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DEGENERATION OF KÄHLER STRUCTURES AND
HALF-FORM QUANTIZATION OF TORIC VARIETIES

William D. Kirwin, José M. Mourão and João P. Nunes

We study the half-form Kähler quantization of a smooth symplectic
toric manifold (X,ω), such that [ω/2π] − c1(X)/2 ∈ H2(X,Z) and is
non-negative. We define the half-form corrected quantization of (X,ω)
to be given by holomorphic sections of a certain Hermitian line bundle
L → X with Chern class [ω/2π] − c1(X)/2. These sections then cor-
respond to integral points of a “corrected” polytope PL with integral
vertices. For a suitably translated moment polytope PX for (X,ω), we
have that PL ⊂ PX is obtained from PX by a one-half inward-pointing
normal shift along the boundary.
We use our results on the half-form corrected Kähler quantization to

motivate a definition of half-form corrected quantization in the singular
real toric polarization. Using families of complex structures studied
in [BFMN11], which include the degeneration of Kähler polarizations
to the vertical polarization, we show that, under this degeneration,
the half-form corrected L2-normalized monomial holomorphic sections
converge to Dirac-delta-distributional sections supported on the fibers
over the integral points of PL, which correspond to corrected Bohr–
Sommerfeld fibers. This result and the limit of the corrected connection,
with curvature singularities along the boundary of PX , justifies the
direct definition we give for the corrected quantization in the singular
real toric polarization. We show that the space of quantum states for
this definition coincides with the space obtained via degeneration of
the Kähler quantization.
We also show that the BKS pairing between Kähler polarizations

is not unitary in general. On the other hand, the unitary connection
induced by this pairing is flat.
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1. Introduction

Ever since Śnyaticki proposed cohomological wave functions to construct
the quantum Hilbert space corresponding to geometric quantization in real
polarizations [Ś75], the question of how to address the case of real polariza-
tions with singular fibers has resisted full treatment. In [Ham07], Hamilton
proposed the extension of Śnyaticki’s definition to the case with singular
fibers by also considering the higher cohomology of the same sheaf of polar-
ized smooth sections of the prequantization bundle. His results show, how-
ever, that the formalism will have to be modified in order to obtain the
expected quantization even in the case of the harmonic oscillator. Indeed,
for singularities of elliptic type (like in the case of toric varieties) Hamilton
obtains states corresponding only to non-singular Bohr–Sommerfeld leaves.
In the toric case, these correspond to interior integral points of the moment
polytope. If one doesn’t take into account the half-form correction, however,
one expects the quantization to include all states corresponding to the inte-
gral points of the polytope, including those on the boundary. Only in this
way, for the compact case, does one get the same dimension of the space of
quantum states as for the holomorphic polarizations.
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In [BFMN11], a solution of this problem was proposed within the con-
text of toric varieties without the half-form correction. The real polarized
sections are defined directly as distributional solutions of the equations
of covariant constancy and can also be obtained by degenerating appro-
priately normalized Kähler polarized sections. These normalized holomor-
phic sections converge, under the degeneration, to Dirac-delta-distributional
sections supported on the Bohr–Sommerfeld fibers which correspond to inte-
gral points of the moment polytope, including the ones on the boundary.
The corresponding Bohr–Sommerfeld orbits are increasingly singular (lower
dimensional) as the codimension of the face of the polytope on which they
are increases.
On the other hand, one would expect these quantum states not to be

present in a quantization in the real toric polarization correctly reproducing
the “vacuum energy shift” of the harmonic oscillator. We show that this
expected behavior of the quantum states is precisely achieved by our defini-
tion of the half-form corrected Kähler quantizations deforming continuously
to the real polarization.
An immediate obstacle to defining the half-form quantization in a Kähler

polarization is the fact that the canonical bundle KX of a toric variety
may not admit a square root, for instance for CP

2n. (See the appendix for a
discussion of the existence of

√
KX in terms of the fan ofX.) In Section 3, we

consider Kähler quantization of a compact toric manifold X with symplectic
structure ω such that [ω]

2π − c1(X)
2 ∈ H2(X,Z) and is non-negative. (This

integrality condition has also been proposed in [C78].) In the case when
c1(X) is even, so that KX admits a square root, one is then reduced to the
usual setting for half-form quantization. Let L → X be an Hermitian line
bundle with connection of curvature given by −iω+ i

2ρ, where ρ is the Ricci
form for the Kähler metric on X, so that [ρ/2π] ∈ c1(X). When a

√
KX

exists, this corresponds to taking the usual prequantum connection plus
one-half the Chern–Levi–Civita connection on KX , which gives a connection
on
√
KX .

The condition [ω]
2π − c1(X)

2 ∈ H2(X,Z) allows us to choose the moment
polytope (see equations (3.6) and (3.7) in Section 3.2), PX = μ(X),

PX = {x ∈ R
n : �j(x) = νj · x+ λj ≥ 0, j = 1, . . . , r} ,

with all λj ’s half-integral

λj ∈ 1
2
+ Z, j = 1 . . . , r,

where x are action coordinates and νj is the primitive inward pointing
normal vector to the jth facet. With this choice, there are no integral
points in the boundary of PX and to all integral points inside PX there
will correspond Kähler polarized states, that is holomorphic sections of
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L. Unlike Hamilton’s case however, the integral points start at lattice dis-
tance 1/2 (rather than 1), from every facet (see the figures in Remarks 3.7
and 3.8.)
As in the case without the half-form correction, these polarized states

will converge, as the polarizations degenerate to the toric real polarization,
to delta distributions supported on the corresponding non-singular orbits.
The degeneration of the equations for polarized sections (see Section 4.2)
is also consistent with the degeneration of the polarized states as the Ricci
connection term idθj

v in (4.2) corresponds to a connection with curvature
supported on the inverse image of the jth facet by the moment map. From
the point of view of the real polarization these singular connections are
responsible for the vacuum energy shifts (which correspond to shifted Bohr–
Sommerfeld conditions) as they prevent the existence of covariantly constant
sections supported on the boundary. Quantization in the real singular toric
polarization is then defined directly in terms of this limit connection. This
provides an approach for defining half-form corrected quantization in real
singular polarizations. By finding the type of singularities of the half-form
corrected limit connection, one finds corrected equations for the real polar-
ized sections. In the toric case, this direct approach for the definition of the
half-form corrected quantization in the singular toric real polarization gives
the same results as the degeneration of Kähler polarizations (Theorems 4.7
and 4.15).
In [BFMN11], the convergence to delta-distributions was achieved by

taking L1-normalized sections. In the present paper, however, the half-form
correction ensures the nice behavior of the L2-normalized sections in the
limit of degenerating complex structure. This is in agreement with other
examples such as finite-dimensional vector spaces [KW06] and abelian vari-
eties [BMN10].
One of the primary motivations for including the half-form correction is

that it allows for a canonical pairing between quantizations associated to dif-
ferent complex structures. This pairing is known as the Blattner–Konstant–
Sternberg (BKS) pairing. The BKS pairing between quantizations associated
to two Kähler complex structures is non-degenerate, and hence (since the
Kähler quantizations of a compact toric manifold are finite dimensional)
induces an isomorphism between them. One does not, although, expect in
general that the BKS pairing provides a unitary identification of quantiza-
tions associated to different complex structures. In several common cases,
for example for symplectic vector spaces equipped with translation invariant
Kähler structures, and for complex Lie groups equipped with certain fami-
lies of Kähkler structures (which include the canonical Kähler structure), the
BKS pairing is unitary (see [Hal02,KW06,FMMN05,FMMN06]). In a
few other cases, the BKS pairing is known to be not unitary, for example for
T ∗S2 [Raw79]. In most cases, it is not known whether the BKS pairing is
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unitary, and conditions for unitarity do not yet seem to be well understood.
We show that the BKS pairing between half-form corrected quantizations
of compact toric varieties is not unitary in general.
We will also consider another method for comparing quantizations asso-

ciated to different complex structures. Namely, one can construct a (finite-
rank) Hilbert bundle over the space of toric complex structures on X with
the fiber at a point being the quantum Hilbert space associated to that com-
plex structure. When the half-form correction is not included, the quantum
Hilbert bundle is a subbundle of a trivial bundle, and hence carries a canon-
ical connection obtained by orthogonal projection of the trivial connection.
This connection is called the quantum connection. It was first introduced
and studied by Axelrod, della Pietra and Witten in [APW91] and, from a
slightly different point of view, by Hitchin in [Hit90]. See also [AGL07] for
a treatment that includes the half-form correction.
For linear complex structures on a symplectic vector space, the quan-

tum connection turns out to be projectively flat, which means that up to a
constant, one may identify all Kähler quantizations at once. To extend the
connection to the boundary of the space of complex structures, and thus
study their degenerations and relate real quantizations to Kähler quantiza-
tions, one must introduce the half-form correction; parallel transport of the
resulting corrected quantum connection, still in the case of linear complex
structures, was studied by the first author and Wu in [KW06], where it
was found that parallel transport along geodesics with internal endpoints is
just rescaled Bergman projection, while transport along geodesics with one
or two endpoints on the boundary yields the well-known Segal–Bargmann
and Fourier transforms, respectively. These results were recently extended
by Wu to the case of linear quantization of fermions [Wu10]. In the usual
(bosonic) case, one may then quotient by the action of Z

2n, as done by Baier
and the second two authors in [BMN10], to study degenerations of complex
structures on abelian varieties at the level of ϑ-functions. In a different direc-
tion, in [FMMN05] and [FMMN06], Florentino, Matias and the second
two authors studied the corrected quantum connection on a one-dimensional
family of complex structures on the complexification of a compact Lie group
which degenerates to the vertical polarization of the cotangent bundle of the
underlying real Lie group; here, again, parallel transport with respect to the
quantum connection yields the (generalized) Segal–Bargmann–Hall trans-
form. In related work, Lempert and Szőke have recently studied the bundle
of quantizations associated to a family of adapted-type complex structures
on Grauert tubes of compact, real-analytic Riemannian manifolds [LS10],
although they use a Chern-type connection rather than the BKS construc-
tion considered here.
In Section 5.3, we show that the quantum connection on the quantum

Hilbert bundle induced by the BKS pairing is flat, so that the quantizations
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associated to different torus–invariant complex structures can be canonically
identified.

2. Preliminaries

2.1. Complex line bundles. We begin with some facts about complex
line bundles. Let E → X be a complex line bundle on a manifold X and let
E0 = E \ {zero section} be its frame bundle. The isomorphism

(| · |, arg) : C
∗ ∼= R

+ × U(1)

c �→
(
|c|, c|c|

)
,

defines a canonical isomorphism ([Wei04], p. 6)

E ∼= |E| ⊗ EU(1),

where the complex line bundles |E|, EU(1) are associated to the principal
C
∗-bundle E0, via the homomorphisms C

∗ 
 c �→ |c| ∈ R
+ and C

∗ 
 c �→
arg(c) = c

|c| ∈ U(1), respectively. Following [Wei04] we call the line bundle

EU(1) the unitarization of E.
This isomorphism is given explicitly by

Ep 
 l �→
{
|l| ⊗ lU(1), l �= 0,
0, l = 0,

where p ∈ X, |l| = [(l, 1)]|·| = [(lc−1, |c|)]|·| ∈ |E| = E0 ×(C∗,|·|) C and lU(1) =
[(l, 1)]arg = [(lc−1, c

|c|)]arg ∈ Eu(1) = E0 ×(C∗,arg) C, c ∈ C
∗.

For simplicity, we will identify E with |E| ⊗ EU(1) and write 0 �= l =
|l| ⊗ lU(1) = |l|lU(1) and thus, also, lU(1) = l

|l| .
Let {gαβ} be the transition functions for E associated to local trivial-

izations for some open cover {Uα} of X. Then, for the same open cover
{Uα}, the complex line bundle EU(1) has U(1)-valued transition functions
{gαβ/ |gαβ |}, and the complex line bundle |E| has R

+-valued transition func-
tions {|gαβ |}.
This decomposition of E = |E| ⊗EU(1) induces an associated splitting of

connections. Let ∇ be a connection on E with connection form Θ associated
to a local trivializing section s, ∇s = Θs. Since, at the level of Lie algebras,
the isomorphism C

∗ ∼= R
+ × U(1) gives C ∼= R ⊕ iR, we have ∇ = ∇|E| +

∇EU(1)
where Θ|E| = ReΘ and ΘEU(1)

= i ImΘ are the connection forms for
|E|, EU(1) associated to the local trivializing sections |s|, sU(1), respectively:

∇|E||s| = ReΘ |s|,
∇EU(1)

sU(1) = i ImΘ sU(1).
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Now let E have an Hermitian structure h. Then |E| has a global trivial-
izing section μh defined as follows. Let s be any local trivializing section of
E over an open set U ⊂ X. Over U , define

(2.1) μh =
|s|√
h(s, s)

.

Note that, since h is an Hermitian structure, μh is independent of the choice
of the local trivializing section s and therefore extends to a global trivializing
section of |E|.
Let Γ(E) denote the space of smooth sections of E. A connection ∇ on

(E, h) → X is said to be compatible with the Hermitian structure if for
any section s ∈ Γ(E), one has dh(s, s) = h(∇s, s) + h(s,∇s). Let ||s||2 =
h(s, s). This property is equivalent to d||s|| = ReΘ||s|| which is, in turn,
equivalent to

∇|E|μh = 0.

Remark 2.1. The above isomorphism of |E| with the trivial bundle also
defines, since E = |E| ⊗ EU(1), an isomorphism of E with EU(1) given by

l �→ l

√
h(l,l)

|l| , l ∈ E.
Remark 2.2. If X is a complex manifold and if E has an holomorphic
structure, then given a global non-zero meromorphic section of E, s, one has
μh =

|s|√
h(s,s)

away from the divisor of s. This expression extends uniquely

to μh on the whole of X.

Any line bundle EU(1) has a canonical Hermitian structure defined by
h̃(zlU(1), z′lU(1)) = zz̄′. This Hermitian structure is independent of the choice
of representative l and is therefore well defined.

Remark 2.3. An Hermitian line bundle (E, h) → X can then be decom-
posed into smooth Hermitian line bundles (E, h) = (|E| , ĥ)⊗(EU(1), h̃). The
Hermitian structure on |E| is defined by ĥ(z|l|, z′|l|) = h(l, l)zz̄′, so that

h(zl, z′l) = zz̄′ ĥ(|l|, |l|) · h̃(lU(1), lU(1)) = zz̄′ ĥ(|l|, |l|), z, z′ ∈ C, l ∈ E.
Remark 2.4. Note that under the isomorphism |E| � X × C defined by
μh, the Hermitian form ĥ becomes the standard Hermitian product on C.

We recall the following standard results (see, for instance, Proposition
4.2.14 in [Huy05]):

Lemma 2.5. If (E, h) → X is a complex Hermitian vector bundle, then
there exists a compatible connection ∇. Moreover, ∇′ is another compatible
connection if and only if there exists a (global) real-valued 1-form β such
that ∇′ = ∇+ iβ.
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If E → X is a holomorphic line bundle, then ∂̄ is a well-defined operator
on Γ(E). A connection∇ on E is said to be compatible with the holomorphic
structure if ∇0,1 = ∂̄.

Lemma 2.6. Let (E, h) → X be a Hermitian holomorphic line bundle.
There exists a unique connection ∇, called the Chern connection, which is
compatible with both the Hermitian structure h and the holomorphic struc-
ture of E. Moreover, if {Uα, sα} is a holomorphic trivialization of E, then
∇sα = (∂ log h(sα, sα)) sα.

Then, in the holomorphic local trivialization {Uα, sα}, we have
F∇ = d(∂ log h(sα, sα)) = −∂∂̄ log h(sα, sα)

that is, − log h(sα, sα) is a local potential for the curvature 2-form and, on
the open set Uα,

[i∂∂̄(− log h(sα, sα))] ∈ 2π · c1(E).
The induced connections on |E| and EU(1) are then given by

∇|E||s| = 1
2
d log h(s, s) |s|,

∇EU(1)
sU(1) =

1
2
(
∂ log h(s, s)− ∂̄ log h(s, s)) sU(1).

If X is Kähler with integral symplectic form ω, and L is an Hermitian
holomorphic line bundle with the curvature of the Chern connection given
by −iω, then in a local holomorphic trivialization one has that
κ = − log h(s, s) is a local Kähler potential.
2.2. Toric manifolds. Let (X,ω) be a compact smooth symplectic toric
manifold with symplectic form ω, moment map μ : X → Lie(Tn)∗ � R

n and
moment polytope PX = μ(X) with associated fan Σ. The Kähler structure
of X, which connects the symplectomorphism class of X determined by PX

to the biholomorphism class of X determined by Σ, is fixed by choosing
a so-called symplectic potential. We will find both descriptions, as well as
the relation between them, essential for our work, and so we describe them
briefly here (although we refer the interested reader to [Gui94, Abr03,
CLS11,DP09] for details).

2.2.1. The symplectic structure of X. Let P̌X denote the interior of the
moment polytope PX . On X̌ = μ−1(P̌X) ∼= P̌X × T

n consider action-angle
coordinates (x, θ), so that μ(x, θ) = x = t(x1, . . . , xn). The symplectic form
ω in this coordinate chart is simply

(2.2) ω|μ−1(P̌X) =
n∑

j=1

dxj ∧ dθj .
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The moment polytope PX is a Delzant polytope (see [D88] or p. 698
of [DP09]) determined by a set of inequalities {�j(x) ≥ 0}j=1,...,r, where r
is the number of facets of PX and for each j = 1, . . . , r,

�j(x) = νj · x+ λj

where νj is the (inward pointing) primitive integral vector normal to the jth
facet of PX , and λj ∈ R.
We now describe the coordinate chart associated to a vertex v ∈ PX .

Since we assume X is smooth, the polytope is regular; that is, there are n
facets adjacent to each vertex, with normal vectors forming a Z-basis of Z

n.
Reorder (if necessary) the inequalities so that the first n correspond to the
facets adjacent to v. Then �1(v) = �2(v) = · · · = �n(v) = 0. Let Av ∈ GLn(Z)
be the matrix whose rows are the vectors νj , and let λv = t(λ1, . . . , λn).
Define new (vertex action-angle) coordinates xv on R

n and θv on T
n by

(2.3) xv := Avx+ λv, and θv := tA−1
v θ.

The image of the polytope PX under xv in (2.3) is also a Delzant polytope
P v

X ,

(2.4) P v
X = Av PX + λv,

with the vertex v mapped to the origin and the codimension one faces meet-
ing at the origin contained in the coordinate hyperplanes. Given a different
vertex v′, with associated matrix Av′ ∈ GLn(Z), and vector λv′ , the tran-
sition functions between the corresponding vertex action angle coordinates
read

xv′ = Av′A
−1
v (xv − λv) + λv′ ,(2.5)

θv′ = tA−1
v′

tAv θv.

For a face F ⊂ PX (that is, a linear boundary component of any codimen-
sion, including the polytope itself, the facets and the edges), denote by F̌ the
interior of F , with the convention that ˇ{v} = {v} for vertices. The vertex
chart neighborhood at v is defined to be the following T

n-invariant open set

Uv := μ−1

⎛⎝ ⋃
faces F of PX adjacent to v

F̌

⎞⎠ .

We consider on Uv coordinates {aj
v, b

j
v}j=1,...,n related to the vertex action-

angle coordinates {xj
v, θ

j
v}j=1,...,n by aj

v + ibjv =
√
xj

v eiθ
j
v , j = 1, . . . , n, on X̌

(see, for example, Sections 3 and 4 of [DP09]). Since xv takes values in the
polytope P v

X ⊂ R
n (2.4), (it is surjective to the polytope minus the faces not

containing the origin) and θv ∈ R
n/Zn, the image of Uv under av + ibv is a

bounded neighborhood of the origin in C
n. The (non-holomorphic) transition
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functions between coordinate functions av + ibv and av′ + ibv′ for vertices v
and v′ can be obtained from (2.5) (see Section 4 of [DP09]),

aj′
v′ + ibj

′
v′ =

√√√√ n∑
j=1

(Av′ A
−1
v )j′j

(
|aj

v + i bjv|2 − λj
v

)
+ λj′

v′

×
n∏

j=1

(
aj

v + ibjv
|aj

v + ibjv|

)(tA−1
v′

tAv)j′j

.

We will also need the much simpler transition functions for holomorphic
vertex coordinates (which will be introduced below in the section on Kähler
structures).
We note that the faces of PX correspond to points in X with non-trivial

stabilizer as follows: suppose F is a face adjacent to v given by {xjs
v =

0}s=1,...,jF (so F is a codimension-jF face). Then the points in μ−1(F ) are
fixed by the subtorus parameterized by the coordinates {(θj1

v , . . . , θ
jF
v )}. Let

V be the set of vertices of PX . We call {(μ−1(P̌X), (x, θ)), (Uv, (av, bv)) : v ∈
V } the vertex atlas of X.
The symplectic form in the vertex coordinate chart Uv can be computed

by pullback of (2.2) under the coordinate change (2.3) to be

ω|Uv =
n∑

j=1

2daj
v ∧ dbjv,

and on Uv ∩ X̌ = X̌,

ω|X̌ =
n∑

j=1

dxj
v ∧ dθj

v.

2.2.2. The Kähler structure of X. In order to describe the toric Kähler
structures on X, let us consider torus–invariant complex structures on the
symplectic toric manifold (X,ω) with moment polytope PX . Let gPX

∈
C∞(P̌X) be

(2.6) gPX
(x) =

1
2

r∑
j=1

�j(x) log �j(x).

Definition 2.7. Let C∞PX
(PX) be the set of smooth functions on PX such

that ϕ ∈ C∞PX
(PX) if Hessx(gPX

+ ϕ) is positive definite on P̌X and there
exists a strictly positive function α ∈ C∞(PX) so that

(2.7) det(Hessx(gPX
+ ϕ)) =

⎛⎝α(x) r∏
j=1

�j(x)

⎞⎠−1

on P̌X .
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A torus–invariant complex structure on (X,ω) is determined by a
symplectic potential

g = gPX
+ ϕ,

with ϕ ∈ C∞PX
(PX), see Section 4 of [Gui94] and Theorem 2.8 of [Abr03].

In the symplectic frame determined by the action-angle coordinates (x, θ)
on X̌, the toric complex structure I and the metric γ = ω(·, I·) tensors
associated to the symplectic potential g are then

(2.8) I =
(
0 −G−1

G 0

)
and γ =

(
G 0
0 G−1

)
,

where G = Hessxg is the Hessian of g.
Let us now relate these complex structures to the algebro-geometric

description of toric manifolds. By a standard construction, see, for example,
Section 5 in [D88] or Definition 6.4.2 in [CdS], associated to the moment
polytope PX there is an associated complete fan Σ. This fan defines a
compact smooth toric variety Y diffeomorphic to X (see below) and with
canonical complex structure defined by Σ.
The complex torus (C∗)n acts on Y with a dense open orbit (biholomor-

phic to (C∗)n) which we henceforth refer to as the open orbit. Let M denote
the (integer lattice of) characters of (C∗)n, so that after a choice of basis,
M � Z

n.1 The characters of (C∗)n extend to meromorphic functions on Y
with torus–invariant divisors.
The toric variety Y has an atlas of holomorphic coordinates {(Vv, w̃v)}v∈V ,

w̃v = (w̃1
v , . . . , w̃

n
v ), where for each pair of vertices v, v′, over Vv ∩ Vv′ the

glueing conditions are given by

(2.9) w̃v′ = w̃
AvA−1

v′
v ,

withAvA
−1
v′ interpreted as a row of multiindices; i.e., w̃j

v′=
∏n

l=1(w̃
l
v)

(AvA−1
v′ )l

j.
(See, for example, Section 5 of [DP09].)
Denote the open orbit in Y by V0. The symplectic potential g fixes a

biholomorphism (X̌, I) ∼= P̌X × T
n ∼= V0

∼= (C∗)n given by

P̌X × T
n −→ V0 � (C∗)n(2.10)

(x, θ) �→ w̃ = ey+iθ = (ey
1+iθ1

, . . . , ey
n+iθn

),

where yj = ∂g/∂xj . Note that this map is not a symplectomorphism with
respect to the standard symplectic structure on (C∗)n.
The map x �→ y = ∂g/∂x is a bijective Legendre transform. The inverse

map is given by x = ∂h/∂y, where h is a Kähler potential given in terms of
g by

h := x · y − g.
1We will henceforth identify M ∼= Z

n and M ⊗ R ∼= R
n.
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This biholomorphism extends uniquely to a biholomorphism

ψg : X → Y

as follows. The complex structure associated to g defines holomorphic coor-
dinates in the vertex coordinate charts via the coordinate change (2.3) to
yield

Uv −→ Vv(2.11)

(xv, θv) �→ w̃v = eyv+iθv ,

where yj
v := ∂g/∂xj

v =
∑n

k=1

(
A−1

v

)k
j
∂g/∂xk. Using the observation that

yv+iθv = tA−1
v (y+iθ), one may verify that (2.9) is indeed satisfied. Similarly,

on V0 we have

(2.12) w̃ = w̃Av
v ,

which will be useful below.
We define the I-dependent holomorphic vertex atlas {(Uv, wv)}v∈V on X

to be the pullback by ψg of the holomorphic atlas {(Vv, w̃v)}v∈V on Y . (We
will also denote the pullback of the chart (V0, w̃) on Y to X by (U0, w).)
The I-dependent transition functions for the holomorphic coordinate charts
(Uv, wv), v ∈ V, (U0, w) on X are therefore the pullbacks by ψg of the corre-
sponding transition functions on Y in (2.9) and (2.12).
Henceforth, we will assume that X is equipped with a Kähler structure

determined by ω and by a symplectic potential g = gPX
+ϕ, ϕ ∈ C∞PX

(PX).

2.2.3. Line bundles and sections. Since compact smooth toric varieties
are simply connected, the Picard group of equivalence classes of holomorphic
line bundles is isomorphic to H2(X,Z), with isomorphism established by the
first Chern class. In other words, fixing the first Chern class of a line bundle
on the the complex toric manifold X fixes the bundle up to isomorphism.
(See the Corollary on p. 64, on Section 3.4 of [F].)
The linear equivalence classes of the torus–invariant divisors ofX generate

the Picard group of X, and there is a one-to-one correspondence between
irreducible torus–invariant divisors and 1-cones in Σ (see, Part I, Chapter 4
of [CLS11]). Denote the set of 1-cones in Σ by Σ(1). The jth 1-cone in Σ(1)

is generated by the primitive integral vector νj normal to the jth facet of
PX . Then, the associated irreducible divisor Dj = μ−1({x ∈ PX : �j(x) =
νj ·x+λj = 0}) is the inverse image under the moment map μ of that facet of
PX . The Picard group is then generated by the linear equivalence classes of
irreducible divisors D1, . . . , Dr. Consider a divisor DL = λL

1D1+ · · ·+λL
r Dr,

for λL
1 , . . . , λ

L
r ∈ Z, defining a holomorphic line bundle L = O(DL) and a

(unique up to constant) meromorphic section of L with divisor DL, σDL .
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From [CLS11], the divisor of the (rational) function defined on the open
orbit by wm,m ∈ Z

n, can be computed to be

(2.13) div(wm) =
r∑

j=1

〈νj ,m〉Dj .

Then, we have

H0(X,L) = spanC {wmσDL : m ∈ Z
n, div(wm

0 σDL) ≥ 0}
(2.14)

= spanC

{
wmσDL : m ∈ Z

n, 〈m, νi〉+ λL
i ≥ 0, i = 1, . . . , r

}
.

Therefore, there is a natural bijection between a basis of H0(X,L) whose
elements are weight vectors for the action of the torus and the integral points
of the Delzant polytope with integral vertices2

(2.15) PL := {x ∈ R
n : 〈x, νj〉+ λL

j ≥ 0, j = 1, . . . , r} ⊂ R
n.

For simplicity, let us assume that L is ample so that there is a canoni-
cal bijection between the vertices of PL and the vertices of PX , defined by
the equality of the set of normals of the facets meeting at those vertices.
(In fact, if L is ample there is a bijection between the faces of PX and
of PL. See Section 3.2.1 of [CK].) Let us denote by the same symbol v a
vertex of PL and the corresponding vertex of PX . The holomorphic section
corresponding to the vertex v of PL will provide a local trivializing section
on the open set Uv, so that one obtains a global system of local holomor-
phic trivializations for L. For such vertex v, we can order the inequalities
{�Lj (m) := 〈m, νj〉 + λL

j ≥ 0, j = 1 . . . r} so that ν1, . . . , νn are the normals
to the facets of PL meeting at v; this is the same ordering that we used in
the definition of the vertex coordinates on X. Using this ordering, we set
λL

v = t(λL
v,1, . . . , λ

L
v,n) := (λL

1 , . . . , λ
L
n).

The holomorphic section corresponding to a vertex v of PL is given by

(2.16) 1v := w−λL
v

v σDL .

Using (2.12) and (2.13), one obtains that the divisor of the meromorphic
function wλL

v
v on Uv is

divUv(w
λL

v
v ) =

(
λL

v,1D1 + · · ·+ λL
v,nDn

) ∩ Uv,

and therefore divUv (1v) = 0, so that 1v is a trivializing holomorphic section
of L on Uv = X\{∪r

j=n+1Dj}. We remark that these sections are determined
up to a constant by their divisors and they are therefore defined for every
line bundle in the isomorphism class of L.

2Note that we have different sign conventions for λF than those used in [BFMN11].
We have chosen rather to follow the convention in [CLS11], as they seem to make certain
equations more natural (for example, shifting λF �→ λF + 1 has the effect of shifting the
facet F one unit along the outward pointing normal to F ).
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For notational convenience, let 10 = σDL . Using (2.16), we may com-
pute the transition functions for L relative to the holomorphic vertex atlas

obtaining, gL
v′v := 1v/1v′ = w

λL
v′

v′ /w
λL

v
v and gL

0v := 1v/10 = w
−λL

v
v . Combined

with (2.9), the transition functions for O(λL
1D1 + · · ·+ λL

r Dr) become

gL
v0(w) = wA−1

v λL
v and(2.17)

gL
v′v(wv′) = w

λL
v′−Av′A

−1
v λL

v

v′ .

Remark 2.8. Note that the transition functions of L depend on the varia-
tion of complex structure on X through the symplectic potential g, since
w = e

∂g
∂x

+iθ and wv = e
∂g

∂xv
+iθv (see (2.10) and (2.11)). We will con-

sider one-parameter families of symplectic potentials, gs = gPX
+ ϕ +

sψ, ϕ, ψ ∈ C∞PX
(PX), s ∈ R

+. The transition functions and therefore L
depend smoothly on s.

These relations define a holomorphic line bundle on X for any integral
values of λL

i , even if this line bundle is not ample. In this case, sections of
the sheaf of holomorphic sections over Uv are defined as in (2.14) with X
replaced by Uv and the divisors D replaced by D ∩ Uv.
Using the transition functions (2.17) for L, we can give it a concrete

realization as the following equivariant line bundle:

(2.18) L =

(⊔
v∈V

Uv × C

)/
∼,

where (w, z) ∼ (w′, z′) if w = w′ ∈ Uv ∩ Uv′ and z = gL
vv′(w)z

′. We will
assume that L = O(D), D =

∑r
j=1 λ

L
j Dj , is the line bundle defined by

(2.18). In each open set in the holomorphic vertex atlas, the trivializing
sections 1v (or 10 on the open orbit) defined above are given by

1v(w) := [(w, 1)], w ∈ Uv(or w ∈ U0, for the open orbit).

For σ ∈ Γ(L) denote by σv, σ0 its components on the local frames given,
respectively, by 1v,10. For an integral point m ∈ PL ∩Z

n, we denote by σm

the holomorphic section with σm
0 = wm. Using the transition functions, we

obtain expressions for σm in the holomorphic vertex charts:

(2.19) σm
v (wv) = w�v(m)

v 1v,

where �v(x) := Avx+ λL
v .

We have

Lemma 2.9. Let L be the equivariant holomorphic line bundle defined by
(2.17) and (2.18). The unitarization LU(1) associated with L defined over
a compact toric variety X has complex structure independent transition
functions on the vertex atlas.
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Proof. Recall from Section 2.1 that the unitarization of L is the line bundle
LU(1) with local trivializing sections 1U(1)

v on the vertex charts and 1U(1)
0 on

the open orbit. The corresponding transition functions are

g̃L
v′v := 1U(1)

v /1U(1)
v′ = ei(λ

L
v′−Av′A

−1
v λL

v )·θv′ and(2.20)

g̃L
0v := 1U(1)

v /1U(1)
0 = e−i(A−1

v λL
v )·θ.

We see that, unlike those for L itself, these transition functions are complex
structure independent. �

Recall also from Remark 2.1 that a Hermitian structure on L defines an
isomorphism between L and LU(1).

2.2.4. The canonical bundle. The complex structure I on (X,ω) (see
(2.8)) defines the canonical holomorphic line bundleKI :=

∧n(T ∗)1,0, whose
sections are (n, 0)-forms. Consider, in the open orbit U0, the I-holomorphic
(n, 0)-form dZ = dz1 ∧ · · · ∧ dzn = dW/w1, where

(2.21) z = t(z1, . . . , zn) = ∂g/∂x+ iθ

and dW := dw1 ∧ · · · ∧ dwn, so that dZ and dW are trivializing sections of
KI |U0

. (Here, 1 = (1, . . . , 1) so that w1 = w1 · · ·wn.) Then

Lemma 2.10. [CLS11, Sec. 8.2 ] The (n, 0)-form given on the open orbit
by dZ extends to a meromorphic section of KI with divisor div (dZ) = −D1−
· · · −Dr. On the holomorphic vertex chart Uv this section is proportional to
dWv/w

1
v = dZv.

Since the wj
v’s are holomorphic coordinates on the chart Uv, it follows that

a system of local holomorphic trivializations for KI is given by {(Uv, dWv)}.
Relative to this system of trivializations of KI , the transition functions are
computed to be

(2.22) gKI
v′v = w

−1+Av′A
−1
v 1

v′ ,

so that, as expected from the form of div (dZ), KI is isomorphic to a line
bundle of the form of (2.18).
From Section 2.1, we have that the equivariant Hermitian holomorphic

line bundle KI admits a decomposition K
U(1)
I ⊗ |KI |. The unitarization

KU(1) is trivialized by

(2.23)
{(

Uv,
dWv

|dWv|
)}

v∈V

with corresponding transition functions

(2.24) g̃KI
v′v = ei(−1+AvA−1

v′ 1)·θv′ .
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We see that, in accordance with Lemma 2.9, KU(1)
I has I-independent tran-

sition functions on the vertex atlas. On the other hand, note that the line
bundles KU(1)

I depend on I because their fibers change with I (see (2.23)).
In order to facilitate the study of the dependence of polarized sections on
the complex structure I, it will be convenient to consider a line bundle
with the same transition functions as KU(1)

I but defined as in (2.18), so
that this line bundle is I-independent (but has an I-dependent isomorphism
to KU(1)

I ).

Definition 2.11. Denote by K̃U(1) the (I-independent) equivariant line
bundle defined as in (2.18) with U(1)-valued transition functions given
by (2.24).

In the remainder of this section, we continue to consider a fixed toric
complex structure I, obtained from a symplectic potential g, and will drop
the subscript I for simplicity. K has a canonical Hermitian structure given
by comparison with the Liouville volume form, that is, for an (n, 0)-form η,

‖η‖2K :=
η ∧ η̄

(2i)n(−1)n(n+1)/2ωn/n!
.

Let ∇K denote the Chern connection corresponding to this Hermitian struc-
ture. In the above trivialization, we can compute the connection 1-form of
the Chern connection (using Lemma 2.6) to be

∂ log ‖dZ‖2K .

Lemma 2.12. ‖dZ‖2K = detG, where G = Hessxg. Hence, the Chern con-
nection 1-form in the open orbit U0 is Θ0 = ∂ log detG.

Proof. Since zj = ∂g/∂xj + iθj , we see that dz = Gdx + idθ and similarly
that dz̄ = Gdx− idθ. We can express these in the matrix equation(

dz
dz̄

)
=
(
G i1
G −i1

)(
dx
dθ

)
when

‖dZ‖2K =
dZ ∧ dZ̄

(−2i)n(dx1 ∧ · · · ∧ dxn ∧ dθ1 ∧ · · · ∧ dθn)

=
1

(−2i)n det
(
G i1
G −i1

)
= detG.

�

Similarly, we have
‖dZv‖2K = detGv,

where Gv = Hessxvg.
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The curvature of the Chern connection is easily computed, giving

(2.25) F∇K = ∂̄∂ log detG.

Let Ricγ denote the Ricci curvature tensor of the metric γ = ω(·, I·), and
let ρ = Ric(I·, ·) be the corresponding Ricci form. Then by [Mor07, Prop.
11.4] we have

(2.26) F∇K = iρ.

Note that this implies c1(K) = −c1(X) = −[ρ/2π].
Lemma 2.13. The section dWv = w1

vdZv is a nowhere vanishing holomor-
phic section of K on the holomorphic vertex chart Uv and, in the induced
trivializations, the Chern connection 1-forms on KU(1) and |K| are

ΘKU(1)

v = i
n∑

k=1

dθk
v +

i
2

(
∂

∂xv
log detGv

)
·G−1

v dθv, and(2.27)

Θ|K|v =
1
2

(
∂

∂xv
log detGv

)
· dxv +Gv dxv.

Remark 2.14. The following expressions for the connection 1-forms for the
induced connections ∇KU(1)

and ∇|K| over the open orbit will also be useful
below:

ΘKU(1)

0 = iImΘ =
i
2

(
∂

∂x
log detG

)
·G−1 d θ, and(2.28)

Θ|K|0 = ReΘ =
1
2

(
∂

∂x
log detG

)
· dx.

Proof. If f is real valued, then

(2.29) Im∂f =
1
2

(
∂f

∂x
·G−1dθ − ∂f

∂θ
·Gdx

)
and

(2.30) Re∂f =
1
2

(
∂f

∂x
· dx+ ∂f

∂θ
· dθ

)
,

with similar formulas in the vertex charts (with xj and θj replaced by xj
v

and θj
v). With f = log detG (observing that f = f(x)) we obtain, from

Θ0 = ∂ log detG, the open orbit 1-forms (2.28).
Next, by [CLS11], the “canonical” section dZ = dW/w1 (which has the

same representation dWv/w
1
v in the holomorphic vertex charts) has simple

poles along each torus–invariant divisor. To obtain a trivializing section on
the holomorphic vertex chart Uv, we multiply by a factor with simple zeroes
along the divisors adjacent to v and thus arrive at the desired combination
w1

vdZv.
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To obtain the connection 1-forms in the chart Uv with respect to w1
vdZv,

we first recall the norm

(2.31)
∥∥w1

vdZv

∥∥2 =
∣∣w1

v

∣∣2 detGv.

From this, noting that detGv is a constant multiple of detG, we see that
the Chern connection 1-form on Uv is

Θv = ∂ log
(∣∣w1

v

∣∣2 detGv

)
= ∂ log detGv +

∑
j

∂ logwj
v

= ∂ log detGv +
∑

j

dzj
v.

Since dzv = Gvdxv + idθv, using (2.29) and that G depends only on x, we
obtain the connection 1-form

ΘKU(1)

v = iIm

⎛⎝∂ log detGv +
∑

j

dzj
v

⎞⎠
=

i
2

(
∂

∂x
log detGv

)
·G−1

v dθv + i
n∑

j=1

dθj
v

as desired.
Similarly, using (2.30) we obtain the connection 1-form

Θ|K|v = Re

⎛⎝∂ log detGv +
∑

j

dzj
v

⎞⎠ =
1
2

(
∂

∂xv
log detGv

)
· dxv +Gv dxv

as desired. �

Note that although KU(1)
I has complex structure independent transition

functions, its Chern connection depends on I.

3. Half-form corrected Kähler quantization

3.1. Motivation. Suppose the square root
√
KI of the corresponding

canonical bundle exists so that, in particular, c1(X)/2 is integral. Assume,
moreover, that [ω/2π] ∈ H2(X,Z) and let �→ X be a (smooth) Hermitian
line bundle with compatible connection with curvature given by −iω, that
is, � is a prequantum line bundle. More specifically, let � be an equivariant
line bundle defined as in (2.18), with U(1)-valued transition functions on
the vertex atlas (2.20)

(3.1) g̃�
vv′ = ei (Av′A

−1
v λv−λv′ )·θv′ , and g̃�

v0 = ei λv ·θv ,
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with λv ∈ Z suitably chosen to have c1(�) = [ ω
2π ]. Equip � with the U(1)-

connection ∇� given by the connection forms

Θ�
0 =

∇�1U(1)
0

1U(1)
0

= ix · dθ on X̌,(3.2)

Θ�
v =

∇�1U(1)
v

1U(1)
v

= ixv · dθv on Uv, v ∈ V.

One may easily check that {Θ�
0,Θ

�
v : v ∈ V } does indeed define a U(1)-

connection on �; see the comment following (3.10).
Since the square of a (local) section η ∈ Γ(

√
KI) can be identified with

a (local) section of KI , the line bundle
√
KI inherits a Hermitian structure

from that of KI given by [Woo91]

(3.3) ‖η‖2√KI
=

√
η2 ∧ η̄2

(2i)n(−1)n(n+1)/2ωn/n!
.

This defines a Chern connection ∇
√

KIon
√
KI as in Lemma 2.6. The

curvature of ∇
√

KI is then F∇
√

KI
= i

2ρI , where ρI is the Ricci form on X.
The quantum Hilbert space for the half-form corrected Kähler quantiza-

tion of X is defined to be

HQ
I :=

{
s ∈ Γ(�⊗

√
KI) :

(
∇�
PI
⊗ 1 + 1⊗∇

√
KI

PI

)
s = 0

}
,

where PI is the holomorphic polarization of X determined by I.
Recall from (2.1) that the bundle |√KI | has a trivializing covariantly

constant section

(3.4) μI =
|dZ| 12
‖dZ‖

1
2
KI

.

This defines an isomorphism

HQ
I
∼= BQ

I ⊗ μI

where

(3.5) BQ
I :=

{
s ∈ Γ

(
�⊗

√̃
K

U(1)
)
:
(
∇�
PI
⊗ 1 + 1⊗∇

√̃
K

U(1)

PI

)
s = 0

}
,

Note that, from Lemma 2.9, the unitarization � ⊗ √̃K
U(1)

is a smooth
complex line bundle independent of I. In this way, using the I-dependent
isomorphisms above, we can describe the quantum Hilbert spaces HQ

I

through the Hilbert spaces BQ
I which are subspaces of a fixed linear space

Γ
(
�⊗ √̃K

U(1)
)
.
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We will now use this representation to motivate the definition of the half-
form corrected quantum Hilbert space in the more general situation when
the canonical bundle of X may not admit a square root.

3.2. Corrected quantization. Let (X,ω, I) be a compact smooth toric
Kähler manifold with toric complex structure I and such that

[
ω
2π

]− 1
2c1(X)

is an ample integral cohomology class. Let the moment polytope be

(3.6) PX = {x ∈ R
n : �j(x) = νj · x+ λj ≥ 0, j = 1, . . . , r} ,

where we use the freedom of translating the moment polytope to choose the
{λj}j=1,...,r to be half-integral and defined as follows. Consider an equivariant
complex line bundle L ∼= O(λL

1D1 + · · · + λL
r Dr) as in (2.18) and with

U(1)-valued transition functions (2.20) defined by {λL
j }j=1,...,r, such that

c1(L) =
[

ω
2π

] − 1
2c1(X). As in (2.15), the {λL

j }j=1,··· ,r define a polytope
with integral vertices, PL. The half-integral {λj}j=1,...,r in (3.6) are then
defined by

(3.7) λj := λL
j +

1
2
∈ 1
2
+ Z, j = 1, . . . , r,

in accordance with the fact that div (dZ) = −D1 · · ·−Dr (see Lemma 2.10).
Note that PL is obtained from the moment polytope PX by shifts of 1

2 along
each of the integral primitive inward pointing normals. (See Remarks 3.7
and 3.8 below for examples.) We will call PL ⊂ PX the corrected polytope.
We equip L with a U(1) connection ∇I with curvature F∇I = −iω+ i

2ρI .
Since H1(X) = 0 this connection is unique up to isomorphism.
Following the reasoning in the last section, and noticing that

√|KI | and
μI (see (3.4)) exist always even if

√
KI does not, and that the Hermitian

structure on
√|KI | gives ||μI ||√|KI | = 1, we set

Definition 3.1. The quantum Hilbert space for the half-form corrected
Kähler quantization of (X,ω, L, I) is defined by

HQ
I = BQ

I ⊗ μI ,

where

BQ
I = {s ∈ Γ(L) : ∇I

PI
· s = 0}.

The inner product is defined by

(3.8) 〈σ ⊗ μI , σ
′ ⊗ μI〉 = 〈σ, σ′〉 = 1

(2π)n

∫
X
hL(σ, σ′)

ωn

n!
.
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Now fix a choice of symplectic potential g for the complex structure I on
X. We define the connection ∇I on L by (using Lemma 2.13 and (3.2))

Θv :=
∇I1U(1)

v

1U(1)
v

= −ixv · dθv +
i
2

n∑
k=1

dθk
v +

i
4

(
∂

∂xv
log detGv

)
·G−1

v dθv

(3.9)

= −ixv · dθv +
i
2
Im

(
∂ log detGv +

n∑
k=1

dzk
v

)
.

On the open orbit X̌, the connection is then given by

Θ0 := −ix · dθ + i
4

(
∂

∂x
log detG

)
·G−1dθ(3.10)

= −ix · dθ+ i
2
Im∂ log detG.

One may check that Θv − Θv′ = d log g̃L
v′v and Θv − Θ0 = d log g̃L

0v so that
{Θ0,Θv : v ∈ V } does indeed define a U(1)-connection on L.
Remark 3.2. Note that, even though dθj

v is singular as x
j
v → 0, (3.9) defines

a non-singular 1-form on Uv, as can be verified by studying the behavior of
Gv or using the coordinates {aj

v, b
j
v}j=1,...,n.

The complex structure I and the connection ∇I combine to give a holo-
morphic structure on L which we can describe by giving the resulting
I-holomorphic sections of L.
Let hI

0(x) = x · ∂g/∂x− g and hI
v(xv) = xv · ∂g/∂xv − g. Also, note that

detGv = (detAv)−2 detG.

Lemma 3.3. An I-holomorphic section of L, s ∈ BQ
I , is locally given by

s|Uv
= sv1

U(1)
v where the function sv ∈ C∞(Uv) is of the form

(3.11) Fv(wv)e−hI
v(xv) e−i1/2·θv ‖dZv‖1/2

KI
.

On the orbit one then obtains s|U0
= s01

U(1)
0 , where the function s0 ∈

C∞(U0) is of the form

(3.12) F0(w) e−hI
0(x) ‖dZ‖1/2

KI
,

where F0 is holomorphic and Fv(wv) = wλv
v F0(wAv

v )|detAv| 12 .
Remark 3.4. Since the λv are generally only half-integer, the “functions”
Fv in the above theorem are not single valued. However, Fv e−i1

2
·θv is single

valued. In fact, the collection {F0, Fv : v ∈ V } defines a ramified section of
L. There are other possible geometric interpretations of such an object, for
instance through the notion of Kawamata covering, but we will not pursue
them here.
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Proof. We compute first in the open orbit. From (2.21), we see that

−ix · dθ
(
∂

∂z̄j

)
=
1
2
xj .

Recall that x can be expressed in terms of y via the Legendre transform
x = ∂hI

0/∂y, where h
I
0 = x ·y−g. Since ∂/∂zj = 1

2(∂/∂y
j− i∂/∂θj), we have

xj = 2∂hI
0/∂z̄

j so that

(3.13) −ix · dθ
(
∂

∂z̄j

)
=
∂hI

0

∂z̄j
.

Next, from Lemma 2.13 we know that

i
4

(
∂

∂x
log detG

)
G−1dθ =

i
2
Im∂ log detG

=
1
4
(∂ − ∂̄) log detG

so that

(3.14)
i
4

(
∂

∂x
log detG

)
G−1dθ

(
∂

∂z̄j

)
= −1

4
∂

∂z̄j
log detG.

Combining (3.13) and (3.14), we see that a section s = f1U(1)
0 ∈ ΓU0(L)

is holomorphic if and only if f satisfies the differential equation

∂f

∂z̄j
+ f

∂

∂z̄j

(
hI

0 −
1
4
log detG

)
= 0,

for each j = 1, . . . , n. We solve this easily to see that s is holomorphic if and
only if f is of the form

f = F (w) e−hI
0(detG)1/4,

where F is an holomorphic function in U0. From Lemma 2.12, we recognize
(detG)1/4 = ‖dZ‖1/2

K to obtain (3.12) as desired.
We have computed that F (w) e−hI

0(detG)1/41U(1)
0 is holomorphic. Using

the transition functions g̃v0, we conclude that F (w) e−hI
0(detG)1/4g̃v0(wv)

1U(1)
v , when expressed in terms of wv, should be holomorphic. First, note that

x · y = xv · yv − λv · yv,

which implies hI
0 = hI

v − λv · yv. From (2.17) we therefore see that the
holomorphic combination in Uv should be

F (w) e−hI
v+λv ·yv(detG)1/4 eiλ

L
v ·θv1U(1)

v

= F (w) e−hI
v eλv ·yv+iλv ·θv e−i1/2·θv(detG)1/41U(1)

v

= F (w)wλv
v e−hI

v e−i1/2·θv |detAv| 12 ‖dZv‖1/2
KI

1U(1)
v .
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By (2.12) we see that if we set Fv(wv) := F (wAv
v )wλv

v |detAv| 12 , we obtain
(3.11) and the final statement of the lemma as desired. �

Remark 3.5. We can rewrite a local holomorphic section on Uv ∩ U0 in a
way similar to that in [BFMN11] as follows:

Fv(wv) e−hI
v(xv) e−1/2·θv ‖dZv‖1/2

KI

= F0(wAv
v )wλv

v e−hI
v(xv) e−i1/2·θv |detAv| 12 ‖dZv‖1/2

KI

= F0 e−hI
v+λv ·yv eiλ

L
v ·θv |detAv| 12 ‖dZv‖1/2

KI
.

The combination hI
v−λv · yv corresponds to hm (for m = v) in [BFMN11].

Theorem 3.6. The Hilbert space BQ
I of holomorphic sections of L has an

orthogonal basis {σm}m∈PL∩Zn where σm is locally given by

σm
0 = wm e−hI

0 ‖dZ‖1/2
KI

1U(1)
0 , and

σm
v = wAvm+λL

v
v e−hI

v+1/2·yv |detAv| 12 ‖dZv‖1/2
KI

1U(1)
v ,

over the open orbit and holomorphic vertex charts, respectively. The cor-
responding orthogonal basis for the quantum Hilbert space HQ

I is given by
{σ̂m := σm ⊗ μI}m∈PL∩Zn.

Proof. From Lemma 3.3 we can certainly find a basis for the space of holo-
morphic sections of L consisting of elements given locally over the open
orbit by

wm e−hI
0 ‖dZ‖1/2

KI
1U(1)

0 ,

where m ∈ Z
n, with the corresponding expressions over the holomorphic

vertex charts. Such a section will have poles unlessm belongs to the corrected
polytope PL. The fact that σm and σm′ are orthogonal for m �= m′ follows
immediately from integration along T

n. �

Therefore, the space of half-form corrected holomorphic wave functions
for the Kähler quantization of X has a natural basis whose elements are
labeled by the integral points of the corrected polytope PL. These coincide
also with the (interior) integral points of the moment polytope PX and they
correspond to shifted non-singular Bohr–Sommerfeld fibers of (X,ω).

Remark 3.7. Pictured below is the moment polytope PX for X = CP
1,

in the case [ ω
2π ] =

3
2c1(CP

1) = 3c1(O(1)). On the left, we show the more
standard choice of moment polytope, with integral vertices. On the right,
we show the moment polytope chosen in accordance with (3.6) and (3.7),
that is such that λ1, λ2 are half-integral. In this example, L ∼= O(2), the
corrected polytope is PL = [0, 2] and the moment polytope is PX = [−1

2 ,
3
2 ].

One has dimHQ = 3.
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Remark 3.8. According to Theorem 3.6, we can count holomorphic sections
of L by counting integral points inside the moment polytope PX , which
are exactly the integral points which occur in the corrected polytope PL.
Pictured below is one of such polytopes when X = CP

2#CP
2, that is, CP

2

blown up at a point.

Remark 3.9. One can consider the case [ω/2π] = c1(X)/2, where L = OX

is just the structure sheaf of X (which is, of course, not ample). In this case,
there is only one integral point inside the polytope PX corresponding to the
constant function 1 ∈ H0(OX). As we will see in Section 4.3, when we study
degenerations of the complex structure, also in this case we have convergence
to a Dirac delta distribution supported on the (shifted) Bohr–Sommerfeld
fiber above that integral point.

4. Half-form corrected quantization in the singular real toric
polarization

4.1. Distributional sections. In order to study quantization in the real
toric polarization of (X,ω), following [BFMN11], we consider distributional
sections of L. Let us briefly recall how one can define covariant differenti-
ation in this case. Let L2(L) denote the Hilbert space of L2 sections of
L. Consider the rigged Hilbert space (see Sections 4.2 and 4.3 of [GV])
(Γ(L), L2(L),Γ(L̄)′), where Γ(L̄)′ is the space of distributional sections of L
given by the topological dual of Γ(L̄). One has the continuous inclusions

Γ(L) ⊂ L2(L) ⊂ Γ(L̄)′,

where we embed σ ∈ Γ(L) �→ i(σ) ∈ Γ(L̄)′ via the Liouville volume form; i.e.,

i(σ)(τ̄) :=
1

(2π)n

∫
X
hL(σ, τ)

ωn

n!
.

(In particular, we may view I-holomorphic sections of L as distributional
sections.) We have then, for σ ∈ Γ(L),

i(σ)(τ̄) = 〈σ, τ〉L, ∀τ ∈ Γ(L).
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Let∇L be a connection on L and let∇∗ be the adjoint of the (unbounded)
operator ∇L on the Hilbert space L2(X,L), so that

i(∇Lσ)(τ̄) = 〈∇Lσ, τ〉L = 〈σ,∇∗τ〉L, ∀σ, τ ∈ Γ(L).
We can now define covariant differentiation of distributional sections,

which we will still denote by ∇L, by

∇L(σ)(τ̄) = σ(∇∗τ), σ ∈ Γ(L̄)′, τ ∈ Γ(L)
so that, as distributions

∇L(iσ) = i(∇Lσ), ∀σ ∈ Γ(L).
In the next sections, we will interpret holomorphic sections as distribu-

tional sections in this way, and we will identify σ ∈ Γ(L) with i(σ) ∈ Γ(L̄)′.
4.2. Quantization in the (singular) real polarization. Recall that the
real singular toric polarization is defined by

PR(p) = spanC

{(
∂

∂θi

)
p

, i = 1, . . . , n

}
, ∀p ∈ X.

In this section, we will define the half-form corrected quantization of X in
this polarization directly in terms of covariantly constant sections. Recall
the families of toric complex structures considered in [BFMN11]. For any
smooth function ψ which is strictly convex on a neighborhood of PX , for
any ϕ ∈ C∞PX

(PX) and for any s ∈ R≥0, the sum ϕ+ sψ is in C∞PX
(PX) and

hence defines a Kähler structure on X with symplectic potential

gs := gPX
+ ϕ+ sψ.

Denote the corresponding s-dependent complex structure by Is.
If P is a polarization of (X,ω), denote by C∞(P) its space of smooth

sections,
C∞(P) = {ξ ∈ C∞(TX ⊗ C) : ξ(p) ∈ Pp},

where C∞(TX ⊗ C) is the space of smooth sections of the complexified
tangent bundle of X.

Theorem 4.1 ([BFMN11], Theorem 1.2 p. 415, Theorem 3.4,
p. 429). Pointwise on the dense open orbit X̌, as vector fields,

∂

∂z̄j
s

=
1
2

(
∂

∂yj
s

+ i
∂

∂θj

)
→ i

2
∂

∂θj
, as s→∞.

Therefore, at each point p ∈ X̌, the holomorphic polarizations Ps, s ≥ 0 of
X, associated to the complex structures Is, converge, as s→∞, to the real
toric polarization, in the Lagrangian Grassmannian of TpX ⊗ C and

(4.1) C∞
(
lim

s→∞Ps

)
= C∞(PR).
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Remark 4.2. The equality in (4.1) is an equality of spaces of smooth sec-
tions of two different polarizations lims→∞ Ps and PR which coincide over
X̌ but not over X \ X̌. (See Theorem 3.4 of [BFMN11]).

From the expressions for the half-form corrected connection in (3.9), we
see that in the local trivializations 1U(1)

v

(4.2) −2i∇Is

∂/∂z̄j
sv

→ ∇R

∂/∂θj
v
:=

∂

∂θj
v

− ixj
v +

i
2
, as s→∞,

in the sense that

−2i
(
∇Is

∂/∂z̄j
sv

σ
)
(τ̄)→

(
∇R

∂/∂θj
v
σ
)
(τ), as s→∞,

∀σ ∈ Γ(L̄)′, ∀τ ∈ Γ(L). Similarly, from (3.10), on the open orbit in the
trivialization 1U(1)

0 we have

(4.3) −2i∇Is

∂/∂z̄j
s
→ ∇R

∂/∂θj =
∂

∂θj
− ixj , as s→∞.

We will take the expressions on the right-hand side of (4.2) and (4.3) to
define a partial connection ∇R on Γ(L̄)′, along PR, which will be used to
define the quantization in this polarization. Let

(4.4) BQ
R
= ker∇R =

n⋂
j=1

ker∇R

∂/∂θj ⊂ Γ(L̄)′.

Remark 4.3. We note that additive term i
2 in the right-hand side of (4.2),

corresponds to a limiting Chern connection on KIs which is flat on U0 and
singular along ∪r

i=1Di. The addition of this singular connection to the pre-
quantum connection is at the core of our approach to the half-form quanti-
zation in the singular real toric polarization. We will describe in more detail
the singular behavior of the limiting connection at the end of this section.

Remark 4.4. As explained in the previous section, we should think of L as
the tensor product of the uncorrected bundle � with the smooth bundle with

U(1)-valued transition functions
√̃
K

U(1)

, though in general these may not
exist individually. On the other hand, the geometric quantization associated
to a polarization P is supposed to be the space of P-covariantly constant
sections of the tensor product of the uncorrected bundle with the square
root of the canonical bundle associated P. For the real polarization PR, the
sections of the associated canonical bundle are n-forms of the form a(x)dx1∧
· · ·∧dxn. Of course, the U(1)-part of this is hidden in the sections of L, and
what is missing is the modulus of the square root of the canonical bundle
associated to PR.
To put it another way, according to the standard procedures of geometric

quantization, we should actually define the quantization HQ
R
to be sections



HALF-FORM QUANTIZATION OF TORIC VARIETIES 629

of L⊗√|KPR
|. Some care must be taken to interpret exactly what is meant

by |KPR
| (and hence what is meant by its square root). In the next section,

we will see that sections of
√|KPR

| can be thought of as maps on the space
of n-tuples of vector fields. Then,

√|KPR
| admits a canonical section dX :=

dx1 ∧ · · · ∧ dxn on U0, and 0 otherwise. Hence, we should define HQ
R
=

BQ
R
⊗√|dX|. Of course, at this point, such a change is merely cosmetic. On

the other hand, we will see in the next section that such expressions arise
naturally when studying the degenerations of the complex structure on X
to the real polarization at the level of holomorphic sections.

Definition 4.5. The vector space of quantum states for the half-form cor-
rected quantization of (X,ω, L) in the toric polarization PR is defined by

HQ
R
= BQ

R
⊗
√
|dX|,

where BQ
R
was defined in (4.4).

Remark 4.6. A natural Hilbert space structure in HQ
R
will be introduced

in Section 4.3, via degeneration of Kähler quantizations of (X,ω, L, I).

The open orbit U0 carries a free T
n-action, which lifts to LU0 via geometric

quantization. This action is generated by

∇ ∂
∂θ
+ ix.

Then, the trivializing section 1U(1)
0 is T

n-invariant and if τ ∈ ΓU0(L) is given
by τ = τ01

U(1)
0 for a smooth function τ0 ∈ C∞(U0), we can decompose it

into Fourier modes with respect to the T
n-action. Specifically,

τ0(x, θ) =
∑

m∈Zn

e−im·θ τ̂0,m(x),

where τ̂0,m(x) = 1
(2π)n

∫
Tn eim·θτ0(x, θ)dθ is the mth Fourier mode of τ0.

For m ∈ PL ∩ Z
n, let δm ∈ Γ(L̄)′ be the distributional section defined by

(4.5) δm(τ̄) = ¯̂τm(m) =
1

(2π)n

∫
Tn

eim·θ τ̄0(m, θ)dθ,

for all τ ∈ Γ(L). We have

Theorem 4.7. The vector space HQ
R

is the finite-dimensional vector space
generated by {δm ⊗√|dX|}m∈PX∩Zn .

Therefore, quantization in the real polarization is also given by the integral
points in the interior of the moment polytope. Recall, from Section 3.2 and
Remarks 3.7 and 3.8, that PL ⊂ PX is obtained from PX by a one-half
shift along the inward pointing normals to the facets of PX . In Section 4.3,
these distributional sections will be described as coming from holomorphic
sections through degeneration of the complex structure.
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Proof of Theorem 4.7. By acting with ∇R

∂/∂θj , j = 1, . . . , n, in (4.3) on the
distributions δm in (4.5) we conclude that they belong to ker∇R. Moreover,
any element of the kernel can be restricted to the open orbit, by restricting
it to sections of L̄ with compact support contained in the open orbit. From,
Proposition 3.1 in [BFMN11], we see that such restrictions can only have
support along μ−1(P̌X ∩ Z

n), as these are the only fibers along which ∇R

has trivial holonomy, and one easily verifies that δm is the unique (up to a
constant) solution supported on μ−1(m).
It remains to be shown that there are no more elements in the kernel of

∇R. All we need to show is that there are no solutions with support along
μ−1(∂PX). Let us consider a solution with support along μ−1(xj

v = 0), for
some fixed j = 1, . . . , n. Let x̌v = (x1

v, . . . , x
j−1
v , xj+1

v , . . . , xn
v ) and θ̌v =

(θ1
v , . . . , θ

j−1
v , θj+1

v , . . . , θn
v ). In a neighborhood of the preimage by μ of the

interior of the facet xj
v = 0 of PX , we can take coordinates (u, v, x̌v, θ̌v) (see,

for example [DP09,BFMN11]), so that xj
v = 0⇔ (u, v) = (0, 0) and

∇R
∂

∂θ
j
v

= −i
(
−v ∂

∂u
+ u

∂

∂v

)
+
i
2
,

in that neighborhood. A solution with support along the facet will be of
the form,

σ =
∞∑

k,l=0

αkl(x̌v, θ̌v)δ(k)(u)δ(l)(v)1U(1)
v ,

where only a finite number of terms in the sum can be non-zero and where
δ(k) denotes the order-k derivative of the Dirac δ distribution. (See Theorem
2.3.5 of [Hör90].) Using xδ(k)(x) = −kδ(k−1)(x) and polynomial test sec-
tions of the form ukvlχ1U(1)

v , where χ is a cutoff function, which is constant
and equal to 1 in the neighborhood, the condition ∇R

∂

∂θ
j
v

σ = 0 then implies

that such a distributional section is zero. Therefore, no non-zero solutions
of this form exist. �

As we will see in the next section, there is complete agreement between the
direct approach to half-form corrected quantization in the real polarization
and the approach based on degeneration of holomorphic sections. We note
that the partial connection ∇R “remembers” the degeneration procedure
due to the contribution of the Ricci-curvature term.
It is possible to gain some more geometric intuition about the fact that the

boundary of PX does not contribute to the kernel of∇R, unlike what happens
without the half-form correction [BFMN11]. As s → ∞, the piece of the
connection ∇Is coming from the Levi–Civita connection on the canonical
bundle of X develops curvature singularities outside of the open orbit U0.
This is behind the fact, shown above, that for the real polarization the
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half-form correction forbids solutions of the covariant constancy equations
supported on μ−1(∂PX). For completeness, let us describe these curvature
singularities in more detail.
Recall Lemma 2.13, which gives explicit expressions for the Chern con-

nection 1-forms on KU(1) (induced from the Chern connection on K) in the
vertex atlas. The proof of the following Proposition is immediate.

Proposition 4.8.

lim
s→∞ΘKIs

v =
n∑

j=1

dθj
v,

in the sense that for any closed curve C, with C ⊂ Uv \ μ−1(∂PX) = U0
∼=

(C∗)n, the holonomy of the singular connection, along C depends only on
the homotopy class of C in U0 and,

lim
s→∞

∮
C
ΘKIs

v = i
∮

C

n∑
j=1

dθj
v.

Therefore, in the limit s→∞, we obtain a singular connection on KU(1),
flat on μ−1(P̌X), with curvature supported on μ−1(∂PX) = ∪r

i=1Di and
with non-vanishing monodromies around the toric invariant divisors. In the
vertex chart Uv the curvature, in the limit s→∞, is given by the following
current:

2πi
n∑

j=1

δ(aj
v)δ(b

j
v)da

j
v ∧ dbjv,

where (a1
v, b

1
v, . . . , a

n
v , b

n
v ), with aj

v =
√
xj

v cos θ
j
v, b

j
v =

√
xj

v sin θ
j
v, i =

1, . . . , n, are coordinates on Uv.

4.3. Degeneration to the real polarization. In this section, we will
obtain the degeneration, as s → ∞, of the (appropriately L2-normalized)
elements σ̂m

s of the orthogonal basis of HQ
Is
, defined in Theorem 3.6, to the

same distributional sections δm ⊗√|dX| ∈ HQ
R
obtained in the previous

section, see Definition 4.5, (4.5) and Theorem 4.7. In particular, this will
allow us to define a natural inner product in HQ

R
. We will first study the

degeneration of the basis elements σm
s of BQ

Is
and then the degeneration of

the sections μIs of
√|KIs |.

As the complex structure Is varies with s, we can regard the spaces BQ
Is

of Is-holomorphic sections, described in Definition 3.1, as finite-dimensional
subspaces of the fixed infinite-dimensional space of distributional sections of
L (see Section 4.1). That is, for all s,

BQ
Is
⊂ Γ(L) ⊂ Γ(L̄)′.
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We will study (weak) convergence of Is-holomorphic sections in Γ(L̄)′, as s→
∞. Denote the Is-holomorphic section of L associated tom ∈ PL∩Z

n by σm
s ,

as in Theorem 3.6. Suppose τ ∈ Γ(L) is given locally by {τ01U(1)
0 , τv1

U(1)
v :

v ∈ V } and let m ∈ PL ∩ Z
n. Then since X̌ and the holomorphic vertex

charts Uv are dense in X, we see from Theorem 3.6 that

i(σm
s )(τ̄) =

1
(2π)n

∫
X̌
wm e−hIs

0 ‖dZ‖1/2
K τ̄0

ωn

n!
(4.6)

=
1

(2π)n

∫
Uv

w�v(m)·ysv−hIs
v +1/2·ysv

v |detAv| 12 ‖dZv‖1/2
K τ̄v

ωn

n!
,

where ysv = ∂gs/∂xv.
The next lemma, which we recall from [BFMN11], will allow us to use

Laplace’s approximation to compute the asymptotics that we are inter-
ested in.

Lemma 4.9. [BFMN11, Lemma 5.1 ] For m ∈ PX and any smooth func-
tion ψ which is strictly convex on a neighborhood of PX , let

fm := (x−m) · ∂ψ/∂x− ψ.
Then fm has a minimum value of −ψ(m) on P , which is obtained at the
unique point x = m. Moreover,

(Hessfm) (m) = (Hessψ) (m).

Remark 4.10. It is important to observe that the function fm in Lemma
4.9 has a unique minimum on the entire polytope PX , not just the interior,
which implies that the leading order asymptotics that we will be interested
in all arise from the behavior of the integrand at x = m.

Recall,

Lemma 4.11 (Laplace’s approximation). Suppose a function f ∈ C2(R)
on the closed region R ⊂ R

n has a unique non-degenerate minimum the
unique point x0 ∈ Ř in the interior of R; so in particular, Hessx0f is positive
definite. Then if gs is a continuous function on R such that gs ∼ srg0 +
O(sr−1), s→∞, we have∫

R
e−sfgs dx ∼

(
2π
s

)n/2 e−sf(x0)srg0(x0)√
det (Hessf) (x0)

, s→∞.

Lemma 4.12. As s → ∞, the leading order asymptotic value of the
L2-norm of the family of sections σm

s , s ∈ R>0 is

‖σm
s ‖2L2 ∼ πn/2 e2gs(m).
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Proof. To compute the asymptotics we can restrict the integral to the open
orbit, where we have

‖σm
s ‖2L2 =

1
(2π)n

∫
P̌X×Tn

|wm|2 e−2hIs
0 ‖dZ‖K

ωn

n!
(4.7)

=
1

(2π)n

∫
P̌X×Tn

e2m·ys−2(x·ys−gs)(detGs)1/2 ω
n

n!

=
∫

P̌X

e−2s((x−m)·∂ψ/∂x−ψ) e−2((x−m)·y0−g0)(detGs)1/2 dx,

where in the last line we used the fact that ys = ∂gs/∂x =∂g0/∂x+s∂ψ/∂x.
Note that Gs = G0 + sHessψ implies

(4.8) detGs ∼ sn detHessψ +O(sn−1).

We would like to apply Laplace’s approximation to the integral (4.7). By
Lemma 4.9, the first exponential has the correct behavior. The only remain-
ing subtlety is to show that the remainder of the integrand is continuous
on PX , which is not immediate since gs is singular along ∂PX . Using the
explicit expression (2.6) and the regularity conditions (2.7), we conclude
that e−2((x−m)·y0−g0)(detGs)1/2 behaves like

Πr
i=1�i(x)

( 1
2
�i(m)− 1

2
)

times a smooth function on PX . Therefore, it is continuous and goes to zero
at the boundary of PX precisely when m belongs to the corrected polytope
PL ⊂ PX . From another point of view, the integrand in (4.7) is the point-
wise norm of the T

n-invariant holomorphic section σm
s , which is necessarily

continuous on PX . Then, Laplace’s approximation (Lemma 4.11) yields

‖σm
s ‖2L2 ∼

(
2π
s

)n/2 e2sψ(m) e2g0(m)sn/2
√
detHessψ(m)√

2n detHessψ(m)
= πn/2 e2gs(m)

as desired. �

Recall that Gs = G0 + sHessψ, where G0 = Hess(gP + ϕ).

Theorem 4.13. For each τ ∈ Γ(L), the leading order asymptotic value of
i (σm

s / ‖σm
s ‖L2) on τ̄ as s→∞ is determined by

i

(
σm

s (detGs)1/4

‖σm
s ‖L2

)
(τ̄) ∼ 2n/2πn/4 ˆ̄τ0,m(m).

That is, in terms of the distributional sections δm, m ∈ PX ∩ Z
n, described

in Section 4.2, formula (4.5),

lim
s→∞

σm
s (detGs)1/4

‖σm
s ‖L2

= 2n/2πn/4δm.
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Proof. We will first compute the asymptotics of i(σm
s )(τ̄), and then simply

divide by the results of the previous lemma to obtain the desired expressions.
To this end, compute first in the open orbit. From (4.6) we have

i(σm
s )(τ̄) =

1
(2π)n

∫
X̌
wm e−hIs

0 ‖dZ‖1/2
K τ̄0

ωn

n!

=
∫

P̌X

em·ys−(x·ys−g0−sψ)(detGs)1/4

(
1

(2π)n

∫
μ−1(x)

eim·θ τ̄0 dθ

)
dx

=
∫

P̌X

e−s((x−m)·∂ψ/∂x−ψ) e−((x−m)·y0−g0)(detGs)1/4 ˆ̄τ0,m(x) dx.

Let fm := (x−m) · ∂ψ/∂x−ψ. Then by an argument similar to that in the
proof of Lemma 4.12 and by Lemma 4.9, we can use Laplace’s approximation
with equation (4.8) to obtain as s→∞ that

i(σm
s )(τ̄) ∼

(
2π
s

)n/2 esψ(m)+g0(m)sn/4(detHessψ(m))1/4 ˆ̄τ0,m(m)√
detHessψ(m)

= (2π)n/2s−n/4 egs(m)(detHessmψ)−1/4 ˆ̄τ0,m(m).

Using Lemma 4.12, we have

(detGs)1/4

‖σm
s ‖L2

∼ sn/4(detHessψ(m))1/4π−n/4 e−gs(m), s→∞

from which we see that as s→∞

i

(
σm

s (detGs)1/4

‖σm
s ‖L2

)
(τ̄) ∼ (2π)n/2s−n/4 egs(m)(detHessψ(m))−1/4 ˆ̄τ0,m(m)

× sn/4(detHessψ(m))1/4π−n/4 e−gs(m)

= 2n/2πn/4 ˆ̄τ0,m(m)

as desired. �

Observe that the asymptotics of the normalized sections σm
s / ‖σm

s ‖L2

described by Theorem 4.13 contain the additional term (detGs)1/4. This
extra factor is better understood in the context of the degeneration of HQ

Is

which we now study.
To have the spaces Γ(

√|Ks|), for all s ≥ 0, as subspaces of a given fixed
vector space, we consider α ∈ Γ(

√|Ks|)(U), for an open set U ⊂ X, as a
map α : X (U)n → C(U), where X (U) is the space of smooth complex vector
fields on U and C(U) is the space of continuous complex valued functions
on U . Then, we define

lim
s→∞αs = β ⇔ lim

s→∞αs(X1, . . . , Xn) = β(X1, . . . , Xn),
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for allX1, . . . Xn ∈ X (U), where on the right-hand side we consider pointwise
convergence in C(U). An n-form β ∈ Ωn(U) ⊗ C then also defines a map√|β| : X (U)n → C(U), given by

√|β|(X1, . . . , Xn) = |β(X1, . . . , Xn)| 12 , for
X1, . . . , Xn ∈ X (U). Consider now the global n-form dX = dx1 ∧ · · · ∧ dxn,
vanishing on ∪r

i=1Di, and the corresponding map
√|dX|.

Lemma 4.14. In the sense defined above,

lim
s→∞

μIs

(detGs)
1/4

=
√
|dX|.

Proof. On the open orbit, using Lemma 2.12, we have

μIs

(detGs)1/4
=

√|dZs|√
detGs

.

But dz = Gdx+ idθ, which implies dZs ∼ sn det (Hessxψ) dX, and detGs ∼
sn det (Hessxψ), so

lim
s→∞

√|dZs|√
detGs

= lim
s→∞

sn/2
√
det (Hessxψ)

√|dX|
sn/2

√
det (Hessxψ)

as desired. Note that on ∪r
i=1Di both sides vanish. �

We are now ready to explain the factor of (detG)1/4 which appears in
Theorem 4.13. As we see, the same term appears in the denominator in
Lemma 4.14. Recall the orthogonal basis of HQ

Is
given by {σ̂m

s = σm
s ⊗

μIs}m∈PL∩Zn , and also that

||σ̂m
s ||L2 = ||σm||L2 ,

since the Hermitian structure on
√|KIs | gives ||μIs || = 1. Combining Lemma

4.14 with Theorem 4.13, we obtain the following theorem.

Theorem 4.15.

lim
s→∞

σ̂m
s

‖σ̂m
s ‖L2

= lim
s→∞

σm
s

‖σm
s ‖L2

⊗ μIs = 2n/2πn/4δm ⊗
√
|dX|,

in the sense that

lim
s→∞

i(σm
s )⊗ μIs

‖σm
s ‖L2

(τ ;X1, . . . , Xn) = 2n/2πn/4δm(τ) |dX(X1, . . . , Xn)|
1
2 ,

for all test sections τ ∈ Γ(L̄) and smooth complex vector fields X1, . . . , Xn ∈
X (X).
Remark 4.16. This Theorem justifies the definition of a natural inner prod-
uct in HQ

R
defined by declaring {2n/2πn/4δm ⊗√|dX|}m∈PX∩Zn to be an

orthonormal basis.
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We note that the results of Theorem 4.15 are also valid when X is not
compact provided that the growth of ψ at infinity is appropriately controlled,
so that the function on P̌X

e−c
∫ 1
0

t(x−m)·Gs(m+t(x−m))·(x−m)dt(detGs)
1
2

is bounded for some sufficiently small c > 0. This ensures the existence
of the L2-norms in question and also that one can still apply the Laplace
approximation to obtain the convergence to Dirac delta distributions.

5. The BKS pairing

5.1. The BKS half-form pairing. Let KI and KJ be the canonical bun-
dles on X associated to two toric Kähler complex structures I and J . One
may define a non-degenerate sesquilinear pairing Γ (KI)×Γ (KJ)→ C∞(M)
by comparison with the Liouville form. Specifically, for sections α ∈ Γ(KI)
and β ∈ Γ(KJ), define the pairing of α and β to be the function

〈α, β〉 := α ∧ β̄
(2i)n(−1)n(n+1)

2 ωn/n!
.

Suppose for the moment that KI and KJ admit square roots. Then
the above pairing induces a sesquilinear pairing Γ

(√
KI

) × Γ
(√
KJ

) →
C∞(M) via

〈μ, ν〉 :=
√

μ2 ∧ ν̄2

(2i)n(−1)n(n+1)
2 ωn/n!

,

for sections μ ∈ Γ
(√
KI

)
and ν ∈ Γ

(√
KJ

)
. Note that when I = J , the

half-form pairing above reduces to the canonical Hermitian structure (3.3)
on
√
KI . Moreover, this pairing of half-forms induces a pairing on the half-

form corrected prequantizations of X, which is known as the BKS pairing:

〈s⊗ μ, t⊗ ν〉BKS :=
∫

X
h�(s, t) 〈μ, ν〉 ω

n

n!
.

Let �, L be the line bundles over X as in Section 3. The fact that �⊗√K ∼=
L ⊗√|K| will motivate the definition of the BKS pairing even in the case
when

√
K does not exist.

Let us examine the half-form pairing on X in a little more detail. A short
computation shows that on the open orbit

(5.1) 〈dZI , dZJ〉 = det
(
GI +GJ

2

)
> 0,

since both GI and GJ are positive definite. Note that although in general
one expects 〈dZI , dZJ〉 to be complex, in the toric case it turns out to be real
(and positive) since the unitarization of KI is equal to the unitarization of
KJ , whence the phases do not contribute to the pairing. To put it in another
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way, the pairing of KI and KJ is entirely captured by the modulus bundles
|KI | and |KJ |. Consequently, we define a pairing between sections of

√|KI |
and

√|KJ | by

(5.2) 〈μI , μJ〉 := 〈dZI , dZJ〉 1
2

‖dZI‖
1
2
KI
‖dZJ‖

1
2
KJ

,

where μI , μJ are defined in (3.4). Then, in the general case when
√
K may

not exist, we define a BKS pairing by

〈σ̂I , σ̂J〉 := 1
(2π)n

∫
X
hL(σI , σJ) 〈μI , μJ〉 ω

n

n!
,(5.3)

where σ̂I = σI ⊗ μI ∈ HQ
I , σ̂J = σJ ⊗ μJ ∈ HQ

J .

This pairing coincides with the inner product (3.8) in HQ
I when I = J .

From (5.2), we also see that it coincides with the standard BKS pairing in
the case when

√
K exists.

Let hI
m = (x −m)∂gI

∂x − gI , where gI is the symplectic potential defining
the complex structure I. From Theorem 3.6 and (5.1) it is straightforward
to obtain

Proposition 5.1. In the orthogonal basis {σ̂m
I }m∈PL∩Zn for HQ

I and
{σ̂m

J }m∈PL∩Zn for HQ
J , we have

(5.4) 〈σ̂m
I , σ̂

m′
J 〉 = δmm′

∫
PX

e−hI
m−hJ

m

√
det

(
GI +GJ

2

)
dx,

for m,m′ ∈ PL ∩ Z
n.

5.2. Unitarity. Let Is denote the “simple” family of complex structures on
X associated to the symplectic potentials gs = gP + ϕ + sψ for s ∈ [0,∞).
(Recall that we could have more general deformations of I0 defined by ψ(s).)
We can consider the BKS pairing for two values s, s′ in the same simple
family. As we will see, even for these simple families, the BKS pairing is not
unitary.
From Proposition 5.1, we see that I- and J-holomorphic sections asso-

ciated with different integral points are orthogonal. In the following, we
will therefore consider only one “Fourier” sector at a time, that is, a one-
dimensional subspace of the quantization space. Let m ∈ PL ∩ Z

n, and
consider the corresponding monomial section σ̂m

s ∈ HQ
Is
.

Since the BKS pairing 〈σ̂m
s , σ̂

m
s′ 〉BKS is real and positive (the integrand is

positive), the unitarity of the BKS pairing map for the complex structures
s, s′ is equivalent to

〈σ̂m
s , σ̂

m
s′ 〉BKS = ||σ̂m

s ||L2 · ||σ̂m
s′ ||L2 .
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For our choice of monomial sections, writing out the integral in Proposi-
tion 5.1 shows that for some function α ∈ C∞(R≥0),

〈σ̂m
s , σ̂

m
s′ 〉BKS = α(s+ s′) > 0.

Unitarity then implies α(s+ s′) =
√
α(2s)α(2s′). Putting α = ef , we get

(5.5) f

(
s+ s′

2

)
=
f(s) + f(s′)

2
,

and differentiating in s we obtain
1
2
f ′
(
s+ s′

2

)
=
1
2
f ′(s).

Therefore,

Lemma 5.2. The BKS pairing between the Is- and Is′-holomorphic quan-
tizations of X is unitary if and only if for each m ∈ PL ∩ Z

n and for
each s ≥ 0,

(5.6) ‖σ̂m
s ‖L2 = ‖σ̂m

0 ‖L2 esb,

for some constant b.

Comparing with Lemma 4.12, we see that if (5.6) holds, then we have
b = −2ψ(m) and ‖σ̂m

0 ‖L2 = πn/2 e2g0(m). Moreover, replacing ψ by ψ+const
does not change the complex structure. Hence, we can assume that ψ(m) = 0
so that the BKS pairing is unitary if and only if ‖σ̂m

s ‖L2 = ‖σ̂m
0 ‖L2 , that is,

that the L2-norm of σ̂m
s is independent of s.

By the argument above, the following theorem implies that the BKS pair-
ing is not unitary along the simple family Is, s ≥ 0.

Theorem 5.3. For sufficiently large s,
d

ds
‖σ̂m

s ‖2L2 �= 0.

In particular, ‖σ̂m
s ‖L2 is not constant, whence the BKS pairing is not

unitary.

Proof. We have, using the identity d
ds

∣∣
s=0

det(A+ sX) = det(A)tr(A−1X),

d

ds
‖σ̂m

s ‖2L2 =
∫

PX

(
2
(
ψ − (x−m) · ∂ψ

∂x

)
+
1
2
tr
(
G−1

s Hessψ
))

e−2hIs
m
√
detGs dx.

Without loss of generality, assume that ψ is scaled so that ψ(m) = 0. Then
by Lemma 4.9,

(
ψ − (x−m) · ∂ψ

∂x

)
is strictly negative, so that for large s the

integrand is also strictly negative, since tr
(
G−1

s Hessψ
)
converges pointwise

to zero as s→∞, which implies that d
ds ‖σ̂m

s ‖2L2 is not equal to zero. �
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5.3. Quantum connection. Let I be the set of compatible toric com-
plex structures on X. This naturally corresponds to the space of allowed
Guillemin–Abreu symplectic potentials modulo additive constants, since two
symplectic potentials define the same holomorphic coordinates iff they differ
by an additive constant. Note that if gI is a symplectic potential defining the
complex structure I, then gI + sψ where s ∈ R, ψ ∈ C∞(PX) will also be an
allowed symplectic potential provided that |s| is sufficiently small. Therefore,
we can regard I as an open subset of the affine space gPX

+(C∞(PX))/R. Fix
a point p ∈ P̌X . In the following we will assume that for each complex struc-
ture I ∈ I a symplectic potential gI was chosen such that gI(p)−gPX

(p) = 0.
One can define a vector bundle over I, HQ → I, with fiber HQ

I . The
bundle HQ is the natural setting for studying the dependence of Kähler
quantization on the choice of complex structure.
As mentioned in the introduction, Axelrod, Della Pietra and Witten

in [APW91] (see also the related work [Hit90] of Hitchin), for the case
where I is the space of linear complex structures on R

2n which are compat-
ible with the standard symplectic form, but without including the half-form
correction, introduced a natural unitary connection, which is called the quan-
tum connection, on the analogue of the quantum bundle HQ. This quantum
connection is defined to be the projection of the trivial connection in I×Γ(�)
to HQ.
In our case, the BKS pairing induces a connection, ∇Q, on HQ → I as

follows. Recall that different Fourier modes are orthogonal with respect to
the BKS pairing, so that we can consider each Fourier mode labeled by
m ∈ PL ∩ Z

n separately. Consider the monomial sections σ̂m
I ∈ Hq

I , I ∈ I,
m ∈ PL ∩ Z

n. Define ∇Q
ψ by

〈∇Q
ψ σ̂

m
I , σ̂

m
I 〉 =

d

ds |s=0

〈σ̂m
I+sψ, σ̂

m
I 〉,

where ψ ∈ C∞(PX) with ψ(p) = 0 and where I + sψ denotes the complex
structure defined by the symplectic potential gI+sψ for |s| sufficiently small.
Note that, by construction, ∇Q is unitary.
A final implication of the fact that all of the complex structures arising

from points in I have the same “phases” (that is, of Lemma 2.9) and of the
consequent reality of the BKS pairing is the following theorem.

Theorem 5.4. The global frame for HQ → I given by {σ̂m
I /||σ̂m

I ||}m∈PL∩Zn

is horizontal with respect to ∇Q. Therefore, the connection ∇Q is flat.

Proof. We have, from the reality of the BKS pairing, for each Fourier mode
m ∈ PL ∩ Z

n and for any ψ ∈ C∞(PX) with ψ(p) = 0,

0 =
d

ds |s=0

〈
σ̂m

I+sψ

||σ̂m
I+sψ||

,
σ̂m

I+sψ

||σ̂m
I+sψ||

〉
= 2

〈
∇Q

ψ

σ̂m
I

||σ̂m
I ||

,
σ̂m

I

||σ̂m
I ||
〉
,

when ∇Q
ψ

σ̂m
I

||σ̂m
I || = 0. �
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6. Appendix: The square root of K

For toric varieties, the following proposition explains how the existence of√
K depends on the combinatorics of the fan Σ associated to X. Note also

that, in general, if a square root of the canonical bundle exists then there may
be many choices of square root, and they are parameterized by H1(X,Z2).
For toric varieties, H1(X,Z2) = {0}, and so if it exists,

√
K is unique.

Let {νj}j=1,...,r be primitive generators of the one-dimensional cones in
the fan Σ. Let L be a holomorphic line bundle on X. The divisor of a
torus–invariant meromorphic section of L on any holomorphic vertex chart
Uv determines the section up to multiplicative constant. Indeed, a torus–
invariant principal divisor is of the form

r∑
i=1

〈α, νj〉Dj ,

for α ∈ R
n. If, say, ν1, . . . , νn are the generators associated to Uv, which form

a basis of Z
n, then the restriction of the principal divisor to Uv determines

it completely since α is fixed by its inner products with ν1, . . . , νn. Such a
line bundle has a system of meromorphic locally trivializing sections {1L

v }
on the holomorphic vertex charts, as in Section 2.2.3, defined uniquely (up
to constants) by the property that div(1L

v )|Uv
= 0.

If c1(X) is even then
√
K exists and it has a system of holomorphic

trivializations on the holomorphic vertex charts given by {(Uv,1v)}, where
1v := 1

√
K

v . Then, {(Uv,1v ⊗ 1v)} gives a system of trivializing sections for
K and we have, up to an irrelevant constant, 1v ⊗ 1v = dWv. Therefore,
the sections dWv have even divisors and we can write 1v =

√
dWv where

{(Uv,
√
dWv)} is a system of holomorphic trivializing sections on the holo-

morphic vertex charts for
√
K. We therefore have

Proposition 6.1. If c1(X) is even, then the sections dWv have even divisors
and {(Uv,

√
dWv)} is a system of holomorphic trivializations of

√
K.

As a consequence, we obtain the following useful criterion for the existence
of
√
K. For a vertex v, let us call vertex basis associated to v to a basis of Z

n

given by the primitive generators of the one-dimensional cones defining v.

Proposition 6.2. K admits a square root if and only if for each
1-dimensional cone F in Σ the sum of the coordinates of the primitive gen-
erator νF expressed in any one of the vertex basis is odd.

Proof. We have seen that the existence of
√
K is equivalent to having a

system of trivializing sections {√dWv} where the dWv all have even divisors.
Choose a vertex v and let ν1, . . . , νn be a vertex basis for v. Then, using
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Lemma 2.10 and the fact that dZv is a constant multiple of dZ,

div(dWv) = div(w1
v ) + div(dZv) =

r∑
i=n+1

⎛⎝ n∑
j=1

νj
i

⎞⎠Di −
r∑

i=n+1

Di,

where νj
i is the jth coordinate of the vector νi in the vertex basis. Therefore,

this divisor is even iff
∑n

j=1 ν
j
i is odd for all i. Clearly, this happens for any

v and the proposition follows. �
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