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Q-ALGEBROIDS AND THEIR COHOMOLOGY

Rajan Amit Mehta

A Q-algebroid is a graded Lie algebroid equipped with a compatible
homological vector field and is the infinitesimal object corresponding to
a Q-groupoid. We associate to every Q-algebroid a double complex. As
a special case, we define the Becchi-Rouet-Stora-Tyutin (BRST) model
of a Lie algebroid, which generalizes the BRST model for equivariant
cohomology. We extend to this setting the Mathai–Quillen–Kalkman
isomorphism of the BRST and Weil models, and we suggest a definition
of a basic subcomplex which, however, requires a choice of a connec-
tion. Other examples include Roytenberg’s homological double of a Lie
bialgebroid, Ginzburg’s model of equivariant Lie algebroid cohomology,
the double of a Lie algebroid matched pair, and Q-algebroids arising
from lifted actions on Courant algebroids.

1. Introduction

Lie algebroids are known to appear in various guises. In addition to the
usual anchor-and-bracket definition, a Lie algebroid structure on a vector
bundle A → M may be characterized as a linear Poisson structure on A∗, a
Gerstenhaber algebra structure on ∧Γ(A), or a differential graded algebra
structure on ∧Γ(A∗). The latter two may be interpreted supergeometrically
as a degree −1 Poisson structure on [−1]A∗ and a homological vector field
(a Q-manifold structure [34]) on [−1]A, respectively [2, 32, 36, 37].

Since a bundle map A → A′ does not, in general, induce a map of sec-
tions Γ(A) → Γ(A′) or a dual bundle map (A′)∗ → A∗, the differential
graded algebra formulation has the distinction of being the point of view
where the notion of morphism is obvious. This fact has been useful in mak-
ing sense of categorical constructs involving Lie algebroids, even though a
Lie algebroid structure cannot be described abstractly in terms of objects
and morphisms. For example, Roytenberg [32] generalized the homologi-
cal approach to Lie bialgebras [14, 17] to give a homological compatibility
condition for Lie bialgebroids. More recently, Voronov [38] generalized this
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idea further, giving a homological compatibility condition for double Lie
algebroids [20].

This paper deals with a closely related notion of categorical double,
namely that of a Q-algebroid. A Q-algebroid may be thought of as a Lie alge-
broid in the category of Q-manifolds (or vice versa). As mentioned above,
certain Q-manifolds are associated to Lie algebroids. Q-manifolds also arise
from L∞-algebras [16] and in relation to the quantization of gauge systems
(see, e.g., [11]).

To any Q-algebroid, we can associate a double complex that is essentially
the complex for Lie algebroid cohomology, “twisted” by the homological vec-
tor field. A first example is the “odd tangent algebroid” [−1]TA → [−1]TM ,
where A → M is a Lie algebroid. In this case, the algebra of cochains is
Ω([−1]A), the algebra of differential forms on the graded manifold [−1]A.
Since [−1]A is a Q-manifold with homological vector field dA (the Lie alge-
broid differential), the Lie derivative with respect to dA is a differential
operator on Ω([−1]A) that commutes with the de Rham operator; thus
(Ω([−1]A), d, LdA

) is a double complex. When A = M × g is an action
algebroid, this double complex is naturally isomorphic to the complex of
the Becchi-Rouet-Stora-Tyutin (BRST) model for equivariant cohomology
[12, 30], which prompts us to view the double complex of [−1]TA as a gen-
eralized BRST model. Similarly, the complex (Ω([−1]A), d) may be viewed
as a generalization of the Weil model.1

In this setting, the isomorphism of Mathai-Quillen [25] and Kalkman
[12], which relates the two models, takes a surprisingly simple, coordinate-
free form. Moreover, Kalkman’s one-parameter family [12] that interpolates
between the Weil and BRST models is immediately apparent in this context.

The Weil and BRST complexes are both models for Ω(M ×EG). In order
to obtain equivariant cohomology,2 one must first restrict to a subcomplex
of forms that are basic for the G-action; it is this step that presents a prob-
lem in the general situation, as there does not seem to be a natural choice of
a basic subcomplex of Ω([−1]A). However, if we choose a linear connection
on A, then we may define a basic subcomplex that, in the case of the canon-
ical connection on M × g, agrees with the usual subcomplex, which is just
the Cartan model. It remains unclear whether or not the basic cohomology
depends in general on the choice of connection.

The notion of basic subcomplex extends to the double complex of a double
Lie algebroid [37] with a choice of decomposition [9]. In the case of a vacant
double Lie algebroid [20] associated to a matched pair [29] (A, B) of Lie alge-
broids, there is a unique decomposition, and the basic subcomplex computes

1We are aware of independent work by Abad and Crainic [1], where a Lie algebroid
generalization of the Weil model is given without using the language of graded geometry.

2As is usual for infinitesimal models of equivariant cohomology, we assume that the Lie
group G is compact and connected.
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the A-invariant Lie algebroid cohomology of B. Examples of vacant double
Lie algebroids include the Drinfel’d [7] double g ⊕ g∗ of a Lie bialgebra and
the Lie algebroid (M × g) ⊕ T ∗M associated to a Poisson action [19]. The
latter arises in Mackenzie’s [23] framework for Poisson reduction.

Other examples that fit into the framework of Q-algebroids include
Roytenberg’s [32] homological double of a Lie bialgebroid and Ginzburg’s
[8] equivariant Lie algebroid cohomology. As an example of a Q-algebroid
that does not arise from a double Lie algebroid, we construct a Q-algebroid
associated to a “lifted action” [4] of a Lie algebra on a Courant algebroid.

Q-algebroids are the infinitesimal objects associated to Q-groupoids [26].
It was shown in [26] that a double complex may be associated to a
Q-groupoid by using the homological vector field to twist the smooth
groupoid cohomology. It is natural to ask, then, what the relationship is
between the cohomology of a Q-groupoid and that of its Q-algebroid. As
the above discussion of equivariant cohomology illustrates, the two are not
generally isomorphic, but it may be possible to remedy the discrepancy by
passing to a subcomplex at the Q-algebroid level. In [28], the relationship is
explored further by showing that the van Est homomorphism [6, 39] extends
to a morphism of double complexes.

The structure of the paper is as follows. In §2 and §3, we provide a brief
introduction to vector bundles and the Cartan calculus of differential forms
on Z-graded manifolds. In §4, we define graded algebroids and show that
the [−1] functor from the category of Lie algebroids to the category of
Q-manifolds extends to the category of graded algebroids. As an applica-
tion, we show in §4.2 that a degree k Poisson structure on a graded manifold
M may be associated to a graded algebroid structure on [k]T ∗M. Section
4.3 deals with morphic vector fields and culminates in the definition of
Q-algebroids. The heart of the paper is §5, in which the double complex
of a Q-algebroid is introduced and an in-depth study of Q-algebroids of the
form [−1]TA is undertaken. Finally in §6, we describe the other examples,
mentioned above, of Q-algebroids and their double complexes.

Throughout the paper, we use calligraphic letters such as M to denote
graded geometric objects and normal letters to denote objects that are
assumed to be ordinary (i.e., not graded).

2. Vector bundles in the category of graded manifolds

In this section, we describe some of the basic properties of vector bundles
in the category of Z-graded manifolds. We will follow the notation of [26]
(also see [27]) regarding graded manifolds.

2.1. Vector bundles. Let M be a graded manifold with support M , and
let U be an open subset of M . Denote by M|U the graded manifold with
support U whose function sheaf is the restriction of C∞(M) to U .
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Definition 2.1. A vector bundle of rank {ki} over M is a graded manifold
E and a surjection π : E → M equipped with an atlas of local trivializations
E|π−1

0 (U)
∼= M|U ×R

{ki} such that the transition map between any two local
trivializations is linear in the fibre coordinates.

In particular, we note that a vector bundle has a well-defined subspace
of linear functions C∞

lin(E). We will assume all vector bundles to have finite
total rank, in that

∑
ki < ∞.

Example 2.2 (Trivial degree j line bundles). Let [j]R denote the coordinate
graded space with one dimension in degree j. Then [j]RM := M × [j]R is
the trivial degree j line bundle over M.

2.2. Degree-shift functors. For any integer j, there is a (left) degree-shift
functor [j] on the category of vector bundles, defined by

[j]E := [j]RM ⊗ E .

Remark 2.3.
(1) It is useful to consider the functor [j] in terms of local fibre coordi-

nates, as follows. Let {ξa} be local fibre coordinates on E . Then local
fibre coordinates on [j]E are of the form {ξaεj}, where εj is the fibre
coordinate on [j]RM. Note that |εj | = −j.

(2) It is clear from the definition that [j][k]E is isomorphic to [k][j]E ,
but according to the sign rule, the canonical isomorphism is the one
that sends ξaεkεj to (−1)jkξaεjεk. Similarly, [j][k]E is isomorphic to
[j + k]E , but the isomorphism requires a choice of identification of
[j]R ⊗ [k]R with [j + k]R, which is only canonical up to a factor of
(−1)jk. However, we may assume that such a choice has been fixed
for all j and k (e.g., for j < k, identify εkεj with εj+k).

2.3. Sections. Let π : E → M be a vector bundle.

Definition 2.4. A degree j section of E is a map X : M → [−j]E such
that [−j]π ◦ X = idM. The space of degree j sections is denoted Γj(E). The
space of sections is Γ(E) :=

⊕
j∈Z

Γj(E).

Remark 2.5. It is immediate from the definition that Γj−k(E) ∼= Γj([k]E).
In other words, Γ([k]E) ∼= [k]Γ(E), where the [k] on the right-hand side is
the usual degree-shift functor for graded vector spaces. This is our main
justification for why our notation for the degree-shift functor differs by a
sign from, e.g., [13, 33, 35].

It is clear that, at least locally, a degree j section X is completely deter-
mined by the induced map X∗ : C∞

lin([−j]E) → C∞(M). In a local trivial-
ization, let {ξa} be a set of fibre coordinates on E , and let {ξaε−j} be the
corresponding set of fibre coordinates on [−j]E . Then a set of local func-
tions {fa} ∈ C∞(M) such that |fa| = |ξa| + j determines a local section
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X ∈ Γj(E) with the property X∗(ξaε−j) = fa. In particular, the frame
of sections {Xa} dual to the coordinates {ξa} is defined by the properties
|Xa| = −|ξa| and X∗

a(ξbε|ξa|) = δb
a.

Locally, any linear function α ∈ C∞
lin(E) can be written in the form α =

ξaga, where ga ∈ C∞(M). The map ξaga 
→ ξaε−jga gives a degree j, right
C∞(M)-module isomorphism from C∞

lin(E) to C∞
lin([−j]E). A left C∞(M)-

module isomorphism may be defined similarly. If X ∈ Γj(E), then we can
use the right module isomorphism of C∞

lin(E) and C∞
lin([−j]E) to obtain a

degree j map X∗
0 : C∞

lin(E) → C∞(M). This map is a right C∞(M)-module
homomorphism, and it satisfies the equation

X∗
0 (fα) = (−1)|f |jfX∗

0 (α)

for any f ∈ C∞(M) and α ∈ C∞
lin(E).

Definition 2.6. The pairing 〈·, ·〉 : Γ(E) ⊗ C∞
lin(E) → C∞(M) is defined by

(2.1) 〈X, α〉 := X∗
0 (α).

Remark 2.7. It follows from the properties of X∗
0 that the pairing 〈·, ·〉 is a

right C∞(M)-module homomorphism, and one can see in local coordinates
that the pairing is nondegenerate. We may thus define a C∞(M)-module
structure on Γ(E) by the equation

〈Xf, α〉 = 〈X, fα〉.
With this module structure, the pairing is a bimodule homomorphism.

2.4. Duals. Given a vector bundle E → M, one can form a dual bundle
E∗, where a local trivialization of E with fibre coordinates {ξa} is associated
to a local trivialization of E∗ whose fibre coordinates are the dual frame
of sections {Xa}, and transition maps for E determine transition maps for
E∗ such that the pairing (2.1) is preserved. By construction, we have that
Γ(E∗) = C∞

lin(E).
The relationship between the grading of a vector bundle and its dual is

opposite, in that if E is of rank {ki}, then E∗ is of rank {k−i}. In particular,
([j]E)∗ = [−j]E∗.

3. Vector fields and the Cartan calculus on graded manifolds

3.1. Vector fields. Let M be a graded manifold.

Definition 3.1. A vector field of degree j on M is a degree j (left) derivation
φ of C∞(M), i.e., a linear operator such that, for any homogeneous functions
f, g ∈ C∞(M),

|φ(f)| = j + |f |
and

φ(fg) = φ(f)g + (−1)j|f |fφ(g).
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The space of vector fields on M is denoted X(M). There is a natural
C∞(M)-module structure on X(M), defined by the property

(fφ)(g) = fφ(g).

Definition 3.2. The Lie bracket of two vector fields φ and ψ is

[φ, ψ] = φψ − (−1)|φ||ψ|ψφ.

If |φ| = p and |ψ| = q, then [φ, ψ] is a vector field of degree p+ q. The Lie
bracket gives X(M) the structure of a graded Lie–Rinehart algebra; namely,
for any homogeneous vector fields φ, ψ, χ and function f :

(1) [φ, ψ] = (−1)1+|φ||ψ|[ψ, φ] (antisymmetry),
(2) [φ, fψ] = φ(f)ψ + (−1)|φ||f |f [φ, ψ] (Leibniz rule),
(3) (−1)|φ||χ|[φ, [ψ, χ]] + (−1)|ψ||φ|[ψ, [χ, φ]] + (−1)|χ||ψ|[χ, [φ, ψ]] = 0

(Jacobi identity).
In §3.2, the tangent bundle will be defined, and in §3.3 we will show that

the space of vector fields can be identified with the space of sections of the
tangent bundle.

3.2. (Pseudo)differential forms. For a graded domain U of dimension
{pi}, the tangent bundle TU is the trivial bundle U × R

{pi}. Let {xi} be
coordinates on U , and denote the fibre coordinates by {ẋi} (so that |ẋi| =
|xi|). Naturally associated to any morphism μ : U → V is a bundle map Tμ,
defined as follows. Let {yi, ẏi} be coordinates on TV. Then

(3.1) (Tμ)∗(ẏi) = ẋj ∂

∂xj
[μ∗(yi)].

As graded manifolds are locally modelled on graded domains, these proper-
ties completely define the tangent functor on the category of graded mani-
folds.

Applying the [−1] functor, we obtain the odd tangent bundle [−1]TM,
where the fibre coordinates {ẋi} are now considered to be of degree |xi|+1.
For an ordinary manifold M , it is clear from (3.1) that the sheaf of functions
on [−1]TM is equal to Ω(M). However, in the general case (specifically, when
M has coordinates of degree −1), [−1]TM can have fibre coordinates of
degree 0 in which functions are not necessarily polynomial. For this reason,
C∞([−1]TM) is called the algebra of pseudodifferential forms [3].

3.3. Cartan calculus on graded manifolds. There is a canonical degree
1 vector field d, known as the de Rham vector field, on [−1]TM that is given
locally by the formula

d = ẋi ∂

∂xi
.

It follows from (3.1) that d does not depend on the choice of coordinates.
For any X ∈ Γ(TM), the identification of Γ([−1]TM) with [−1]Γ(TM)

allows us to identify X with a degree |X| − 1 section X−1 ∈ Γ([−1]TM).
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Definition 3.3. The contraction ιX is the unique degree |X|−1 vector field
on [−1]TM satisfying, for any α ∈ C∞

lin([−1]TM),

(3.2) ιX(α) = 〈X−1, α〉.

Note that, if we view f ∈ C∞(M) as a fibrewise-constant function on
[−1]TM, we have ιX(f) = 0.

Remark 3.4. More generally, for any vector bundle E , a section X ∈ Γ(E)
induces a degree |X| − 1 vector field ιX ∈ X([−1]E), defined as in (3.2).

Definition 3.5. Let X ∈ Γ(TM). The Lie derivative with respect to X is
the degree |X| vector field LX on [−1]TM defined by

(3.3) LX = [ιX , d].

Proposition 3.6. The space of sections of the tangent bundle TM is nat-
urally isomorphic to the space of vector fields on M.

Proof. Let X ∈ Γ(TM). For any f ∈ C∞(M), LXf = 〈X−1, df〉 ∈ C∞(M),
so LX may be restricted to C∞(M) to get a vector field on M.

On the other hand, let φ ∈ X(M). Then φV ∈ X([−1]TM), defined by
the properties

φV (f) = 0, φV (df) = φ(f)

for all f ∈ C∞(M), restricts to a right C∞(M)-module morphism
C∞

lin([−1]TM) → C∞(M). By the nondegeneracy of the pairing (2.1), there
is a section X ∈ Γ(TM) such that φV = ιX .

It is easy to check that the two maps are inverses of each other. �

Example 3.7. Let M be an ordinary manifold, and consider the odd
cotangent bundle [−1]T ∗M . Then C∞([−1]T ∗M) = S([1]X(M)) is the
algebra of multivector fields on M and is denoted by X•(M). The Lie
bracket operation on vector fields naturally extends to a graded biderivation
[·, ·] : Xq(M)⊗Xq′

(M) → Xq+q′−1(M), known as the Schouten bracket. From
the perspective of graded geometry, we may view the Schouten bracket as
the degree -1 Poisson bracket associated to the canonical degree 1 symplectic
structure on [−1]T ∗M (see [15, 18]).

If M is a graded manifold, then C∞([−1]T ∗M) is the algebra of pseudo-
multivector fields. Again, the Lie bracket operation on vector fields naturally
extends as a biderivation to a bracket on the algebra of pseudomultivector
fields, and this bracket may be viewed as the Poisson bracket associated to
the canonical degree 1 symplectic structure on [−1]T ∗M.

The proof of the following proposition is left as an exercise for the reader.
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Proposition 3.8. For any vector fields X, Y on M, the following relations
are satisfied:

[d, d] = 0, [ιX , ιY ] = 0,

[LX , ιY ] = ι[X,Y ], [LX ,LY ] = L[X,Y ],

[d, LX ] = 0.

From the above commutation relations, a Cartan-type formula for the de
Rham differential may be derived. In particular, from the equations

ιXd = LX − (−1)|X|dιX ,

ιY LX = (−1)|X|(|Y |−1)(LXιY − ι[X,Y ]),

it follows that for any p-form ω and any vector fields X0, . . . , Xp,

ιXp · · · ιX0dω =
p∑

i=0

(−1)i+
∑

j<i |Xj |ιXp · · · LXi · · · ιX0ω

=
p∑

i=0

(−1)i+
∑

k<i |Xk|+|Xi|(
∑

k>i(|Xk|−1))LXiιXp · · · ι̂Xi · · · ιX0ω

+
∑

j>i

(−1)j+
∑

k<i |Xk|+|Xi|(
∑

j≥k>i(|Xk|−1))

× ιXp · · · ι[Xi,Xj ] · · · ι̂Xi · · · ιX0ω.

(3.4)

4. Graded algebroids and Q-algebroids

Definition 4.1. Let M be a graded manifold, and let A be a graded vector
bundle over M. A graded Lie algebroid structure on A is a degree 0 bundle
map ρ : Γ(A) → X(M) (the anchor) and a degree 0 Lie bracket [·, ·] :
Γ(A) × Γ(A) → Γ(A) such that

[X, fY ] = Lρ(X)f · Y + (−1)|X||f |f [X, Y ]

for all X, Y ∈ Γ(A) and f ∈ C∞(M).

Remark 4.2. As in the ordinary case, the anchor identity ρ([X, Y ]) =
[ρ(X), ρ(Y )] may be deduced from the properties of a graded Lie algebroid.

Many common constructions of Lie algebroids extend in a straightforward
manner to the graded geometric situation. In particular, examples of graded
Lie algebroids include the tangent bundle TM of a graded manifold M, the
action algebroid M×g → M arising from an infinitesimal action of a graded
Lie algebra g on a graded manifold M, and the cotangent bundle of a graded
manifold with a degree 0 Poisson structure. A more interesting generalization
occurs when one wishes to construct a graded Lie algebroid associated to a
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Poisson structure of nonzero degree; we describe such a construction in §4.2,
after a discussion of differentials.

We will generally drop the term “graded” in the remainder of the paper,
except for emphasis. In the case of a graded Lie algebroid, we will simply
write “algebroid”, reserving the modifier “Lie” for the ordinary case.

4.1. Algebroids and Q-manifolds. As in the ordinary case, an algebroid
structure on A corresponds to a differential dA : S•[1]Γ(A∗) → S•+1[1]Γ(A∗),
which may be viewed as a homological vector field on [−1]A. We will define
dA in a coordinate frame and then derive Cartan commutation relations,
from which an invariant formula may be obtained.

Let {xi} be local coordinates on M, and let {Xα} be a frame of sections
of A where |Xα| = pα. Then the anchor may be described locally in terms
of functions ρi

α such that ρ(Xα) = ρi
α(∂/∂xi). Similarly, the bracket may be

described in terms of the structure functions cγ
αβ , where [Xα, Xβ] = cγ

αβXγ .
If {λα} are the degree-shifted (in that |λα| = −pα + 1) fibre coordinates

dual to {Xα}, dA is defined locally as

(4.1) dA = λαρi
α

∂

∂xi
− (−1)pα(pβ−1) 1

2
λαλβcγ

αβ

∂

∂λγ
.

Lemma 4.3. d2
A = 0.

Proof. A direct calculation shows that the vanishing of d2
A(xi) for all i is

equivalent to the anchor identity, and the vanishing of d2
A(λα) for all α is

equivalent to the Jacobi identity. �
For X ∈ Γ(A), we have the contraction ιX ∈ X([−1]A) (see Remark 3.4).

Additionally, we may define Lie derivatives as in (3.3) by LX := [ιX , dA].
An immediate consequence of the Jacobi identity is that [LX , dA] = 0. The
following identity is a nontrivial property of (4.1), but it can be easily verified
in coordinates.

Lemma 4.4. For any X, Y ∈ Γ(A),

[LX , ιY ] = ι[X,Y ].

From Lemma 4.4, it follows that [LX ,LY ] = L[X,Y ]. In summary, we have
obtained commutation relations that are identical to those of Proposition 3.8
(with dA in the place of d), and therefore the Cartan formula (3.4) holds for
dA. Since LX , when restricted to C∞(M), acts as ρ(X), we see that (3.4)
gives a formula for dA that does not depend on a choice of coordinates.

In the other direction, dA completely encodes the algebroid structure of
A in the following sense.

Theorem 4.5. Let A → M be a vector bundle. Given a degree 1 deriva-
tion dA : S•[1]Γ(A∗) → S•+1[1]Γ(A∗), there is a unique bundle map
ρ : Γ(A) → X(M) and a unique graded skew-symmetric bilinear map
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[·, ·] : Γ(A)⊗Γ(A) → Γ(A), satifying the Leibniz rule, such that (3.4) holds.
The Jacobi identity is satisfied if and only if d2

A = 0.

Proof. Applying (3.4) to f ∈ C∞(M) and ω ∈ Γ(A∗), we obtain the follow-
ing equations, which uniquely define ρ and [·, ·]:

ρ(X)f = ιXdAf = [ιX , dA]f,(4.2)

ι[X,Y ]ω = ρ(X)ιY ω − (−1)|X||Y |ρ(Y )ιXω − (−1)|X|(|Y |−1)ιY ιXdAω

= [[ιX , dA], ιY ] ω.(4.3)

The last part of the proposition follows from the proof of Lemma 4.3. �

Generalizing the role that [−1]TM plays in the theory of differential
forms, C∞([−1]A) may be called the algebra of algebroid pseudoforms. The
vector field dA is a homological vector field on [−1]A; in other words, [−1]A
naturally possesses the structure of a Q-manifold.

Morphisms of algebroids may be defined in terms of the differentials;
specifically, if A → M and A′ → N are algebroids, then a smooth linear
map τ : A → A′ is an algebroid morphism if dA and dA′ are [−1]τ -related,
or, in other words, if [−1]τ is a morphism in the category of Q-manifolds.

We have thus extended to the case of graded algebroids the following
result of [36] (also see [2]):

Theorem 4.6. There is a functor [−1] from the category of algebroids to
the category of Q-manifolds.

Remark 4.7. The Q-manifolds in the image of the [−1] functor take a
specific form; they are vector bundles such that their homological vector
fields are quadratic in the fibre coordinates. Following Voronov [37], we
refer to such objects as anti-algebroids. The [−1] functor is an isomorphism
from the category of algebroids to the category of anti-algebroids, for which
the inverse functor is [1].

4.2. Degree k Poisson structures. As an application of the homological
approach to graded algebroids, we describe how a degree k Poisson structure
on a graded manifold M induces an algebroid structure on [k]T ∗M.

Definition 4.8. A degree k Poisson structure on M is a degree k bilin-
ear map {·, ·} : C∞(M) ⊗ C∞(M) → C∞(M) such that, for all f, g, h ∈
C∞(M),

(1) {f, g} = (−1)1+(|f |−k)(|g|−k){g, f},
(2) {f, gh} = {f, g}h + (−1)(|f |−k)|g|g{f, h},
(3) {f, {g, h}} = {{f, g}, h} + (−1)(|f |−k)(|g|−k){g, {f, h}}.

As in the ordinary case, it may be seen that properties (1) and (2) are
equivalent to the existence of a “bivector field” π, which in general is a
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degree 2−k element of S2([1−k]X(M)), generating the Poisson bracket via
the derived bracket formula

{f, g} = [[f, π]k, g]k .

Here, [·, ·]k is the degree k−1 Schouten bracket on C∞([k−1]T ∗M). Property
(3) is then equivalent to the “integrability condition” [π, π]k = 0.

The integrability condition implies that the operator dπ := [π, ·]k is a
homological vector field on [k−1]T ∗M, so dπ gives [k−1]T ∗M the structure
of an anti-algebroid. The anchor π� and bracket [·, ·]π for the associated
algebroid structure on [k]T ∗M may then be obtained from (4.2) and (4.3).
In particular, if we denote by dk the “degree k de Rham operator” that,
in particular, sends C∞(M) to Γ([k]T ∗M) = [k]Ω1(M), then π� and [·, ·]π
may be shown to satisfy the properties

π�(dkf)(g) = {f, g},

[dkf, dkg]π = dk{f, g},

for all f, g ∈ C∞(M).

4.3. Morphic vector fields. In this section, we define morphic vector
fields and describe their basic properties. Morphic vector fields correspond,
in the ordinary case, to infinitesimal algebroid automorphisms [24].

Let E → M be a vector bundle.

Definition 4.9. A vector field Ξ on E is linear if, for every α ∈ C∞
lin(E),

Ξ(α) ∈ C∞
lin(E). The space of linear vector fields is denoted Xlin(E).

Remark 4.10. It follows from the derivation property that, if Ξ is a linear
vector field on E , then C∞(M) (considered as a subalgebra of C∞(E)) is
invariant under the action of Ξ as a derivation. It follows that there exists a
unique vector field φ on M that is π-related to Ξ. We call φ the base vector
field.

Proposition 4.11. For all j, Xlin(E) and Xlin([−j]E) are naturally isomor-
phic to each other as C∞(M)-modules.

Proof. Let Ξ ∈ Xlin(E). Using the left C∞(M)-module isomorphism
C∞

lin(E) → C∞
lin([−j]E), α 
→ α̂, we may define a linear operator Ξj on

C∞
lin([−j]E) by the property

(4.4) Ξj(α̂) = Ξ̂(α).

From (4.4), the left C∞(M)-module isomorphism property of α 
→ α̂, and
the fact that Ξ is a linear vector field, it is simple to see that, for f ∈ C∞(M),

(4.5) Ξj(fα̂) = φ(f)α̂ + (−1)|Ξ||f |fΞj(α̂).
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Equation (4.5) implies that Ξj may be extended as a derivation to a linear
vector field on [−j]E of the same degree, and with the same base vector
field, as Ξ.

It is immediate from the definition that (fΞ)j = fΞj . Since the map
Ξ 
→ Ξj is a degree 0 map, the fact that it is a left module isomorphism
implies that it is also a right module isomorphism. �

Remark 4.12. In local coordinates, where {xi} are coordinates on M and
{ξa} are fibre coordinates, we may write

Ξ = φi(x)
∂

∂xi
+ ϕa

b (x)ξb ∂

∂ξa
.

Then the local description of Ξj is simply

Ξj = φi(x)
∂

∂xi
+ ϕa

b (x)ξ̂b ∂

∂ξ̂a
.

Proposition 4.13. The map Ξ 
→ Ξj is a Lie algebra homomorphism.

Proof. Since Ξj is defined by property (4.4), we have that

[Ξj , Ξ′
j ](α̂) = ΞjΞ′

j(α̂) − (−1)|Ξ||Ξ′|Ξ′
jΞj(α̂)

= Ξj

(
Ξ̂′(α)

)
− (−1)|Ξ||Ξ′|Ξ′

j

(
Ξ̂(α)

)

= Ξ̂Ξ′(α) − (−1)|Ξ||Ξ′|Ξ̂′Ξ(α)

= ̂[Ξ, Ξ′](α),

from which it follows that [Ξj , Ξ′
j ] = [Ξ, Ξ′]j . �

Definition 4.14. Let A → M be an algebroid. A linear vector field Ξ on
A is called morphic if [dA, Ξ1] = 0.

Remark 4.15. When there is no possibility of ambiguity, Ξ1 ∈ X([−1]A)
will also be called morphic if Ξ is morphic.

Remark 4.16. For any X ∈ Γ(A), the vector field LX ∈ X([−1]A) is
morphic. When A = TM, every morphic vector field is of the form LX

for some X ∈ X(M). However, an algebroid may in general have “outer
symmetries” that do not arise from sections. An extreme example is a trivial
algebroid whose bracket is always 0. For such an algebroid, dA = 0, so any
linear vector field is morphic. However, in this case LX = 0 for all X ∈ Γ(A).

Definition 4.17. Let Ξ be a morphic vector field on an algebroid A. We
define the operator DΞ on Γ(A) by the equation

(4.6) ιDΞX = [Ξ1, ιX ].
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From (4.6), the following formula may be derived:

ιXq · · · ιX1Ξ1ω = (−1)|Ξ|
∑q

k=1(|Xk|−1)φ(ιXq · · · ιX1ω)

−
q∑

i=1

(−1)|Ξ|
∑i

k=1(|Xk|−1)ιXq · · · ιXi+1ιDΞXiιXi−1 · · · ιX1ω.(4.7)

The reader may compare (4.7) with a similar formula for Lie derivatives in
standard differential calculus.

Proposition 4.18. Let A → M be an algebroid. Then

(1) The space of morphic vector fields on A is closed under the Lie
bracket.

(2) If Ξ is a morphic vector field and X ∈ Γ(A) then [Ξ1,LX ] = LDΞX .

Proof. By the Jacobi identity, it is clear that if Ξ and Ξ′ are linear vec-
tor fields such that [Ξ1, dA] = [Ξ′

1, dA] = 0, then [[Ξ1, Ξ′
1], dA] = 0. Using

Proposition 4.13, we conclude that [Ξ, Ξ′] is a morphic vector field.
For the second statement, the Jacobi identity and the fact that [Ξ1, dA] =

0 imply that
[Ξ1, [ιX , dA]] = [[Ξ1, ιX ], dA] ,

or, simply, [Ξ1,LX ] = LDΞX . �

Proposition 4.19. Let Ξ be a morphic vector field with base vector field φ.
Then

(1) For any X ∈ Γ(A), ρ(DΞX) = [φ, ρ(X)].
(2) DΞ is a derivation with respect to the Lie bracket.

Proof. The first statement follows from the second part of Proposition 4.18,
restricted to C∞(M).

For the second statement, we see that

ιDΞ[X,Y ] = [Ξ1, [LX , ιY ]]

= [[Ξ1,LX ], ιY ] + (−1)|Ξ||X| [LX , [Ξ1, ιY ]]

= ι[DΞX,Y ] + (−1)|Ξ||X|ι[X,DΞY ].

(4.8)

�

Lemma 4.20. Let D be a linear operator on Γ(A) and let φ ∈ X(M) such
that

(1) D(fX) = φ(f)X + (−1)|f ||D|fD(X) for all f ∈ C∞(M) and X ∈
Γ(A), and

(2) D is a derivation of the Lie bracket.

Then, for any X ∈ Γ(A), ρ(D(X)) = [φ, ρ(X)].
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Proof. Using the Leibniz rule, we have that for any X, Y ∈ Γ(A) and f ∈
C∞(M),

D ([X, fY ]) = D
(
ρ(X)(f)Y + (−1)|X||f |f [X, Y ]

)

= φρ(X)(f)Y + (−1)|D|(|X|+|f |)ρ(X)(f)D(Y )

+ (−1)|X||f |φ(f)[X, Y ] + (−1)(|D|+|X|)|f |f [D(X), Y ]

+ (−1)(|D|+|X|)|f |+|D||X|f [X, D(Y )].

(4.9)

On the other hand,

D ([X, fY ]) = [D(X), fY ] + (−1)|D||X|[X, D(fY )]

= [D(X), fY ] + (−1)|D||X|[X, φ(f)Y + (−1)|D||f |fD(Y )]

= ρ(D(X))(f)Y + (−1)(|D|+|X|)|f |f [D(X), Y ]

+ (−1)|D||X|ρ(X) ◦ φ(f)Y + (−1)|X||f |φ(f)[X, Y ]

+ (−1)|D|(|X|+|f |)ρ(X)(f)D(Y )

+ (−1)|D|(|X|+|f |)+|X||f |f [X, D(Y )].

(4.10)

After equating the results of (4.9) and (4.10) and cancelling terms, we obtain
the equation

φ ◦ ρ(X)(f)Y = ρ(D(X))(f)Y + (−1)|D||X|ρ(X) ◦ φ(f)Y,

which may be written more simply as

(4.11) [φ, ρ(X)](f)Y = ρ(D(X))(f)Y.

Since (4.11) holds for all f and Y , we conclude that [φ, ρ(X)] = ρ(D(X)). �

Theorem 4.21. Let D be a linear operator on Γ(A) satisfying the hypothe-
ses of Lemma 4.20. Then there exists a morphic vector field Ξ ∈ X(A) such
that D = DΞ.

Proof. Given such a D, let Ξ1 be the degree |D| linear operator on
C∞

lin([−1]A) defined by the property

ιXΞ1(α) = (−1)|D|(|X|−1) (
φ(ιXα) − ιD(X)α

)
,

for all X ∈ Γ(A) and α ∈ C∞
lin([−1]A). Since, for any f ∈ C∞(M),

ιXΞ1(fα) = ιX

(
φ(f)α + (−1)|D||f |fΞ1(α)

)
,

we may extend Ξ1 uniquely to a degree |D| linear vector field on [−1]A with
base vector field φ.
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To show that Ξ is morphic, it is sufficient to check that [dA, Ξ1](α) = 0
for all α ∈ C∞

lin([−1]A). A somewhat long, but direct, calculation using (3.4)
and (4.7) reveals that, for any X, Y ∈ Γ(A),

ιY ιX [dA, Ξ1](α) = ±
(
ρ(D(X)) − φ ◦ ρ(X) + (−1)|D||X|ρ(X) ◦ φ

)
ιY α

±
(
ρ(D(Y )) − φ ◦ ρ(Y ) + (−1)|D||Y |ρ(Y ) ◦ φ

)
ιXα

±
(
ιD[X,Y ] − ι[D(X),Y ] − (−1)|X||D|ι[X,D(Y )]

)
α,

where the signs for each line are omitted. The first two lines vanish by
Lemma 4.20, and the final line vanishes because D is by assumption a deriva-
tion of the Lie bracket. It follows that [dA, Ξ1] = 0. �

Definition 4.22. An algebroid equipped with a homological morphic vector
field is called a Q-algebroid.

5. The BRST complex

5.1. The cohomology of Q-algebroids. If (A → M, Ξ) is a Q-algebroid,
then Ξ1 and dA form a pair of commuting homological vector fields on
[−1]A. Furthermore, the grading on the polynomial functions S[1]Γ(A∗) ⊆
C∞([−1]A) splits into a double grading (p, q), where p is the “cohomological
grading” and q is the “manifold grading”. Specifically, a simple element of
S[1]Γ(A∗) is of the form α̂1 · · · α̂p, where αi ∈ Γ(A∗), and the hat denotes
that the grading has been increased by 1. For such an element, the cohomo-
logical grading is p, and the manifold grading is q :=

∑
|αi|. With respect

to the double grading, Ξ1 is of degree (0, 1) and dA is of degree (1, 0). There-
fore we have a double complex (Cp,q(A), Ξ1, dA), where Cp,q(A) denotes the
space of degree (p, q) elements of S[1]Γ(A∗).

Definition 5.1. The Q-algebroid cohomology of A is the total cohomology
of the associated double complex (Cp,q(A), Ξ1, dA).

Remark 5.2. Voronov [38] has recently shown that the structure of a dou-
ble Lie algebroid [20, 22]

(5.1) D ��

��

A

��
B �� M

can be encoded in a pair of homological vector fields Q1, Q2 on

[−1][−1]B[−1]AD ∼= [−1][−1]A[−1]BD,

such that the double Lie algebroid compatibility condition is equivalent
to the condition [Q1, Q2] = 0. It essentially follows from his result that
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the intermediate objects [−1]AD → [−1]B and [−1]BD → [−1]A are Q-
algebroids; these two Q-algebroids may be said to be in duality. Most of
the examples of Q-algebroids that we will consider arise from double Lie
algebroids in this manner.

5.2. The Q-algebroid structure of [−1]TA. Let A → M be an alge-
broid. Then

(5.2) TA ��

��

A

��
TM �� M

is a double vector bundle in the sense of Pradines [31]. Applying the [−1]
functor to the rows results in the vector bundle [−1]ATA → [−1]TM, where
the subscript indicates the vector bundle structure with respect to which the
degree-shift functor is taken. It will now be shown that this vector bundle
naturally has the structure of a Q-algebroid. This is a graded geometric
analogue of the fact in the ordinary case that (5.2) is a double Lie algebroid.

In what follows, when we write [−1]TA, it will be assumed that the [−1]
functor is taken over A.

The construction relies on the fact that the sections of [−1]TA are spanned
by two types of “lifts” of sections of A. These lifts are analogous to the
vertical and complete lifts of Yano and Ishihara [40].

Definition 5.3. Let X ∈ Γ(A). The (odd) complete lift XC of X is a degree
|X| section of [−1]TA defined by the properties

XC∗(α) = X∗(α), XC∗(dα) = dX∗(α),

for α ∈ C∞(A).

Definition 5.4. Let X ∈ Γ(A). The (odd) vertical lift XV of X is a degree
|X| − 1 section of [−1]TA defined by the properties

XV ∗(α) = 0, XV ∗(dα) = (−1)|X|+|α|+1X∗(α),

for α ∈ C∞
lin(A).

Proposition 5.5. Let f ∈ C∞(M), X ∈ Γ(A). Then

(fX)C = f · XC + (−1)|X|+|f |df · XV ,

(fX)V = f · XV .

Proof. The identities follow directly from the above definitions. �
Proposition 5.6. Γ([−1]TA) is spanned by the complete and vertical lifts
of Γ(A). More precisely, Γ([−1]TA) is equal to C∞([−1]TM) ⊗ ({XC} ⊕
{XV }), modulo the relations of Proposition 5.5.
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Proof. Let {Xα} be a local frame of sections of A dual to fibre coordinates
{λα}. Then it is clear from the definitions that {XC

α ,−XV
α } is a local frame

of sections of [−1]TA dual to the fibre coordinates {λα, λ̇α}. �

The algebroid structure of [−1]TA is as follows. The anchor ρ̃ : [−1]TA →
T ([−1]TM) is defined by letting

ρ̃(XC) = Lρ(X), ρ̃(XV ) = ιρ(X),(5.3)

and then extending by C∞([−1]TM)-linearity. Because the relations of
Proposition 5.5 are identical to the relations satisfied by Lie derivative and
contraction operators, ρ̃ is well-defined. The bracket is defined by letting

[
XC , Y C

]
= [X, Y ]C ,

[
XC , Y V

]
= [X, Y ]V ,

[
XV , Y V

]
= 0,

(5.4)

and extending by the Leibniz rule.
One could now verify directly that the bracket (5.4) satisfies the Jacobi

identity. However, we will instead describe the associated operator d[−1]TA ∈
X

(
[−1][−1]TM ([−1]TA)

)
and see that

(
d[−1]TA

)2 = 0.
As a double vector bundle, [−1][−1]TM ([−1]TA) may be identified

with [−1][−1]AT ([−1]A). The algebroid structure on A is associated to
a differential dA ∈ X([−1]A) whose Lie derivative operator is LdA ∈
X

(
[−1][−1]AT ([−1]A)

)
.

Theorem 5.7. d[−1]TA = LdA.

Proof. From the local coordinate description (4.1) of dA, the Lie derivative
may be computed to be

LdA = λαρi
α

∂

∂xi
− (−1)pα(pβ−1) 1

2
λαλβcγ

αβ

∂

∂λγ
+ (−1)pαλαdρi

α

∂

∂ẋi

− (−1)pαpβλαλ̇βcγ
αβ

∂

∂λ̇γ
− λ̇αρi

α

∂

∂ẋi
+ (−1)(pα+1)pβ

1
2
λαλβdcγ

αβ

∂

∂λ̇γ
.

If {Xα} are the sections dual to the fibre coordinates {λα} on A, then
{XC

α ,−XV
α } are the sections dual to {λα, λ̇α} on [−1]TA. From equa-

tions (4.2) and (4.3), it is straightforward to check that (5.3) and (5.4)
are satisfied. �

Corollary 5.8.

(1)
(
d[−1]TA

)2 = 0 and, equivalently, the bracket on Γ([−1]TA) satisfies
the Jacobi identity.

(2) The de Rham differential d ∈ X ([−1]T ([−1]A)) satisfies the equation[
d[−1]TA, d

]
= 0.
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Corollary 5.9. [−1]TA is a Q-algebroid with the algebroid structure
described above and the morphic vector field d.

5.3. Example: The Weil algebra. Consider the simple example of a Lie
algebra g. The construction of §5.2 results in the structure of a Lie Q-algebra
(i.e., a Q-algebroid where the base is a point) on [−1]Tg = g ⊕ [−1]g. To
obtain the associated double complex, we apply the [−1] functor to get
[−1]{pt.}([−1]Tg) = [−1]g ⊕ [−2]g. The algebra C∞([−1]g ⊕ [−2]g) is equal
to the Weil algebra W(g) := ∧g∗ ⊗ Sg∗.

Let {vi} be a basis for g, and let {θi} and {θ̇i} be the dual bases in
degree 1 and 2, respectively. The de Rham differential on [−1]Tg induces
the differential operator dK = θ̇i(∂/∂θi), which is known as the Koszul
operator.

In coordinates, the Lie algebra differential d[−1]Tg is

d[−1]Tg = −1
2
ck
ijθ

iθj ∂

∂θk
− ck

ijθ
iθ̇j ∂

∂θ̇k
,

and the total differential d[−1]Tg + dK is known as the Weil differential,
denoted dW .

The Weil algebra W(g), equipped with the Weil differential, is known to
be an acyclic complex. However, if G is a compact, connected Lie group
with Lie algebra g, one can obtain a model for the cohomology of BG by
restricting to a certain subcomplex, defined as follows.

For any element v = aivi ∈ g, there is a “contraction operator” Iv =
ai(∂/∂θi).

Definition 5.10. An element ω ∈ W(g) is called
(1) horizontal if Ivω = 0 for all v ∈ g,
(2) invariant if Lvω := [Iv, dW ]ω = 0 for all v ∈ g, and
(3) basic if ω is both horizontal and invariant.

It is clear that the horizontal subalgebra is Sg∗. Furthermore, dW vanishes
on the basic subcomplex (Sg∗)G.

The following theorem is a classic result due to Cartan.

Theorem 5.11 [5]. If G is a compact and connected Lie group, then the
cohomology of BG is equal to the cohomology of the basic subcomplex of
W(g), which is equal to (Sg∗)G.

5.4. The double complex of [−1]TA. We now consider the more gen-
eral case of a Q-algebroid of the form [−1]TA → [−1]TM , where A →
M is a Lie algebroid. Using the identification [−1][−1]TM [−1]ATA =
[−1][−1]AT ([−1]A), the space of cochains in the associated double complex
can be identified with the space of differential forms on [−1]A. It was shown
in Theorem 5.7 that the algebroid differential of [−1]TA is equal to LdA

.
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The total differential is the sum of the algebroid differential and the given
morphic vector field, which in this case is the de Rham operator d. Thus the
total complex may be described simply as

(5.5) (Ω([−1]A),LdA
+ d).

Example 5.12 (BRST model of equivariant cohomology, part I). Let M be
a manifold and let G be a compact, connected Lie group with a right action
on M . The infinitesimal data of the action may be described by the action
algebroid M ×g → M , and from this we obtain the Q-algebroid [−1]T (M ×
g) = [−1]TM×[−1]Tg. The algebra of cochains is C∞([−1][−1]TM ([−1]TM×
[−1]Tg)), which is naturally isomorphic to Ω(M) ⊗ W(g). The de Rham
differential for M × g then splits into dM + dK , where dM is the de Rham
differential on M and dK is the Koszul operator on W(g).

The total differential DB may be written as

(5.6) DB = dM + dW + θiLρ(vi) − θ̇iιρ(vi),

where dW is the Weil differential and ρ : g → X(M) describes the infinitesi-
mal action of g on M .

The algebra Ω(M)⊗W(g) and the differential (5.6) form the BRST model
of equivariant cohomology [12, 30]. However, this complex is a model for
M × EG (hence its cohomology is equal to H•(M)), and as in Example 5.3
one must restrict to a suitably defined basic subcomplex in order to obtain
the equivariant cohomology. We will return to this issue in §5.6.

5.5. The Mathai–Quillen–Kalkman isomorphism. Another model of
equivariant cohomology, which is more well-known than the BRST model,
is the Weil model. The Weil model has the same algebra Ω(M) ⊗ W(g)
as the BRST model, but the simpler differential dM + dK . In [12], Kalk-
man described an extension of the Mathai–Quillen isomorphism that relates
the BRST differential and the Weil model differential, thus showing that
the two models are equivalent.3 In order to compute the cohomology of the
complex (5.5), we will use a generalization of the Mathai–Quillen–Kalkman
isomorphism, described as follows.

Since dA is a degree 1 vector field on [−1]A, it follows that ιdA
is a degree

0 vector field on Ω([−1]A); specifically, in terms of the double grading, ιdA

is of degree (1,−1).

Definition 5.13. The generalized Mathai–Quillen–Kalkman isomorphism
is γ := exp(ιdA

).

Lemma 5.14. The de Rham differential d is γ-related to d + LdA
.

3The original isomorphism of Mathai and Quillen [25] sent the Cartan model, which
may be identified with the basic subcomplex of the BRST model, to the basic subcomplex
of the Weil model. Kalkman extended the isomorphism to the total complexes.
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Proof. Since ιdA
is nilpotent, the identity Adexp(ιdA

) = exp(adιdA
) holds.

From the Cartan commutation relations, it is immediate that

adιdA
(d) = [ιdA

, d] = LdA
,

ad2
ιdA

(d) = [ιdA
,LdA

] = −ι[dA,dA] = 0,

and it follows that Adγ(d) = d + LdA
. �

Remark 5.15. The differential for the Weil model is sometimes taken to
be dM + dW , where dW is the Weil differential. The isomorphism given by
Kalkman in fact relates this differential to the BRST differential. Thus,
to compare his isomorphism with ours, it is necessary to use an automor-
phism of W(g) that relates dK and dW . Such an isomorphism is well-known
(e.g., [10]), but we point out that it is a special case of γ, when A = g.

Corollary 5.16. The Q-algebroid cohomology of [−1]TA is equal to H•(M).

Proof. The isomorphism γ provides an isomorphism of the total complex and
the de Rham complex of [−1]A. Using the Euler vector field for the vector
bundle [−1]A → M , it is a simple exercise to construct a chain homotopy
between Ω([−1]A) and Ω(M). �
5.6. The problem of the basic subcomplex. If A is the Lie algebroid
of a Lie groupoid G ⇒ M , then the result of Corollary 5.16 is consistent
with the assertion that the complex (5.5) is a cohomological model for EG.
Following Examples 5.3 and 5.12, it seems reasonable to look for a basic sub-
complex that computes the cohomology of BG. In this section, we suggest a
definition of such a basic subcomplex. In the example of an action algebroid,
this definition specializes to the existing definition of the basic subcomplex,
which computes the equivariant cohomology. However, the definition has a
severe drawback, namely that it requires a choice of a connection on A. The
resulting basic cohomology is therefore vulnerable to the possibility of being
dependent on the choice; for this reason, we choose, here and in §6, to focus
on examples where there is a canonical choice.

Recall (see (5.2)) that [−1]TA has the double vector bundle structure

(5.7) [−1]TA ��

��

A

��
[−1]TM �� M .

Although [−1]TA does not have a canonical vector bundle structure over
M , it fits into the sequence

(5.8) [−1]A −→ [−1]TA −→ A ⊕ [−1]TM,

where [−1]A is identified with the (degree-shifted) bundle of tangent vectors
along the zero-section of A that are tangent to the fibres. In Mackenzie’s [21]
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terminology, [−1]A is the core of the double vector bundle (5.7). In fact, (5.8)
may be viewed as an exact sequence of double vector bundles

(5.9) [−1]A ��

��

M

��
M �� M

−→

[−1]TA ��

��

A

��
[−1]TM �� M

−→

A ⊕ [−1]TM ��

��

A

��
[−1]TM �� M .

A section (in the category of double vector bundles) of the exact sequence
(5.8) is clearly equivalent to a splitting [−1]TA ∼= [−1]A⊕A⊕ [−1]TM . The
existence of such a section follows from

Lemma 5.17. There is a one-to-one correspondence between sections of
(5.8) and linear connections on A.

Proof. If we disregard the [−1]’s, or more rigorously, eliminate them by
applying the [1] functor to the rows of (5.9), then we see that a section
provides a way to lift vectors in TxM , x ∈ M to vectors in Tx̃A, where x̃
is a point in the fibre over x. The requirement that the section be linear
with respect to the horizontal vector bundle structures of (5.9) asserts that
the lifts arise from linear maps TxM → Tx̃A, and the requirement that the
section be linear with respect to the vertical structures assert that the lifts
respect the linear structure of A. �

Let us now fix a connection, and therefore a splitting [−1]TA ∼= [−1]A ⊕
A ⊕ [−1]TM . In terms of the double complex of [−1]TA, the splitting gives
an identification

(5.10) Ω([−1]A) ∼= SΓ(A∗) ⊗ ∧Γ(A∗) ⊗ Ω(M).

For any X ∈ Γ(A), let IX denote the operator that acts by contraction in
the exterior algebra component of (5.10).

Definition 5.18. An element ω ∈ C∞([−1]([−1]TA)) is called

(1) horizontal if IXω = 0 for all X ∈ Γ(A),
(2) invariant if LXω := [IX , d + LdA

]ω = 0 for all X ∈ Γ(A), and
(3) basic if ω is both horizontal and invariant.

Remark 5.19. The result of Lemma 5.17 is due to Gracia-Saz and Macken-
zie [9]. In the general context of a double vector bundle (5.1), they have
shown that there always exist splittings D ∼= C ⊕ A ⊕ B, where C → M
is the core vector bundle. They refer to such a splitting as a decomposition.
The definition of the basic subcomplex may be extended in the obvious way
to any double complex arising from a double Lie algebroid equipped with a
decomposition.
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Example 5.20 (BRST model, part II). Recall the BRST model of Exam-
ple 5.12. The action algebroid M × g → M has a canonical flat connection
and thus a natural splitting

[−1]T (M × [−1]g) = [−1]TM × [−1]g × [−2]g,

or, equivalently,

Ω(M × [−1]g) = Ω(M) ⊗ ∧g
∗ ⊗ Sg

∗.

If {Xi} is the global frame of flat sections corresponding to the basis {vi}
of g, then the contraction operators IX are generated freely as a C∞(M)-
module by those of the form

IXi =
∂

∂θi
.

The horizontal elements are simply those that do not depend on any θi, i.e.,
those that lie in Ω(M)⊗Sg∗. If we restrict LXi to the horizontal subalgebra,
we have

LXi =
[

∂

∂θi
, DB

]

= −θ̇jck
ij

∂

∂θ̇k
+ Lρ(vi).

Therefore the basic subalgebra is (Ω(M) ⊗ Sg∗)G, and on this subalgebra
the differential becomes the Cartan differential

dC := dM − θ̇iιρ(vi).

Thus the definition of basic elements agrees in this case with the usual one,
where the basic subcomplex of the BRST model is equal to the Cartan model
for equivariant cohomology.

6. Other examples

6.1. Vacant double Lie algebroids. A double Lie algebroid (5.1) is said
to be vacant [20] if the double-projection map D → A ⊕ B is a diffeomor-
phism. In other words, a vacant double Lie algebroid is of the form

(6.1) A ⊕ B ��

��

A

��
B �� M .

Applying the [−1] functor to the rows, we obtain the Q-algebroid A ⊕
[−1]B → [−1]B. Let dA ∈ X([−1]A ⊕ [−1]B) denote the algebroid differen-
tial. By the properties of double Lie algebroids, we have that dA is a linear
vector field with respect to the bundle [−1]A ⊕ [−1]B → [−1]A, with base
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vector field dA. In coordinates {xi, αi, βi}, where {αi} and {βi} are fibre
coordinates on [−1]A and [−1]B, respectively, dA is therefore of the form

dA = αi

(

ρj
i (x)

∂

∂xj
+ σk

ij(x)βj ∂

∂βk

)

− ck
ij(x)αiαj ∂

∂αk
,

where ρj
i and ck

ij are the anchor and structure functions for A. The additional
data σk

ij describe a representation of A on the vector bundle B.
Similarly, the morphic vector field dB is determined by the Lie algebroid

structure of B and a representation of B on the vector bundle A. The com-
patibility condition [dA, dB] = 0 is equivalent to the condition that A and B,
with their mutual representations, form a matched pair in the sense of Mokri
[29]. Furthermore, the total differential dA + dB gives [−1]A ⊕ [−1]B the
structure of an antialgebroid, corresponding to the Lie algebroid structure
on A ⊕ B associated to the matched pair [29].

In this case, the space of cochains for the double complex is ∧Γ(A∗) ⊗
∧Γ(B∗). Because there is no core, no choice is required in order to define the
basic subcomplex for a vacant double Lie algebroid. The horizontal elements
are those that vanish under contraction by sections of A; in other words, the
horizontal subalgebra is ∧Γ(B∗). The basic subcomplex consists of those
elements of ∧Γ(B∗) that are invariant with respect to A. On the basic
subcomplex, the total differential coincides with dB, so the basic cohomology
is equal to the A-invariant Lie algebroid cohomology of B.

We warn the reader that, although the notion of double Lie algebroid is
symmetric with respect to the roles of A and B, the definition of the basic
subcomplex is not. The reason is that the basic subcomplex is meant to be
a model for the double complex [26] of the LA-groupoid

(6.2) s∗(B) ��

����

G

����
B �� M ,

where G ⇒ M is a Lie groupoid integrating A, and (G, B) has a matched pair
structure integrating that of (A, B). Indeed, if G has compact, connected
t-fibres, then the LA-groupoid cohomology of (6.2) agrees with the basic
cohomology of (6.1) (see [26]).

Examples of vacant double Lie algebroids are discussed in §6.2 and
§6.3 below.

6.2. Poisson actions. The following example was introduced by Lu [19]
in relation to the study of Poisson homogeneous spaces (also see [23]).
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Let (M, π) be a Poisson manifold, and let (g, g∗) be a Lie bialgebroid
with a (right) Poisson4 action ρ : g → X(M). There is a corresponding
representation of the action algebroid M × g on T ∗M , defined on horizontal
sections a ∈ g by a 
→ Lρ(a), where Lρ(a) is thought of as an operator
on Γ(T ∗M).

On the other hand, there is a representation of T ∗M on M × g, defined
as follows. The anchor map M × g → TM , which, by abuse of notation,
we will also refer to as ρ, dualizes to a map ρ∗ : Ω(M) → Γ(M × g∗). For
α ∈ Ω1(M), ρ∗(α) acts on horizontal sections of Γ(M × g) by the fibrewise
coadjoint action of g∗ on g. The action is extended to all sections by the
property ρ∗(α)(fa) = π�α(f)a + fρ∗(α)(a).

The mutual actions of M ×g and T ∗M form a matched pair [19], so there
is a vacant double Lie algebroid of the form

(6.3) (M × g) ⊕ T ∗M ��

��

M × g

��
T ∗M �� M .

The associated double complex is ∧g∗ ⊗ X•(M), and the basic subcomplex
computes the g-invariant Poisson cohomology of M . This basic subcomplex
is smaller than the one defined by Lu, which, in the case where the action
is transitive, may be identified with the tensor product of the g-invariant de
Rham complex and the g-invariant Lichnerowicz-Poisson complex.

The double Lie algebroid (6.3) has also arisen in relation to Mackenzie’s
[23] description of Poisson reduction. In this procedure, one passes to K ⊆
T ∗M , where K is the kernel of the bundle map p : T ∗M → M × g∗, for
which the associated map of sections is ρ∗. If p has constant rank, then K is
a subbundle, in which case it is also a Lie subalgebroid. The action of M ×g

on T ∗M restricts to K, so one can form the vacant double Lie algebroid

(M × g) ⊕ K ��

��

M × g

��
K �� M ,

The basic subcomplex then consists of g-invariant elements of ∧Γ(K∗),
which can be identified with (X•(M)/ 〈im ρ〉)g. If G is a connected Lie group
with Lie algebra g and if the quotient M/G is a manifold, then the basic
subcomplex is naturally isomorphic to the Lichnerowicz–Poisson complex
of M/G.

4A right action of g on M is a Lie algebra morphism ρ : g → X(M). The action is
Poisson if the natural extension of ρ to a map ∧g→ X•(M) is a morphism of differential
Gerstenhaber algebras.
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6.3. Lie bialgebras and Drinfel’d doubles. Let (g, g∗) be a Lie bialge-
bra. One can form a double Lie algebroid

(6.4) g ⊕ g∗ ��

��

g∗

��
g �� · ,

where the two Lie algebroid structures of g⊕g∗ = T ∗g = T ∗g∗ correspond to
the Poisson structures on g and g∗, respectively. Equivalently, they may be
viewed as action algebroids for the coadjoint action of g∗ on g and vice versa.

Applying the [−1] functor to the rows, we obtain the Q-algebroid g∗ ⊕
[−1]g → [−1]g, where the algebroid differential δ∗ ∈ X ([−1]g∗ ⊕ [−1]g) may
be identified with the Chevalley–Eilenberg differential for g∗ with coefficients
in ∧g∗, and the morphic vector field δ ∈ X ([−1]g∗ ⊕ [−1]g) may similarly be
identified with the Chevalley–Eilenberg differential for g with coefficients in
∧g. The property [δ, δ∗] = 0 is the homological version of the Lie bialgebra
compatibility condition [14, 17].

The algebra of cochains for the double complex is C∞([−1]g ⊕ [−1]g∗) =
∧g∗ ⊗ ∧g, and the total differential gives [−1]g ⊕ [−1]g∗ a Lie antialgebra
structure, for which the corresponding Lie algebra is the Drinfel’d [7] double
d = g ⊕ g∗.

Since (6.4) is a vacant double Lie algebroid, we have from §6.1 that the
basic cohomology is the g∗-invariant Lie algebra cohomology of g.

6.4. Lie bialgebroids and notions of double. Much of the previous
section generalizes to the case of Lie bialgebroids, in the following way. If
(A, A∗) is a Lie bialgebroid, then one can form the double Lie algebroid

(6.5) T ∗A ��

��

A∗

��
A �� M .

This is the double Lie algebroid that Mackenzie [22] suggested as a gener-
alization of the Drinfel’d double.

Applying the [−1] functor to the rows, we obtain the Q-algebroid
[−1]A∗T ∗A → [−1]A. The algebroid differential is a homological vector field
on [−1]A[−1]A∗T ∗A = [−2][−1]AT ∗([−1]A), which is canonically symplecto-
morphic (via Roytenberg’s [32] generalization of the Legendre transform) to
[−2][−1]A∗T ∗([−1]A∗). With these identifications, we can identify the alge-
broid differential with the cotangent lift5 VdA∗ of dA∗ ∈ X([−1]A∗), and

5The notion of cotangent lifts makes sense for degree-shifted cotangent bundles, in the
following way. A vector field X ∈ X(M) may be viewed as a linear function on [−n]T ∗M,
whose degree is |X| + n. Since the Poisson bracket on [−n]T ∗M is of degree −n, the
Hamiltonian vector field VX is of degree |X|.
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we can identify the morphic vector field with the cotangent lift VdA
of

dA ∈ X([−1]A). The property
[
VdA

, VdA∗
]

= 0 is the homological version
of the Lie bialgebroid compatibility condition.

In analogy with the case of Lie bialgebras, Roytenberg [32] proposed
that [−2]T ∗([−1]A), equipped with the total differential D := VdA

+ VdA∗ ,
should be considered the Drinfel’d double of a Lie bialgebroid. Thus we see
that Q-algebroid cohomology provides a correspondence between Macken-
zie’s notion of double and that of Roytenberg.6

6.5. Equivariant Lie algebroid cohomology. As another example, we
show that Ginzburg’s [8] notion of equivariant Lie algebroid cohomology fits
into the framework of Q-algebroids. Let A → M be an algebroid and let g

be a Lie algebra.

Definition 6.1. A (right) A-action of g on M is a Lie algebra homomor-
phism ã : g → Γ(A).

An A-action ã induces a Lie algebra homomorphism a := ρ◦ã : g → X(M)
that describes an action of g on M . If one begins with an action map
a : g → X(M), then an A-action ã that lifts a is an equivariant pre-
momentum mapping in the sense of Ginzburg [8]. An equivariant pre-
momentum mapping, defined in this manner, is equivalent to an algebroid
morphism from the action algebroid M × g to A.

Theorem 6.2. Let ã : g → Γ(A) be an A-action. Then there is an induced
graded Lie algebra action ρ : [−1]Tg → X([−1]A). The associated action
algebroid [−1]A × [−1]Tg → [−1]A is a Q-algebroid with morphic vector
field dA + dK .

Proof. Recall (§5.2) that [−1]Tg is naturally isomorphic to g⊕ [−1]g, where
the two summands consist, respectively, of complete lifts vC and vertical
lifts vV of elements v ∈ g.

The induced action is defined by

ρ(vV ) = ιã(v), ρ(vC) = Lã(v) := [ιã(v), dA].(6.6)

It follows from the Cartan relations that ρ is a Lie algebra homomorphism
and thus describes an action of [−1]Tg on [−1]A.

Let D be the degree 1 operator on Γ([−1]A×[−1]Tg) defined on horizontal
sections by

D(vV ) = vC , D(vC) = 0(6.7)

and extended to all sections by the property (see condition (1) of
Lemma 4.20)

(6.8) D(ωX) = dAω · X + (−1)|ω|ωDX,

6This correspondence was independently observed by Voronov [38].
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for ω ∈ C∞([−1]A) and X ∈ [−1]Tg. On horizontal sections, it is clear that
D is a derivation of the Lie bracket. In fact, (6.7) describes the operator on
[−1]Tg corresponding to the Koszul vector field dK . In order to show that
the extension of D by (6.8) is a derivation of the Lie bracket, it is sufficient
to see that ρ(DX) = [dA, ρ(X)] for all X ∈ [−1]Tg, which is immediate
from (6.6) and (6.7).

By Theorem 4.21, the operator D corresponds to a morphic vector field Ξ
on [−1]A×[−1]Tg with base vector field dA. Since, under the projection map
[−1]A×[−1]Tg → [−1]Tg, Ξ is related to dK , we have that Ξ = dA+dK . �

Theorem 6.2 gives us a double complex structure on the algebra ∧Γ(A∗)⊗
W(g). As in §5.5, we use a Mathai–Quillen–Kalkman-type isomorphism in
order to compute the cohomology of the double complex.

Let d∗
K denote the vector field on [−1]Tg which, in the coordinates of

§5.3, is given by d∗
K = θi(∂/∂θi). The key property that d∗

K satisfies is
[d∗

K , dK ] = e, where e is the Euler vector field on the vector space [−1]Tg.
Let dA := d[−1]A×[−1]Tg denote the differential for the algebroid [−1]A ×
[−1]Tg → [−1]A. We define Q := [d∗

K , dA].

Lemma 6.3. dA +dK is exp(−Q)-related to the total differential dA +dK +
dA.

Proof. As in Lemma 5.14, the nilpotency of Q implies that Adexp(−Q) =
exp(ad−Q). Thus we compute

ad−Q(dA + dK) = −
[
[d∗

K , dA], dA + dK

]

= −
[
d∗

K , [dA, dA + dK ]
]
+

[
[d∗

K , dA + dK ], dA

]
.

The first term vanishes since dA + dK is a morphic vector field. Since d∗
K

commutes with dA, the remaining term becomes [e, dA] = dA. We then see
that ad2

−Q(dA +dK) = 0 since d2
A

= 0. It follows that Adexp(−Q)(dA +dK) =
dA + dK + dA. �

Because W(g) is acyclic with respect to dK , we have

Corollary 6.4. The cohomology of the complex
(∧Γ(A∗) ⊗ W(g), dA + dK + dA

)

is equal to the algebroid cohomology of A.

As usual, it is necessary to pass to a basic subcomplex in order to get more
interesting cohomology. In this case, there is a canonical splitting [−1]A ×
[−1]Tg ∼= [−1]A × g × [−1]g, which is a generalized connection (see Remark
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5.19) for the double vector bundle

[−1]A × [−1]Tg ��

��

M × g

��
[−1]A �� M .

Thus for any v ∈ g, there is a well-defined operator Iv, acting on ∧Γ(A∗) ⊗
∧g∗ ⊗ Sg∗ by contraction in the exterior algebra component. The basic
elements are those that are annihilated by Iv and Lv := [Iv, dA + dK + dA]
for all v ∈ g. Generalizing the results of Example 5.20, we have that the
basic subalgebra is (∧Γ(A∗) ⊗ S(g∗))g, and on this subalgebra the total
differential becomes

(6.9) dC = dA − θ̇iιã(vi).

The basic subcomplex equipped with the differential (6.9) is identical to
Ginzburg’s [8] model for equivariant algebroid cohomology.

6.6. Lifted actions on Courant algebroids. Let E → M be a Courant
algebroid, where the inner product and (non-skew-symmetric) bracket are
denoted by 〈·, ·〉 and [[·, ·]], respectively. We will briefly sketch how a “lifted
action”, in the sense of Bursztyn et al. [4], of a Lie algebra g on E induces a
Q-algebroid structure on a corresponding action algebroid. This provides an
example of a Q-algebroid that does not originate from a double Lie algebroid.

Recall that Roytenberg [33] has shown that there is a one-to-one corre-
spondence between Courant algebroids and degree 2 symplectic Q-manifolds.
The Q-manifold E associated to E is (noncanonically) of the form [−1]E∗ ⊕
[−2]T ∗M . In particular, the space of degree 1 functions on E is (canonically)
equal to Γ(E).

Let g be a Lie algebra with an action a : g → X(M). A lifted action [4] is
a map ã : g → Γ(E) that respects the brackets and projects, via the anchor
map, to the action map a.

Theorem 6.5. Let ã : g → Γ(E) be a lifted action with isotropic image.
Then there is an induced graded Lie algebra action ρ : [−1]Tg → X(E). The
associated action algebroid E × [−1]Tg → E is a Q-algebroid.

Proof. On {degree 1 functions} = Γ(E), the action is defined as follows:

ρ(vV ) = 〈ã(v), ·〉
ρ(vC) = [[ã(v), ·]] := adã(v) .

More precisely, ρ(vV ) and ρ(vC) are the Hamiltonian vector fields of ã(v)
and δã(v), respectively, where δ is the homological vector field on E . This can
be shown to be a Lie algebra homomorphism (we note, in particular, that
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the hypothesis that im ã be isotropic is used to show that [ρ(vV ), ρ(wV )] = 0
for all v, w ∈ g).

As in the proof of Theorem 6.2, we define the operator D on Γ(E×[−1]Tg)
by (6.7) and the property

(6.10) D(fX) = δf · X + (−1)|f |ωDX,

for f ∈ C∞(E) and X ∈ [−1]Tg. To see that D is a derivation of the Lie
bracket, it is sufficient to check that ρ(DX) = [δ, ρ(X)], which follows from
the fact that δ is a derivation of the Poisson bracket and homological. It
follows that D corresponds to a morphic vector field, which in this case is
δ + dK . �

The reader may note the similarity between this construction and that of
§6.5. Following that case, we may define a basic subcomplex of C∞(E) ⊗
W(g), the cohomology of which might reasonably be called equivariant
Courant algebroid cohomology.
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