
JOURNAL OF
SYMPLECTIC GEOMETRY
Volume 7, Number 3, 337–355, 2009

RESOLUTION OF SYMPLECTIC CYCLIC ORBIFOLD
SINGULARITIES

Klaus Niederkrüger and Federica Pasquotto

In this paper we present a method to obtain resolutions of sym-
plectic orbifolds arising from symplectic reduction of a Hamiltonian
S

1-manifold at a regular value.
As an application, we show that all isolated cyclic singularities of

a symplectic orbifold admit a resolution and that pre-quantizations of
symplectic orbifolds are symplectically fillable by a smooth manifold.

1. Introduction

Symplectic quotients are an important source of new symplectic manifolds:
they appear as symplectic reductions in the context of Hamiltonian actions
and the associated moment maps. More generally, reduced spaces corre-
sponding to regular values of the moment map turn out to be symplectic
orbifolds, but one can still look for a closed smooth symplectic manifold
which is isomorphic to the orbifold outside a neighbourhood of the singular
set: we call this object a symplectic orbifold resolution.

Even in the case of a reduced space corresponding to a singular value
of the moment map, where singularities of a more complicated type can
occur, Kirwan’s “partial desingularization” method [Kir85] can be applied
to obtain a resolution which has only orbifold singularities.

The method described in this paper relies on the construction of an aux-
iliary circle action in a neighbourhood of the singularities with largest struc-
ture group: this action is subsequently used to perform a symplectic cut
(as described in [Ler95]), which also amounts to a weighted blow up along
the singular stratum [God01] as explained in Remark 3.5. The orbifold
obtained in this way has singularities of lower order, and we can repeat the
step inductively until we produce a smooth manifold. Making use of this pro-
cedure, we are able to find orbifold resolutions for reduced spaces obtained
from symplectic reduction at the regular level sets of a Hamiltonian func-
tion generating an S

1-action. In particular, we find symplectic resolutions
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for all isolated cyclic orbifold singularities. A technique involving symplectic
resolutions of orbifolds via blow-ups can also be found in [CFM08]: due to
a very restrictive definition of orbifolds, though, that result only provides
resolutions in the special case of isolated singularities.

As a direct application of our result, we are able to show that a Seifert
manifold with a contact structure that is S

1-invariant and transverse to the
fibres is symplectically fillable by a smooth manifold.

1.1. Isolated singularities in dimension four. We start our paper by
discussing singularities of the simplest form: we hope that this will provide
the reader with some motivation and will serve as the right introduction to
the difficulties arising when considering more general examples.

In the four-dimensional case, we can give a very explicit description of
the resolution of an isolated orbifold singularity. In order to do so, we use
weighted blow-ups of isolated symplectic orbifold singularities, as defined
in [God01].

Let x ∈ (M (4), ω) be an isolated orbifold singularity with structure group
Γ ∼= Zp. The orbifold chart around x is equivariantly symplectomorphic to
a neighbourhood of 0 in C

2 with Zp = {1, ξ, ξ2, . . . , ξp−1} acting by

(z1, z2) �−→ (ξmz1, ξz2), 0 < m < p, gcd(m, p) = 1.

If m and p were not coprime, the orbifold singularity would not be isolated.
We can define an S

1-action on C
2 by setting λ · (z1, z2) = (λmz1, λz2) for

λ ∈ S
1. The actions of Zp and S

1 commute, but the induced circle action on
C

2/Zp is not effective. Instead we have to go to the S
1/Zp-action obtained

from the following exact sequence:

0 −→ Zp −→ S
1 −→ Ŝ

1 −→ 0 ,

with the homomorphism of the circle given by λ �→ λp. This defines now a
symplectic Ŝ

1-action on C
2/Zp by

μ · [z1, z2] = [λ · (z1, z2)] = [λmz1, λz2]

for μ ∈ Ŝ
1 and a λ ∈ S

1 such that λp = μ.
The weighted blow-up of C

2/Zp at the origin can be represented as a
symplectic cut with respect to this Ŝ

1-action: Take the product orbifold
C

2/Zp×C with the symplectic form given by (ω, −i dw∧dw̄) and the effective
Ŝ

1-action

μ · ([z1, z2], w) = (μ · [z1, z2], μ−1w) = ([λmz1, λz2], λ−pw), λp = μ.

The blow-up is the symplectic reduction of this space. The Hamiltonian
function that corresponds to this action is

H([z1, z2], w) = m|z1|2 + |z2|2 − p|w|2 ,
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and the ε-level set H−1(ε) is diffeomorphic to the manifold S
3/Zp × C. The

last step consists in taking the quotient H−1(ε)/Ŝ
1 to obtain a symplectic

orbifold that can be glued to C
2/Zp after removing a neighbourhood of

the origin.
There is only one singular point in H−1(ε)/Ŝ

1, namely the image of
([1, 0], 0) ∈ S

3/Zp × C, with stabilizer Zm. By the slice theorem, a neigh-
bourhood of this point admits an orbifold chart equivalent to C

2 with Zm

acting by η · (w1, w2) = (η−pw1, ηw2).
Now choose a1 ∈ Z such that 0 < a1m − p < m and set m1 = a1m − p

and p1 = m: then the new singularity can also be modelled by Zp1 acting
by η · (z1, z2) = (ηm1z1, ηz2) with gcd(m1, p1) = 1, because if b divides both
p1 and m1 then it also divides m and p. We are thus in the initial type of
situation, but we have managed to reduce the order of the singularity. We can
iterate this process, and progressively decrease the order of the singularity
until we obtain, after a finite number of steps, a resolution of our initial
orbifold chart.

More precisely, if we blow up a second time, we obtain a singularity with
structure group Zm1 acting by ζ · (z1, z2) = (ζa2m1−p1z1, ζz2). If we iterate
this blow-up process, at each step we replace the previous singularity by
a new one with structure group Zpi acting by (ξmiz1, ξz2), where the pair
(pi, mi) is recursively given by(

pi

mi

)
=

(
0 1

−1 ai

) (
pi−1
mi−1

)
,

with each ai corresponding to the “roundup” of pi−1
mi−1

, that is, the least inte-
ger ≥ pi−1

mi−1
. The sequence [a1, a2, . . . ] corresponds to the continued fraction

of p
m (a description of resolutions in terms of continued fractions is con-

tained, for example, in Miles Reid’s lecture notes [Rei]). After sufficiently
many blow-ups, we get a pair of the form (pN , 1) and thus an orbifold chart
which is in fact smooth.

Notice that we can think of each weighted blow-up as taking the connected
sum with a suitable orbifold. In dimension 4, if we define the weighted pro-
jective space to be the quotient

CP(a0, a1, a2) = C
3 − {0}/ ∼

under the equivalence relation

(z0 : z1 : z2) ∼ (λa0z0 : λa1z1 : λa2z2) for λ ∈ C
∗ ,

then the weighted blow-up of a singular point with structure group Zp acting
by (z1, z2) �→ (ξaz1, ξ

bz2) can be described as taking the connected sum,
around this point, with the orbifold CP(a, b, p) with reversed orientation.
We can use this description to represent the resolution of a four-dimensional
cyclic singularity as in Figure 1.
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Figure 1. The resolution obtained via a sequence of
blow-up can also be thought of as the connected sum
M#CP(1, m, p)#CP(1, m1, p1)# · · ·#CP(1, 1, pN ).

In higher dimension (≥6), the method just described is not so straight-
forward: even if we start with an isolated singularity, after the first blow-up
the singular set is not necessarily discrete any more.

Example 1.1. Consider an isolated orbifold singularity modelled on a
neighbourhood of 0 in C

3 with Zp acting by

(z1, z2, z3) �→ (ξm1z1, ξ
m2z2, ξz3) ,

with 0 < m1 < m2 < p and gcd(mj , p) = 1, j = 1, 2. We can blow up
this singularity with the method used in the four-dimensional case, that
is, performing a symplectic cut with respect to a suitable circle action. If
gcd(m1, m2) = d �= 1, though, after blowing up the singular set will be a
two-dimensional suborbifold with stabiliser Zd at generic points.

One could still hope to obtain a resolution of general cyclic orbifold sin-
gularities by using weighted blow-ups along suborbifolds (cf. [MS99]), but
for this one needs to find a suitable circle action on the fibres of the nor-
mal orbibundle to singular strata. While this is not difficult in charts, it
is not clear to us how to find in general a global action. To sketch the
type of problems we encounter, consider the bundle R

2 × (C2/Z5)/ ∼ with
(t, s, [z1, z2]) ∼ (t + 1, s, [z2, z1]) and Z5 acting by ξ(z1, z2) = (ξz1, ξ

4z2). If
we tried to proceed as in the case of isolated singularities, we would choose
the circle action given by λ[z1, z2] = [λz1, λ

4z2], but the relation “∼” is not
equivariant with respect to this action. In the special context of symplectic
reduction on Hamiltonian S

1-manifolds, we adopt a different desingulari-
sation method. In fact, this also induces a circle action with the required
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properties on the quotient, so that our construction ultimately amounts
to a weighted blow-up at the orbifold level (cf. the remark at the end of
Section 3).

2. Symplectic orbifolds as quotients of Hamiltonian S
1-manifolds

We start by recalling some definitions.

Definition. A symplectic orbifold M is a Hausdorff, second countable topo-
logical space, equipped with an atlas of uniformizing charts (Ũi, Γi, ϕi, ωi),
where Ũi is an open connected subset of R

n, Γi is a finite group of sym-
plectomorphisms of (Ũi, ωi) and ϕi : Ũi → M induces a homeomorphism
from Ũi/Γi to Ui ⊂ M . These charts are required to cover M and to satisfy
the following compatibility condition: if x ∈ Ũi and y ∈ Ũj are such that
ϕi(x) = ϕj(y) then there exists a symplectomorphism from a neighbourhood
of x onto a neighbourhood of y whose composition with ϕj is ϕi.

Let W be a manifold with an action of the unit circle S
1. The infinitesimal

action is defined by the vector field

XW (p) :=
d

dt

∣∣∣∣
t=0

eit ∗ p

for every p ∈ W .

Definition. A Hamiltonian S
1-manifold (W, ω) is a symplectic manifold

with an S
1-action for which there exists a Hamiltonian function H : W → R

that generates the action or, equivalently, that satisfies the identity

iXW
ω = dH .

If this is the case, the function H is also called the moment map of the
action.

The following statement is well known [Wei77], but for completeness we
will briefly sketch the proof.

Proposition 2.1. Let (W, ω) be a Hamiltonian S
1-manifold with Hamilton-

ian function H. For any regular value E of H, the symplectic quotient

ME := H−1(E)/S
1

is a symplectic orbifold.

Proof. Since E is a regular value, it follows that H−1(E) is a smooth sub-
manifold on which the S

1-action is locally free, because iXW
ω = dH �= 0.

The stabilizer of a point p ∈ H−1(E) is thus isomorphic to some finite
cyclic subgroup. By the slice theorem, we can find a homeomorphism from
a neighbourhood of the equivalence class of p in the orbit space to the quo-
tient Sp/ Stab(p), where Sp denotes a slice at p (the normal space to the
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S
1-orbit). In this way we obtain an orbifold atlas for the space ME . More-

over, the symplectic form ω induces a symplectic structure on the orbifold
ME , because LXW

ω ≡ 0, and ω(XW , ·)|TH−1(E) = dH|TH−1(E) ≡ 0. �

Example 2.2. Let C
n+1 be equipped with the canonical symplectic

form ω0 = i
2
∑

dzj ∧ dz̄j . The Hamiltonian function H(z0, . . . , zn) =
−1

2
∑

aj |zj |2 generates the S
1-action

λ ∗ (z0, z1, . . . , zn) = (λa0z0, . . . , λ
anzn) .

The weighted projective space CP(a0, a1, . . . , an) is the 2n-dimensional orbi-
fold obtained as the symplectic reduction of C

n+1 at any negative level set
of H (the choice of the level set only changes the scaling of the symplectic
form).

2.1. Symplectic resolutions

Definition. Let (M, ω) be a symplectic orbifold with singular set X and
let U be a neighbourhood of X. A symplectic resolution of M on U consists
of a smooth symplectic manifold (M̃, ω̃) and a continuous surjective map
p : (M̃, ω̃) → (M, ω) which is a diffeomorphism on the complement of the
singular set and a symplectomorphism outside U .

In this paper we prove the following result.

Theorem 2.3. Let M be a symplectic orbifold arising from symplectic reduc-
tion of a Hamiltonian S

1-manifold at a compact regular level set and let X
be the subset of orbifold singularities of M . Then for any neighbourhood U
of X there exists a symplectic resolution of M on U .

2.2. The stratification of the singular set. Let W be a symplectic S
1-

manifold with Hamiltonian function H and denote by Sing W ⊂ W the
singular set of the circle action, that is,

Sing W =
{
x ∈ W

∣∣ Stab(x) �= {1}
}

.

For a given cyclic group Zk, let Wk denote the union of orbits whose isotropy
group is Zk, namely Wk = {x ∈ W | Stab(x) ∼= Zk}. Then Sing W is strat-
ified by singular strata, i.e., connected components of Wk for all k �= 1.
Assume that 0 is a regular value of H and denote by P the level set H−1(0).
We assume P to be compact: this is always the case, for example, if the
Hamiltonian function is proper. The singular set of the action on this level
set is given by the intersection of Sing W and P : we will denote it by Sing P .
If π : P → M = P/S

1 denotes the orbit map, X = π(Sing P ) is the set of
orbifold singularities of M and the stratification of Sing P descends to a
stratification of X. Our desingularization method works by induction on
the order of the stabilizers of the strata Wk that have non-empty intersec-
tion with P . Namely, we start with the stratum with largest stabilizer (the
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minimal stratum, which exists because Sing P is compact), remove a small
neighbourhood of it and glue in a (suitable) smooth manifold, in such a way
that both the symplectic form and the Hamiltonian S

1-action extend to the
manifold resulting from this surgery. The new singular set will also carry
a stratification, but the order of the stabilizer of the minimal stratum will
be strictly less than k. If we successively repeat this procedure sufficiently
often, we will eventually reduce this maximal stabiliser to the trivial group.
In particular, symplectic reduction at 0 yields then a smooth symplectic
manifold which gives a resolution of the orbifold M .

After working out this desingularization method for symplectic orbifolds,
we were told by one of the authors of [GGK99] that they, and others before
them, had already used the same construction in the smooth category.

3. Construction of the resolution

The strategy of our construction is to find an auxiliary circle action on
the Hamiltonian S

1-manifold around its minimal stratum. This action will
have certain properties (see Proposition 3.3) that will allow us to perform
a symplectic cut [Ler95]. The stabilizers of the Hamiltonian S

1-manifold
obtained this way are all lower than the stabilizer of the initial minimal
stratum. Then we successively repeat the construction until we obtain a
manifold with a free circle action.

3.1. An auxiliary circle action around the minimal stratum. Sup-
pose (W, ω) is a Hamiltonian S

1-manifold with Hamiltonian function H :
W → R. Assume further that 0 is a regular level set of H and that the
singular set of the action on P := H−1(0) is compact. Choose a metric and
an almost complex structure J which are S

1-invariant and compatible with
ω (see for example [MS98, Section 5.5]). Since symplectic reduction is a
local process, it will be sufficient to study a neighbourhood of P consisting
of regular level sets Pt := H−1(t), t ∈ (−ε, ε). We will start by finding a
suitable model for this neighbourhood.

Proposition 3.1. There is a neighbourhood of P in (W, ω) that is S
1-

diffeomorphic to

P × (−ε, ε) ,

with trivial circle action on the second factor λ ∗ (p, t) = (λ ∗ p, t). Under
this diffeomorphism, the Hamiltonian function pulls back to H(p, t) = t.

Proof. Consider the vector field

Y :=
1

‖∇H‖2 ∇H =
1

‖XW ‖2 JXW .
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It is transverse to the level sets, and allows us to define for small times t
with |t| < ε the diffeomorphism

Ψ : P × (−ε, ε) → W, (p, t) �→ ΦY
t (p)

onto a neighbourhood of P in W . The pullback of H gives H ◦ Ψ(p, t) = t,
and the circle action is t-invariant (by which we mean λ∗Ψ(p, t) = Ψ(λ∗p, t)
for λ ∈ S

1), because Y commutes with the generator of the S
1-action. �

From now on, we will restrict to a neighbourhood of the level set P as
constructed in Proposition 3.1 and for simplicity we will refer to it as W .

In the next step, we will construct a suitable model for a neighbourhood
of the minimal stratum, in which we can describe the auxiliary circle action
needed for the resolution.

The S
1-action on W is locally free. Consider the stratification {Wk} of

the singular set Sing W given by the isotropy groups. Each stratum Wk is
an S

1-invariant symplectic submanifold of W of the form Pk ×(−ε, ε), where
Pk := Wk ∩ P .

If k is maximal, that is, there are no points in W of order larger than k,
then Wk ∩ Pt is a closed submanifold. By restricting to one component, we
may further assume Wk to be connected. Choose any S

1-invariant metric gP

on P and extend it to the product metric gW := gP ⊕ dt2 on W = P×(−ε, ε).
With our choice of metrics on P and W , the corresponding exponential maps
are related as follows:

expW
(p,t)(v + a ∂t) =

(
expP

p (v), t + a
)

with respect to the splitting T(p,t)W = TpP ⊕ 〈∂t〉. Moreover, if we denote
the normal bundle of Pk in P by Nk, then the normal bundle of Wk in W is
isomorphic to the product Nk × (−ε, ε). Therefore a tubular neighbourhood
of Wk in W can also be identified via the exponential map with the product
Nk(δ) × (−ε, ε), where Nk(δ) denotes the δ-subdiskbundle of Nk. This can
be summarized in the following proposition:

Proposition 3.2. There exists a neighbourhood of the singular stratum Wk

in W that has the form Nk(δ) × (−ε, ε). The Hamiltonian function on this
neighbourhood is just given by H(v, t) = t and the circle action is the lin-
earized S

1-action on Nk.

In what follows, we will therefore implicitly assume this identification and
denote for simplicity by ω and J the pullback of the corresponding structures
on W .

Later it will be necessary to introduce a second circle action. To avoid
confusions, from now on we will call the linearization of the given action the
β-action, and we will write it as λ ∗β v for λ ∈ S

1 and v ∈ Nk(δ).
Let x ∈ Wk be a singular point in the minimal stratum. The sta-

bilizer Stab(x) ∼= Zk acts by isometric (with respect to both gW and
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the metric gJ := ω(·, J ·)), J-linear transformations on TxW , hence there
exists an isomorphism between the Hermitian vector spaces (TxW, J, gJ) and
the standard Hermitian space C

n such that the linearized Zk-action takes
the form

λ ∗β z = (λã1z1, . . . , λ
ãnzn) ,

for λ ∈ Zk, z ∈ C
n ∼= TxW , and some ã1, . . . , ãn ∈ Z. Without loss of gen-

erality we may assume that 0 = ã1 = · · · = ãm < ãm+1 ≤ · · · ≤ ãn < k for
some m. The first m directions span the space TxWk, and the other directions
are orthogonal to TxWk: it is easy to show that this holds not only for gJ ,
but also with respect to any other S

1-invariant metric. Hence, if we denote
by νk the normal bundle of Wk in W , the subspace {(0, . . . , 0, zm+1, . . . , zn)}
coincides with the fibre νk(x). For all x ∈ Wk, jx := J |νk(x) defines a com-
plex vector bundle structure on νk, making the Zk-action j-complex linear
in each fibre.

Denote by a1 < · · · < al the distinct exponents occurring in the normal
form for the action: νk splits thus into a direct sum of subbundles

νk = E1 ⊕ · · · ⊕ El ,

where Ei(x) denotes the eigenspace corresponding to the eigenvalue λai in
the fibre at the point x. This splitting is well defined for each component
of Wk. Therefore we can extend the Zk-action to a second circle action by
setting for any λ ∈ S

1

λ ∗aux v := λa1v1 + · · · + λalvl ,

where v = v1 + · · · + vl is a splitting with respect to the eigenspaces defined
above, and λaivi :=

(
cos(aiλ) + sin(aiλ) j

)
vi. This auxiliary action is fibre-

wise and j-linear, and commutes with the original β-action. Unfortunately,
it does not need to respect the symplectic form ω. Recall that ω denotes here
the symplectic form on the total space of νk obtained by pulling back the
symplectic form on W . By averaging ω over the auxiliary action, we obtain
a closed 2-form ω′ on νk that is invariant with respect to both the β- and
the auxiliary action. There is a small neighbourhood of the zero section of
νk where we also have (ω′)n �= 0 and hence ω′ is a symplectic form. To prove
this it suffices to show that ω is aux-invariant on the zero section. In fact,
at the zero section Wk of νk, there is a well-defined splitting of the tangent
bundle Tνk|Wk

= TWk ⊕ νk and we can write

Tνk|Wk
= TWk ⊕ E1 ⊕ · · · ⊕ El .

The Ei’s are J-linear subspaces and gJ -orthogonal to each other, so that
they are also symplectically orthogonal. The linearized auxiliary action on
a vector w + v1 + · · · + vl ∈ Tνk with w ∈ TxWk and vi ∈ Ei(x) is given by

λ ∗aux (w + v1 + · · · + vl) = w + λa1v1 + · · · + λalvl
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and using the orthogonality relations, it is easy to check that

ω(λ ∗aux v, λ ∗aux v′) = ω(v, v′) .

Hence ω is aux-invariant on the zero section of νk and we do not change
it there by averaging. It follows that there is a small neighbourhood of the
zero section, where ω′ will be symplectic.

Proposition 3.3. There exists a Hamiltonian S
1-action ϕ in a neighbour-

hood of Wk with the following properties:

(i) ϕ leaves Wk pointwise fixed and the stabilizer of points not lying on
Wk is a proper subgroup of Zk;

(ii) ϕ commutes with the β-action;
(iii) the two actions coincide for elements in Zk ≤ S

1, and if λ∗ϕx = σ∗βx,
then σ ∈ Zk ≤ S

1;
(iv) the Hamiltonian function for the ϕ-action is β-invariant and constant

along Wk. Furthermore, it is a Morse–Bott function with critical set
Wk of index zero.

Proof. We will obtain the ϕ-action by a deformation of the existing auxiliary
action. By a standard application of the equivariant Moser trick, there exists
a β-equivariant isotopy of a neighbourhood of Wk that deforms ω into ω′.
The only difficulty comes from the fact that we are dealing with an open
set, so that the flow of the Moser vector field Xt does not need to exist up
to time 1. But since Xt vanishes on the zero section Wk, after shrinking Wk

and the radius of the tubular neighbourhood, we get a smaller set where the
isotopy can be defined as the flow of Xt for all t ∈ [0, 1]. The inverse of this
isotopy deforms the auxiliary action into the required action ϕ.

Since the flow of the Moser vector field leaves Wk invariant and is
β-equivariant, one can show that properties (i)–(iii) hold for the auxiliary
action together with β and this is equivalent to the corresponding statements
for ϕ and β.

Since ω is ϕ-invariant, one has that diXϕω = LXϕω = 0. For the time
being, let U be any tubular neighbourhood of Wk, where ϕ is defined. The
closed 1-form iXϕω represents a class in H1(U) which vanishes if we pull it
back to the zero section Wk: Given that H1(U) ∼= H1(Wk), it follows that
iXϕω is exact on U , i.e., there exists a function μϕ such that iXϕω = dμϕ.
The function μϕ is uniquely defined up to an additive constant (which we
may choose such that μϕ ≡ 0 on Wk) and is β-invariant.

Recall that a Hamiltonian S
1-function is always Morse–Bott (see [MS98,

Section 5.5]). The critical set coincides with the set of fixed points of the
action, hence in our case with Wk.

The index of a Morse–Bott function is invariant under diffeomorphisms.
Therefore in order to compute the index of μϕ at Wk, it suffices to compute
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the index of the Hamiltonian function μaux of the auxiliary action with
respect to ω′, because μϕ is the pullback of μaux under the Moser-flow.

Let ∂r be the radial vector field on νk given by

∂r(v) =
d

dt

∣∣∣∣
t=1

t · v

for v ∈ νk. We will prove that μaux strictly increases in radial direction,
which shows that it has index zero. More precisely, we will prove that
L∂rμaux ≥ 0 with equality only at the zero section. By definition of μaux,
one has i∂rdμaux = ω′(Xaux, ∂r), so it will suffice to show that there exists a
neighbourhood of Wk where ω′(Xaux, ∂r) ≥ 0.

With π denoting the bundle projection νk → Wk, the vertical bundle
V (νk) ≤ Tνk of νk can be identified with the pullback bundle

π∗νk =
{
(v, w) ∈ νk × νk

∣∣ π(v) = π(w)
}

.

The identification of π∗(νk) and V (νk) goes as follows:

χ : π∗(νk) → V (νk), (v, w) �→ d

dt

∣∣∣∣
t=0

(v + tw) .

Let v ∈ νk, and write it as v = v1 + · · · + vl with respect to the splitting
νk = E1 ⊕ · · · ⊕ El. Then the vectors Xaux and ∂r are given by

Xaux(v) = χ(v, a1jv1 + · · · + aljvl) and ∂r(v) = χ(v, v)

as elements of V (νk) ∼= π∗(νk). Now assume v = (x, 0) lies in the zero section
of νk. Then

ω′(χ(v,
∑

aijwi), χ(v, w1 + · · · + wl)
)

=
l∑

j=1

aj ω′(jχ(v, wj), χ(v, wj)
)

> 0

if w �= 0, since the eigenspaces Ej ’s are ω-orthogonal. By continuity this also
holds for all v in a neighbourhood of the zero section and all w �= 0. Hence
in particular ω′(Xaux, ∂r) > 0 on U − Wk. �

3.2. Surgery along the minimal stratum. In this section we describe
how to replace a neighbourhood of (one component of) the minimal stratum
Wk by a smooth manifold, and extend both the symplectic form ω and the
Hamiltonian S

1-action β to the resulting manifold, in such a way that the
singular points of the extended action are of order strictly smaller than k.
In order to achieve this, we perform a symplectic cut with respect to the
Hamiltonian S

1-action ϕ constructed in the previous section. The main ref-
erence for symplectic cuts and hence for everything that follows is Lerman’s
original paper [Ler95].

As in the previous section, consider the minimal singular stratum Wk,
denote by U a tubular neighbourhood in W , where the ϕ-action is defined,
and take now the product U × C. It admits a first circle action, which is
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just the extension of the original S
1-action β by the trivial action on the

C-factor, namely, for x ∈ U , z ∈ C

λ ∗β (x, z) := (λ ∗β x, z) ,

and we can define a second circle action on U × C by setting

λ ∗ϕ (x, z) = (λ ∗ϕ x, λ−kz) .

These two actions commute and therefore we can combine them and define
a new S

1-action
λ ∗τ (x, z) := λ ∗ϕ

(
λ−1 ∗β (x, z)

)
.

This τ -action is not effective, because the ϕ- and the β-action coincide for
elements in Zk. Hence consider the short exact sequence

0 → Zk → S
1 → Ŝ

1 → 0 ,

with the homomorphism of the circle given by λ �→ λk, and let Ŝ
1 act on

U ×C by σ ∗τ̂ (x, z) = λ∗τ (x, z) for some λ ∈ S
1 such that λk = σ. This new

action, which we denote by τ̂ , is not only effective but by Proposition 3.3 (iii),
even free and the quotient (U ×C)/τ̂ is a smooth manifold. It still carries an
S

1-action induced by the ϕ-action on U ×C, and this is well defined because
ϕ commutes with τ̂ .

We define a symplectic form Ω = (ω, −i dz ∧ dz̄) on U × C, which is
invariant with respect to the τ̂ -action. By construction, the infinitesimal
generator of this action can be written as Xτ̂ = −Xβ +Xϕ. The Hamiltonian
for the τ̂ -action is given by

Hτ̂ (x, z) = μϕ(x) − k|z|2 − H(x) ,

and if we now do symplectic reduction at some level ε we get the quotient
H−1

τ̂ (ε)/τ̂ which, with the structure induced by Ω and ϕ, is a smooth Hamil-
tonian S

1-manifold with Hamiltonian function Hϕ[(x, z)] = μϕ(x) − k|z|2 =
H(x) + ε. Notice that H−1

τ̂ (ε) can be written as the disjoint union of two
τ̂ -invariant manifolds

H−1
τ̂ (ε) =

{
(x, z)

∣∣∣∣ μϕ(x) − H(x) > ε, |z|2 =
μϕ(x) − H(x) − ε

k

}
⊔{

(x, 0)
∣∣∣ μϕ(x) − H(x) = ε

}
.

Since the level sets of μϕ and H are transverse, the restriction of μϕ to
P = H−1(0) is still a Morse–Bott function of index zero. Hence we can
choose δ > 0 such that μ−1

ϕ (δ) ∩ P is contained in the interior of U and has
the structure of a sphere bundle over Pk = P ∩Wk. Choose ε′ > 0 such that

(
μϕ − H

)−1(δ/2, δ) ∩ Pt
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is non-empty, does not intersect Wk, and is contained in the interior of U
for all |t| < ε′ (see Figure 2). Assume from now on that all subsets in W are
restricted to H−1

(
(−ε′, ε′)

)
. Then

U(δ/2, δ) :=
(
μϕ − H

)−1(δ/2, δ)

is diffeomorphic to a spherical shell bundle over Wk. Choose now ε = δ/2,
set V := H−1

τ̂ (ε)/τ̂ , and consider the map

Φ : U(ε, 2ε) → V, x �→
[
x,

√
μϕ(x) − H(x) − ε

k

]
.

This is a diffeomorphism (onto its image), equivariant with respect to the
β-action on U(ε, 2ε) and the ϕ-action on V . Its inverse can be constructed
as follows: given [x, z] with z �= 0, we first represent the same class by an
element (x′, z′) such that z′ is a real positive number, and then define

Φ−1([x, z]) := x′ .

Moreover, since Φ factors through a map U(ε, 2ε) → H−1
τ̂ (ε) which is the

identity in the first component and a real function in the second one, we
have

Φ∗(ω, −i dz ∧ dz̄) = ω ,

hence Φ gives in fact an equivariant symplectic identification of U(ε, 2ε) with
its image under Φ. More precisely, we have

Φ
(
U(ε, 2ε)

)
=

{
[x, z] ∈ V

∣∣ ε < μϕ(x) − H(x) < 2ε
}

.

We can now remove a tubular ε-neighbourhood U(ε) of Wk in W and glue
in the smooth manifold

V (ε) :=
{

(x, z)
∣∣∣∣ ε ≤ μϕ(x) − H(x) < 2ε, |z|2 =

μϕ(x) − H(x) − ε

k

}/
τ̂

Figure 2. Remove the U(ε)-neighbourhood of Wk, and glue
in the V (ε)-patch, identifying along U(ε, 2ε) via the diffeo-
morphism Φ.
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along the open “collar” U(ε, 2ε), using the map Φ. In this way we define the
new manifold

W̃ =
(
W − U(ε)

)
∪Φ V (ε) .

Since Φ is equivariant, the β-action on W − U(ε) and the ϕ-action on V (ε)
fit together to give a circle action β̃ on W̃ , which by construction coincides
with β outside a 2ε-neighbourhood of Wk. Moreover, Φ identifies the given
symplectic forms on the two sides of the gluing, so W̃ also admits a sym-
plectic form ω̃ with the property that ω̃ = ω on W −U(2ε). With the action
β̃ and the symplectic form ω̃ just defined, W̃ is a Hamiltonian S

1-manifold.
The Hamiltonian function H̃ for β̃ is given by H on W − U(2ε) and by
Hϕ − ε on V (ε).

We need to analyse the singular points of the β̃-action on the “patch”
V (ε). They satisfy the relation λ ∗ϕ [x, z] = [x, z] for some λ ∈ S

1 and this
in turn means that there exist κ ∈ Ŝ

1 and σ ∈ S
1, σk = κ such that

λ ∗ϕ (x, z) = κ ∗τ̂ (x, z) = σ ∗ϕ σ−1 ∗β (x, z) .

In particular, λ∗ϕ x = σ∗ϕ σ−1 ∗β x, and by Proposition 3.3 (iii) this identity
can only hold if σ ∈ Zk. Hence κ = 1 and singular points are characterized
by λ ∗ϕ (x, z) = (x, z). Since [x, z] ∈ V (ε) implies that x does not lie in Wk,
the isotropy groups are proper subgroups of Zk, see Proposition 3.3 (i).

We have thus proved:

Proposition 3.4. Let Wk be minimal among the singular strata of a Hamil-
tonian S

1-manifold W that intersect the regular level set P = H−1(0). If we
restrict to a suitable neighbourhood of P , we can remove an arbitrarily small
neighbourhood of Wk and symplectically glue in a smooth manifold which
admits a Hamiltonian S

1-action that coincides with the given action away
from Wk and only has singularities of order strictly smaller than k.

In fact, we have also shown that 0 is still a regular value of the moment
map of the circle action on W̃ and if we consider the symplectic reduced
space at this level, namely

M̃ := H̃−1(0)/β̃ ,

we see that this symplectic orbifold has singularities of strictly lower order
than those of M = H−1(0)/β.

Moreover, there exists a map f : M̃ → M , which is a symplectic orbifold
isomorphism outside an arbitrarily small neighbourhood of Mk = Pk/β (and
in fact coincides with the identity map outside a slightly larger neighbour-
hood). We shall describe how to define f . On (P − U(2ε))/β it is simply
the identity. In order to define it on

(
V (ε) ∩ H−1

ϕ (ε)
)
/ϕ a little more work

is required. First of all, denote by Vk the quotient{
(x, 0) ∈ H−1

τ̂ (ε)
∣∣ μϕ(x) − H(x) = ε

}
/τ̂ .
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Then the inverse of the gluing map Φ restricts to a diffeomorphism Φ−1 :
(V − Vk) ∩ H−1

ϕ (ε) → P ∩ U(ε, 2ε). Since Φ is equivariant with respect to
the ϕ- and β-actions, this descends to a symplectic orbifold isomorphism
on the quotients. Let h : U(ε, 2ε) ∩ P → (U(2ε) − Wk) ∩ P be a β- and
ϕ-equivariant diffeomorphism (recall that ϕ is the action on W constructed
in Section 3.1), that is the identity in a neighbourhood of the outer boundary
of U(2ε) and extends to a smooth map from U(2ε) ∩ P to itself which maps
U(ε) ∩ P to Pk.

Then we can define

f :
(
V ∩ H−1

ϕ (ε)
)
/ϕ →

(
P ∩ U(2ε)

)
/β

[x, z] mod ϕ �→
{

h ◦ Φ−1([x, z]) mod β if z �= 0,
h(x) mod β if z = 0.

Because of the boundary conditions on h, the map f extends on the outer
side to the identity map. To see that f is continuous in a neighbourhood
of

(
Vk ∩ H−1

ϕ (ε)
)
/ϕ, one has to show that for any sequence [xk, zk]/ϕ ⊂(

V ∩ H−1
ϕ (ε)

)
/ϕ that converges to some element [x0, 0]/ϕ, it follows that

f
(
[xk, zk]/ϕ

)
converges to f

(
[x0, 0]/ϕ

)
. We can find representatives (x′

k, z
′
k)

for the sequence that converge to (x′
0, 0) and such that z′

k is a non-negative
real number, and hence f

(
[x′

k, z
′
k]/ϕ

)
= h(x′

k)/β converges to h(x′
0)/β =

f([x′
0, 0]/ϕ) = f([x0, 0]/ϕ).

Remark 3.5. The above ϕ-action descends to a circle action defined on a
neighbourhood of the minimal stratum in the symplectic quotient M . Our
surgery construction induces on the orbifold level a weighted blow up along
the minimal stratum with respect to this action [God01, Section 4].

Note that the symplectic weighted blow up does not define a unique con-
struction, but depends on the choice of a local circle action. Only a suitable
choice will reduce the order of the orbifold singularities, and ultimately yield
a resolution. For general symplectic cyclic orbifolds (that are not given as
symplectically reduced spaces), we have not been able to find an action that
would allow us to produce a resolution by using weighted blow ups.

Our method amounts to replacing a neighbourhood of the minimal sin-
gular stratum in the orbifold with a patch of the form({

Hτ̂ = ε
}
/τ̂ ∩

{
Hϕ = ε

})
/ϕ ,

where Hτ̂ is the Hamiltonian function for the τ̂ -action on U × C, and Hϕ is
the Hamiltonian for the induced ϕ-action on H−1

τ̂ (ε)/τ̂ .
The weighted blow up on the orbifold would replace the neighbourhood

of the singular stratum in M with a patch of the form(({
H−1(0)

}
/β × C

)
∩

{
Ĥϕ = ε

})
/ϕ ,
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where H is the Hamiltonian for the β-action on U and Ĥϕ the Hamiltonian
for the induced ϕ-action on a small open neighbourhood of the singularities
of M × C. It is easy to check by using commutativity of the actions and
the relation between H, Hϕ and Hτ̂ , that these two quotient spaces can be
identified in a canonical way.

3.3. Proof of Theorem 2. If we inductively repeat the above surgery
procedure along the minimal stratum, we will eventually obtain a symplectic
manifold W̃ with a free Hamiltonian S

1-action β̃. The symplectic reduced
space of this action at the level 0 will be a smooth symplectic manifold M̃

and it will be equipped with a function f : M̃ → M , which factors through
all the previous steps of the resolution (that is, reduced spaces with orbifold
singularities of decreasing order), and is a symplectic diffeomorphism outside
an arbitrarily small neighbourhood of the set of orbifold singularities of M .

4. Applications

4.1. Isolated cyclic orbifold singularities. Any isolated cyclic orbi-
fold singularity can be represented as C

n/Zk with symplectic form ω =
i
∑n

j=1 dzj ∧ dz̄j , where the generator ξ = e2πi/k of Zk acts by

ξ · z = (e2πi/kz1, e
2πia2/kz2, . . . , e

2πian/kzn) ,

and a2, . . . , an ∈ N are all coprime with k.
To find a resolution of the singularity using Theorem 2.3, just note that

C
n/Zk can be obtained by doing symplectic reduction on the manifold C

∗ ×
C

n with S
1-action given by

eiϕ · (ρeiϑ, z1, . . . , zn) := (ρei(kϕ+ϑ), eiϕz1, e
ia2ϕz2, . . . , e

ianϕzn) ,

symplectic form ω + ρ dρ ∧ dϑ + 1
k dϑ ∧

∑n
j=1 aj d|zj |2 and moment map

H(ρeiϑ, z1, . . . , zn) = ρ2. Theorem 2.3 then immediately implies the follow-
ing generalisation of the desingularisation result obtained in dimension 4:

Corollary 4.1. Every symplectic orbifold with only isolated cyclic singula-
rities admits a symplectic resolution.

Cavalcanti et al. [CFM08] recently introduced a method that allows one
to find resolutions for all isolated symplectic orbifold singularities.

4.2. Generalized Boothby–Wang fibrations are fillable.

Definition. A Boothby–Wang fibration is a closed contact manifold (P, α)
with a free S

1-action which is given by the flow of the Reeb field XReeb.
A generalized Boothby–Wang fibration is a closed contact manifold (P, α),
where the Reeb field induces a locally free S

1-action.



RESOLUTION OF SYMPLECTIC CYCLIC ORBIFOLD SINGULARITIES 353

Remark 4.2. Any closed contact manifold (P, α) with a (locally) free S
1-

action that leaves the contact structure ξ = ker α invariant, and is transverse
to it, gives rise to a (generalised) Boothby–Wang fibration: Just average
the contact form α over the circle action. Then we have that F := α(XP )
is a non zero S

1-invariant function. Define α′ := 1
F α. This gives a new

S
1-invariant contact form, for which we have α′(XP ) = 1. Furthermore,

dα′(XP ,−) = LXP
α′ − d(α′(XP )) = 0, so that XP is the Reeb field for α′.

Remark 4.3. A Boothby–Wang fibration (P, α) defines an S
1-principal bun-

dle over the manifold B = P/S
1 with connection 1-form α. The curvature

form ω is the unique 2-form on B that satisfies π∗ω = dα. The base mani-
fold (B, ω) is a symplectic manifold and ω represents an integral cohomology
class.

Conversely, for any symplectic manifold (B, ω) with integral symplectic
form, one can construct a Boothby–Wang fibration (P, α) over it, the so-
called pre-quantization. This is the inverse of the previous construction.

A generalized Boothby–Wang fibration can be considered as the pre-
quantization of the symplectic orbifold (P/S

1, ω), and all the statements
made in Remark 4.3 can be translated to this setting.

Proposition 4.4. A generalized Boothby–Wang fibration (P, α) has a nat-
ural convex filling by a symplectic orbifold.

Proof. These computations were obtained with the help of H. Geiges. Con-
sider the (complex) “line bundle” L associated to P , i.e., the bundle obtained
from P ×C by identifying (p, z) with (e−iϕ ∗ p, eiϕ z) for every eiϕ ∈ S

1. The
manifold P embeds naturally via

P ↪→ L, p �→ [p, 1] .

Define on P × C the 1-form

γ :=
1
2

((
1 + |z|2

)
α + x dy − y dx

)
.

It is easy to check that γ is S
1-invariant, and that γ(XP×C) ≡ −1/2 for the

generator of the circle action XP×C = −XP + x ∂y − y ∂x (recall that XP ,
the generator of the circle action on P , coincides with the Reeb field XReeb
of α). Its differential

ω :=
1
2

d(|z|2) ∧ α + dx ∧ dy +
1 + |z|2

2
dα

defines hence a well-defined 2–form on L that is even symplectic, because
2n ωn = n (1 + |z|2)n−1 (dα)n−1 ∧

(
d|z|2 ∧ α + 2dx ∧ dy

)
has only a one-

dimensional kernel on P × C that is generated by XP×C. It follows that
L is a symplectic orbifold where all orbifold singularities sit along the zero
section.
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Finally, the following field

X :=
1 + r2

2r
∂r =

1 + x2 + y2

2 (x2 + y2)
(x ∂x + y ∂y)

is a Liouville vector field for the manifold (P, α), and (L, ω) is hence a convex
filling of P . �

Another, more complicated, way to obtain the symplectic orbifold L is as
the symplectic reduction of the Hamiltonian S

1-manifold described below.
Since the orbifold singularities lie in the interior of L, by passing then to a
symplectic resolution of L whose existence is guaranteed by Theorem 2.3,
we can obtain a smooth symplectic filling of the contact manifold (P, α).

The Hamiltonian S
1-manifold (−ε, ε)×P ×C =

{
(t, p, z)

}
with the circle

action induced from P × C, and symplectic form

Ω := d
((

1 + t
)
γ
)

has Hamiltonian function H(t, p, z) = t/2. Hence the symplectic reduction
at 0 gives back the symplectic orbifold L defined above.

Corollary 4.5. Generalized Boothby–Wang fibrations are symplectically fil-
lable by a smooth manifold.

Remark 4.6. (1) Popescu–Pampu recently proved the following
conjecture of Biran: there exist pre-quantizations (e.g., on higher
dimensional tori) that are not holomorphically fillable [PP08]. These
manifolds, on the other hand, do have a strong symplectic filling,
showing that the different types of fillability do not coincide (a result
well-known in dimension 3).

(2) Massot showed that any contact structure on a three-dimensional
Seifert manifold that is transverse to the fibres (but not necessa-
rily invariant) has a weak symplectic filling [Mas08]. To achieve this
result he constructs first a filling by an orbifold, whose singularities
can then be resolved by using for example the method presented in
this paper.
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