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A MAXIMAL RELATIVE SYMPLECTIC PACKING
CONSTRUCTION

Lev Buhovsky

In this paper we present an explicit construction of a relative sym-
plectic packing. This confirms the sharpness of the upper bound for
the relative packing of a ball into the pair (CP

2, T2
Cliff) of the standard

complex projective plane and the Clifford torus, obtained by Biran and
Cornea.

1. Introduction and main results

In this note we present an explicit construction of a relative packing. The
subject of symplectic packing was introduced first in the seminal work of
Gromov [Gr]. Gromov showed that looking at symplectic embeddings of a
standard ball into a symplectic manifold, one may obtain an upper bound on
the radius of a ball which is stronger than the obstruction coming from the
volume. The first theorem in this direction is a non-squeezing theorem from
[Gr]. This result has led to the definition of the Gromov capacity, which
plays an important role in modern symplectic geometry. Later the subject
of symplectic packing was treated by Biran, Karshon, Mc’Duff, Polterovich,
Schlenk, Traynor and others, see [Bi-1, Bi-2, Bi-3, Bi-4, K, M-P, Sch-1,
Sch-2, Sch-3, Tr]. New obstructions for symplectic packings of various
domains were found. On the other hand, attempts were made to find explicit
constructions of certain symplectic embeddings, in order to show that the
obstructions, which were found, are tight (see, e.g., [K, Sch-4, Tr]). This
note is devoted to proving a new result in this direction.

Recently, Biran and Cornea [Bi-Co] found new obstructions on the rela-
tive symplectic packing in a number of situations, which are stronger than
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those in the case of a usual packing. In this note we consider one spe-
cific example from [Bi-Co], and show that the corresponding obstruction
is sharp.

Let us define first the notion of a relative symplectic packing. Consider a
symplectic manifold (M2n, ω) and a closed Lagrangian submanifold Ln ⊂ M .
Take a standard open ball B2n(r) ⊂ (R2n, ωstd) of radius r > 0, where R

2n

is endowed with coordinates (q, p), and set

B2n
R

(r) = {(q, p) ∈ B2n(r) | p = 0}.

A relative packing of B2n(r) into (M, L) is by definition a symplectic embed-
ding

i : (B2n(r), ωstd) ↪→ (M2n, ω)

such that i−1(L) = B2n
R

(r).
In this note we treat the situation where (M, ω) = (CP

2, ωFS) and L =
T

2 ↪→ (CP
2, ωFS) is the standard Clifford torus in M . Here, ωFS is normalized

so that
∫

CP
1 ωFS = π. In [Bi-Co] it was shown that given a relative packing

(
B4(r), B4

R
(r)

)
↪→ (CP

2, T2),

there is an upper bound for the radius of this ball : r �
√

2
3 . Our main result

is the following.

Theorem 1.1. For every r <
√

2
3 there exists a relative packing

(
B4(r), B4

R
(r)

)
↪→ (CP

2, T2).

Let us mention that in [Bi-Co], the authors also consider relative pack-
ings into (CP

2, T2) by more than one ball, and obtain obstructions on their
radii. The case of three balls was treated, and is strongly connected to the
properties of the quantum cup-product in Floer homology. The hypothetical
upper bound in this case was found, under the assumption of existence of
pseudo-holomorphic discs with certain properties. It still remains to show
the existence of such discs, and in the case that it will be proved, one can
try to find the example which proves the tightness of this upper bound.

The rest of the paper is devoted to proving Theorem 1.1. In Section 2 we
show how to reduce Theorem 1.1 to a two-dimensional problem. Section 3
contains the proof of Theorem 1.1.

2. Overview of the construction

It is well-known that the open symplectic manifold (CP
2 \ CP

1, ωFS) is
symplectomorphic to the unit ball (B4(1), ωstd) ⊂ (R4, ωstd). Identifying
R

4 ∼= C
2, we have a natural action of the torus T

2 on B4(1). The moment
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map of this action is given by

B4(1) → R
2,

(z1, z2) �→ (|z1|2, |z2|2).

The action of T
2, restricted to the complement B4(1) \ {z1z2 = 0} of the

union of the two complex axes is free, and therefore, by a standard procedure,
we obtain that B4(1) \ {z1z2 = 0} is symplectomorphic to T

2 × �. Here we
use the notation

� = {(p1, p2) | p1, p2 > 0, p1 + p2 < 1} ⊂ R
2.

Look now at
K := � × R

2(p1, p2) ⊂ T
2 × R

2,

and its subset K ′ := � × � ⊂ K, where

� = {(q1, q2) | 0 < q1, q2 < π} ⊂ T
2.

The above symplectomorphism between B4(1) \ {z1z2 = 0} and T
2 × �

induces a symplectic embedding

j : K ′ ↪→ B4(1).

From now on we will consider K, K ′ as

K = {(q1, p1) | 0 < q1 < π} × {(q2, p2) | 0 < q2 < π} ⊂ R
4,

K ′ = {(q1, p1, q2, p2) | 0 < q1 < π, 0 < q2 < π, p1, p2 > 0, p1 + p2 < 1} ⊂ K,

and the symplectic form is

dp1 ∧ dq1 + dp2 ∧ dq2.

The Clifford torus lies entirely in B4(1), and its pre-image under the map j
equals to

L′ = {(q1, p1, q2, p2) | 0 < q1 < π, 0 < q2 < π, p1 = p2 = 1/3} ⊂ K ′.

Fix r <
√

2
3 and consider

B4(r) ⊂ B2(r) × B2(r) ⊂ R
4.

The construction is based on finding a certain area-preserving map

σ : B2(r) → R
2.

Given such an σ, we define Φ : B2(r) × B2(r) → R
4 as

Φ(z, w) =
(
σ(z), σ(w)

)
.

Our aim is to find σ such that the image of B4(r) ↪→ B2(r) × B2(r) under
the map Φ will be contained in K ′, and also

Φ−1(L′) ∩ B4(r) = B4
R
(r).
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3. Proofs

Proof of Theorem 1.1. Given r <
√

2
3 , we describe a construction of a rela-

tive symplectic embedding
(
B4(r), B4

R
(r)

)
↪→ (CP

2, T2).

As it was shown in Section 2, it is enough to find a symplectic embedding

Φ : B4(r) → R
4,

such that its image will be contained in the domain

{(q1, p1, q2, p2) | 0 < q1 < π, 0 < q2 < π, 0 < p1, 0 < p2, 0 < p1 + p2 < 1},

and the pre-image of

{(q1, p1, q2, p2) | 0 < q1 < π, 0 < q2 < π, p1 = p2 = 1/3}

will be equal to B4
R
(r) ⊂ B4(r).

As it was shown by Schlenk ([Sch-4], Lemma 3.1.5), for any ε > 0 there
exists an area-preserving diffeomorphism

σ : B2(r) → (0, π) ×
(

0,
2
3

)

⊂ R
2(Q, P )

with the following properties (Figure 1):
(1) For each u ∈ (o, r2) one has: if p2 + q2 � u, then P (σ(q, p)) � 1

3 + u
2 +ε.

(2) The line {p = 0} in B2(r), and no other points of B2(r), is mapped
to the line {(Q, 1

3) | Q ∈ (0, π)}.

Take ε = 1
2

(1
3 − r2

2

)
, and consider the corresponding map σ. Then for any

z, w ∈ R
2, such that (z, w) ∈ B4(r), define

Φ(z, w) =
(
σ(z), σ(w)

)
.

Figure 1. The map σ
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We claim that the resulting map Φ : B4(r) → R
4 satisfies the desired prop-

erties. First of all, it is clear that the map Φ is a symplectic embedding, and
the pre-image of

{(q1, p1, q2, p2) | 0 < q1 < π, 0 < q2 < π, p1 = p2 = 1/3}
equals B4

R
(r) ⊂ B4(r). Let us show that, moreover, the image of Φ lies in

the domain

{(q1, p1, q2, p2) | 0 < q1 < π, 0 < q2 < π, 0 < p1, 0 < p2, 0 < p1 + p2 < 1}.

Take any (q1, p1, q2, p2) ∈ B4(r), then we have

q2
1 + p2

1 + q2
2 + p2

2 < r2.

Set u = q2
1 + p2

1. Then q2
2 + p2

2 < r2 − u, and so

P1(σ(q1, p1)) + P2(σ(q2, p2)) <

(
1
3

+
u

2
+ ε

)

+
(

1
3

+
r2 − u

2
+ ε

)

=
2
3

+
r2

2
+ 2ε

= 1. �
Remark 3.1. The presented relative packing construction can be natu-
rally generalized to the corresponding construction of a relative packing of
a 2n-dimensional ball B2n(r) into (CP

n, Tn
Cliff), for any n � 2 and radius

r <
√

2
n+1 . This confirms the sharpness of the upper bound for the radius,

obtained by Biran and Cornea [Bi-Co], for an arbitrary dimension.
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