D when n is large enough.

Proof. If n is large then, in view of Theorem 3.7, un(∂D) ⊂ O, where O ⊂ Dk
is a neighborhood of ∂Dk = x̄(R) satisfying p ∈ O \ x̄(R)⇒ Rk|p �∈ TpDk.
In the following, we introduce polar coordinates (r, θ) ∈ (0, 1]× R/2πZ �
D \ {0} and denote by ∂θun and ∂run the corresponding partial derivatives.
If z ∈ ∂D and πk · dun(z) = 0 then 0 = λk · ∂θun(z) = ∂ran(z), contradicting
the strong maximum principle (Δa ≥ 0).

Let V be a vector field on Dk parametrizing the characteristic foliation
of Dk which points out of Dk at the boundary. Then V has a unique non-
degenerate source at e. We claim that πk · ∂θun(z) and V ◦ un(z) are linearly
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independent in ξ|un(z) for every z ∈ ∂D and n large enough. If not we find
c1, c2 ∈ R, z ∈ ∂D and n so that un(∂D) ⊂ O and

0 = c1πk · ∂θun(z) + c2V (un(z)) = πk · (c1∂θun(z) + c2V (un(z))).

Consequently c1∂θun(z) + c2V (un(z)) ∈ RRk|un(z) ∩ Tun(z)Dk = 0 which
implies c1∂θun(z) + c2V (un(z)) = 0 since un(z) ∈ O \ x̄(R), ∀z ∈ ∂D. If c1 =
0, then c2 = 0 because V does not vanish on un(∂D). If not then λk vanishes
on ∂θun(z) contradicting the strong maximum principle. In particular, we
showed

wind(πk · ∂θun(ei2πt), V ◦ un(ei2πt)) = 0.

By Theorem 3.7 the embedded loops t 	→ un(ei2πt) are transverse to ξ and
bound a disk Fn in Dk containing e, when n is large. Since e is the only
(positive) zero of the section V of ξ|Fn

standard degree theory gives

wind(V ◦ un(ei2πt), Z ◦ un(ei2πt)) = 1.

If x+ iy are standard holomorphic coordinates on D then, since πk · dun
does not vanish over ∂D when n� 1, we get

wind(πk · ∂xun(ei2πt), πk · ∂θun(ei2πt)) = wind(1, iei2πt) = −1.

All the above winding numbers were computed endowing ξ with the orien-
tation induced by dλk, see Remark 2.13. Finally we compute

wind(πk · ∂xun(ei2πt), Z ◦ un(ei2πt))
= wind(πk · ∂xun(ei2πt), πk · ∂θun(ei2πt))
+ wind(πk · ∂θun(ei2πt)), V ◦ un(ei2πt))
+ wind(V ◦ un(ei2πt), Z ◦ un(ei2πt))

= −1 + 0 + 1 = 0.

Thus πk · ∂xun does not vanish when n is large enough. �

We will now use Lemmas 3.8 and 3.9 to show that ṽ is an embedded fast
finite-energy plane. In view of Theorem 2.10 and Definition 2.9, there exists
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R0 > 1 such that πk · dv(z) �= 0 if |z| ≥ R0. If R ≥ R0 is fixed then

wind(πk · ∂rv(Rei2πt), Z ◦ v(Rei2πt))
= lim

n→∞wind(πk · ∂rvn(Rei2πt), Z ◦ vn(Rei2πt))

= lim
n→∞wind

(
πk · d

dρ

∣∣∣∣
ρ=1

un(zn + ρδnRe
i2πt), Z ◦ un(zn +Rδne

i2πt)

)
= lim

n→∞wind(πk · ∂run(ei2πt), Z ◦ un(ei2πt))
= lim

n→∞wind(πk · ∂run(ei2πt), πk · ∂xun(ei2πt))
+ lim
n→∞wind(πk · ∂xun(ei2πt), Z ◦ un(ei2πt))

= 1 + 0 = 1.
(36)

In the third and fourth equalities, we strongly used Lemma 3.9. Z ◦ v is a
non-vanishing section of v∗ξ and (36) implies

wind∞(ṽ,∞, Z ◦ v) = +1.

See Section 2.2.4 for the definitions. Note that ṽ is asymptotic to λk-Reeb
orbits {Pz}z∈Γ with action ≤ E(ṽ) ≤ C. Consequently, since we assumed k is
large, μCZ(Pz) ≥ 3 for every z ∈ Γ. By Theorem 2.11, wind∞(ṽ, z, Z ◦ v) =
wind(e, Z) for some eigenvector e of the asymptotic operator APz

satisfying
APz

e = νe with ν > 0. The inequality μCZ(Pz) ≥ 3 implies

wind∞(ṽ, z, Z ◦ v) ≥ 2.

It follows from Lemma 2.15 that

(37)
0 ≤ windπ(ṽ) = wind∞(ṽ)− 2 + #Γ1 + 1
≤ 1− 2#Γ1 − 2 + #Γ1 + 1 = −#Γ1,

which proves Γ1 = ∅ and ṽ is a fast plane. It only remains to show that ṽ is
an embedding. It is an immersion since windπ(ṽ) = 0 implies πk · dv has no
zeros. Since ṽ is somewhere injective (P̄ is simply covered), self-intersections
are isolated. But if ṽ has self-intersection points then positivity and stability
of self-intersections of pseudo-holomorphic immersions implies that the disks
ũn have self-intersections. This would be a contradiction since the ũn are
embeddings. The proof of Theorem 3.4 is complete.
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3.3. Obtaining fast planes in the degenerate case

We still consider an arbitrary sequence hk as in (29), and the contact forms
λk = hkλ = hkfλ0. Then P̄ = (x̄, T̄ ) is a prime closed orbit of the Reeb
vector field Rk associated with λk. We let σk > 0 be a constant defined as
in the previous subsection, satisfying:

• Every closed λk-Reeb orbit has action larger than σk.
• If P ′ = (x′, T ′) and P ′′ = (x′′, T ′′) are closed λk-Reeb orbits satisfying
T ′, T ′′ ≤ T̄ and T ′ �= T ′′ then |T ′ − T ′′| > σk.

Let J ∈ J , k be a fixed large integer and H ⊂ R× S3 be a compact set.
Consider the set Λ(k, J,H) of embedded fast finite-energy J̃k-holomorphic
planes ũ = (a, u) : C→ R× S3 asymptotic to P̄ satisfying the normalization
conditions

(38) ũ(0) ∈ H, ∫
D
u∗dλk = T̄ − σk.

Here J̃k is the almost-complex structure defined as in (10) using the vector
field Rk and the given complex structure J : ξ → ξ. The following statement
is Theorem 2.2 from [17] applied to our particular situation. The arguments
are implicitly contained in Appendix A.

Theorem 3.10. Suppose every λk-Reeb orbit P̂ = (x̂, T̂ ) with T̂ ≤ T̄ sat-
isfies μCZ(P̂ ) ≥ 3. If H ∩ R× x̄(R) = ∅ then Λ(k, J,H) is C∞loc-compact.

It is important to note that the choice of J ∈ J in the statement above is
arbitrary. The next statement is a direct application of Theorem 2.5 from [17]
to our case.

Theorem 3.11. Let J ∈ J and k be such that there exists an embedded fast
finite-energy J̃k-holomorphic plane asymptotic to P̄ . Suppose that Λ(k, J,H)
is C∞loc-compact for every compact subset H ⊂ R× S3 with H ∩ R× x̄(R) =
∅. Then for every l ≥ 1 one finds a C l-map

ũ = (a, u) : R/Z× C→ R× S3

satisfying:

1) Each ũ(ϑ, ·) is an embedded fast finite-energy J̃k-holomorphic plane
asymptotic to P̄ .
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2) u(ϑ,C) ∩ x̄(R) = ∅ ∀ϑ ∈ R/Z and the map u : R/Z× C→ S3 \ x̄(R)
is an orientation preserving C l-diffeomorphism.

3) Each u(ϑ,C) is a global surface of section for the λk-Reeb flow.

There is an important consequence.

Lemma 3.12. Every periodic λ-Reeb orbit geometrically different from P̄
links non-trivially with P̄ .

Proof. It is important to note that, as our arguments show so far, the
conclusions of Theorem 3.4 and Theorem 3.10 are true for a sequence of
contact forms gkλ, where {gk} is an arbitrary sequence of functions as
in (29). Let us suppose, by contradiction, that there exists some λ-Reeb
orbit P̂ = (x̂, T̂ ) satisfying x̂(R) �= x̄(R) which is not linked to P̄ . We find a
sequence gk : S3 → R of smooth functions satisfying gk → 1 in C∞, gk ≡ 1
and dgk ≡ 0 on x̂(R) ∪ x̄(R), such that gkλ are non-degenerate contact forms.
In particular, P̄ and P̂ are periodic orbits for the Reeb flow of gkλ. If k is
large enough the conclusions of theorems 3.4 and 3.10 are true for the con-
tact forms gkλ. Then, by Theorem 3.11 every periodic Reeb orbit for the
Reeb flow of gkλ (geometrically distinct of P̄ ) is linked with P̄ , but this
contradicts the fact that P̂ is not linked to P̄ . �

Our goal is now to produce fast planes in the degenerate case. The first
step in our construction is the following lemma asserting that if fast planes
exist then they exist abundantly. The proof is postponed to the appendix.

Lemma 3.13. Let M be a closed 3-manifold equipped with a non-degenerate
contact form α such that c1(ξ)|π2(M) ≡ 0, where ξ = kerα is the induced
contact structure. Suppose P = (x, T ) is a prime closed α-Reeb orbit and
let Jfast(P ) be the set of dα-compatible complex structures J : ξ → ξ such
that there exist embedded fast finite-energy J̃-holomorphic planes asymptotic
to P . Here J̃ is defined as in (10) using J and the Reeb vector field of α. If
every contractible α-Reeb orbit P ′ = (x′, T ′) with T ′ ≤ T satisfies μCZ(P ′) ≥
3, then either Jfast(P ) = J (ξ, dα) or Jfast(P ) = ∅.

The second step is to prove

Lemma 3.14. For every p ∈ S3 \ x̄(R) and every J ∈ J (ξ, dλ) there exists
an embedded fast finite-energy J̃-holomorphic plane ũ = (a, u) : C→ R× S3
asymptotic to P̄ and satisfying p ∈ u(C).
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The remaining of this subsection is devoted to the proof of Lemma 3.14.
Let us fix p ∈ S3 \ x̄(R) and J ∈ J (ξ, dλ) arbitrarily. Since λ is dynam-
ically convex we find that if k is large enough then the conclusions of
Theorem 3.4 and Theorem 3.10 are simultaneously satisfied for the con-
tact form λk. In view of Lemma 3.13 and Theorem 3.11 we obtain, for k
large, an embedded fast J̃k-holomorphic plane ũk = (ak, uk) asymptotic to
P̄ satisfying p ∈ uk(C). Here J̃k is the R-invariant almost complex structure
on R× S3 given by J̃k · ∂a = Rk, J̃k|ξ ≡ J where Rk is the Reeb vector field
associated with λk. Setting J̃ by J̃ · ∂a = R, J̃ |ξ ≡ J , then J̃k → J̃ in C∞.
We would like to examine now the limiting behavior of the sequence ũk.

Let γ > 0 be a number so that γ < T ′ for every closed Reeb orbit
P ′ = (x′, T ′) of λ and of λk, for every k. The number γ exists since, other-
wise, we would find kj →∞ and Tj-periodic λkj

-Reeb orbits with Tj → 0.
Then the Arzelà–Ascoli theorem would provide a subsequence of these orbits
which converge to a rest point of the λ-Reeb flow, a contradiction. After
reparametrizing we may assume

(39)
∫

D
u∗kdλ = T̄ − γ and ak(0) = infC ak.

As usual, consider

(40) Γ = {z ∈ C | ∃zj → z and kj such that |dũkj
(zj)| → ∞}.

By Lemma 2.20 we may assume, up to the choice of a subsequence, that
#Γ <∞ and (39) implies Γ ⊂ D. Choosing a further subsequence still
denoted by ũk, there is no loss of generality, perhaps after discarding a few
points of Γ and translating in the R-coordinate, to assume that ∀z ∈ Γ ∃zk →
z such that |dũk(zk)| → ∞, and that we find a smooth J̃-holomorphic map
ũ = (a, u) : C \ Γ→ R× S3 satisfying ũk → ũ in C∞loc(C \ Γ) and E(ũ) ≤ T̄ .
We claim that ũ is non-constant. This is true if Γ �= ∅ since every z ∈ Γ is a
bubbling-off point and, consequently, must have positive mass (12). If Γ = ∅
then this follows from

∫
D
u∗dλ = T̄ − γ > 0.

The following statement is Lemma 6.24 from [17]. Its original proof is
contained in [10].

Lemma 3.15. If α is a contact form on S3 and w̃ is an embedded fast finite-
energy plane in R× S3 asymptotic to a closed (necessarily prime) Reeb orbit
P̃ = (x̃, T̃ ) satisfying μCZ(P̃ ) ≥ 3, then w̃(C) ∩ R× x̃(R) = ∅.

Lemma 3.16. u
(
e2π(s+it)

)→ x̄(T̄ t) in C∞(R/Z, S3) mod R/Z as s→+∞.
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Proof. As explained in [7], see 2.2.2, it is always possible to define the mass
at a puncture z of ũ by

m = − lim
ρ→0+

∫
∂Bρ(z)

u∗λ.

m = 0⇔ z is removable. Each z ∈ Γ is non-removable and negative, from
where we conclude ∞ is a positive puncture. By the fundamental results
from [7], for every sequence Rn →∞ one finds a subsequence Rnj

, a real
constant c and a periodic λ-Reeb orbit P̂ = (x̂, T̂ ) such that u(Rnj

ei2πt)→
x̂(T̂ t) as j →∞. Arguing by contradiction, assume P̂ �= P̄ . If P̂ and P̄ are
geometrically distinct then, when j is large, u(Rnj

ei2πt) is linked to P̄ in view
of Lemma 3.12. Since for every j one has uk(Rnj

ei2πt)→ u(Rnj
ei2πt) then

uk(Rnj
ei2πt) is also linked to P̄ when j and k are large. Therefore ũk(C) ∩

R× x̄(R)�= ∅, contradicting Lemma 3.15. If P̂ and P̄ are not geometrically
distinct, then P̂ = (x̄, NT̄ ), for some N ≥ 2. But this implies E(ũ) = NT̄ >
T̄ , again a contradiction. �

Lemma 3.17. We have that Γ = ∅, π · du is nowhere vanishing and

lim
s→+∞wind(t 	→ π · ∂su(s, t), t 	→ Z ◦ u(s, t)) = 1,

where u(s, t) = u(e2π(s+it)) and Z is the global non-vanishing section (35).

Proof. If Γ = ∅ then ∫
D
u∗dλ = T̄ − γ > 0. Assume Γ �= ∅ and π · du vanishes

identically. In view of Lemma 3.16 and of Theorem 2.18, we have #Γ =
1 and, moreover, there are complex constants A �= 0, D such that ũ(z) =
FP̄ (Az +D), where FP̄ (e

2π(s+it)) = (T̄ s, x̄(T̄ t)). If |D/A| < 1 then

T̄ =
∫
∂D

u∗λ = lim
k

∫
D

u∗kdλ = T̄ − γ,

an absurdity. Thus Γ = {−D/A} ⊂ ∂D and we find z′ close to −D/A such
that a(z′) < a(0)− 1, implying ak(z′) < ak(0) for k large and contradict-
ing (39). We showed Γ �= ∅ ⇒ ∫

u∗dλ > 0.
As observed in the proof of Lemma 3.16, any given z ∈ Γ is a negative

puncture and we can find ρn → 0+ and a periodic λ-Reeb orbit P ′ = (x′, T ′)
such that u(z + ρne

i2πt)→ x′(T ′t+ c) for some c ∈ R. Since
∫
u∗dλ > 0, we

have T ′ < T̄ , and this implies P ′ and P̄ are geometrically distinct since P̄
is prime. Fixing n large we conclude that u(z + ρne

i2πt) is linked to P̄ by
Lemma 3.12, and hence so is uk(z + ρne

i2πt) when k is large. Consequently,
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ũk(C) ∩ R× x̄(R)�= ∅, contradicting Lemma 3.15. So far we showed Γ = ∅
and

∫
u∗dλ > 0.

By the similarity principle there exists ρn → +∞ such that π · du
(ρnei2πt) �= 0, ∀t. Since windπ(ũk) = 0 for each k, we compute for any fixed n:

wind(t 	→π · ∂su(ρnei2πt), t 	→ Z ◦ u(ρnei2πt))
= lim

k
wind(t 	→ π · ∂suk(ρnei2πt), t 	→ Z ◦ uk(ρnei2πt))

= lim
k
({algebraic count of zeros of π · duk on Bρn

}+ 1) = 1.

Taking the limit as n→ +∞, we use standard degree theory to conclude
that the algebraic count of zeros of π · du on C is 1− 1 = 0. The proof is
complete since all zeros count positively. �

So far, we have proved that ũ is a J̃-holomorphic finite-energy plane
asymptotic to P̄ only in the sense of Lemma 3.16. If we can show ∞ is a
non-degenerate puncture of ũ (in the sense of Definition 2.9) then it will
follow from Lemma 3.17 that ũ is a fast plane.

The following statement is a combination of the non-trivial lemmas 8.1
and 8.3 from [14] with a small modification of the analysis from Appendix B.

Lemma 3.18. Given any Martinet tube (U,Ψ) of P̄ , there exists R0 > 0
such that

⋃
k uk(C \BR0) ⊂ U and, moreover, if we write

(idR ×Ψ) ◦ ũk(e2π(s+it)) = (ak(s, t), θk(s, t), xk(s, t), yk(s, t)) for e2πs ≥ R0

then one finds constants ck, dk ∈ R such that

lim
s→+∞ sup

k,t

(
|Dβxk(s, t)|+ |Dβyk(s, t)|

)
= 0,

lim
s→+∞ sup

k,t

(
|Dβ[ak(s, t)− T̄ s− dk]|+ |Dβ[θk(s, t)− t− ck]|

)
= 0

for every partial derivative Dβ = ∂β1
s ∂

β2
t .

We choose a Martinet tube (U,Ψ) for λ and P̄ , as described in Defi-
nition 2.7, so that the section t 	→ (Ψ∗∂x) ◦ x̄(T̄ t) of ξP̄ extends as a non-
vanishing section for every disk spanning P̄ . Here B ⊂ C is an open ball
centered at the origin and Ψ : U → R/Z×B is a diffeomorphism satisfying
the following properties.
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(1) Ψ(x̄(T̄ θ)) = (θ, 0, 0), ∀θ ∈ R/Z,

(2) Ψ∗(g(dθ + xdy)) = λ for some smooth g : R/Z×B → R
+ satisfying

g ≡ T̄ and dg ≡ 0 on R/Z× 0.
It follows from the particular form of the λk that

Ψ∗λk = gk(dθ + xdy), gk → g in C∞loc, g
k ≡ T̄ and dgk ≡ 0 on R/Z× {0}.

We shall write ∂θ, ∂x, ∂y for the vectors Ψ∗∂θ,Ψ∗∂x,Ψ∗∂y. In the frame
{∂x,−x∂θ + ∂y}, the almost complex structure J is represented by a matrix

j =
(
j11 j12
j21 j22

)
.

The Reeb vector Rk associated with λk is represented in these coordinates
by

Rk = (gk)−2(gk + xgkx, g
k
y − xgkθ ,−gkx) = (R1k, R

2
k, R

3
k).

An analogous formula, with g in the place of gk, holds for the Reeb vector
R = (R1, R2, R3) associated with λ. Set

Yk = (R2k, R
3
k), Y = (R2, R3)

and

Dk(θ, z) =
∫ 1
0 Y

′
k(θ, τz)dτ, D(θ, z) =

∫ 1
0 Y

′(θ, τz)dτ,

where the prime denotes a derivative with respect to the variable z = (x, y).
By Lemma 3.18 we can find s0 � 1 so that the functions

(41)

zk(s, t) = (xk(s, t), yk(s, t)), z(s, t) = (x(s, t), y(s, t)),

Dk(s, t) = Dk(θk(s, t), zk(s, t)), D(s, t) = D(θ(s, t), z(s, t)),

jk(s, t) = j(θk(s, t), zk(s, t)), j(s, t) = j(θ(s, t), z(s, t))

are all well defined. Here a, ak, θ, θk, x, xk, y and yk are defined as in the
statement of Lemma 3.18. Then Cauchy–Riemann equations can be written
as

(42)
∂sak − gk(θk, zk)(∂tθk + xk∂tyk) = 0,
∂tak + gk(θk, zk)(∂sθk + xk∂syk) = 0

and

(43) ∂szk + jk(s, t)∂tzk + Sk(s, t)zk = 0,
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where Sk(s, t) = [∂takI − ∂sakjk(s, t)]Dk(s, t). The map S(s, t) is defined
analogously. Similar equations hold for a(s, t), θ(s, t) and z(s, t).

We can assume ck → c for some c ∈ R. Let us consider

(44)
S∞k (t) := −T̄ j(t+ ck, 0, 0)Y ′k(t+ ck, 0, 0),
S∞(t) := −T̄ j(t+ c, 0, 0)Y ′(t+ c, 0, 0),

where the ck are given by Lemma 3.18. This lemma and the properties of
the functions gk and g readily imply that

(45)

lim
s→+∞ sup

t,k
|Dγ [Sk(s, t)− S∞k (t)]| = 0 ∀γ,

lim
s→+∞ sup

t
|Dγ [S(s, t)− S∞(t)]| = 0 ∀γ.

lim
k→+∞

sup
t
|Dm[S∞k (t)− S∞(t)]| = 0 ∀m.

Note that −j(t+ ck, 0, 0)∂t − S∞k (t) is the representation of the asymp-
totic operator at P̄ of the contact form λk with respect to the dλk-symplectic
frame {ek1 = ∂x/

√
gk, ek2 = (−x∂θ + ∂y)/

√
gk}. Analogously,−j(t+ c, 0, 0)∂t −

S∞(t) represents the asymptotic operator at P̄ of the form λ with respect
to the dλ-symplectic frame {e1 = ∂x/

√
g, e2 = (−x∂θ + ∂y)/

√
g}.

Take a smooth function M : R/Z×B → Sp(1) satisfying

(46) M(θ, x, y)j(θ, x, y) = J0M(θ, x, y) for all (θ, x, y) ∈ R/Z×B.

M exists since J is compatible with dλ and dλk ∀k. Setting
(47)

Ak(s, t) =M(θk(s, t), xk(s, t), yk(s, t)), ζk(s, t) = Ak(s, t)zk(s, t),
Λk(s, t) = (AkSk − ∂sAk − J0∂tAk)A−1k ,

where Sk = Sk(s, t) and Ak = Ak(s, t) then, in view of (43)

(48) ∂sζk + J0∂tζk + Λkζk = 0.

Defining functions A, Λ and ζ of (s, t) analogously using M , S and z we
obtain the corresponding equation

(49) ∂sζ + J0∂tζ + Λζ = 0.
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Defining

(50)
C∞k (t) = (M(t+ ck, 0, 0)S∞k (t)− J0∂tM)M(t+ ck, 0, 0)−1,
C(t) = (M(t+ c, 0, 0)S∞(t)− J0∂tM)M(t+ c, 0, 0)−1,

then Lemma 3.18 and (45) together imply

(51)

lim
s→+∞ sup

t,k
|Dγ [Λk(s, t)− C∞k (t)]| = 0 ∀γ,

lim
s→+∞ sup

t
|Dγ [Λ(s, t)− C∞(t)]| = 0 ∀γ,

lim
k→+∞

sup
t
|Dm[C∞k (t)− C∞(t)]| = 0 ∀m.

One checks that −J0∂t − C∞k (t) and −J0∂t − C∞(t) are the representations
of the corresponding asymptotic operators at P̄ with respect to other sym-
plectic frames.

Remark 3.19 (Cl,α,δ
0 -topology). If l ∈ Z

+, α ∈ (0, 1), δ < 0 and s0 ∈ R

consider the space C l,α,δ0 ([s0,∞)× R/Z,Rm) defined in [10] as the set of
maps f(s, t) satisfying

• e−δsDβf(s, t) ∈ C0,α on [s0,∞)× R/Z, ∀|β| ≤ l,
• limR→+∞ ‖e−δsDβf(s, t)‖C0,α([R,+∞)×S1) = 0 ∀ |β| ≤ l.

Then C l,α,δ0 ([s0,∞)× R/Z,Rm) is a Banach space with the norm

(52) ‖f‖l,α,δ = ‖e−δsf(s, t)‖Cl,α([s0,∞)×R/Z).

The following proposition should be seen as some kind of uniform asymp-
totic analysis. The proof is postponed to the appendix, the arguments are
essentially found in [8].

Proposition 3.20. Suppose the maps Kk : [0,+∞)× R/Z→ R
2n×2n (k ≥

1) and K∞
k ,K

∞ : R/Z→ R
2n×2n are smooth and satisfy:

(1) K∞
k (t),K

∞(t) are symmetric ∀t, and K∞
k → K∞ in C∞ as k → +∞.

(2) lims→+∞ supt,k |Dγ [Kk(s, t)−K∞
k (t)]| = 0 ∀γ.

Consider the unbounded self-adjoint operator L on L2(R/Z,R2n) defined by

Le = −J0ė−K∞e.
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Denote E = C l,α,δ0

(
[0,+∞)× R/Z,R2n

)
for some δ < 0 and l ≥ 1. Suppose

{Xk} ⊂ E are smooth maps satisfying

(53) ∂sXk + J0∂tXk +KkXk = 0 ∀k.

If δ �∈ σ(L) and Xk is C∞loc-bounded then {Xk} has a convergent subsequence
in E.

The section κ = Z ◦ x̄(T̄ t) is a non-vanishing section of the bundle (x̄T̄ )∗ξ
which extends to any disk spanning P̄ . Since the contact forms λk are non-
degenerate and C∞-convergent to λ, and the Conley–Zehnder index of P̄
viewed as λk-Reeb orbit is ≥3 if k is large enough, there exists δ < 0 such
that the eigenvalues with winding 1 with respect to κ of the asymptotic
operators at P̄ corresponding to λk are less than 2δ. This follows from the
description of the Conley–Zehnder index via self-adjoint operators described
in 2.1.2, and from the continuity of the spectrum of the asymptotic operators
with respect to small perturbations of the contact form. Also, δ can be
chosen so that it does not lie on the spectrum of the asymptotic operator
at P̄ corresponding to λ. By the identities wind∞(ũk) = 1 we know that,
as explained in Remark 2.17, the asymptotic eigenvalue of ũk is ≤2δ for
every k.

Using the number δ and an arbitrary choice of l ≥ 1 to define E as in the
statement of Proposition 3.20, we conclude from Theorem 2.11 that all the
zk(s, t), and consequently also the ζk(s, t), belong to E. Note that ζk → ζ
in C∞loc. In view of (51) we can apply the above proposition to conclude
that, up to selection of a subsequence, ζk converges in E. This implies that
ζ ∈ E and ζk → ζ in E. In particular, since l ≥ 1 was arbitrary, one finds
0 < r < −δ/2 such that

(54) lim sup
s→+∞

ers|Dγz(s, t)| = 0, ∀γ.

Let us denote

Fk(s, t) =
(
ak(s, t)− T̄ s− dk
θk(s, t)− t− ck

)
.

Then, using (54) and (42), we have an equation

∂sFk +
(

0 −T̄
T̄−1 0

)
∂tFk +Δk = 0
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for some sequence of functions Δk(s, t) satisfying

lim
s→+∞ sup

k,t
ers|DγΔk(s, t)| = 0.

One can now argue as in [8] to get r > 0 (independent of k � 1) satisfying

lim
s→+∞ sup

k,t
ers|DγFk(s, t)| = 0, ∀γ.

In particular, taking the limit as k →∞, we conclude that

(55) ers(|∇[a(s, t)− Ts]|+ |∇[θ(s, t)− t]|)→ 0 as s→ +∞.

Equations (54) and (55), together with Lemmas 3.16 and 3.17, imply
that ũ has a non-degenerate puncture at ∞, in the sense of Definition 2.9.
This shows ũ is a fast plane.

It remains to check that ũ is embedded. By Lemma 3.17, ũ is an immer-
sion. Self-intersections of ũ must be isolated since, otherwise, one could
argue as in [9] using Carleman’s similarity principle to conclude that ũ is a
non-trivial cover of some (somewhere injective) finite-energy plane. This
would imply that P̄ is not simply covered. Thus, self-intersections of ũ
must be isolated. Stability and positivity of intersections would provide self-
intersections of the ũk for k large enough, a contradiction. Consequently, ũ
has no self-intersections. If wk ∈ C satisfies uk(wk) = p then supk |wk| <∞
by Lemma 3.18, so we may assume {wk} is convergent in C. It follows that
p ∈ u(C), and Lemma 3.14 is proved.

3.4. Constructing the global sections

The construction of an open book decomposition with disk-like pages and
binding P̄ follows arguments from [14] which are standard by now. Applying
Theorem 2.3 from [17] to our situation we get

Lemma 3.21. Let J ∈ J (ξ, dλ) and ũ = (a, u) be an embedded J̃-holo-
morphic fast finite-energy plane asymptotic to P̄ . Then u(C) ∩ x̄(R) = ∅ and
u : C→ S3 \ x̄(R) is a proper embedding. Moreover for any l there exists a
C l-embedding f : C×Br(0)→ R× S3, where Br(0) ⊂ R

2 denotes the ball of
radius r centered at the origin, satisfying:

(1) Each f(·, τ), τ ∈ Br(0), is an embedded fast finite-energy J̃-holomorphic
plane asymptotic to P̄ and f(·, 0) = ũ.
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(2) If τ0 ∈ Br(0) and ũk are embedded J̃-holomorphic fast finite-energy
planes asymptotic to P̄ satisfying ũk → f(·, τ0) in C∞loc, then there exist
τk → τ0 and complex numbers Ak → 1, Bk → 0 such that ũk(Akz +
Bk) = f(z, τk), ∀z ∈ C.

Note that we need no generic assumptions on λ, like being non-degene-
rate or Morse–Bott. We refer to Section 6 from [17] for details.

We also need an uniqueness statement for fast planes which is Lemmas
6.23 and 6.25 from [17] combined. The proof is exactly the same of that of
Theorem 4.11 from [9].

Lemma 3.22. Let ũ = (a, u) and ṽ = (b, v) be embedded fast finite-energy
planes asymptotic to P̄ . Then either u(C) = v(C) or u(C) ∩ v(C) = ∅. In
the first case, one finds complex constants B and A �= 0 and a real constant
c such that ũ(Az +B) = (b(z) + c, v(z)) ∀z ∈ C.

Let p0 ∈ S3 \ x̄(R) be a recurrent point for the Reeb flow φt. Using
Lemma 3.14 we find an embedded fast finite-energy plane ũt = (at, ut) asymp-
totic to P̄ satisfying ut(0) = φt(p0) and at(0) = 0, for every t ∈ R. The Reeb
vector field R is transverse to u0(C) since windπ(ũ0) = 0. Thus

C = {t ∈ R | φt(p0) ∈ u0(C)}

is discrete, non-empty and closed. Our assumption on p0 implies C \ {0} �= ∅
and we will denote T0 = inf C ∩ R

+ > 0. Then uT0(C) = u0(C) by
Lemma 3.22.

Lemma 3.23. If 0 ≤ t′ < t′′ < T0 then ut
′
(C) ∩ ut′′(C) = ∅.

Proof. We argue by contradiction and assume ut
′
(C) ∩ ut′′(C) �= ∅. By

Lemma 3.22 we must have Π := ut
′
(C) = ut

′′
(C). Thus t′ > 0 by the def-

inition of T0 since t′′ < T0. We can concatenate the path t ∈ [t′, t′′] 	→ φt(p0)
to a path contained in Π to obtain a closed loop Γ in S3 \ x̄(R). Γ intersects
each plane {ut(C) | t′ < t < t′′} transversally and positively, thus Γ is linked
with P̄ . Consequently Γ must also intersect u0(C), again a contradiction to
the definition of T0. �

As before we consider a constant

0 < γ < inf{T | P = (x, T ) is a closed Reeb orbit of λ}.
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Lemma 3.24. If ṽk = (bk, vk) and ṽ = (b, v) are fast embedded finite-energy
planes asymptotic to P̄ satisfying ṽk → ṽ in C∞loc, and

∫
D
v∗kdλ = T̄ − γ then

for every neighborhood U of x̄(R) there exists R0 > 0 such that |z| ≥ R0 ⇒
vk(z) ∈ U .

Proof. This proof is essentially the proof of Lemma 8.1 from [14]. Let U be
any given neighborhood of x̄(R). Assuming the lemma is false we find zk ∈ C

satisfying |zk| → +∞ and vk(zk) ∈ ∂U . Defining (sk, tk) by zk = e2π(sk+itk),
we may consider a sequence w̃k = (dk, wk) : R× R/Z→ R× S3 of finite-
energy J̃-holomorphic cylinders defined by

dk(s, t) = bk(e2π((s+sk)+i(t+tk)))− bk(zk), wk(s, t) = vk(e2π((s+sk)+i(t+tk))).

For any fixed L > 0 our assumptions on the ṽk imply that∫
[−L,L]×R/Z

w∗kdλ ≤ γ

when k is large. Thus |dw̃k| is C0
loc-bounded by Lemma 2.20. Since w̃k(0, 0) ∈

0× S3 ∀k then, up to the choice of a subsequence, we may assume w̃k → w̃ =
(d,w) in C∞loc where w̃ : R× R/Z→ R× S3 is a finite-energy J̃-holomorphic
map. Moreover,

∫
w∗dλ ≤ γ and we may estimate∫

R/Z
x̄∗̄Tλ−

∫
R/Z

wk(s, ·)∗λ ≤
∫

C\D
v∗kdλ ≤ γ, ∀s ∈ R.

This implies

T̄ ≥
∫

R/Z
w(s, ·)∗λ ≥ T̄ − γ, ∀s ∈ R

Thus w̃ is not a constant map, and if we identify R× R/Z � CP 1 \ {0,∞}
via z � e2π(s+it) then 0 is a non-removable negative puncture. Let us choose
an arbitrary sequence sn → −∞. By results from [7] sn has a subsequence,
still denoted sn, for which the following holds: there is a periodic Reeb orbit
P− = (x−, T−) and a constant c ∈ R such that w(sn, t)→ x−(T−t+ c) in
C∞(R/Z, S3) as n→∞.

We claim P− is geometrically distinct of P̄ . If
∫
w∗dλ = 0 then, by The-

orem 2.18, we know that w̃(R× R/Z) ⊂ R× x−(R). Consequently x−(R)
contains a point in ∂U , proving our claim in this case. If

∫
w∗dλ > 0 then,

by Stokes theorem, T− < T̄ , again implying our claim since T̄ is the minimal
period of x̄.



836 U.L. Hryniewicz

Consequently, P− is linked to P̄ and, fixing n large enough, so is the
loop t 	→ w(sn, t). Now fixing k large we conclude that t 	→ vk(Rnei2πt) is
linked to P̄ where Rn = e2πsn . This implies intersections of ṽk with R× x̄(R),
contradicting Lemma 3.21. �

Lemma 3.25. For every t0 ∈ R and l ≥ 1 there is a C l-map F = (H,G) :
C× Iε(t0)→ R× S3 such that each F (·, t) is an embedded fast finite-energy
plane asymptotic to P̄ and, moreover, that G : C× Iε(t0)→ S3 \ x̄(R) is
an embedding satisfying G(t, 0) = φt(p0) and G(C, t) = ut(C) ∀t ∈ Iε(t0) =
(t0 − ε, t0 + ε).

Note that, by Lemma 3.22,G(C, t) = ut(C) follows fromG(t, 0) = φt(p0).
Note also that the maps G(·, t) and ut(·) might be different.

Proof. Consider the C l-embedding f : C×Br(0)→ R× S3 given by
Lemma 3.21 satisfying f(·, 0) = ũt0(·). Since the curve t 	→ (0, φt(p0)) is
transverse to ũt0(C) at t = t0, we find a small interval I around t0 and unique
C l-smooth curves γ : I → Br(0) and ζ : I → C satisfying γ(t0) = 0, γ′ �= 0
on I, ζ(t0) = 0 and f(ζ(t), γ(t)) = (0, φt(p0)). Let t ∈ I 	→ A(t) ∈ C \ {0} be
a C l-smooth function such that the planes z 	→ f(ζ(t) +A(t)z, γ(t)) have
dλ-area on D equal to T̄ − γ. Then

F (z, t) = (H(z, t), G(z, t)) = f(ζ(t) +A(t)z, γ(t))

is a C l map defined on C× I. Note that DG(0, t0) is non-singular since R
is transverse to ut0(C). Then, possibly after making I smaller, we can find
ρ > 0 such that G|Bρ(0)×I is an embedding of Bρ(0)× I into S3 \ x̄(R).

Now we show that G is an immersion. If not we find (z1, t1) ∈ C× I and
(δz, δt) �= 0 such that DG(z1, t1) · (δz, δt) = 0. Then δt �= 0 since G(·, t1) :
C→ S3 \ x̄(R) is an embedding by Lemma 3.21, and we can assume δt = 1.
Plugging the formula for G and differentiating we get

(56) Df |(ζ(t1)+A(t1)z1,γ(t1)) · (A(t1)δz + ζ ′(t1) +A′(t1)z1, γ′(t1)) = (c, 0)

where (c, 0) ∈ Tũt1 (z1)(R× S3), c �= 0. Denoting f = (h, g), we define

Φ(s, z) = (h(ζ(t1) +A(t1)z, γ(t1)) + cs, g(ζ(t1) +A(t1)z, γ(t1))).

Since f is an embedding, we find unique C l-smooth maps w(s), α(s) ∈ C,
Γ(s) ∈ Br(0) satisfying w(0) = ζ(t1), α(0) = A(t1), Γ(0) = γ(t1), Γ′(0) �= 0
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and

Φ(s, z) = f(w(s) + α(s)z,Γ(s)).

Fix z = z1 and differentiate in s at s = 0

(57) Df |(w(0)+α(0)z1,Γ(0)) · (w′(0) + α′(0)z1,Γ′(0)) = (c, 0).

Subtracting (56) from (57) we get Γ′(0) = γ′(t1). Here we strongly used that
Df is everywhere non-singular. Denoting Q = (w(0),Γ(0)) = (ζ(t1), γ(t1))
we compute

(c,−R(φt0(p0))) =
d

ds

∣∣∣∣
s=0

f(w(s),Γ(s))− d

dt

∣∣∣∣
t=t1

f(ζ(t), γ(t))

= Df |Q · (w′(0)− ζ ′(t1),Γ′(0)− γ′(t1))
= Df |Q · (w′(0)− ζ ′(t1), 0) ∈ Tũt1 (0)ũ

t1(C),

which implies windπ(f(·, γ(t1)) > 0, a contradiction. Thus G is a
C l-immersion.

Note that ut(C) = G(C, t) for every t ∈ I by Lemma 3.22. We now claim
that if I is small enough then G is injective on C× I. Suppose not. Then,
again by Lemma 3.22, there exist sequences tn1 , t

n
2 → t0 such that G(C, tn1 ) =

G(C, tn2 ) ∀n. We find unique zn ∈ C satisfyingG(zn, tn1 ) = G(0, tn2 ) = φtn2 (p0).
We must have lim inf |zn| ≥ ρ > 0 because G is 1–1 on Bρ(0)× I. Also,
{φt(p0) | t ∈ I} does not meet a sufficiently small neighborhood U of x̄(R).
Then Lemma 3.24 implies lim sup |zn| < +∞. Consequently we can assume
zn → z∗ �= 0. This implies G(z∗, t0) = G(0, t0), a contradiction since G(·, t0)
is 1–1 by Lemma 3.21. As remarked before, Lemma 3.22 implies G(C, t) =
ut(C) as claimed. �

Lemma 3.26.
⋃
0≤t<T0

ut(C) = S3 \ x̄(R).

Proof. We will prove that

Ω =
⋃

0<t<T0

ut(C) ⊂ S3 \ u0(C)

is open and closed in the connected set S3 \ u0(C). Let qn ∈ Ω, qn → q ∈ S3 \
u0(C). We use Lemma 3.25 to find 0 ≤ τ1 < · · · < τN ≤ T0, ε > 0 and smooth
maps F i = (H i, Gi) : C× Iε(τi)→ R× S3 such that ∪Ni=1Iε(τi) ⊃ [0, T0] and
Gi(C, t) = ut(C) ∀t ∈ Iε(τi). Moreover, Gi : C× Iε(τi)→ S3 \ x̄(R) is an
embedding for each i. We find tn ∈ (0, T0) such that qn ∈ utn(C). Up to
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the choice of a subsequence, tn → t∗ ∈ [0, T0]. If t∗ ∈ Iε(τi) then ∃zn ∈ C

such that qn = Gi(zn, tn), and supn |zn| <∞ by Lemma 3.24. So, up to
the choice of a further subsequence, we may assume zn → z∗ ∈ C. Con-
sequently q = limnG

i(zn, tn) = Gi(z∗, t∗) ∈ Gi(C, t∗) = ut
∗
(C). Hence t∗ ∈

(0, T0) and q ∈ Ω. Thus Ω is closed in S3 \ u0(C). By Lemma 3.25 Ω is
open in S3 \ u0(C). �

Lemmas 3.23, 3.25 and 3.26 imply that the embedded planes {ut(C) |
t ∈ [0, T0]} are pages of an open book decomposition of S3 with binding P̄ .
We still need to show that each page is a global surface of section for the
Reeb flow.

Lemma 3.27. Let y be a Reeb trajectory in S3 \ x̄(R) and assume that its
ω-limit set does not intersect x̄(R). Then y([a,+∞)) ∩ us(D) �= ∅ for every
a ∈ R and s ∈ [0, T0). Analogously, if we assume the α-limit set of y does
not meet x̄(R) then y((−∞, a]) ∩ us(D) �= ∅ for every a ∈ R and s ∈ [0, T0).

Proof. We only prove the lemma assuming the ω-limit set of y does not meet
x̄(R), the other case is analogous. Fix any a ∈ R and assume y([a,+∞)) ∩
ut0(C) �= ∅ for some t0 ∈ [0, T0). Let

D = {t ∈ (t0, T0) | y([a,+∞)) ∩ ur(C) �= ∅ ∀r ∈ (t0, t)}.

First we show D �= ∅. Consider the embedding G : C× Iε(t0)→ S3 \ x̄(R)
given by Lemma 3.25 satisfying G(C, t) = ut(C) ∀t ∈ Iε(t0), and take τ0 ≥
a such that y(τ0) ∈ ut0(C). One can find a smooth curve γ(τ) such that
γ(τ0) = t0 and y(τ) ∈ G(C, γ(τ)). Since G(C, t0) is transverse to the Reeb
vector we have γ′(τ0) �= 0 and it is easy to check that γ′(τ0) > 0. Thus ∃δ > 0
such that (t0, t0 + δ) ⊂ D.

Now consider t∗ = supD and suppose, by contradiction, that t∗ < T0. By
Lemma 3.25, consider an embedding G∗ : C× Iε(t∗)→ S3 \ x̄(R) satisfying
G∗(C, t) = ut(C) ∀t ∈ Iε(t∗). Take τn ≥ a and tn < t∗ such that tn → t∗ and
y(τn) ∈ utn(D). Thus ∃ unique zn ∈ C satisfying G∗(zn, tn) = y(τn). Using
our hypothesis on the ω-limit set of y we find q ∈ S3 \ x̄(R) such that
y(τn)→ q, after selecting a subsequence. Thus supn |zn| <∞ by Lemma 3.24,
so we may also assume limn zn = z∗ exists. This gives G∗(z∗, t∗) = q. If τn
contains a bounded subsequence then q ∈ y([a,+∞)) which proves
y([a,+∞)) ∩ ut∗(C) �= ∅. If τn → +∞ then, by transversality of the Reeb
vector with ut

∗
(C), we again find that y([a,+∞)) ∩ ut∗(C) �= ∅. Arguing as

in the proof of D �= ∅ we find δ > 0 such that (t∗, t∗ + δ) ⊂ D, contradicting
the definition of t∗. Thus t∗ = T0.
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So far we showed T0 = supD and y([a,+∞) ∩ u0(D) = y([a,+∞) ∩
uT0(D) �= ∅. Repeating the above arguments with 0 in the place of t0 we
conclude that y([a,+∞) ∩ us(D) �= ∅ for every s ∈ [0, T0) as desired. �

Finally, we need to recall the following lemma extracted from [17] and
proved by arguments from [14].

Lemma 3.28. Let ũ = (a, u) be a fast finite-energy plane asymptotic to
P̄ = (x̄, T̄ ). If the ω-limit (α-limit) set of some Reeb trajectory y(t) in S3 \
x̄(R) intersects x̄(R) then ∀a ∈ R ∃t > a (t < a) such that y(t) ∈ u(C).

Lemmas 3.27 and 3.28 imply that each page us(C) is a global surface of
section, for any s ∈ [0, T0). The proof of Theorem 1.7 is complete.

4. Computing the self-linking number at a fixed point

Suppose λ is a (tight) dynamically convex contact form on S3, and let P =
(x, T ) be the boundary of the global disk section D0 obtained by
Theorem 1.3, where T is the minimal period of x. Let P1 = (x1, T1) be an
orbit given by a fixed point of the first return map to D0. In particular, P1
is unknotted and T1 is the minimal period of x1. In this section, we prove

Proposition 4.1. sl(P1) = −1.

Orienting S3 by λ ∧ dλ one computes the linking number5 link(P1, P ) =
+1 by noting that P1 intersects the disk-like global section once and posi-
tively. The Reeb vector field will be denoted by R.

4.1. Outline of proof of Proposition 4.1

Below we construct a C0 embedding ϕ : D→ S3 satisfying ϕ(ei2πt) = x1(T1t)
that restricts to a smooth embedding ϕ : D \ {0} → S3. Moreover, if (r, ϑ) �
reiϑ are polar coordinates on D

∗ = D \ {0} then the radial derivative ϕr is

5The linking number link(c1, c2) of two oriented embedded circles c1 and c2 inside
S3 is defined as the oriented intersection number of c1 with an oriented disk D
satisfying ∂D = c2 (orientations included).
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never tangent to the Reeb vector. If ϕ as just described exists then

(58) W := π · ϕr

is a non-vanishing section of ϕ∗ξ|D∗ , where π is the projection (9). Let

Z : S3 → ξ

be a smooth global non-vanishing section and set

(59) m = wind(W (ei2πt), Z ◦ ϕ(ei2πt)),

where ξ is oriented by dλ.

Lemma 4.2. If ϕ as described above exists then sl(P1) = −m.

Proof. Let F0 = ϕ(D). For every neighborhood V of ϕ(0) in S3 there exists
a smooth embedded disk F ↪→ S3 such that F = F0 on S3 \V. Then W
defines a smooth section of ξ|F\V that can be extended smoothly to F .
This extension will still be denoted by W . We claim that W |∂F pushes
∂F to a loop with zero intersection number with F . This can be seen by
considering the homotopy W s = (1− s)W + sϕr of vector fields along ∂F .
The crucial fact is thatW s is never tangent to ∂F , for every s ∈ [0, 1], which
follows easily from T∂F = RR|∂F . Then sl(P1) = 0− wind∂F (W,Z|∂F ) =
−wind∂F0(W,Z|∂F0) = −m. �

The remaining of this section is devoted to the construction of ϕ and to
the proof of m = 1.

4.2. Constructing ϕ and computing m

We denote by ξ|P the bundle (xT )∗ξ → R/Z, where xT : R/Z→M is the
map t 	→ x(Tt). Consider coordinates (θ, x, y) ∈ R/Z× R

2 and the contact
form α0 = dθ + xdy. According to [8], one can find a small open ball B ⊂
R
2 centered at the origin, an open neighborhood U of x(R) in S3 and a

Martinet tube Ψ : U ∼→ R/Z×B as in Definition 2.7. We have Ψ∗λ = fα0
and Ψ(x(Tt)) = (t, 0, 0), where f satisfies f |R/Z×0 ≡ T and df |R/Z×0 ≡ 0. It
follows that Ψ∗ξ = 0× R

2 on x(R). According to Remark 2.8 we can and
will assume that Ψ∗∂x = Z over points of P .
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Now consider the space Xl,α,δ(P ) of C
l,α
loc -maps F = (a, f) : C→ R× S3

satisfying

• ∃d ∈ R such that a(s, t)− Ts− d ∈ C l,α,δ0 ([0,∞)× R/Z), where
a(s, t) = a(e2π(s+it));

• ∃R > 0 such that f(C \BR(0)) ⊂ U ;
• If s0 � 1 and we define (θ(s, t), x(s, t), y(s, t)) = Ψ ◦ f(e2π(s+it)) then
∃c ∈ R such that (θ − t− c, x, y) ∈ C l,α,δ0 ([s0,∞)× R/Z,R3).

One can see that Xl,α,δ(P ) does not depend on the choice of the Martinet
tube (U,Ψ), and carries the structure of a separable smooth Banach mani-
fold, but we will not make use of this fact. Here we only note that its topology
is described by saying that Fn = (an, fn)→ F = (a, f) if, and only if,

• Fn → F in C l,αloc(C,R× S3);
• If s� 1 then fn(e2π(s+it)), f(e2π(s+it)) ∈ U ∀n;
• Defining the functions (an, θn, xn, yn) = (idR ×Ψ) ◦ Fn(e2π(s+it)) and
also (a, θ, x, y) = (idR ×Ψ) ◦ F (e2π(s+it)) for s0 � 1 then the sequences
θn − θ, xn − x, yn − y and an − a converge to zero in C l,α,δ0 ([s0,∞)×
R/Z).

We may slightly perturb λ in the C∞-topology to a non-degenerate
contact form so that P and P1 are still Reeb orbits. As shown in the
previous section, the conclusions of Theorems 3.4 and 3.10 hold for this
small perturbation, so that Theorem 3.11 can be applied. The conclusions
of Theorem 3.11 are obtained in [17] by the construction of a continuous
map

(60) ũ = (a, u) : R/Z→ Xl,α,δ(P )

such that (ϑ, z) 	→ u(ϑ, z) := u(ϑ)(z) is a diffeomorphism R/Z× C � S3 \
x(R). Each page u(ϑ,C) is a global surface of section for the Reeb flow.
The details of the proof of Theorem 3.11 are technical and follow closely the
ideas from [12–14].

By the implicit function theorem we can find a smooth map ϑ ∈ R/Z 	→
γ(ϑ) ∈ C such that x1(R) ∩ u(ϑ,C) = u(ϑ, γ(ϑ)). Replacing u by u(ϑ, z −
γ(ϑ)) we still have a continuous map ϑ 	→ u(ϑ, ·) ∈ Xl,α,δ(P ). By repara-
metrizing the R/Z-coordinate we can also assume, without loss of generality,
that u(ϑ, 0) = x1(T1ϑ). We take the opportunity to state a useful lemma that
follows from the above discussion.
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Lemma 4.3. Let ũ = (a, u) be the map (60). Composing with a smooth
family of rotations we can assume u(ϑ, e2π(s+it))→ x(Tt) as s→∞, ∀ϑ.
Moreover, ∀ε > 0 ∃R0 = e2πs0 � 1 such that u(ϑ,C \BR0(0)) ⊂ U ∀ϑ and
if we define (θ, x, y)(ϑ, s, t) = Ψ ◦ u(ϑ, e2π(s+it)) for s ≥ s0 and ϑ, t ∈ R/Z,
then

e−δs|Dβ[(θ, x, y)(ϑ, s, t)− (t, 0, 0)]| ≤ ε
uniformly in |β| ≤ l, (ϑ, t) ∈ R/Z× R/Z and s ≥ s0.

For simplicity we assume T1 = 1. Fix 0 < θ1 < 1, 0 < ε0 < min{θ1/3, 1/2}
and s0 � 1 so that s ≥ s0 implies

w(ϑ, s, t) = (θ, x, y) = Ψ ◦ u(ϑ, e2π(s+it))

is defined and
(61)
max

{
|w(ϑ, s, t)− (t, 0, 0)|, |wt(ϑ, s, t)− (1, 0, 0)|, |(2s)3/2ws(ϑ, s, t)|

}
≤ ε0.

This is possible in view of Lemma 4.3.
Choose 0 < r0  1/2 so small that 1/2r20 � s0 and 2θ1/3r0 > 11. This

implies s := 1/2r2 � s0 if r ≤ r0. Consider a smooth function t : (0, 1]→ R

satisfying t′(r) ≥ 0, t(r) ≡ 0 for r0 ≤ r ≤ 1 and t(r) ≡ 4θ1
3r0
r − θ1 for

0 < r ≤ r0
2 .

Let ρ : (0, 1]→ [0,∞) be a smooth function satisfying ρ′ < 0, ρ(1) = 0
and ρ(r) = exp(πr−2) for r ∈ (0, r0]. Now define for ϑ ∈ R/Z and r ∈ (0, 1]

(62) z(r) = ρ(r)ei2πt(r) ϕ(r, ϑ) = u(ϑ, z(r)).

Note that

Ψ ◦ ϕ(r, ϑ) = w(ϑ, 1/2r2, t(r))

is well defined for r ≤ r0.
Note that ϕ is a proper embedding of (0, 1]× R/Z into S3 \P , and

ϕ(1, ϑ) = u(ϑ, 0) = x1(ϑ). If we regard ϕ as a map D
∗ → S3 \P by

ϕ(rei2πϑ) � ϕ(r, ϑ) then it can be extended to a continuous embedding of
D into S3 by setting ϕ(0) = x(−θ1). The radial derivative ϕr(ϑ, r) over D

∗

is a non-vanishing vector of Tu(ϑ,C), so it is never a multiple of R since
u(ϑ,C) is an embedding transversal to the Reeb flow. This concludes the
construction of the C0-embedding ϕ with the desired properties.
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Regarding (θ, x, y) ∈ R/Z×B as coordinate functions, then

(63) θ(Ψ ◦ ϕ(r, ϑ)) ≥ −2θ1
3
∀ϑ ∈ R/Z, r ∈ [r0/2, r0].

In fact, r02 ≤ r ≤ r0 ⇒ s = (1/2π) log eπ/r
2
= 1/2r2 � s0. Hence r0

2 ≤ r ≤ r0
implies |Ψ ◦ ϕ(r, ϑ)− (t(r), 0, 0)| ≤ ε0 < θ1/3 and

t(r) ≥ 4θ1
3r0

r0
2
− θ1 = −θ13 .

These two estimates together and the triangle inequality prove (63).
Choose θ2 ∈ (−θ1,−2θ1/3) a regular value for the function

(θ ◦Ψ ◦ ϕ)|(0,r0]×R/Z and set

S0 = (θ ◦Ψ ◦ ϕ)−1(θ2).

By (63) we have (r, ϑ) ∈ S0 ⇒ r < r0/2. Also S0 is bounded away from {0} ×
R/Z since limr→0(θ ◦Ψ ◦ ϕ)(r, ϑ) = −θ1 < θ2. Hence S0 is a non-empty finite
collection of embedded circles inside (0, r0/2)× R/Z. Now we claim that

(64) dθ · (Ψ ◦ ϕ)r > 10 on S0.

To prove this note that r < r0/2 implies

(Ψ ◦ ϕ)r(r, ϑ) = −(2s)3/2ws + 4θ1
3r0

wt.

Now we estimate

dθ · (Ψ ◦ ϕ)r ≥ 4θ1
3r0

dθ · wt − (2s)3/2|ws|

≥ 4θ1
3r0

[dθ · (1, 0, 0)− |dθ · (wt − (1, 0, 0))|]− (2s)3/2|ws|

≥ 4θ1
3r0

(1− ε0)− ε0 ≥ 4θ1
3r0

1
2
− 1
2
≥ 11− 1

2
> 10

and establish (64).
We also claim that S0 has precisely one component which is a generator

of π1((0, 1]× R/Z). In fact (64) implies that every component of S0 is the
image of a graph where r is a function of ϑ. Thus no component of S0 is
homotopically trivial in (0, 1]× R/Z and every component of S0 is a gen-
erator of π1((0, 1]× R/Z). Moreover, if there are two or more components
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then dθ · (Ψ ◦ ϕ)r < 0 along one of them, again in contradiction to (64).
From now on we might write r(ϑ) ∈ (0, r0/2) to denote the unique smooth
function such that S0 = {(r(ϑ), ϑ) : ϑ ∈ R/Z}.

Consider the flat surface Σ = Ψ−1({θ = θ2}) inside U . Then

{u(ϑ, z(r(ϑ)))} = {ϕ(r(ϑ), ϑ)} = ϕ(S0) ⊂ Σ ∩ image(ϕ).

Note that u(ϑ,C) � Σ at the points of ϕ(S0) since there we have |wt −
(1, 0, 0)| ≤ ε0 < 1/2 which implies |dθ · wt| ≥ 1/2. Denoting by u(ϑ) the map
z 	→ u(ϑ, z) we find, for each ϑ ∈ R/Z, some β(ϑ) ∈ R/Z satisfying

(65) dθ · d(Ψ ◦ u(ϑ))|z(r(ϑ)) · ei2πβ(ϑ) = 0.

By the above mentioned transversality and the implicit function theorem
we can choose β smoothly. Set

σ(ϑ) = du(ϑ)|z(r(ϑ)) · ei2πβ(ϑ)

and note that both σ(ϑ) and ϕr(r(ϑ), ϑ) are vectors tangent to u(ϑ,C) at
the point u(ϑ)(z(r(ϑ))) = ϕ(r(ϑ), ϑ), so π · σ(ϑ) and π · ϕr(r(ϑ), ϑ) are non-
vanishing vectors on ξ. Here we used that u(ϑ,C) is transverse to the Reeb
vector and π is the projection (9). It follows from (64)-(65) and from the
definition of σ that π · σ(ϑ) and π · ϕr(r(ϑ), ϑ) are linearly independent ∀ϑ
(it was used that π · du(ϑ) : (C, i)→ (ξ, J) is a complex isomorphism). We
compute
(66)
m = wind(π · ϕr(1, ϑ), Z ◦ ϕ(1, ϑ)) = wind(π · ϕr(r(ϑ), ϑ), Z ◦ ϕ(r(ϑ), ϑ))
= wind(π · ϕr(r(ϑ), ϑ), π · σ(ϑ)) + wind(π · σ(ϑ), Z ◦ ϕ(r(ϑ), ϑ))
= wind(π · σ(ϑ), Z ◦ ϕ(r(ϑ), ϑ))
= wind(π · σ(ϑ), π · (Ψ∗∂x) ◦ ϕ(r(ϑ), ϑ)).

The windings are computed as ϑ goes from 0 to 1 positively. Both vec-
tors σ(ϑ) and (Ψ∗∂x) ◦ ϕ(r(ϑ), ϑ) belong to Ψ∗(0× R

2) ⊂ TU . Naturally in
Ψ∗(0× R

2) we have the complex structure Ψ∗i, where i is the usual positive
rotation by 90 degrees on R

2. Moreover, the projection π : Ψ∗(0× R
2)→ ξ

is a vector bundle isomorphism since Ψ∗(0× R
2)|P = ξ|P and U is small.

Clearly if J is a dλ-compatible complex structure on ξ then π∗J is a com-
plex structure on Ψ∗(0× R

2) which is homotopic through complex structures
to Ψ∗i. This follows since Ψ∗(dθ ∧ dx ∧ dy) is a positive multiple of λ ∧ dλ
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on U . Consequently we have

(67) wind(π · σ(ϑ), π · (Ψ∗∂x) ◦ ϕ(r(ϑ), ϑ)) = wind(Ψ∗σ(ϑ), ∂x|Ψ◦ϕ(r(ϑ),ϑ)),

where the last winding is computed as a winding of non-vanishing vectors
on R

2 with respect to i.
We claim Ψ∗σ(ϑ) and d

dϑ [(Ψ ◦ ϕ)(r(ϑ), ϑ)] are everywhere linearly inde-
pendent. To see this note that

Ψ∗σ(ϑ) = d(Ψ ◦ u(ϑ))|z(r(ϑ)) · ei2πβ(ϑ)

and

d

dϑ
[(Ψ ◦ ϕ)(r(ϑ), ϑ)] = ∂ϑ(Ψ ◦ u)|(ϑ,z(r(ϑ))) · 1

+ d(Ψ ◦ u(ϑ))|z(r(ϑ)) ·
d

dϑ
(z ◦ r(ϑ)),

so if these vectors are linearly dependent for some value of ϑ∗ we get a
contradiction to the fact that the derivative of the diffeomorphism (ϑ, z) 	→
u(ϑ, z) is non-singular at the point (ϑ∗, z(r(ϑ∗))). We obtain
(68)

wind(Ψ∗σ(ϑ), ∂x|Ψ◦ϕ(r(ϑ),ϑ)) = wind
(
d

dϑ
[(Ψ ◦ ϕ)(r(ϑ), ϑ)], ∂x|Ψ◦ϕ(r(ϑ),ϑ)

)
.

We claim that the last winding above equals +1. The image Γ of the map
ϑ 	→ (Ψ ◦ ϕ)(r(ϑ), ϑ) is an embedded circle in the plane {θ = θ2} � R

2 and
it winds around the origin. Otherwise P1 would be homologically trivial in
S3 \P because {ϕ(r, ϑ) : r(ϑ) ≤ r ≤ 1} is an embedded annulus inside S3 \P
with one component equal to {ϕ(r(ϑ), ϑ)} and the other equal to P1. More-
over, Γ bounds a disk D ⊂ {θ = θ2}. Let us give Γ the orientation induced
from R/Z by the embedding ϑ 	→ (Ψ ◦ ϕ)(r(ϑ), ϑ). By homotopy invariance
the linking number link(P1, P ) = +1 coincides with link(Γ, θ-axis), where
the θ-axis is oriented by ∂θ. Since the ambient space is three-dimensional
we obtain +1 = link(θ-axis,Γ) which equals the intersection number of the
θ-axis with D, when D is equipped with the orientation o induced from
the identity Γ = ∂D. Thus o coincides with the orientation of D induced
by dx ∧ dy. This discussion shows that Γ winds positively around the ori-
gin when R

2 is oriented by dx ∧ dy. Now note that d
dϑ [(Ψ ◦ ϕ)(r(ϑ), ϑ)] is

precisely a positive non-vanishing vector field tangent to Γ. So its winding
coincides with the winding of Γ, proving our claim. Combining (66)–(68) we
obtain m = 1, concluding the proof of Proposition 4.1.
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5. Appendix A. Proof of Lemma 3.13

Let M , α and P = (x, T ) be as in the statement of the lemma. We write
J = J (ξ, dα) and denote by Jfast(P ) the set of J ∈ J for which there exists
some embedded fast finite-energy J̃-holomorphic plane asymptotic to P .
Here J̃ is defined in terms of J and α by (10). Since J is connected we may
split the proof in the following two steps.
Step 1: Jfast is closed.

Step 2: Jfast is open.

A.1. Proof of Step 1

We follow [17] closely. Let H ⊂M be a compact set with the following
properties: H ∩ x(R) = ∅ and every continuous disk-map spanning P passes
through H. For every J ∈ J consider the set Λ(J) consisting of fast embed-
ded finite-energy planes ũ = (a, u) asymptotic to P satisfying

(A.1)
∫

D
u∗dα = T − γ, u(0) ∈ H and a(2) = 0.

Here γ > 0 satisfies γ < T ′ for every P ′ = (x′, T ′) ∈ P, and γ < |T0 − T1|,
for every Pi = (xi, Ti) such that T0 �= T1 and T0, T1 ≤ T .

Consider Jk ∈ Jfast such that Jk → J , and a sequence ũk = (ak, uk) of
embedded fast J̃k-holomorphic planes asymptotic to P . After reparametriz-
ing and translating in the R-direction we may assume ũk ∈ Λ(Jk).
Following [7], let

Γ = {z ∈ C | ∃zj → z and kj such that |dũkj
(zj)| → ∞}.

It follows directly from Lemma 2.20 and (A.1) that Γ ⊂ D and, up to
the choice of a subsequence, we may assume #Γ <∞. Elliptic estimates
show that, up to selection of a further subsequence, we may find a smooth
J̃-holomorphic map ũ = (a, u) : C \ Γ→ R×M such that ũk → ũ in C∞loc(C \
Γ). It can be assumed that Γ consists of negative punctures and, conse-
quently, ∞ must be positive. Using results on cylinders with small dα-area,
as in [16] or [15], one proves that ũ is asymptotic to P at ∞

Lemma A.1.
∫

C\Γ u
∗dα > 0.
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Proof. If Γ = ∅ then
∫

D
u∗dα = limk

∫
D
u∗kdα = T − γ > 0. If Γ �= ∅ then

clearly ũ is not constant. Arguing indirectly, assume Γ �= ∅ and ∫
C\Γ u

∗dα =
0. By Theorem 2.18, P cannot be simply covered if #Γ ≥ 2, proving #Γ =
1. In particular, it follows that there are complex constants A �= 0 and
D such that ũ(z) = FP (Az +D) where FP is the map e2π(s+it) ∈ C \ 0 	→
(Ts, x(Tt)) ∈ R×M . In this case we must have Γ = {−D/A} ⊂ ∂D since,
otherwise, we would get

T =
∫
∂D

u∗α = lim
k

∫
∂D

u∗kα = T − γ.

But this implies u(0) ∈ H ∩ x(R), a contradiction. �

Let us enumerate Γ = {z1, . . . , zN} and consider, for each i, the asymp-
totic orbit Pi = (xi, Ti) of ũ at zi. Each Pi is contractible. In fact, if ρ
is small and fixed, the contractible loop t 	→ uk(zj + ρei2πt) converges to
t 	→ u(zj + ρei2πt) which is homotopic to xi(Tit) in view of Theorem 2.10.
Denoting xiTi

(t) = xi(Tit), let κi be a non-vanishing section of xi∗Ti
ξ which

extends to a non-vanishing section of ξ|Di
for some (and hence any) disk Di

spanning Pi. Consider also κ a non-vanishing section of x∗T ξ which extends
over ξ|D with no zeros, for spanning disks D for P . Let us compactify C \ Γ
and obtain a surface with boundary Σ by adding a circle at each point of
Γ and at ∞. By Theorem 2.10 the map u extends to a continuous map
ū : Σ→M sending each boundary component onto the corresponding orbit
P1, . . . , PN , P . We claim that the section κ1, . . . , κN , κ can be extended to a
non-vanishing section Z of ū∗ξ. In fact, there is no restriction to extending
κ1, . . . , κN over Σ as a non-vanishing section Z∗. Disks Di spanning Pi can
be glued to Σ at zi to obtain a spanning disk D = u#D1# · · ·#DN for P . By
our choice of the κi, Z∗ can be extended over D as a non-vanishing section.
This shows that κ does not wind with respect to Z∗, so Z∗ can be modified
in a neighborhood of ∞ to a non-vanishing section Z coinciding with κ at
P . This special non-vanishing section of u∗ξ will be denoted by B.

Since P is simply covered, there exists Martinet tube (U,Ψ) for P such
that κ = (Ψ∗∂x) ◦ xT . There is no loss of generality if we assume B(e2π(s+it))
= (Ψ∗∂x) ◦ u(e2π(s+it)) for large values of s. Again using results on cylinders
with small dα-area, one finds R0 � 1 such that |z| ≥ R0 ⇒ uk(z) ⊂ U , for
every k. By Theorem 2.11 we can also assume |z| ≥ R0 ⇒ u(z) ⊂ U and
π · du(z) �= 0. Here we used (A.1).

Lemma A.2. wind∞(ũ,∞, B) ≤ 1.
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Proof. Since the maps uk provide capping disks for P , the section (Ψ∗∂x) ◦
uk (defined only for |z| ≥ R0) can be extended to a non-vanishing section Bk
of u∗kξ. This follows from our particular choice of Martinet tube (U,Ψ) made
above, and implies 1 = wind∞(ũk) = wind∞(ũk,∞, Bk). We write uk(s, t) =
uk(e2π(s+it)) and u(s, t) = u(e2π(s+it)). Let sk → +∞ be so that

π · ∂suk(sk, t) �= 0 ∀t and wind(t 	→ π · ∂suk(sk, t), Bk(e2π(sk+it))) = 1.

For any fixed s ≥ (2π)−1 logR0 the vectors π · ∂su(s, t) do not vanish, so that
π · ∂suk(s, t) do not vanish when k � 1. We can estimate using standard
degree theory

1− wind(t 	→ π · ∂su(s, t), t 	→ B(e2π(s+it)))
= 1− wind(t 	→ π · ∂su(s, t), t 	→ (Ψ∗∂x) ◦ u(s, t))
= lim

k→∞
1− wind(t 	→ π · ∂suk(s, t), t 	→ (Ψ∗∂x) ◦ uk(s, t))

= lim
k→∞

{
wind(t 	→ π · ∂suk(sk, t), t 	→ Bk(sk, t))
−wind(t 	→ π · ∂suk(s, t), t 	→ Bk(s, t))

}
= lim

k→∞
#
{
zeros of π · duk on {e2πs ≤ |z| ≤ e2πsk}} .

Since the π · duk satisfy a Cauchy–Riemann-type equation, the (algebraic)
count of zeros in the last line above is non-negative. The lemma follows by
taking the limit as s→ +∞. �

We will now argue indirectly to show that Γ = ∅. Fix i and let (s, t) ∈
R
− × R/Z be negative holomorphic cylindrical coordinates centered at zi,

as explained in Remark 2.4, and write B(s, t) for the value of B at the point
corresponding to (s, t). In particular, B(s, t)→ κi(t) uniformly in t as s→
−∞. By Theorem 2.11 there exists a smooth non-vanishing function f(s, t)
such that f(s, t)π · ∂su(s, t)→ e(t) in C0(R/Z, ξ) as s→ −∞, where e(t) is
an eigenvector of APi

corresponding to a positive eigenvalue. Consequently
we can estimate

wind∞(ũ, zi, B) = lim
s→−∞wind(t 	→ π · ∂su(s, t), t 	→ B(s, t))

= wind(t 	→ e(t), t 	→ κi(t)) ≥ 2,

where in the last inequality we used μ(Pi) ≥ 3. Assuming Γ �= ∅ we obtain
the following contradiction

0 ≤ windπ(ũ) = wind∞(ũ)− 2 + #Γ + 1 ≤ 1− 2#Γ +#Γ− 1 = −#Γ.
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We used Lemma 2.15. This shows Γ = ∅ and proves that ũ is a non-constant
fast finite-energy J̃-holomorphic plane asymptotic to P .

To conclude Step 1 it remains only to prove that ũ is embedded. The
identity windπ(ũ) = 0 shows that ũ is immersed. Self-intersection points of
ũ must be isolated since, otherwise, one could use Carleman’s similarity
principle to show that ũ is a non-trivial cover of a somewhere injective
finite-energy plane, see [9]. In particular, this would imply that P is not
simply covered, a contradiction. Isolated self-intersections of ũ would imply
self-intersections of ũk for k � 1, by stability and positivity of intersections
of pseudo-holomorphic immersions. This shows ũ has no self-intersections
and, consequently, ũ ∈ Λ(J) and J ∈ Jfast.

A.2. Proof of Step 2

We need to revisit the functional analytic setup for the Fredholm theory of
embedded finite-energy surfaces constructed in [10]; however, we will slightly
modify the discussion there. From now on fix J0 ∈ Jfast and an embedded
fast finite-energy J̃0-holomorphic plane ũ = (a, u) : C→ R×M asymptotic
to P at ∞.

With l ≥ 1 fixed let Kl be the set of C l-sections K of LR(ξ) satisfying

J0K +KJ0 = 0 and dα(u,Kv) + dα(Ku, v) = 0 ∀u, v ∈ ξp, p ∈M.

Then Kl becomes a Banach space with the C l-norm ‖ · ‖Cl . When Δ >
0 is small enough then every K ∈ Kl satisfying ‖K‖Cl < Δ induces some
dλ-compatible complex structure J on ξ of class C l by J = J0 exp(−J0K).
The set of J arising in this way will be denoted by UΔ, and the bijective
correspondence between UΔ and a Δ-ball in Kl gives UΔ the structure of a
(trivial) Banach manifold. If we can prove that J0 has an open neighborhood
O in UΔ such that O ∩ J ⊂ Jfast then it will follow that J0 is an interior
point of Jfast because O ∩ J is open in J .

Let U be a small neighborhood of x(R) in M and

Ψ : U ∼→ R/Z×B

be a Martinet tube as described in 2.2.3. Thus Ψ∗(f(dθ + xdy)) = α and
Ψ(x(Tθ)) = (θ, 0, 0), where (θ, z = (x, y)) ∈ B are standard coordinates in
R/Z× R

2, and f > 0 satisfies f ≡ T , df ≡ 0 on R/Z× 0. We have an induced
frame

(A.2) {e1 � ∂x, e2 � −x∂θ + ∂y}
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of ξ|U , and we assume {e1 ◦ F, e2 ◦ F} extends to a frame of F ∗ξ for some
(and hence any) continuous disk map F : D→M satisfying F (ei2πt) =
x(Tt).

Let g be any R-invariant Riemannian metric on R×M such that J̃0 is
an isometry and denote by Nũ the normal bundle of ũ(C). The asymptotic
behavior of ũ explained in 2.2.3 (see [8]) implies that ξ̃u(z) ∩ dũz(TzC) =
0 when |z| is large, where ξ̃ = π∗Mξ. Here πM : R×M →M denotes the
projection onto the second factor. We may consider a J̃0-invariant subbundle
L ⊂ ũ∗T (R×M) that coincides with ũ∗ξ̃ on C \BR0(0), where R0 � 1, and
coincides with Nũ on BR0−1(0). Possibly after making R0 larger, we have
also |z| ≥ R0 ⇒ u(z) ∈ U . One finds a (dα, J0)-unitary frame {n1, n2} of ξ|U
such that {ñ1(ũ(z)), ñ2(ũ(z))} extends to a smooth J̃0-complex frame of L.
Here ñi(ũ(z)) = ni(u(z)), i = 1, 2. The identity

(A.3) wind(t 	→ n1 ◦ u(Rei2πt), t 	→ e1 ◦ u(Rei2πt)) = 1 (R� 1)

follows immediately from Theorem 1.8 in [10].
Let n̄i be extensions of ñi ◦ ũ to C such that {n̄1, n̄2} is a J̃0-complex

frame. Since g is R-invariant, its injectivity radius is uniformly bounded away
from zero all over R×M . Thus we can find a small ball B′ ⊂ C centered at
0 such that the map

Φ : C×B′ → R×M, (z, w) 	→ expũ(z)(!(w)n̄1(z) + "(w)n̄2(z))

is an embedding onto a neighborhood of ũ(C). Moreover, the image of any
map U : C→ R×M sufficiently close to ũ in the strong C1-topology coin-
cides with {Φ(z, v(z)) | z ∈ C}, for some v : C→ B′ small in the strong C1-
topology.

In the following, we denote J̄ = Φ∗J̃ and write

J̄(z, v) =
[
j1(z, v) Δ1(z, v)
Δ2(z, v) j2(z, v)

]

in 2× 2-blocks, for every J ∈ UΔ. Let σ(s, t) = e2π(s+it). After making B′

smaller and R0 larger the map

F (s, t, v) = (idR ×Ψ) ◦ Φ ◦ (σ × idR2)(s, t, v)
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is defined for e2πs ≥ R0 and v ∈ B′. Using the asymptotic behavior of ũ from
Theorem 2.11 and the R-invariance of g one shows

(A.4) lim sup
s→+∞

sup
v∈K,t∈R/Z

|DβF (s, t, v)| <∞

for every non-trivial multi-index β = (β1, β2, β3, β4) and K ⊂ B′ compact.
For each J ∈ UΔ consider the almost complex structure Ĵ on R× R/Z×B
defined by (idR ×Ψ)∗Ĵ = J̃ . Seen as a smooth 4× 4 matrix, Ĵ is independent
of the R-coordinate. If J = (σ × idR2)∗J̄ = F ∗Ĵ then, in view of (A.4), we
have

(A.5) lim sup
s→+∞

sup
v∈K,t∈R/Z

|DβJ(s, t, v)| <∞

for every β and K ⊂ B′ compact.
Given δ < 0, γ ∈ (0, 1) and a finite-dimensional real vector space V we

can define the Banach space C l,γ,δ0 (C, V ) of C l,γ functions v : C→ V such
that the map (s, t) 	→ v ◦ σ(s, t), s ≥ 0, belongs to C l,γ,δ0 ([0,+∞)× R/Z, V ),
as explained in Remark 3.19. The norm is defined by ‖v‖Cl,γ(D) + ‖v ◦ σ‖l,γ,δ,
where ‖ · ‖l,γ,δ is the norm (52). From now on we fix l ≥ 2, γ ∈ (0, 1) as above,
and δ < 0 will be fixed a posteriori. Clearly the subset V ⊂ C l,γ,δ0 (C,C) of
maps with image in B′ is an open set.

Let Y → C be the vector bundle with fibers Yz = {R-linear maps TzC→
C}. The space C l−1,γ,δ0 (Y ) consists of sections A : C→ Y of class C l−1,γ

such that (s, t) 	→ A(σ(s, t)) · ∂tσ(s, t) belongs to C l−1,γ,δ0 on R
+ × R/Z. The

norm is ‖A‖Cl−1,γ(D) + ‖A ◦ σ · σt‖l−1,γ,δ.
Similarly to [10] consider the smooth map H : V × UΔ → C l−1,γ,δ(Y )

given by

(A.6) H(v, J) = Δ2(z, v) + j2(z, v) · dv − dv · j1(z, v)− dv ·Δ1(z, v) · dv.

One has to make use of (A.5) to verify that H takes values on C l−1,γ,δ(Y ).
Standard arguments show thatH is smooth. The equationH(v, J) = 0 holds
if, and only if, the embedding z 	→ (z, v(z)) has a J̄-invariant tangent space.
Writing

J̄0 =
[
j01 Δ0

1

Δ0
2 j02

]
in 2× 2-blocks, we have j01(z, 0) = j02(z, 0) = i and Δ0

1(z, 0) = Δ0
2(z, 0) = 0.

Differentiating (A.6) at v = 0 we get

(A.7) D1H(0, J0)ζ = i · dζ − dζ · i+ C · ζ,
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where C(z) = D2Δ0
2(z, 0). Let dφTt : ξ|x(0) → ξx(Tt) be represented as a path

ϕ(t) ∈ Sp(1) using the frame {n1, n2}, and let S = −iϕ′ϕ−1. Denoting by
C̃(s, t) the linear map u 	→ (C(σ(s, t)) · u) · ∂tσ(s, t), the following asymptotic
behavior is proved in [10]

(A.8) lim
s→∞ sup

t
|Dβ[C̃(s, t)− S(t)]| = 0, ∀|β| ≤ l.

There is a corresponding representation L = −i∂t − S of the asymptotic
operator at P . From now one we assume δ ∈ (−∞, 0) \ σ(L), and denote
by μNCZ(P, δ) the δ-weighted Conley–Zehnder of P computed with respect
to the frame {n1, n2}, which is defined as twice the winding of the largest
eigenvalue of L below δ, plus 0 or 1 depending whether the winding jumps
when we compare with the smallest eigenvalue above δ.

There exists a bundle splitting Y = Y 1,0 ⊕ Y 0,1 and we may define a
Banach space of sections C l−1,γ,δ0 (Y 0,1) analogously as above. Differentiat-
ing the identity J̄20 = −I one shows C(z) · ζ is C-anti-linear, so that the
linear map D1H(0, J0) may be viewed as an operator D0 : C

l,γ,δ
0 (C,C)→

C l−1,γ,δ0 (Y 0,1).

Theorem A.3 (Hofer, Wysocki and Zehnder). The operator D0 is
Fredholm with index μNCZ(P, δ) + 1. Moreover, there exists a smooth Banach
bundle E → V × UΔ, with fibers modeled on C l−1,γ,δ0 (Y 0,1), and a smooth sec-
tion η such that η(v, J) = 0⇔ H(v, J) = 0 and the partial vertical derivative
D1η(0, J0) coincides with D0.

Since μCZ(P ) ≥ 3 we have μ(ϕ) ≥ 1 by (A.3) and by our choice of Mar-
tinet tube. This allows room for us to place δ < 0 precisely on the spec-
tral gap between the largest eigenvalue with winding 0 and the smallest
eigenvalue with winding 1, so that μNCZ(P, δ) = 1 and the Fredholm index of
D1η(0, J0) is 2.

Lemma A.4. With this choice of δ the operator D0 is surjective.

Proof. Let a ∈ kerD0 be non-zero and denote a(s, t) = a(σ(s, t)). Then as +
iat + C̃a = 0. By standard asymptotic analysis from [8] (see section 6 in [17]
for a detailed account), one finds an eigenvector e(t) of L associated with
some eigenvalue ν < 0 such that

a(s, t) = e
∫ s

s0
h(τ)dτ (e(t) +R(s, t))
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where h(τ)− ν andR(s, t) converge to 0 uniformly in t as s→ +∞. Since a ∈
C l,γ,δ0 we must have ν < δ, so that wind(e 	→ e(t)) ≤ 0. By standard degree
theory the algebraic count of zeros of a(z) on C is ≤ 0. However, Carleman’s
Similarity principle implies that all zeros count positively. Hence, a never
vanishes. If the kernel had three or more linearly independent sections then
a non-trivial linear combination of them would have to vanish at some point
and, consequently, would vanish identically, providing a contradiction. This
shows that dimkerD0 ≤ 2 and the conclusion follows since the index is 2. �

Clearly kerD0 splits. By the implicit function theorem we find, possibly
after shrinking V, a neighborhood O of J0 in UΔ so that the (local) universal
moduli space defined by

M = {(v, J) ∈ V ×O | H(v, J) = 0}

is a smooth Banach submanifold, and the projection Π(v, J) = J restricts
to a submersion ofM onto O.

Hence, for any fixed J ∈ O ∩ J there exists some v ∈ V so that the
embedding z 	→ (z, v(z)) has a J̄-invariant tangent space. Following the
appendix of [10], for a given 0 < ε < 2π it is possible to find φ ∈ C l,γ,−ε0 (C,C)
so that the map ψ(z) = z + φ(z) is a diffeomorphism and w̃(z) = Φ(ψ(z), v ◦
ψ(z)) is an embedded finite-energy J̃-holomorphic plane asymptotic to P .
To conclude Step 2 it remains to show

Lemma A.5. The plane w̃ above is fast.

Proof. Consider (S(s, t), T (s, t)) = σ−1 ◦ ψ ◦ σ(s, t) ∈ R× R/Z. It follows
from the formula S + iT = (2π)−1 log(ψ ◦ σ(s, t)) that |(S − s, T − t)|+
|D(S − s, T − t)| → 0 as s→∞, uniformly in t ∈ R/Z. Let us write

(a(s, t), θ(s, t), x(s, t), y(s, t)) = (idR ×Ψ) ◦ ũ ◦ σ(s, t) = F (s, t, 0),

and
(A(s, t),Θ(s, t), X(s, t), Y (s, t)) = (idR ×Ψ) ◦ w̃ ◦ σ(s, t)

= F (S, T, v ◦ σ(S, T )).
Using (A.4), and the fact that |v ◦ σ(S, T )| decay as fast as eδs when s→∞,
we can estimate

|(X(s, t), Y (s, t))− (x(S, T ), y(S, T ))|
≤ |F (S, T, v ◦ σ(S, T ))− F (S, T, 0)| ≤ Ceδs
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for some C > 0, if s� 1. In view of Theorem 2.11, we know that all partial
derivatives of (x(s, t), y(s, t)) of all orders decay exponentially to zero faster
than e(μ+r)s for every r > 0, where μ < δ is the asymptotic eigenvalue6.
Taking r > 0 small we get decay faster than eδs. Since the partial derivatives
of φ(e2π(s+it)) with respect to s and t decay to 0 uniformly (like e−εs), we
conclude that

|(x(S, T ), y(S, T ))− (x(s, t), y(s, t))| ≤ C ′eδs when s� 1.

Both estimates above give

|(X(s, t), Y (s, t))− (x(s, t), y(s, t))| ≤ C ′′eδs,

which implies

|(X(s, t), Y (s, t))| ≤ |(x(s, t), y(s, t))|+ |(X(s, t), Y (s, t))− (x(s, t), y(s, t))|
≤ C ′′′eδs.

Now, in view of Theorem 2.11, (X(s, t), Y (s, t)) decays slower than e(ν−r)s for
some ν ∈ σ(L) ∩ (−∞, 0) and any r > 0. Here ν is the asymptotic eigenvalue
of w̃. Hence the estimate above shows that ν < δ, implying wind∞(w̃) ≤ 1.
Thus wind∞(w̃) = 1 by Lemma 2.15. �

We showed that O ∩ J ⊂ Jfast.

Remark A.6. It should be noted that the elegant work of Wendl [23, 24]
can be used to start a new proof of the above-mentioned compactness and
automatic transversality result for embedded fast finite-energy planes.

2. Appendix B. Proof of Proposition 3.20

First we need two auxiliary lemmas.

Lemma B.1. Suppose Kk, K∞
k , K∞ and L are as in the statement

of Proposition 3.20. For each s ≥ 0 and k ∈ Z
+ consider the unbounded

6To see why μ < δ note that the winding of the asymptotic eigenvalue of ũ with
respect to e1 � ∂x is wind∞(ũ) = 1, as explained in Remark 2.17. This is so since
the Martinet tube is aligned with a trivialization of x∗T ξ induced by some (and
hence any) capping disk. But, by our choice of δ, if an eigenvalue winds ≤0 with
respect to n1 (or ≤1 with respect to e1) it must be smaller than δ.
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self-adjoint operator

Lk(s) :W 1,2 ⊂ L2 → L2, Lk(s)e = −J0ė− Sk(s, ·)e,

where Sk(s, t) = 1
2

[
Kk(s, ·) +Kk(s, ·)T

]
. If δ ∈ (−∞, 0) \ σ(L) then we find

s0 ≥ 0 and c > 0 such that

‖[Lk(s)− δ]e‖L2 ≥ c ‖e‖L2 ∀s ≥ s0, ∀e ∈W 1,2, ∀k ≥ 0.

Proof. We proceed indirectly. Abbreviating ‖·‖2 = ‖·‖L2 , suppose there are
sequences sj → +∞ and {ej} ⊂W 1,2 such that ‖ej‖2 ≡ 1 and∥∥[Lkj

(sj)− δ]ej
∥∥
2
→ 0. The equation

∂tej = J0[Lkj
(sj)− δ]ej + J0Skj

(sj , ·)ej + δJ0ej

shows that {ej} is a bounded sequence inW 1,2. Consequently we can assume
the existence of some e ∈ L2 satisfying ‖ej − e‖2 → 0. The above equation
now shows that {ej} is a Cauchy sequence in W 1,2, which proves e ∈W 1,2

and ej → e in W 1,2. However, the asymptotic conditions imposed on the
functions Kkj

imply that Lkj
(sj) converges to L in the strong operator

topology of continuous linear maps from W 1,2 into L2. Hence [L− δ]e = 0,
contradicting δ �∈ σ(L) since ‖e‖2 = 1. �

Lemma B.2. Let Kk, K∞
k , K∞ and L be as in the statement of Proposi-

tion 3.20. Suppose λ < δ < 0 are such that λ ∈ σ(L) and (λ, δ] ∩ σ(L) = ∅.
Then one can find 0 < r < δ − λ and s1 ≥ 0 such that

‖X(s, ·)‖L2 ≤ e(δ−r)(s−s1) ‖X(s1, ·)‖L2 ∀s ≥ s1

for any k and for any smooth function X : [0,+∞)× R/Z→ R
2n satisfying

(B.1) ∂sX + J0∂tX +KkX = 0, lims→+∞ e−δs ‖X(s, ·)‖L2 = 0.



856 U.L. Hryniewicz

Proof. We abbreviate ‖·‖2 = ‖·‖L2 and assume X ∈ C∞ satisfies (B.1) for
some k. Setting Y = e−δsX, Sk = 1

2 [Kk(s, t) +Kk(s, t)T ], Ak(s, t) =
1
2 [Kk(s, t)−Kk(s, t)T ] we have

(B.2) lim sup
s,k→+∞

sup
t
(|Dγ [Sk(s, t)−K∞(t)]|+ |DγAk(s, t)|) = 0 ∀|γ| ≤ l

and

(B.3) Ys + J0Yt +KkY + δY = Ys − [Lk(s)− δ]Y +AkY = 0,

where Lk(s) is the operator defined in the statement of Lemma B.1. More-
over, lims→+∞ ‖Y (s, ·)‖2 = 0. If we set g(s) = 1

2 ‖Y (s, ·)‖22 then

g′(s) = 〈Ys, Y 〉 = 〈[Lk(s)− δ]Y −AkY, Y 〉 = 〈[Lk(s)− δ]Y, Y 〉

and

g′′(s) = 〈−J0Yts − SkYs − δYs − (∂sSk)Y, Y 〉+ 〈[Lk(s)− δ]Y, Ys〉
= 〈[Lk(s)− δ]Ys, Y 〉 − 〈(∂sSk)Y, Y 〉
+ 〈[Lk(s)− δ]Y, [Lk(s)− δ]Y −AkY 〉

= 〈[Lk(s)− δ]Y −AkY, [Lk(s)− δ]Y 〉 − 〈(∂sSk)Y, Y 〉
+ ‖[Lk(s)− δ]Y ‖22 − 〈[Lk(s)− δ]Y,AkY 〉

= 2 ‖[Lk(s)− δ]Y ‖22 − 2 〈[Lk(s)− δ]Y,AkY 〉 − 〈(∂sSk)Y, Y 〉 .

We used that Lk(s) is self-adjoint ∀s. Let s0 and c > 0 be given by the
previous lemma. Then s ≥ s0 implies

g′′(s) ≥ 2c2 ‖Y ‖22 − 2c ‖Y ‖2 ‖AkY ‖2 − ‖Y ‖2 ‖[∂sSk]Y ‖2
≥ 4g(s)

(
c2 − c ‖Ak‖L∞(S1) −

1
2
‖∂sSk‖L∞(S1)

)
.

In view of (B.2), for any ε > 0 small ∃s1 ≥ s0 be such that

s ≥ s1 ⇒
(
c2 − c ‖Ak‖L∞(S1) −

1
2
‖∂sSk‖L∞(S1)

)
≥ (c− ε)2 ∀k.

Consequently we have an estimate g′′(s) ≥ 4(c− ε)2g(s) whenever s ≥ s1,
independently of k or X. Now we note that any positive C2 function on
[s1,+∞) satisfying g′′(s) ≥ 4(c− ε)2g(s) and lims→+∞ g(s) = 0 must also
satisfy g(s) ≤ g(s1)e−2(c−ε)(s−s1) for all s ≥ s1. Again this is independent of
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k or X. The proof is complete if we set r < min{δ − λ, c− ε} since 2g(s) =
e−2δs ‖X(s, ·)‖22. �

We now turn to the proof of Proposition 3.20. The definition of E and
the assumptions on Kk together imply that

(B.4) lim
s→+∞ sup

t
e−δs |DγXk(s, t)| = 0 ∀γ

holds for each fixed k. It is important here that Dγ is a partial derivative
of any order, and we used equations (53) and the Hölder estimates for the
operator ∂s + J0∂t. We fix a number λ < δ satisfying (λ, δ] ∩ σ(L) = ∅ and
proceed in three steps.

Step 1: ∀m ≥ 0 one can find numbers 0 < rm < δ − λ, sm > 0 such that√√√√ m∑
j=0

‖(∂s)jXk(s, ·)‖2L2(S1) ≤ e(δ−rm)(s−sm)

√√√√ m∑
j=0

‖(∂s)jXk(sm, ·)‖L2(S1) ∀s ≥ sm ∀k.

Proof of Step 1. Fix k ≥ 0. We have equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂sXk + J0∂tXk +KkXk = 0,

∂2ssXk + J0∂
2
tsXk + ∂s[KkXk] = 0,

· · ·
(∂s)m+1Xk + J0∂t(∂s)mXk + ∂ms [KkXk] = 0.

Defining Zk(s, t) = (Xk, ∂sXk, . . . , ∂
m
s Xk)

T then ∂sZk + Ĵ0∂tZk +GkZk =
0, where

Gk(s, t) =

⎡⎢⎢⎣
Kk 0 · · · 0
H21
k Kk · · · 0
· · ·

H
(m+1)1
k H

(m+1)2
k · · · Kk

⎤⎥⎥⎦ ; Ĵ0 =
⎡⎢⎢⎣
J0 0 · · · 0
0 J0 · · · 0
· · ·
0 0 · · · J0

⎤⎥⎥⎦ .
Gk is a lower triangular matrix of 2n× 2n blocks and every term H ij

k (i > j)
below the diagonal satisfies

lim
s→+∞ sup

k,t
|DγH ij

k (s, t)| = 0 ∀γ.
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This follows from the hypotheses of Proposition 3.20. These remarks and
(B.4) show that we can apply Lemma B.2 to the Zk(s, t) and find numbers
sm > 0 and 0 < rm < δ − λ as desired. Note that sm and rm are independent
of k. �
Step 2: ∀l ≥ 0 one can find 0 < rl < δ − λ, sl > 0 and cl > 0 such that

(B.5) max
‖γ‖≤l

‖DγXk(s, ·)‖L∞(S1) ≤ cle(δ−rl)(s−sl)
∑

|β|≤l+1

∥∥∥DβXk(sl, ·)
∥∥∥
L∞(S1)

for every k ≥ 0 and s ≥ sl.
Proof of Step 2. We prove by induction that ∀m ≥ 0 ∃Cm > 0, 0 < rm <
δ − λ and sm > 0 such that s ≥ sm implies√ ∑

|γ|≤m
‖DγXk(s, ·)‖2L2(S1) ≤ Cme(δ−rm)(s−sm)(B.6)

√ ∑
|γ|≤m

‖DγXk(sm, ·)‖2L2(S1) ∀k.

The assertion form = 0 is already proved in Step 1. Assuming (B.6) is proved
for m, we claim that it holds for m+ 1. Writing Dγ = ∂is∂

j
t we proceed by

induction on j to show that√∥∥∥∂m+1−js ∂jtXk(s, ·)
∥∥∥2
L2(S1)

≤ C ′e(δ−r′)(s−s′)(B.7) √∑̃
‖DγXk(s′, ·)‖2L2(S1) ∀s ≥ s′

for every 0 ≤ j ≤ m+ 1, where
∑̃

indicates a sum over all multi-indices
γ = (γ1, γ2) satisfying either |γ| ≤ m or |γ| = m+ 1 and γ2 ≤ j, and the
constants C ′, r′, s′ are independent of k.

The case j = 0 follows from Step 1 for m+ 1 and from (B.6) for m.
Now fix 0 < b ≤ m+ 1 and assume (B.7) holds for j = 0, . . . , b− 1. Let β =
(m+ 1− b, b). Equation ∂sXk + J0∂tXk +KkXk = 0 implies

∂s

(
∂m+1−bs ∂b−1t Xk

)
+ J0D

βXk = ∂m+1−bs ∂b−1t (∂sXk + J0∂tXk)

= −∂m+1−bs ∂b−1t (KkXk) .

Thus
DβXk = J0

(
∂m+2−bs ∂b−1t Xk + ∂m+1−bs ∂b−1t (KkXk)

)
.
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The asymptotic uniform bounds on derivatives of Kk(s, t) in s and k, and
the induction hypothesis, imply (B.7) holds for j = 0, . . . , b. The induction
step is complete and (B.7) is proved for every j ≤ m+ 1. This proves (B.6)
for m+ 1. We showed (B.6) holds ∀m.

Using (B.6) for m = l + 1 we obtain Ĉl > 0 independent of n such that√∑
|γ|≤l
‖DγXk(s, ·)‖2W 1,2(S1) ≤ Ĉle(δ−rl+1)(s−sl+1)

∑
|γ|≤l+1

‖DγXk(sl+1, ·)‖L∞(S1)

for every s ≥ sl+1 and k ≥ 0. The conclusion follows since W 1,2(S1) ↪→
L∞(S1). �
Step 3: There exists X∞ and a subsequence Xkj

such that Xkj
→ X∞ in

C l,α,δ0 .

Proof of Step 3. Since Xk is C∞loc-bounded we can assume, up to selection of
a subsequence, that ∃X∞ such that Xk → X∞ in C∞loc. Fix γ and ε > 0. By
the previous step ∃s1 � 0 such that

s ≥ s1 ⇒ sup
k,t

e−δs |DγXk(s, t)| ≤ ε

2
.

This implies

sup
s≥s1,t∈S1

e−δs|DγX∞(s, t)| ≤ ε

2
.

We find k1 ∈ Z
+ such that

k ≥ k1 ⇒ sup
[0,s1]×R/Z

e−δs |Dγ [Xk −X∞]| ≤ ε.

Hence if s ≥ 0 and k ≥ k1 then e−δs |Dγ [Xk −X∞]| ≤ ε. We proved

lim
k→∞

sup
s,t

e−δs |Dγ [Xk −X∞]| = 0

for each fixed γ. If we fix l ≥ 1 then the above limits for |γ| ≤ l + 1 imply

lim
k→+∞

max
|β|≤l

∥∥∥e−δsDβ[Xk −X∞]
∥∥∥
C0,α([0,+∞)×R/Z)

= 0.

The conclusion follows. �
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