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ON THE EXISTENCE OF SYMPLECTIC REALIZATIONS

Marius Crainic and Ioan Mǎrcuţ

We present a new proof of the existence of symplectic realizations
of a Poisson manifold (M,π). The proof consists in the construction of
a symplectic form on an open neighborhood of the zero-section of the
cotangent bundle of M , defined by an explicit global formula.

0. Introduction

Let (M, π) be a Poisson manifold. A ‘symplectic realization’ of (M, π) is a
symplectic manifold (S, ω) together with a Poisson submersion

μ : (S, ω) −→ (M, π).

Although the existence of symplectic realizations is a fundamental result
in Poisson geometry, the known proofs are rather involved. Originally, the
local result was proven in [10] and a gluing argument was provided in [4]; the
same procedure appears in [7]. The path approach to symplectic groupoids
[1, 3] gives a different proof. Here we present a direct, global, finite dimen-
sional proof, based on the philosophy of ‘contravariant geometry’: in Poisson
geometry, the relevant tangent directions come from the cotangent bundle
T ∗M via the bundle map

π� : T ∗M −→ TM,

which is just π converted into a linear map (β(π�(α)) = π(α, β)). We will
use a contravariant version of the notion of spray.

Definition 0.1. A ‘Poisson spray’ on a Poisson manifold (M, π) is a vector
field Vπ on T ∗M satisfying the following two properties:

(1) (dp)ξ(Vπ,ξ) = π�(ξ) for all ξ ∈ T ∗M ,
(2) m∗

t (Vπ) = tVπ for all t > 0,
where p : T ∗M −→ M is the canonical projection and mt : T ∗M −→ T ∗M
is the fiberwise multiplication by t > 0. We denote by ϕt the flow of Vπ.
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A short discussion on Poisson sprays, which are completely analogous to
the classical sprays [8], is given in the next section. Condition (1) means
that the integral curves of Vπ are cotangent paths, it also appears in [11]
under the name “second order differential equation”.

Our main result is the following.

Theorem 0.1. Given the Poisson manifold (M, π) and a contravariant
spray Vπ, there exists an open neighborhood U ⊂ T ∗M of the zero-section
so that

ω :=
∫ 1

0
(ϕt)∗ωcandt

is a symplectic structure on U and the canonical projection p : (U , ω) −→
(M, π) is a symplectic realization.

When M = U ⊂ R
n open, with πp,q the components of π, the simplest

contravariant spray is Vπ(x, y) =
∑

p,q πp,q(x)yp
∂

∂xq
, where x represents the

coordinates of U and (x, y) the induced coordinates on T ∗U . It is not dif-
ficult to see that the resulting ω coincides with the one constructed by
Weinstein [10].

One may expect that the proof is “just a computation”. Although that
is true in principle, the computation is more subtle then one may believe.
In particular, we will make use of the principle of “contravariant geometry”
which is intrinsic to Poisson geometry. The fact that the proof cannot be so
trivial and hides some interesting geometry was already observed in the local
case by Weinstein in [10]: the notion of contravariant spray, its existence, and
the formula for ω (giving a symplectic form on an small enough U) all make
sense for any bivector π, even if it is not Poisson. But the fact that the push-
down of (the inverse of) ω is π can hold only for Poisson bivectors. Nowadays,
with all the insight we have gained from symplectic groupoids, we can say
that we have the full geometric understanding of this theorem; in particular,
it can be derived from the path-approach to symplectic groupoids of [1] and
the resulting construction of local symplectic groupoids [3]. However, it is
clearly worth giving a more direct, global argument.

Let us already start with the first steps of the proof. We will first look at
ω on vectors tangent to T ∗M at zeros 0x ∈ T ∗

xM . At such points one has a
canonical isomorphism T0x(T ∗M) ∼= TxM ⊕ T ∗

xM denoted v �→ (v, θv), and
the canonical symplectic form is

(1) ωcan,0x(v, w) = 〈θw, v〉 − 〈θv, w〉.
From the properties of Vπ, it follows that ϕt(0x) = 0x for all t and all
x, hence ϕt is well-defined on a neighborhood of the zero-section, for all
t ∈ [0, 1]. From the same properties it also follows that

(dϕt)0x : T0x(T ∗M) −→ T0x(T ∗M)
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is in components given by:

(v, θv) �→ (v + tπ�θv, θv).

From the definition of ω and the previous formula for ωcan, we deduce that

(2) ω0x(v, w) = 〈θw, v〉 − 〈θv, w〉 + π(θv, θw)

for all v, w ∈ T0x(T ∗M). This implies that ω is nondegenerate at all zeros
0x ∈ T ∗M . Hence we can find a neighborhood U of the zero-section in T ∗M
such that ϕt is defined on U for all t ∈ [0, 1] and ω|U is nondegenerate (hence
symplectic). Fixing such an U , we still have to show that the map

(dp)ξ : TξU −→ Tp(ξ)M

sends the bivector associated to ω to π. The fact that this holds at ξ = 0x

follows immediately from (2), so our task is to show that it holds at all
ξ ∈ U . Denote by F(p) ⊂ TU the involutive distribution tangent to the
fibers of p. By Libermann’s theorem (see, e.g., Theorem 1.9.7 in [5]), the
bivector associated to ω can be push-down to a bivector on M , if and only
if F(p)⊥ ⊂ U , the symplectic orthogonal of F(p) with respect to ω, is also
involutive. What happens in our case is that:

(3) F(p)⊥ = F(p1),

where F(p1) is the (involutive!) distribution tangent to the fibers of

p1 := p ◦ ϕ1 : U −→ M.

This will be proven in the last section. However, it turns out that the ingre-
dients needed to prove this equality can be used to show directly that p is a
Poisson map, without having to appeal to Libermann’s result.

1. Contravariant geometry

As we have already mentioned, the basic idea of contravariant geometry
in Poisson geometry is to replace the tangent bundle TM by the cotangent
bundle T ∗M . The two are related by the bundle map π�. The main structure
that makes everything work is the Lie bracket [·, ·]π on Γ(T ∗M), which is the
contravariant analogue of the Lie bracket on vector fields (the two brackets
are related via π�). It is uniquely determined by the condition

[df, dg]π = d{f, g}
and the Leibniz identity

[α, fβ]π = f [α, β]π + Lα(f)β

for all α, β ∈ Γ(T ∗M), where Lα := Lπ�α is the Lie derivative along the
ordinary vector field π�(α) associated to α. In other words, contravariant
geometry is the geometry associated to the Lie algebroid (T ∗M, [·, ·]π, π�).
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Here are some examples of notions that are contravariant to the usual ones
(see e.g. [3, 6]).

A ‘contravariant connection’ on a vector bundle E over M is a a bilin-
ear map

∇ : Γ(T ∗M) × Γ(E) −→ Γ(E) (α, s) �→ ∇α(s)

satisfying

∇fα(s) = f∇α(s), ∇α(fs) = f∇α(s) + Lα(f)s

for all f ∈ C∞(M), α ∈ Γ(T ∗M), s ∈ Γ(E). The standard operations
with connections (duals, tensor products, etc.) have an obvious contravariant
version.

A ‘cotangent path’ (or contravariant path) is a path a : [0, 1] −→ T ∗M
sitting above some path γ : [0, 1] −→ M , such that

π�(a(t)) =
dγ

dt
(t).

Intuitively, the cotangent path is the pair (a, γ) where γ is a standard path
and the role of a is to encode “the contravariant derivative of γ”. The previ-
ous equation says that the contravariant derivative is related to the classical
one via π�.

Given a contravariant connection ∇ on a vector bundle E, one has a
well-defined notion of ‘derivative of sections along cotangent paths’: Given
a cotangent path (a, γ) and a path u : [0, 1] −→ E sitting above γ, ∇a(u)
is a new path in E sitting above γ. Writing u(t) = st(γ(t)) for some time
dependent section of E,

∇a(u) = ∇a(st)(x) +
dst

dt
(x), at x = γ(t).

Given a contravariant connection ∇ on T ∗M , the ‘contravariant torsion’
of ∇ is the tensor T∇ defined by

T∇(α, β) = ∇α(β) −∇β(α) − [α, β]π.

Given a metric g on T ∗M , one has an associated ‘contravariant Levi-Civita
connection’, which is the unique contravariant metric connection ∇g on
T ∗M whose contravariant torsion vanishes. The corresponding ‘contravari-
ant geodesics’ are defined as usual as the (cotangent) curves a satisfying
∇aa = 0. They are the integral curves of a vector field Vg

π on T ∗M , called
the ‘contravariant geodesic vector field’. In local coordinates (x, y), where x
represents the coordinates on M and y the coordinates on the fiber,

Vg
π(x, y) =

∑
p,q

πp,q(x)yp
∂

∂xq
−

∑
p,q,r

Γr
p,q(x)ypyq

∂

∂yr
,
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where Γr
p,q(x) are the coefficients in ∇dxp(dxq) =

∑
r Γr

p,q(x)dxr. Geodesics
and the geodesic vector field are actually defined for any contravariant con-
nection ∇ on T ∗M , not necessarily of metric type. For instance, any classical
connection ∇ on T ∗M induces a contravariant connection with ∇α := ∇π�α

which in general is not of metric type.
The existence of contravariant sprays is now clear:

Lemma 1.1. Any contravariant geodesic vector field is a contravariant
spray.

Recall also that (cf. e.g. [3]) any classical connection ∇ induces two con-
travariant connections, one on TM and one on T ∗M , both denoted by ∇:

∇α(V ) = π�∇V (α) + [π�(α), V ], ∇α(β) = ∇π�β(α) + [α, β]π.

The two are related by the following lemma, which follows immediately from
the fact that π� is a Lie algebra map from (Γ(T ∗M), [·, ·]π) to the Lie algebra
of vector fields. Note also that this (and its consequences) is the only place
where we use that π is Poisson.

Lemma 1.2. For any classical connection ∇, the following identity holds:

(4) ∇α(π�(β)) = π�(∇α(β)).

In the next section, we will be using a torsion-free connection ∇, and this
will simplify the computations because of the following lemma:

Lemma 1.3. If ∇ is a torsion-free connection and a : [0, 1] −→ T ∗M a
cotangent path with base path γ, then for any smooth paths θ in T ∗M and v
in TM , both above γ, the following identity holds:

〈∇a(θ), v〉 + 〈θ,∇a(v)〉 =
d

dt
〈θ, v〉.

Proof. Choose a time-dependent 1-form A = A(t, x) such that a(t) =
A(t, γ(t)) and similarly a time-dependent 1-form Θ corresponding to θ, and
a time-dependent vector field V corresponding to v. Applying the definition
of the derivatives ∇a along cotangent paths, and then the definition of ∇, we
find that the left-hand side at time t coincides with the following expression
on (t, x) evaluated at x = γ(t):

(5) 〈∇π�Θ(A) + [A, Θ]π +
dΘ
dt

, V 〉 +
〈

Θ, π�∇V (A) + [π�A, V ] +
dV

dt

〉
.

For the two terms involving ∇ we find

〈∇π�Θ(A), V 〉 + 〈Θ, π�∇V (A)〉
= 〈∇π�Θ(A), V 〉 − 〈∇V (A), π�Θ〉 =

= Lπ�Θ〈A, V 〉 − 〈A,∇π�Θ(V )〉 − LV 〈A, π�Θ〉 + 〈A,∇V (π�Θ)〉
= Lπ�Θ〈A, V 〉 − LV 〈A, π�Θ〉 + 〈A, [V, π�Θ]〉,



440 M. CRAINIC AND I. MǍRCUŢ

where we have used the antisymmetry of π, and then passed from ∇ on
T ∗M to its dual on TM , and used that ∇ is torsion-free. For the term in
(5) containing [·, ·]π, using the definition of this bracket we find

〈[A, Θ]π, V 〉 = 〈Lπ�A(Θ) − Lπ�Θ(A) − dπ(A, Θ), V 〉
= Lπ�A〈Θ, V 〉 − 〈Θ, [π�A, V ]〉 − Lπ�Θ〈A, V 〉 + 〈A, [π�Θ, V ]〉 − LV (π(A, Θ)).

Plugging the last two expressions into (5) we find〈
dΘ
dt

, V

〉
+

〈
Θ,

dV

dt

〉
+ Lπ�A〈Θ, V 〉.

As an expression on (t, x), when evaluated at x = γ(t), since π�A = dγ
dt , we

find precisely the right hand side of the identity in the lemma. �

2. A different formula for ω

In this section, we give another description of ω. The resulting formula is
a generalization of formula (2) from zeros 0x to arbitrary ξ ∈ T ∗M . It
will depend on a connection ∇ on TM which is used in order to handle
vectors tangent to T ∗M . Hence, from now on, we fix such a connection
which we assume to be torsion-free. With respect to ∇, any tangent vector
v ∈ Tξ(T ∗M) is determined by the tangent vector induced on M and by its
vertical component

v = (dp)ξ(v) ∈ Tp(ξ)M, θv = v − horξ(v) ∈ T ∗
p(ξ)M.

Of course, when ξ = 0x, these coincide with the components mentioned
in the introduction. The fact that ∇ is torsion-free ensures the following
generalization of the formula (1) for ωcan at arbitrary ξ.

Lemma 2.1. If ∇ is torsion-free, then for any v, w ∈ Tξ(T ∗M),

(6) ωcan(v, w) = 〈θw, v〉 − 〈θv, w〉.
Proof. Since ∇ is torsion free, it follows that the associated horizontal dis-
tribution H ⊂ T (T ∗M) is Lagrangian with respect to ωcan and then the
formula follows. �

Denote by U ⊂ T ∗M an open neighborhood of the zero section on which
ω is nondegenerate and ϕt is defined up to time 1. To establish the gen-
eralization of (2) at ξ ∈ U , we introduce some notation. Fix ξ ∈ U and
consider

a : [0, 1] −→ U , a(t) = ϕt(ξ),
which, from the properties of Vπ, is a cotangent path. We denote by γ = p◦a
its base path. By pushing forward a tangent vector v0 ∈ TξU by ϕt we obtain
a smooth path

(7) t �→ vt := (ϕt)∗(v0) ∈ Ta(t)U .
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The components of v with respect to ∇ are two paths above γ, one in TM
and one in T ∗M , denoted by v and θv

t �→ vt ∈ Tγ(t)M, t �→ θvt ∈ T ∗
γ(t)M.

They are related in the following way:

Lemma 2.2. For a, v and θv as above, we have ∇av = π�θv.

Proof. We start with one remark on derivatives along vector fields. For any
smooth path of vectors V tangent to U along a, t �→ V (t) ∈ Ta(t)U , one has
the Lie derivative of V along Vπ, again a smooth path of tangent vectors
along a, defined by

LVπ(V )(t) =
d

ds
|s=0(dϕ−s)a(s+t)(V (s + t)) ∈ Ta(t)U .

We have the following two remarks:
(1) For vertical V , meaning which comes from a 1-form θV on M along

γ, we have that (dp)(LVπ(V )) = −π�(θV ). This follows immediately
from the first property of the spray (e.g. by a local computation).

(2) For horizontal V , (dp)(LVπ(V )) = ∇a(V ), where V = (dp)(V ) is a
tangent vector to M along γ. To check this, one may assume that V
is a global horizontal vector field on M , and one has to show that
(dp)η(LVπ(V )) = ∇η(V ) for all η ∈ T ∗M . Again, this follows imme-
diately by a local computation.

Hence, for an arbitrary V (along a), using its components (V , θV ),

dp(LVπ(V )) = −π�(θV ) + ∇a(V ).

Finally, note that for v as in (7), LVπ(v) = 0. �

We have the following version of (2) at arbitrary ξ in U .

Lemma 2.3. Let ξ ∈ U and v0, w0 ∈ Tξ(T ∗M). Let v = vt as before and let
θ̃v be a path in T ∗M , which is a solution of the differential equation

(8) ∇a(θ̃v) = θv.

Similarly, consider w = wt and θ̃w corresponding to w0. Then

(9) ω(v0, w0) = (〈θ̃w, v〉 − 〈θ̃v, w〉 − π(θ̃v, θ̃w))|10.
Proof. Since ∇ is torsion-free, Lemma 2.1 implies that

ω(v0, w0) =
∫ 1

0
(〈θw, v〉 − 〈θv, w〉)dt.

Hence, it suffices to show that

〈θw, v〉 − 〈θv, w〉 =
d

dt
(〈θ̃w, v〉 − 〈θ̃v, w〉 − π(θ̃v, θ̃w)).
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Using (8) for θv and θw, followed by Lemma 1.3, we obtain

〈θw, v〉 − 〈θv, w〉 =
d

dt
(〈θ̃w, v〉 − 〈θ̃v, w〉) − 〈θ̃w,∇a(v)〉 + 〈θ̃v,∇a(w)〉.

The last two terms can be evaluated as follows:

−〈θ̃w,∇a(v)〉 + 〈θ̃v,∇a(w)〉 = −〈θ̃w, π�(θv)〉 + 〈θ̃v, π
�(θw)〉

= −〈θ̃w, π�(∇a(θ̃v))〉 + 〈θ̃v, π
�(∇a(θ̃w))〉

= −〈θ̃w,∇a(π�(θ̃v))〉 − 〈∇a(θ̃w), π�(θ̃v)〉
= − d

dt
〈θ̃w, π�(θ̃v)〉 = − d

dt
π(θ̃v, θ̃w),

where we have used Lemma (2.2), equation (8), the fact that π�(∇a(θ̃v)) =
∇a(π�(θ̃v)), the antisymmetry of π� and Lemma 1.3. �

3. The proof of the theorem

We now return to the proof of Theorem 0.1. We start with the proof of the
equality (3) from the introduction. By counting dimensions, it suffices to
prove the reverse inclusion. Fix ξ ∈ U . We have to show that ω(v0, w0) = 0
for all

(10) v0 ∈ F(p)ξ, and w0 ∈ F(p1)ξ.

Using the notation of the previous section, these conditions are equivalent to
v(0) = 0 and w(1) = 0. We remark that (8), as an equation on θ̃v, is a linear
ordinary differential equation; hence it has solutions defined for all t ∈ [0, 1]
satisfying any given initial (or final) condition. Hence one may arrange that
θ̃v(0) = 0, θ̃w(1) = 0. Lemma 2.3 immediately implies that ω(v0, w0) = 0.

Finally, we show that p is a Poisson map. We have to show for ξ ∈ U
arbitrary and θ ∈ T ∗

xM (x = p(ξ)) that the unique v0 ∈ TξU satisfying

(11) p∗(θ)ξ = iv0(ω)

also satisfies (dp)ξ(v0) = π�(θ). From (11), it immediately follows that v0 is
in F(p)⊥, hence in F(p1), therefore v(1) = 0. Next, we evaluate (11) on an
arbitrary w0 ∈ TξU . We also use the formula for ω from Lemma 2.3, where
θ̃v and θ̃w are chosen so that θ̃v(1) = 0 and θ̃w(0) = η ∈ T ∗

xM is arbitrary.
We find:

θ(w(0)) = 〈θ̃v(0), w(0)〉 + 〈η, π�θ̃v(0) − v(0)〉.
Since this holds for all w0 and all η, we deduce that θ = θ̃v(0) and π�θ̃v(0) =
v(0). Hence π�(θ) = v(0) = (dp)ξ(v0).
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4. Some remarks

Here are some remarks on possible variations. First of all, regarding the
notion of contravariant spray, the first condition means that, locally, Vπ is
of the form

Vπ(x, y) =
∑
p,q

πp,q(x)yp
∂

∂xq
+

∑
i

γi(x, y)
∂

∂yi
.

The second condition means that each γi(x, y) is of the form
∑

j,k γi
j,k(x)yjyk.

While the first condition has been heavily used in the paper, the second one
was only used to ensure that ω is well-defined and nondegenerate at elements
0x ∈ T ∗

xM .
Another remark is that one can show that U can be made into a local

symplectic groupoid, with source map p and target map p1 (see also [7]).
Let us also point out that we used that π is Poisson only to prove the

compatibility relation (4) which in turn was only used at the end of the proof
of Lemma 2.3. However, it is easy to keep track of the extra-terms that show
up for general bivectors π. At the right-hand side of (4), one has to add the
term iα∧β(χπ) where χπ = [π, π], and to (9) the term

∫ 1
0 χπ(a, θ̃v, θ̃w)dt. This

is useful for handling various twisted versions. For example, for a σ-twisted
bivector π on M (i.e., satisfying [π, π] = π�(σ), where σ is a given closed
3-form on M , see [9]), the interesting (twisted symplectic) 2-form on U is
the previously defined ω to which we add the 2-form ωσ given by (compare
with [2]):

ωσ =
∫ 1

0
ϕ∗

t (iVπp∗(σ))dt.
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