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MASLOV INDEX FORMULAS FOR WHITNEY n-GONS

Sucharit Sarkar

In this short article, we find an explicit formula for Maslov index of
Whitney n-gons joining intersections points of n half-dimensional tori
in the symmetric product of a surface. The method also yields a formula
for the intersection number of such an n-gon with the fat diagonal in
the symmetric product.

1. Introduction

In [OSz04], Ozsváth and Szabó introduced Heegaard Floer homology, a
powerful collection of invariants for closed oriented three-manifolds. There
are various versions, but all of them involve counting the number of points
in the unparametrized moduli space, coming from Maslov index one disks
joining some intersection points of two half-dimensional tori in a certain
symmetric product. It is then clear that, to achieve a combinatorial under-
standing of the theory, we need a formula for the Maslov index of such disks.
In [Ras03], Rasmussen gave a formula, depending only on the combinato-
rial information coming from a 2-chain in the Heegaard diagram representing
such a disk, which relates the intersection number of the disk with the fat
diagonal in the symmetric product, with its Maslov index. Lipshitz gave
a cylindrical reformulation of the whole theory in [Lip06], and using his
reformulation, he was able to determine the Maslov index of such disks.

However in [OSz06], Ozsváth and Szabó showed that given a cobordism
between two three-manifolds, there is an induced map on the Heegaard
Floer homologies. This converts Heegaard Floer homology into a (3 + 1)-
dimensional TQFT, and leads to the definition of a smooth four-manifold
invariant called the Ozsváth–Szabó invariant, which is conjecturally equal to
the Seiberg–Witten invariant. This theory also involves counting the num-
ber of points in the moduli space, coming from Maslov index zero triangles
joining three intersection points in three half-dimensional tori in some sym-
metric product. We will derive a formula to determine the Maslov index of
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such triangles. Our method will also yield a formula for the Maslov index
of n-gons joining intersection points of n half-dimensional tori in the sym-
metric product. Using the same ideas, we will also be able to compute the
intersection number of such n-gons with the fat diagonal.

The outline of this rather short paper is as follows. After this introductory
section, we proceed onto Section 2, where we will give the general setting
for the whole construction, fix many notations, and explicitly write down
our formula. In Section 3, we will state and prove many properties of the
Maslov index and of our formula. In Section 4, we will prove the main result
that our formula actually does compute the Maslov index; and finally in
Section 5, we will give some applications.

2. Setting

The definition of a Heegaard diagram in its full generality can be bit over-
whelming at first, but we ask the patient reader to hold tight for a little
while. A Heegaard diagram is essentially a closed oriented surface Σ with
a collection of simple closed curves ηi

j . The various intersections among the
η curves are always assumed to be transverse. Throughout this article, the
genus of the surface will be g; the parameter i will range from 1 to n, n
being the number of half-dimensional tori and the parameter j will range
from 1 to k, k being the dimension of each half-dimensional torus. Usu-
ally we have k ≥ g, and in that case there are (k − g + 1) marked points
on the surface w1, . . . , wk−g+1. For each i, let ηi = {ηi

1, . . . , η
i
k} and let

w = {w1, . . . , wk−g+1}. Furthermore we assume that for each i, ηi is a dis-
joint collection of curves, and if k ≥ g, we assume that Σ\(∪jη

i
j) has (k−g+1)

components (i.e., ηi spans a half-dimensional subspace of H1(Σ)) each con-
taining some basepoint wl. A Heegaard diagram H = (Σ, η1, . . . , ηn, w)
encapsulates this whole structure.

Heegaard Floer theory usually just deals with small values of n, and up
to n = 3, we use the Greek letters α, β and γ to denote η1, η2 and η3,
respectively. For n = 1 and k ≥ g, the Heegaard diagram (Σ, α, w) denotes
a genus g handlebody Uα obtained by first thickening Σ to Σ × [0, 1], then
adding k two-handles along αj × {1}, and finally adding (k − g + 1) three-
handles to the (k − g + 1) boundary components each marked with a point
wl ×{1}. For n = 2 and k ≥ g, the Heegaard diagram (Σ, α, β, w) represents
a closed oriented three-manifold Yα,β obtained by gluing together Uα and
−Uβ . For n = 3 and k ≥ g, the Heegaard diagram represents a smooth
four-manifold Wα,β,γ with ∂Wα,β,γ = Yα,β ∪ Yβ,γ ∪ Yγ,α, obtained by first
taking a triangle ΔABC, and then gluing together ΔABC × Σ, AB × Uγ ,
BC × Uα and CA× Uβ.

Given a Heegaard diagram, all the Heegaard Floer invariants are con-
structed in essentially the same way. The ambient manifold is the symmetric
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product SymkΣ = (
∏k

j=1 Σ)/Sk and let Ti =
∏

j η
i
j be n totally real

half-dimensional tori lying inside the symmetric product. Let P i,j = Ti ∩ Tj

and if p ∈ P i,j , then p is an unordered k-tuple of points, each lying on Σ. We
call those points the coordinates of p and write p = (p1, . . . , pk). The basic
algebraic object that we study is the module over some ring (usually Z or
Z[U1, . . . , Uk−g+1]) freely generated by the finitely many points in ∪i,jP

i,j .
This is the point from where the story gets complicated. If n ≥ 2, for each

value of i, we choose a point pi,i+i from P i,i+1 (the counting throughout being
done modulo n). Let D2 be the unit disk in the complex plane with n fixed
marked points on the boundary numbered in a counter-clockwise fashion as
t1, t2, . . . , tn and let si ⊂ ∂D2 be the positively oriented arc joining ti−1 to ti.
We consider maps from D2 to the symmetric product which map ti to pi,i+1

and si to Ti for all values of i. A Whitney n-gon is a homotopy type of such
maps, where the homotopy is through maps respecting the same boundary
conditions. Let π2(p1,2, . . . , pn,1) denote the set of all Whitney n-gons con-
necting the points p1,2, . . . , pn,1. If φ ∈ π2(p1,2, . . . , pn,1) is a Whitney n-gon,
let ι(φ) be the intersection number of φ with the fat diagonal in the sym-
metric product. Note that this is well-defined since the boundary of φ lies
in ∪iTi and the fat diagonal is disjoint from ∪iTi.

The set of all Whitney n-gons enjoys a very nice multiplicative structure,
which is worth mentioning at this point. As in the previous paragraph, let
us choose points pi,i+1 ∈ P i,i+1 for all values of i, and let us also choose an
additional point q ∈ P 1,m for some 1 ≤ m ≤ n. If we ignore the tori Ti for
m < i ≤ n, we can talk about the Whitney m-gons π2(p1,2, . . . , pm−1,m, q);
similarly if we ignore the tori Ti for 1 < i < m, we can talk about the Whit-
ney (n − m + 2)-gons π2(q, pm,m+1, . . . , pn−1,n, pn,1). There is a map from
π2(p1,2, . . . , pm−1,m, q) × π2(q, pm,m+1, . . . , pn−1,n, pn,1) to π2(p1,2, . . . , pn,1),
induced from the map from a disk with n marked points on its boundary
to a wedge of two disks with m and (n − m + 2) marked points on their
boundaries, respectively. Figure 1 illustrates such a map for n = 5 andm = 3
obtained by quotienting out the dotted arc to a point. The points marked
ti map to pi,i+1 in the symmetric product; the point marked t∗ along which
the wedge is taken, maps to the point q. This map is denoted by the symbol
∗, i.e., given a Whitney m-gon φ ∈ π2(p1,2, . . . , pm−1,m, q) and a Whitney
(n−m+2)-gon ψ ∈ π2(q, pm,m+1, . . . , pn−1,n, pn,1), we get a Whitney n-gon
(φ ∗ ψ) ∈ π2(p1,2, . . . , pn,1).

The combinatorial nature of the theory ends here. A complex structure is
chosen on the symmetric product Symk(Σ), which is a generic perturbation
of the complex structure induced from some complex structure on Σ. If
φ ∈ π2(p1,2, . . . , pn,1) is a Whitney n-gon, then let M(φ) be the moduli
space of holomorphic maps from D2 to Symk(Σ) that represent φ, and let
the Maslov index μ(φ) be the expected dimension of M(φ). Note that here
we fix the complex structure on D2 \ {t1, . . . , tn}. If instead, for n > 3 we
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Figure 1. The map that induces the addition operation on
the Whitney n-gons.

allow the complex structure of the source to vary and for n < 3 we quotient
out the moduli space by the action of precomposition by automorphisms
of the source, we get a very different moduli space M̃(φ) whose expected
dimension is μ(φ) + (n − 3). All the Heegaard Floer invariants require the
count of the number of points in M̃(φ) when its expected dimension is
zero, i.e., when μ(φ) = 3 − n. Therefore given a Whitney n-gon φ, it is an
important problem to determine its Maslov index μ(φ).

There is an alternate definition of the Maslov index μ that merits some
attention. Let Rk be the space of all k-dimensional totally real subspaces
of C

k. There is a canonical generator [G] ∈ H1(Rk) = Z. For every i, j
and for every point p ∈ P i,j , choose a path τ(p) in Rk joining Tp(Ti) ⊂
Tp(Symk(Σ)) = C

k to Tp(Tj) ⊂ Tp(Symk(Σ)) = C
k which has index zero

[RS93]. For n ≥ 2, given a Whitney n-gon φ ∈ π2(p1,2, . . . , pn,1), we take
the pullback of the tangent bundle of Symk(Σ) to an k-dimensional com-
plex bundle over the unit disk D2. The disk being contractible, it is the
trivial bundle. However the arc si ⊂ ∂D2 maps to the tori Ti; the pullback
of the tangent bundle of Ti produces a path τ ′(si) in Rn. Then the loop
τ ′(s1)τ(φ(t1))τ ′(s2) · · · τ(φ(tn)) represents the homology class μ(φ)[G].

Whitney n-gons are often represented by their shadows on the Heegaard
surface Σ. Before we describe what we mean by this, let us quickly set up
a few more notations. A region is a component of Σ \ (∪i,jη

i
j). If a region

is topologically a disk, and has m η-arcs on its boundary, then we call such
a region an m-sided region. The usual convention is to call the two-sided
regions bigons and the three-sided regions triangles; however, the same con-
vention dictates that we call the Whitney 2-gons bigons and the Whitney
3-gons triangles. To avoid any confusion, henceforth we will not use the
terms bigons or triangles to denote either of these objects. The objects in
the symmetric product will always be referred to as Whitney n-gons, and
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the regions on the Heegaard surface will always be referred to as m-sided
regions.

Let D be a 2-chain generated by the regions over Z, i.e., D =
∑

R a(R)R
for some integers a(R). Let ∂i(D) = ∂D|ηi . Therefore, ∂i(D) is an 1-chain
lying on the ηi curves whose endpoints are the various intersection points
between the ηi curves and the other η curves. For n ≥ 2, given points
pi,i+1 ∈ P i,i+1, a domain joining them is a 2-chain D such that ∂(∂iD) =
∑

l(p
i,i+1
l − pi−1,i

l ) for all values of i. If p ∈ P i,j , we often misuse notation to
write p =

∑
l pl and thereby write ∂(∂iD) = pi,i+1−pi−1,i. The set of all such

domains is denoted by D(p1,2, . . . , pn,1). It is an useful fact to remember that
if n ≥ 3 and if D ∈ D(p1,2, . . . , pn,1), then ∂(∂i(D))|ηi+1 = pi,i+1 =

∑
l p

i,i+1
l .

Given a region R, let us choose a point r ∈ R and let us consider the
divisor Zr = {r}×Symk−1(Σ). The divisor Zr is disjoint from ∪iTi, therefore
given a Whitney n-gon φ, the intersection number φ ·Zr is well defined. After
the immediate observation that the intersection number is independent of
the choice of the point r, we denote it by nR(φ) and call it the coefficient
of φ at R. Let D(φ) =

∑
R nR(φ)R be the shadow of φ. It is easy to see

that D(φ) ∈ D(p1,2, . . . , pn,1) and it is called the domain representing φ. The
map from π2(p1,2, . . . , pn,1) to D(p1,2, . . . , pn,1) given by φ mapping to D(φ),
happens to be a bijection for high enough values of k and g. If q ∈ P 1,m, then
the addition operation on 2-chains gives a map from D(p1,2, . . . , pm−1,m, q)×
D(q, pm,m+1, . . . , pn−1,n, pn,1) to D(p1,2, . . . , pn,1), which corresponds to the
multiplication map for Whitney n-gons.

Given an 1-chain ai supported on ηi subject to the condition that all of
its boundary points lie on the intersections of various η curves, and another
1-chain aj supported on ηj subject to the same condition, we can define
aj · ai as follows. First, recall that we have fixed a complex structure, and
thereby an orientation, on Σ. Now orient all the ηj circles. This gives four
possible directions to translate aj , such that if ãj is a small translate in one
of the four directions, then no end point of ai lies on ãj , and no endpoint
of ãj lies on ai. Therefore using the orientation on Σ, we can define the
intersection of each of the four translates with ai; the intersection number
aj · ai is defined to be the average of the four. This is clearly seen to be well
defined and skew-symmetric, i.e. aj · ai = −ai · aj .

Let p = (p1, . . . , pn) ∈ ∪i,jP
i,j and let D be a 2-chain on Σ. The coefficient

of D at pl is denoted by μpl
(D) and is defined to be the average of the

coefficients of D in the four regions around pl. The point measure μp(D) is
defined as μp(D) =

∑
l μpl

(D).
For a 2-chain D, the Euler measure e(D) is defined as follows. We fix a

metric on Σ under which all the η curves are geodesics and all the inter-
sections among the η curves are at right angles. Then e(φ) is 1

2π times the
integral of the curvature along the 2-chain D. Being an integral, the Euler
measure is additive. For an m-sided region, the Euler measure is (1 − m

4 ).
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Amid this rather long and dry section on notations, we might have
lost track of our original goal. For n ≥ 2, given a Whitney n-gon φ ∈
π2(p1,2, . . . , pn,1), we are trying to find formulas for ι(φ), the intersection
number with the fat diagonal and μ(φ), the Maslov index. Without further
ado, we start with a domain D ∈ D(p1,2, . . . , pn,1), we implicitly assume
n ≥ 2, we present our candidates

ι(D) = μpn,1(D) + μp1,2(D) +
∑

n≥j>l>1

∂j(D) · ∂l(D) − e(D),

μ(D) = ι(D) + 2e(D) − k(n− 2)
2

,

and we proceed onto the next section.

3. A few properties of μ(φ), μ(D), ι(φ) and ι(D)

First, we prove an important theorem that relates the point measures of
different points.

Theorem 3.1. Let D ∈ D(p1,2, . . . , pn,1) be a domain and let D′ be a
(possibly different) 2-chain in the Heegaard diagram H. Then μpi,i+1(D′) −
μpi−1,i(D′) = ∂D′ · ∂i(D) =

∑
j �=i ∂j(D′) · ∂i(D).

Proof. After fixing the orientations on Σ and the ηi circles, we can assume
that the ηi curves run in the north–south direction, and every other η curve
intersects them perpendicularly in an east–west direction. Therefore for each
point on the ηi circles, we have four well-defined corners, north–east, north–
west, south–west and south–east. We can translate ∂i(D) slightly in each
of these four directions to get ∂i(D)NE, ∂i(D)NW, ∂i(D)SW and ∂i(D)SE,
respectively.

By travelling along ∂i(D)NE from the north–east corner of pi−1,i to the
north–east corner of pi,i+1, we see that, (coefficient of D′ at the north–east
corner of pi,i+1) = (the coefficient of D′ at the north–east corner of pi−1,i) +
∂D′ ·∂i(D)NE. We have similar results for the other corners, and after taking
averages, we get μpi,i+1(D′)−μpi−1,i(D′) = ∂D′ ·∂i(D) =

∑
j ∂j(D′)·∂i(D) =

∑
j �=i ∂j(D′) · ∂i(D). �

Next, we show that formulas for μ(D) and ι(D) are cyclically symmetric
in p1,2, . . . , pn,1. This is immediate from the following theorem.

Theorem 3.2. If D ∈ D(p1,2, . . . , pn,1), then the expression μpn,1(D) +
μp1,2(D) +

∑
n≥j>l>1 ∂j(D) · ∂l(D) is a cyclically symmetric expression in

p1,2, . . . , pn,1.

Proof. We only need to show that
∑

n≥j>l>1 ∂j(D) · ∂l(D) + μpn,1(D) +
μp1,2(D) =

∑
n>j>l≥1 ∂j(D) · ∂l(D) + μpn−1,n(D) + μpn,1(D). Theorem 3.1
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implies that μp1,2(D) = μpn,1(D) +
∑

j �=1 ∂j(D) · ∂1(D), therefore the
expression μpn,1(D) + μp1,2(D) +

∑
n≥j>l>1 ∂j(D) · ∂l(D) can be rewritten

as 2μpn,1(D) +
∑

n≥j>l≥1 ∂j(D) · ∂l(D). Similarly, we have μpn−1,n(D) =
μpn,1(D) +

∑
j �=n ∂n(D) · ∂j(D), therefore the expression μpn−1,n(D) +

μpn,1(D) +
∑

n>j>l≥1 ∂j(D) · ∂l(D) can also be rewritten as 2μpn,1(D) +
∑

n≥j>l≥1 ∂j(D) · ∂l(D). This finishes the proof. �

Staying with the same notations, let pi,i+1 ∈ P i,i+1 and for some
1 ≤ m ≤ n, let q ∈P 1,m. If φ∈π2(p1,2, . . . , pm−1,m, q) and ψ ∈ π2

(q, pm,m+1, . . . , pn−1,n, pn,1), the multiplication operation gives rise to
(φ ∗ ψ)∈π2(p1,2, . . . , pn,1). From the definition of the intersection number
ι and from the alternate definition of the Maslov index μ, it is easy to prove
that ι(φ∗ψ) = ι(φ)+ ι(ψ) and μ(φ∗ψ) = μ(φ)+μ(ψ). A very similar result
holds for domains in the Heegaard diagram.

Theorem 3.3. For pi,i+1 ∈ P i,i+1 and q ∈ P 1,m, let D1 ∈ D(p1,2, p2,3, . . . ,
pm−1,m, q) and D2 ∈ D(q, pm,m+1, . . . , pn−1,n, pn,1). Then ι(D1 + D2) =
ι(D1) + ι(D2) and μ(D1 +D2) = μ(D1) + μ(D2).

Proof. We know that e(D1 + D2) = e(D1) + e(D2) and k(m− 2)
2 +

k(n−m + 2− 2)
2 = k(n− 2)

2 , so we only need to prove

μpn,1(D1 +D2) + μp1,2(D1 +D2) +
∑

n≥j>l>1

∂j(D1 +D2) · ∂l(D1 +D2)

=
∑

m≥j>l>1

∂j(D1) · ∂l(D1) +
∑

n≥j>l≥m

∂j(D2) · ∂l(D2)

+ μp1,2(D1) + μpn,1(D2) + μq(D1 +D2).

Two straightforward applications of Theorem 3.1 imply that

μq(D1) = μpn,1(D1) − ∂1(D2) · ∂D1 and

μq(D2) = μp1,2(D2) − ∂D2 · ∂1(D1).

Observe that ∂jD1 = 0 for n ≥ j > m and ∂jD2 = 0 for m > j > 1.
Therefore,

∑

n≥j>l>1

∂j(D1 +D2) · ∂l(D1 +D2) =
∑

m≥j>l>1

∂j(D1) · ∂l(D1)

+
∑

n≥j>l≥m

∂j(D2) · ∂l(D2) +
∑

n≥j≥m

∑

m≥l>1

∂j(D2) · ∂l(D1).

After substituting all these, all that remains to be proved is that

∂1(D2) · ∂D1 + ∂D2 · ∂1(D1) +
∑

n≥j≥m

∑

m≥l>1

∂j(D2) · ∂l(D1) = 0.
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However, the expression in question is simply ∂D2 · ∂D1 and hence is zero,
thereby concluding the proof. �

Now, we try to understand how μ and ι behave under an isotopy of the
η curves. Let φ ∈ π2(p1,2, . . . , pn,1) be a Whitney n-gon. Let us do a small
isotopy on η1 curves to get η̃1 such that the η1 curves stay disjoint through-
out, η̃1 curves are transverse to the ηi curves (however, the η1 curves do
not have to remain transverse to the ηi curves throughout the isotopy) and
the isotopy is constant in a neighborhood of the coordinates of p1,2, . . . , pn,1.
The Whitney n-gon φ in the old Heegaard diagram H naturally gives rise
to a Whitney n-gon φ̃ in the new Heegaard diagram H̃ joining the same n
points p1,2, . . . , pn,1. Since during the isotopy, the torus T1 stayed disjoint
from the fat diagonal, we get ι(φ) = ι(φ̃); and since during the isotopy, the
torus T1 was untouched near p1,2, . . . , pn,1, using the alternate definition of
the Maslov index, we get μ(φ) = μ(φ̃). Once more a similar result holds for
domains in the Heegaard diagram.

Theorem 3.4. Let D ∈ D(p1,2, . . . , pn,1) be a domain. After an iso-
topy of the η1 curves which is constant in a neighborhood of the coordi-
nates of p1,2, . . . , pn,1, let D̃ be the induced domain in the new Heegaard
diagram joining the same n points p1,2, . . . , pn,1. Then μ(D) =μ(D̃) and
ι(D) = ι(D̃).

Proof. The isotopy can be thought of as a finite sequence of steps, where
at each step, exactly one of the two moves illustrated in Figure 2 happens.
The thin line denotes an η1 curve, the thick line denotes an ηu curve and
the thick dotted line denotes an ηv curve with u, v 	= 1 and u 	= v. The
coefficients of the domains D and D̃ are shown.

Since D and D̃ have the same local coefficients near the coordinates of
p1,2, . . . , pn,1, the point measures μpi,i+1 do not change. From Figure 2, it
is clear that ∂i(D) · ∂j(D) = ∂i(D̃) · ∂j(D̃) for all values of i, j. Finally the
identity e(D) = e(D̃) can be verified in the following way.

Draw an extra circle around the local picture in each of the four cases,
and choose a metric such that the circle is a geodesic which intersects all
the η curves in right angles. Since the Euler measure is additive, the Euler
measure of the whole domain is the sum of the Euler measure of the domain
lying outside the circle and the Euler measure of the domain lying inside the
circle. Since the move is a local move, the Euler measure of the domain lying
outside the circle does not change; and the identities a

2 + c
2 = b

4 + b
4 + a+c−b

2

and a
4 + d−c

4 + d−b
4 + a+b+c

4 = d
4 + d−b−c

4 + a+c
4 + a+b

4 show that neither does
the Euler measure of the domain lying inside the circle. �

We are almost done establishing all the relevant properties of μ and ι. Let
us end the section by doing a calculation for a special type of domain.
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Figure 2. Local coefficients of D and D̃.

Assume that n = 3, and let D ∈ D(p1,2, p2,3, p3,1). Furthermore assume
that D only has coefficients 0 or 1, and the union of the closure of the
regions where D has coefficient 1 is a disjoint union of k triangles. Then it
is well known that there is Whitney 3-gon φ ∈ π2(p1,2, p2,3, p3,1) such that
D = D(φ), and μ(φ) = ι(φ) = 0. This is also true at the level of domains.

Theorem 3.5. Let D ∈ D(p1,2, p2,3, p3,1) be a disjoint union of k triangles.
Then μ(D) = ι(D) = 0.

Proof. Number the k triangles Δ1, . . . ,Δk arbitrarily, and assume without
loss of generality that the vertices lying on the boundary of Δi are p1,2

i ,
p2,3

i and p3,1
i . Therefore for all i, we have e(Δi) = 1

4 , ∂3(Δi) · ∂2(Δi) = −1
4

and μ
p3,1

i
(Δi) = μ

p1,2
i

(Δi) = 1
4 . The Euler measure is additive, so e(D) =

∑
i e(Δi) = k

4 ; since the k triangles are disjoint, we have ∂3(D) · ∂2(D) =
∑

i ∂3(Δi) · ∂2(Δi) = −k
4 ; and finally once more using the fact that the k

triangles are disjoint, we get μp3,1(D) =
∑

i μp3,1
i

(Δi) = k
4 and μp1,2(D) =

∑
i μp1,2

i
(Δi) = k

4 . Therefore ι(D) = μp3,1(D) + μp1,2(D) + ∂3(D) · ∂2(D) −
e(D) = 0 and μ(D) = ι(D) + 2e(D) − k

2 = 0. �
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4. μ(φ) = μ(D(φ)) and ι(φ) = ι(D(φ))

We devote this section to proving the main theorem that the formulas for
μ and ι for domains represent the actual Maslov index and the intersection
number in the symmetric product, respectively.

Theorem 4.1. For n ≥ 2 and points pi,i+1 ∈ P i,i+1, let φ ∈ π2(p1,2, . . . , pn,1)
be a Whitney n-gon. Then μ(φ) = μ(D(φ)) and ι(φ) = ι(D(φ)).

Proof. We prove this by an induction on n. The case for n = 2 is a theo-
rem of Lipshitz [Lip06, Corollary 4.10], which was also partially proved by
Rasmussen in [Ras03, Theorem 9.1]. Therefore let us work with n ≥ 3.

Without loss of generality, let us assume that the coordinates of p1,2 and
p2,3 lying on η2

i are numbered p1,2
i and p2,3

i , respectively. By renumbering the
η1 and the η3 circles if necessary, let us also assume that η1

i passes through
p1,2

i and η3
i passes through p2,3

i .
Let Ui be a small neighborhood of η2

i . We have already fixed an orientation
on Σ. Let us now fix some arbitrary orientations on the η2 circles. We declare
that each η2

i circle runs from west to east, therefore at each point in Ui, we
have a notion of the directions east, west, north and south.

Let us choose a point ai ∈ Ui ∩ η3
i to the north of p2,3

i , and let τi be an
embedded path lying inside Ui \ η2

i , joining ai to a point on η1
i , such that τi

either throughout travels northeastwards or throughout travels northwest-
wards, and τi is homotopic to −∂2(D(φ)) inside Ui relative to the η1 and
the η3 circles.

Now we will do a finger-move isotopy on the η3 curves. Make a finger at
η3

i near ai, and push it along τi all the way until it intersects η1
i near the

endpoint of τi. We respect the following usual conventions of a finger move
as specified in [SW]. Whenever the finger encounters any η3 curve, push it
along with the finger, and whenever it encounters any other η curve, make
it intersect the finger. Let qi be the southern intersection of the innermost
finger with η1

i near the endpoint of τi. Choose a point bi just to the east of
qi on the new η curve, make a finger there, and push it all the way south
until it hits η2

i . Let ri be the western intersection of the new innermost
finger with η2

i . Let η3′
i be the new η3

i curve, and let η3′ = {η3′
1 , . . . , η

3′
k }.

We call H = (Σ, η1, η2, η3, . . . , ηn) the old Heegaard diagram and H′ =
(Σ, η1, η2, η3′ , . . . , ηn) the new Heegaard diagram. Let T3′ ⊂ Symk(Σ) be the
torus corresponding to η3′ and let P i,3′ = Ti ∩T3′ . The isotopy is illustrated
in Figure 3; the thin dotted lines represent τi, the thin solid lines represent
η1

i , the thick dotted lines represent η2
i and the thick solid lines represent

either η3
i or η3′

i or the intermediate curve. The points p1,2
i , p2,3

i , ai, bi, qi and
ri are shown.

Note that the isotopy of the η3 circles is constant in a neighborhood of
the coordinates of pi,i+1. Therefore the Whitney n-gon φ in H gives rise to
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Figure 3. The isotopy of the η3 circles in Ui.

a Whitney n-gon φ′ in H′ also joining the points p1,2, . . . , pn,1, such that
μ(φ) = μ(φ′), ι(φ) = ι(φ′), μ(D(φ)) = μ(D(φ′)) and ι(D(φ)) = ι(D(φ′)).

Let us travel on the η3′
i curve from p2,3

i to ri, and let xi
0, x

i
1, . . . , x

i
ni

be in
order, the points of intersection with η2

i that we encounter on the way, such
that xi

0 = p2,3
i and xi

ni
= ri. Let q = (q1, . . . , qk) ∈ P 1,3′ , r = (r1, . . . , rk) ∈

P 2,3′ and yi
j = (r1, . . . , ri−1, x

i
j , p

2,3
i+1, . . . , p

2,3
k ) ∈ P 2,3′ . Note that y1

0 = p2,3,
yi+1
0 = yi

ni
and yk

nk
= r.

For each i, j, there is an obvious Whitney 2-gon ui
j ∈ π2(yi

j , y
i
j+1) such that

D(ui
j) either only has coefficients 0 or 1, or only has coefficients 0 and −1, and

the closure of the union of the regions where D(ui
j) has non-zero coefficients

is a bigon supported inside Ui. Either by a direct computation, or from
Lipshitz’ formula [Lip06, Corollary 4.10], we know that μ(ui

j) = μ(D(ui
j))

and ι(ui
j) = ι(D(ui

j)) for all i, j. Therefore the multiplication operation for
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Whitney 2-gons, produces a Whitney 2-gon u = ∗k
i=1 ∗ni−1

j=0 ui
j ∈ π2(p2,3, r)

such that μ(u) = μ(D(u)) and ι(u) = ι(D(u)).
There is also an obvious Whitney 3-gon v ∈ π2(r, q, p1,2) such that D(v)

only has coefficients 0 and 1, and the closure of the union of the regions
where D(v) has non-zero coefficients is a disjoint union of k triangles, one
in each Ui. Therefore by Theorem 3.5, μ(v) = μ(D(v)) and ι(v) = ι(D(v)).
Theorem 3.3 now implies that μ(u∗v) = μ(D(u∗v)) and ι(u∗v) = ι(D(u∗v)).

By construction, we have ∂2(D(u ∗ v)) = ∂2(D(φ)) = ∂2(D(φ′)). The
Whitney 3-gon (u ∗ v) and the Whitney n-gon φ′ can be represented by
two maps from the unit disk D to Symk(Σ) such that there is a fixed arc
s2 ⊂ ∂D which maps to T2 and whose boundary points map to p1,2 and
p2,3. Since ∂2(D(u ∗ v)) = ∂2(D(φ′)), the two images of s2 are homotopic
in T2 relative the endpoints. Therefore there exists a Whitney (n − 1)-gon
ψ ∈ π2(q, . . . , pn,1) such that (u ∗ v) ∗ ψ = φ′. Theorem 3.3 then implies
that μ(φ′) = μ(ψ) + μ(u ∗ v), μ(D(φ′)) = μ(D(ψ)) + μ(D(u ∗ v)), ι(φ′) =
ι(ψ) + ι(u ∗ v) and ι(D(φ′)) = ι(D(ψ)) + ι(D(u ∗ v)).

We now fit all the pieces to complete the proof. The induction hypothesis
gives us the starting block μ(ψ) = μ(D(ψ)) and ι(ψ) = ι(D(ψ)). The rest
follows formally; μ(φ) = μ(φ′) = μ(ψ)+μ(u ∗ v) = μ(D(ψ))+μ(D(u ∗ v)) =
μ(D(φ′)) = μ(D(φ)); similarly ι(φ) = ι(φ′) = ι(ψ) + ι(u ∗ v) = ι(D(ψ)) +
ι(D(u ∗ v)) = ι(D(φ′)) = ι(D(φ)). �

5. Some applications

In this section, we present some well-known examples and applications.
These require some concepts in addition to the ones that we discussed in
Section 2. To avoid unnecessary cluttering in that section, we introduce these
new concepts in this section as and when we need them.
5.1. Absolute grading formula. Let H = (Σ, η1, η2, η3, w) be a Heegaard
diagram with n = 3 and k = 1, and let φ, φ′ ∈ π2(p1,2, p2,3, p3,1) be two
Whitney 3-gons joining p1,2, p2,3 and p3,1. Let the 2-chain D(φ′) − D(φ)
be denoted by P . The absolute grading formula in [OSz06, Formula (12)]
suggests that μ(φ′) − μ(φ) = 2nw(P ) + c1(sw(φ′))2−c1(sw(φ))2

4 . Here nw(P ) is
the coefficient of the 2-chain P at the region containing the basepoint w;
given a SpinC structure s on the four-manifold Wη1,η2,η3 , c1(s) denotes its
first Chern class; and sw(φ) is the SpinC structure on Wη1,η2,η3 coming from
a Whitney 3-gon φ with respect to the basepoint w, see [OSz06, Section
2.2]. In this subsection, we give a direct verification of the above formula
using the formula for the Maslov index μ.

Following [OSz06, Section 2.2], let H(P ) ∈ H2(Wη1,η2,η3) be the homol-
ogy class corresponding to P , and let PD(H(P )) denote its Poincaré
dual. The right hand side then simplifies to 2nw(P ) + 〈c1(sw(φ)), H(P )〉 +
PD(H(P ))2. However, yet another formula from [OSz06, Proposition 6.3]
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implies that 〈c1(sw(φ)), P 〉 = e(P ) + #(∂P ) − 2nw(P ) + 2σ(φ, P ). Here
#(∂P ) denotes the number of components in ∂P counted with multiplicity;
and σ(φ, P ) denotes the dual spider number defined as follows. The Whit-
ney 3-gon is represented by a map from the unit disk D2 to the symmetric
product. There are three arcs s1, s2 and s3 on ∂D2 which map to the tori
T1, T2 and T3, respectively. Choose a point x in the interior of D2 and three
arcs e1, e2 and e3, such that ei joins x to a point in the interior of si. Assume
that the image of each ei is disjoint from the fat diagonal. Therefore, if the
image of x is (y1, . . . , yk), then the image of ei can be represented by k arcs
on Σ, f i

1, . . . , f
i
k, such that f i

j joins yj to a point on the ηi circles. Let ∂′i(P )
be a small outward translate of the circles in ∂i(P ). Then the dual spider
number is defined as σ(φ, P ) =

∑
j(nyj (P ) +

∑
i f

i
j · ∂′i(P )). Therefore to

complete our verification, we only need to check that

μ(D(φ) + P ) − μ(D(φ)) = e(P ) + #(∂P ) + 2σ(φ, P ) + PD(H(P ))2.

We have already seen that our formula for μ is cyclically symmetric in
p1,2, p2,3, p3,1, so we use a more symmetric version where

μ(D) = e(D) +
2
3

∑

i

μpi,i+1(D) +
1
3

∑

i

∂i+1(D) · ∂i(D).

Therefore, the left-hand side simplifies to

1
3

∑

i

(∂i+1(D(φ)).∂i(P ) + ∂i+1(P ).∂i(D(φ)) + ∂i+1(P ).∂i(P ))

+ e(P ) +
2
3

∑

i

μpi,i+1(P ).

It follows from the definition of the cohomology class PD(H(P )) that
PD(H(P ))2 = ∂i+1(P ) ·∂i(P ) for all i. Therefore, we only need to show that

2
3

∑

i

μpi,i+1(P ) +
1
3

∑

i

(∂i+1(D(φ)).∂i(P ) + ∂i+1(P ).∂i(D(φ)))

= #(∂P ) + 2σ(φ, P ).

In order to calculate σ(φ, P ), choose the interior point x close to the point
t2 = s2 ∩ s3, have the arcs e2 and e3 be small and supported near t2, and
ensure that the arc e1 is supported near s3 and runs parallel to it. Then

∑

j

(nyj (P ) + f2
j · ∂′2(P ) + f3

j · ∂′3(P )) =μp2,3(P ) − 1
2
(#(∂2P ) + #(∂3P )),

and
∑

j

(f1j · ∂′1(P )) = ∂1(P ) · ∂3(D(φ)) − 1
2
(#(∂1P )).
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Therefore we get

σ(φ, P ) = μp2,3(P ) − 1
2
(#(∂P )) + ∂1(P ) · ∂3(D(φ)).

Instead we could have chosen the arc e1 to be parallel to s2, and we would
have got

σ(φ, P ) = μp2,3(P ) − 1
2
(#(∂P )) + ∂2(D(φ)) · ∂1(P ).

Adding, we get,

2σ(φ, P ) = 2μp2,3(P ) − #(∂P ) + ∂1(P ) · ∂3(D(φ)) + ∂2(D(φ)) · ∂1(P ).

However, by choosing the point x near t1 or t3, we get two similar expressions
for the dual spider number. After taking averages, we obtain our required
identity

2σ(φ, P ) =
1
3

∑

i

(∂i+1(D(φ)).∂i(P ) + ∂i+1(P ).∂i(D(φ)))

+
2
3

∑

i

μpi,i+1(P ) − #(∂P ).

While we are on the topic of absolute gradings, it might be interesting
to note that a combinatorial formula for Maslov index of triangles allows
us to compute the absolute Maslov grading on ĤF (Y, t), the hat version
of the Heegaard Floer homology of a three-manifold Y in a torsion SpinC

structure t. This follows from the proof of Theorem 7.1 in [OSz06]. There is
a Heegaard diagram H = (Σ, η1, η2, η3, w) with n = 3 and k = 1, such that
Yη1,η2 = S3, Yη2,η3 = #l(S2 × S1) for some l, and Yη1,η3 = Y . A Whitney
3-gon ψ ∈ π2(p1,2, p2,3, p3,1) is chosen such that the SpinC structure asso-
ciated to ψ restricts to t on Y , and to the torsion SpinC structure t0 on
#l(S2×S1). Then [OSz06, Formula (12)] provides a combinatorial formula
relating μ(ψ) and the absolute gradings of p1,2, p2,3 and p3,1. However, the
Heegaard diagrams (Σ, η1, η2) and (Σ, η2, η3) can be modified by sequences of
isotopies and handleslides until they become ‘standard’ Heegaard diagrams
for S3 and #l(S2 × S1) respectively. Thus the absolute gradings of p1,2 and
p2,3 can be determined. Therefore, a combinatorial formula of μ(ψ) leads to
an algorithm to compute the absolute Maslov grading of p3,1. However, the
Heegaard diagram (Σ, η1, η3) can be converted by a sequence of isotopies
and handleslides to a Heegaard diagram where ĤF (Y, t) can be computed
combinatorially, see [SW]. The absolute grading of p3,1 allows us to assign
absolute gradings to all the generators in the new Heegaard diagram that
lie in the SpinC structure t, and thereby completes the computation of the
absolute Maslov grading on ĤF (Y, t).
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5.2. Domains supported on regions with non-negative Euler
measure. In a Heegaard diagram, a positive domain is a domain such that
none of its coefficients are negative and at least one of its coefficients is
positive. In the Heegaard Floer world, we are often interested in positive
domains. This is because, if the complex structure on the symmetric prod-
uct Symk(Σ) is sufficiently close to the complex structure induced from one
on Σ, and if the moduli space M(φ) is non-empty, then the domain D(φ) is
either the trivial domain or a positive domain.

We are also interested in domains whose only non-zero coefficients lie
on regions that are topologically disks with non-negative Euler measure,
or in other words m-sided regions with m ≤ 4. Such domains come up
naturally when we work with Heegaard diagrams where any region that
does not contain any basepoint wj is either a two-sided or a three-sided
or a four-sided region, and we are only interested in domains that avoid
the basepoints. Such Heegaard diagrams are usually called nice Heegaard
diagrams, but nice Heegaard diagrams are usually so complicated that the
terminology is at best a misnomer.

Let H = (Σ, η1, . . . , ηn, w) be a nice Heegaard diagram. Nice Heegaard
diagrams were first studied in [SW, Definition 3.1], where for n = 2, it
was proved that the computation of the moduli space M(φ) for a Whitney
2-gon φ is combinatorial in a nice Heegaard diagram if μ(φ) = 1 and D(φ)
avoids the basepoints in w. Lipshitz et al. studied nice Heegaard diagrams
for n = 3 in [LMW], where they independently proved a theorem that we
are going to prove shortly, that the computation of the moduli space M(φ)
for a Whitney 3-gon φ is also combinatorial in a nice Heegaard diagram if
μ(φ) = 0 and D(φ) avoids the basepoints in w.

Theorem 5.1. Let H = (Σ, η1, η2, η3) be a Heegaard diagram, and let D ∈
D(p1,2, p2,3, p3,1) be a positive domain such that D is supported on two-sided,
three-sided and four-sided regions, and ι(D) ≥ 0. Then μ(D) ≥ 0, and
equality holds only if ι(D) = 0.

Proof. First, observe that μ(D) = ι(D)+2e(D)− k
2 ≥ 2e(D)− k

2 . Next recall
that D is a positive domain supported on regions with non-negative Euler
measure, therefore e(D) = 1

4(number of three-sided regions in the 2-chain
D) + 1

2(number of two-sided regions in the 2-chain D).
Given a 2-chain D′, regard ∂(∂1D

′)|η2 as a formal sum of points, and
let s(D′) be the sum of the coefficients of the points in that formal sum.
Clearly s is an additive function and s(D) = k. However if R is a two-sided
or a four-sided region then s(R) = 0, and if R is a three-sided region, then
s(R) = ±1. Therefore, counted with multiplicities, D must contain at least
k three-sided regions, which in turn proves that e(D) ≥ k

4 and μ(D) ≥ 0.
If μ(D) = 0, then equality must hold throughout. Therefore ι(D) = 0

and e(D) = k
4 . This then implies that D contains some number of four-sided
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regions, exactly k three-sided regions, each with s = 1, and no two-sided
region. �

The following theorem shows that the moduli space M(φ) can be deter-
mined for Whitney 3-gons with Maslov index 0. We will use Lipshitz’ refor-
mulation [Lip06] of Heegaard Floer theory, so let us briefly mention it now.

Recall that a Whitney 3-gon φ ∈ π2(p1,2, p2,3, p3,1) can be represented by
a map from the unit disk D2 to the symmetric product Symk(Σ). There are
three points t1, t2 and t3 on ∂D2 and three positively oriented arcs s1, s2
and s3 also on ∂D2, such that si is disjoint from ti+1 and it joins ti−1 to
ti. The map from D2 to Symk(Σ) is required to map ti to pi,i+1 and si to
Ti for all i. If such a map can be represented by a holomorphic map (with
respect to the complex structure on Symk(Σ) induced from one on Σ), i.e.,
if M(φ) 	= ∅, then such a map can also be represented by a Lipshitz map,
as described below.

Given a domain D ∈ D(p1,2, p2,3, p3,1), a Lipshitz map is a pair (F, u),
where F is a surface with a complex structure and u is a holomorphic embed-
ding of F into D2 × Σ such that the following conditions are satisfied; if p1

is the first projection map, then p1u is a k-sheeted branched covering, with
all the branch points lying in the interior of D2; if p2 is the second projec-
tion map, then the degree of the map p2u at a region is the coefficient of
D at that region; and finally, we have for all i, p2u(p1u)−1(ti) = pi,i+1 and
p2u(p1u)−1(si) ⊆ ηi.

It turns out that if a domain D can be represented by a Lipshitz map,
then there is a Whitney 3-gon φ such that D = D(φ), and in that case, the
number of branch points of p1u equals ι(φ). Another important lemma is
that, given a Whitney 3-gon φ, there is a bijection between M(φ) and the
set of all Lipshitz maps representing the domain D(φ). With these facts in
mind, we are all set to proceed to the next theorem.

Theorem 5.2. Let H = (Σ, η1, η2, η3, w) be a nice Heegaard diagram, and
let D ∈ D(p1,2, p2,3, p3,1) be a domain which avoids the basepoints such that
μ(D) = 0. We choose the complex structure on Symk(Σ) induced from one
on Σ. Then the following three statements are equivalent.

(1) The domain D is equal to D(φ) for some Whitney 3-gon φ and M(φ)
has one point.

(2) The domain D is equal to D(φ) for some Whitney 3-gon φ and M(φ)
is non-empty.

(3) The intersection number ι(D) = 0 and the 2-chain D can be repre-
sented by a (not necessarily disjoint) union of k embedded triangles, such
that the 3k sides of the k triangles all lie on different η circles.

Proof. The equivalence of the three statements follows from the following
three implications.
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(1)⇒(2) This is quite obvious.
(2)⇒(3) Since the moduli space M(φ) is non-empty, the intersection

number ι(D) is non-negative. Furthermore there is some Lipshitz map (F, u)
representing D. The image of F under the map p2u at the 2-chain level is
D, therefore D is a positive domain. Theorem 5.1 applies and we get that
ι(D) = 0 and D contains some number of four-sided regions, exactly k three-
sided regions and no two-sided region. The surface F is a k-sheeted branched
cover over the disk with ι(D) = 0 branch points, therefore F is a disjoint
union of k disks Δ1, . . . ,Δk, each with three marked points on its boundary.

Let ui = u|Δi
, let p1,2

i , p2,3
i and p3,1

i be the images of the three marked
points on ∂Δi, and let η1

i , η
2
i and η3

i be the η circles passing through those
three points. Therefore ∂Δi maps to ∪jη

j
i ; hence ui is a Whitney 3-gon in

the Heegaard diagram Hi = (Σ, η1
i , η

2
i , η

3
i ) joining p1,2

i , p2,3
i and p3,1

i . The
image of ui is a positive domain Di whose support lies on three-sided and
four-sided regions and ι(ui) = 0. In fact, since s(ui) = 1, the 2-chain Di

contains at least one three-sided region. However the total number of three-
sided regions (counted with multiplicities) in D =

∑
iDi is k, therefore

Di contains exactly one three-sided region and some number of four-sided
regions. This in turn implies that the Euler measure of Di is 1

4 , therefore
the Maslov index μ(ui) is ι(ui) + 2e(Di) − 1

2 = 0.
We would like to show that each Di is an embedded triangle, or in other

words, Di only has coefficients 0 and 1, and the closure of the union of
the regions where Di has non-zero coefficients is a triangle. This would
complete the second part of the theorem. Therefore we only need to prove
that the map ui is a diffeomorphism.

Observe that the Euler measure of Di is 1
4 and the Euler measure of Δi, a

disk with three marked points on its boundary, is also 1
4 . Therefore the map

ui is an unbranched map, or in other words, a local diffeomorphism. Consider
the preimages of the η curves in Δi. The preimage of each curve is an one-
manifold, and the induced tiling on Δi has one three-sided region and some
number of four-sided regions. It is not very hard then, to see that the induced
tiling must look somewhat like Figure 4. The preimages of the η1 curves are
denoted by thin lines; the preimages of the η2 curves are denoted by thick
dotted lines; and the preimages of the η3 curves are denoted by thick solid
lines. By an abuse of notation, the preimage of an ηi curve is also called an
ηi curve. The intersections among these ηi curves in Δi are called vertices.

Assume if possible, that ui is not injective. Therefore there are two dis-
tinct vertices p and q in Δi, such that ui(p) = ui(q). The vertices of Δi are
naturally grouped into three groups based on whether they lie on η1 and η2

curves, η2 and η3 curves, or η3 and η1 curves. It is clear that p and q have
to belong to the same group, and let us assume without loss of generality
that they belong to the group which lies on the η1 and η2 curves.
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Figure 4. Induced tiling on Δi.

Since ui is a local diffeomorphism, there exists a direction on the η1 curve
through p and there exists a direction on the preimage of η1 curve through
q, such that p and q can be moved along these directions on the η1 curves
while ensuring ui(p) = ui(q). The points p and q move along parallel (if not
the same) curves, and therefore we can talk about whether they are moving
in the same direction or in opposite directions. Furthermore notice that p
encounters a vertex on its way when and only when q encounters a vertex
on its way. Finally observe that since ui is an unbranched map, the points
p and q remain disjoint. A similar statement holds for the η2 curves. Since
the map ui is orientation preserving, the points p and q move in the same
direction along the η1 curves if and only if they move in the same direction
along the η2 curves. There are two natural cases.
Case 1: The points p and q move in the same direction.

Let us move p along the η1 curves towards the η3 curves. Therefore q
also moves along the η1 curves towards the η3 curves. Since the condition
ui(p) = ui(q) holds true, p reaches the first η3 curve exactly when q reaches
the first η3 curve. Therefore p and q must have crossed the same number of
η2 curves along the way, and hence p and q lie on the same η2 curve. A similar
argument shows that they lie on the same η1 curve, thereby proving p = q.
Case 2: The points p and q move in opposite directions.

Consider the rectangle S in Δi that has p and q as its diametrically oppo-
site corners. It is possible that the rectangle is degenerate, but that presents
no problem. Let us move p towards the center of S. Since q moves in the
opposite direction, q also moves towards the center of S. If S is tiled by an
even number of four-sided regions (or as a special case, if S is degenerate),
then the center of S lies on its 1-skeleton. Therefore eventually p and q will
hit the same point, which is a contradiction. On the other hand, if S is tiled
by an odd number of four-sided regions, then the center of S lies in the inte-
rior of a four-sided region S′. Then p and q can be moved such that they lie on
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two diametrically opposite corners of S′. Therefore ui|S′ has degree at least 2,
which is a contradiction to the assumption that ui is a local diffeomorphism.

(3)⇒(1) We show that there exist one and only one Lipshitz map (F, u)
representing the domain D. Due to Lipshitz’ reformulation, this is enough
to establish that M(φ) consists of exactly one point.

Since ι(D) = 0, F must be a disjoint union of k disks Δ1, . . . ,Δk, each
with three marked points on its boundary. Each such disk Δi admits a
unique holomorphic map to the unit disk D2, which maps the three marked
points on ∂Δi to the three marked points on ∂D2. The domain D is a union
of k embedded triangles, such that the 3k sides on the boundary of the k
triangles all lie on different η circles. Therefore D can be realized as the
image of F = ∪iΔi under some map, and for each value of i and for any of
the k triangles, there is a unique holomorphic map from Δi to that triangle,
which sends the marked points on ∂Δi to the vertices of the triangle.

Therefore we see that given such a domain D, there can be at most one
Lipshitz map (F, u) representing D. In fact, we have almost constructed
the unique Lipshitz map. There is a surface F which admits a holomorphic
k-sheeted branched cover over the unit disk D2 with ι(D) branch points,
and also a holomorphic map to Σ such that the image at the 2-chain level is
the domain D. We only need to show that the induced map u : F → D2 ×Σ
is an embedding. Assume that the surface F lying inside D2 ×Σ has d dou-
ble points. We can modify the surface F near the d double points to obtain
a new surface F ′ which is embedded in D2 × Σ, and χ(F ′) = χ(F ) − 2d.
Therefore the new pair (F ′, u′) is a Lipshitz map representing the domain D,
and hence the map p1u

′ must have ι(D) branch points. However the number
of branch points of p1u

′ is ι(D) + 2d, therefore d = 0. �
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