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This is the first part of an article in two parts, which builds the
foundation of a Floer-theoretic invariant, IF.

The Floer homology can be trivial in many variants of the Floer
theory; it is therefore interesting to consider more refined invariants of
the Floer complex. We consider one such instance — the Reidemeister
torsion τF of the Floer–Novikov complex of (possibly non-Hamiltonian)
symplectomorphisms. τF turns out not to be invariant under Hamil-
tonian isotopies, but this failure may be fixed by introducing certain
“correction term”: We define a Floer-theoretic zeta function ζF, by
counting perturbed pseudo-holomorphic tori in a way very similar to
the genus 1 Gromov invariant. The main result of this article states
that under suitable monotonicity conditions, the product IF := τFζF
is invariant under Hamiltonian isotopies. In fact, IF is invariant under
general symplectic isotopies when the underlying symplectic manifold
M is monotone.

Because the torsion invariant we consider is not a homotopy invari-
ant, the continuation method used in typical invariance proofs of Floer
theory does not apply; instead, the detailed bifurcation analysis is
worked out. This is the first time such analysis appears in the Floer
theory literature in its entirety.

Applications of IF, and the construction of IF in different versions
of Floer theories are discussed in sequels to this article [Y.-J.L.].
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1. Introduction

This is the first of a series of papers dealing with torsion invariants in Floer
theories. In this paper and its companion, Part II [27], we concentrate on
establishing the foundation and invariance of the torsion invariant IF, and
thus our main purpose here is to develop a general method for proving such
foundational results. Examples, applications, and adaptations to various
other versions of Floer theories will be discussed in subsequential papers
(e.g, [29–31]).

Part I contains the construction of the proposed invariant, the main
framework of the invariance proof, and the structure theorems for the
relevant moduli spaces. The heavy analysis required for the proof of
expected bifurcation behavior is postponed to Part II.

1.1. Background and motivations. The two original versions of
symplectic Floer homologies have been initially introduced as tools for prov-
ing the Arnold conjecture, which gives a lower bound on the number of fixed
points of a Hamiltonian symplectomorphism by the total betti number of
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the symplectic manifold [11, 12]. Very roughly speaking, the Floer homol-
ogy is the homology of a “Morse function” (the action functional) on an
infinite-dimensional space. In the first version (the “absolute” version), this
infinite-dimensional space is the free loop space of the compact symplectic
manifold (M, ω). In the second version (the “relative” version), it is the
space of paths ending at two transversely intersecting Lagrangian submani-
folds in M .

To make the above heuristics work, it actually requires highly nontrivial
transversality and compactness results for the relevant moduli spaces, which
make use of the assumptions of monotonicity or π2 = 0 in Floer’s original
papers. These assumptions have been subsequently weakened through the
efforts of many people; recently, it has been completely removed in the
absolute version via the virtual moduli technique by several groups of people,
see for example [17, 33, 38, 39]. For the relative version, traditionally the
success has been more limited, though the recent paper [18] is able to deal
with fairly general settings, whose implication includes the general version
of Arnold conjecture proved in [17, 33].

The basic strategy in these works is the same as Floer’s, namely proving
the invariance of the Floer homology under Hamiltonian isotopies. This
enables one to compute the Floer homology at a small, t-independent
Hamiltonian, where HF∗(M) = H∗(M), the usual homology of the
symplectic manifold.

Floer’s proof guarantees the existence of fixed points for any Hamiltonian
symplectomorphism of M , because for closed M , H∗(M) is never trivial.
This is, however, no longer true in many variants of Floer theory. Here are
some examples.

1.1.1. Examples of vanishing Floer homology.

Example A. (Symplectic manifolds with boundary) There are
various ways of defining Floer homologies for symplectic manifolds with
contact-type boundaries [4, 46]. The Floer homology may be trivial in this
situation. For example, HF∗(D2) = 0 according to Viterbo’s definition.
Example B. (Space of loops in a non-trivial homotopy class) To
find non-contractible Hamiltonian orbits, one might use the space of non-
contractible loops (in a fixed homotopy class) to define Floer homology.
However, this version of Floer homology vanishes by its invariance under
Hamiltonian isotopies, because for small Hamiltonians, there is obviously
no closed orbit [3].
Example C. (Floer theory of Lagrangian intersections) There are
many examples where the relative version — the Lagrangian intersection
Floer homology vanishes. For example, the Floer homology of compact
Lagrangian submanifolds L ⊂ C

n vanishes once it is defined and invariant
under Hamiltonian isotopies, because it is easy to find Hamiltonian isotopies
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disengaging one from the other. According to [18], such L can be any simply-
connected Lagrangian submanifold in C

n for n > 2.

Example D. (Twisted versions of Floer theories) This is our prime
example. The Floer theory considered in this article will always be the
twisted version.

The action functional is in general not globally defined (the usual
construction only defines a closed 1-form on the loop space, which is the
differential of a real-valued action function only in special cases). Therefore,
one often needs to consider twisted versions of Floer homology, modeling
on the Morse theory of closed 1-forms introduced by Novikov. A typical
example is the Floer homology of a non-Hamiltonian symplectomorphism f .

For any symplectic isotopy connecting the identity with a
non-Hamiltonian symplectomorphism f , Le-Ono [32] defined such a twisted
version of Floer homology and showed, following Floer’s strategy, that when
M is monotone, its total betti number is equal to the total betti number of
the Novikov homology HN(M, θf ). (Le-Ono actually had a slightly weaker
assumption on M .) θf ∈ H1(M) above is the “flux” or “Calabi invariant”
of f , and the Novikov homology HN(M, θf ) is a twisted version of Morse
homology.

Le-Ono’s result guarantees the existence of symplectic fixed points in
many cases; however, there are also many examples where this version of
Floer homology vanishes. The reason is that the “twisting” procedure often
reduces the rank of the homology: different twisted versions of homologies
correspond to homologies of different coverings, and the larger the covering
group is, the smaller the rank of the corresponding homology is.

1.1.2. Torsion invariants in Floer and Morse theories. Naturally, one
is interested in more refined invariants of the Floer complex when the Floer
homology vanishes.

It is known that the finite-dimensional Morse theory captures much
more than homological informations of the underlying manifold; in fact,
Cohen–Jones–Segal showed that the Morse theory recovers the entire
homeomorphism type of the underlying manifold [5]. One therefore, expects
that Floer theory similarly has much more to offer than merely the Floer
homology. The path from Morse theory to Floer theory is strewn with
heavy technical difficulties (see Section 1.2 below for some discussion); here
are, however, some instances of progress in this direction, in the context of
symplectic Floer theories:

Fukaya proposed to study the A∞ structure of Floer theory which will
capture the full rational homotopy type of the Floer complex. In [16],
Fukaya and Oh showed that the A∞ category of the Lagrangian intersection
Floer theory for cotangent bundles is equivalent to the A∞ category of the
Morse theory.
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As the first non-homotopy invariant historically, the Reidemeister tor-
sion is the obvious next candidate to consider. In 1994, Fukaya proposed
studying torsion and even higher torsions in symplectic Floer theories. In
[15], He sketched the definition of the Whitehead torsions for symplectomor-
phisms and Lagrangian intersections, claimed that they are invariant under
Hamiltonian isotopies, and conjectured that the Floer homology together
with the torsion give complete obstructions of Hamiltonian isotopying a
symplectomorphism to one without fixed points, or a Lagrangian submani-
fold to one without intersection with another fixed Lagrangian submanifold
(the “symplectic s-cobordism conjecture”). There were, however, no details.

More recently, rigorous works in this direction were done by Eliashberg–
Gromov [9] and Sullivan [43]. However, to sidestep the substantial technical
difficulties in the invariance proof (see Section 1.2, II.1 for more discussion),
these results require restrictive assumptions or ad hoc methods: Eliashberg–
Gromov consider only graphical Lagrangian submanifolds in cotangent
bundles, so that it may be reduced to purely finite-dimensional method
of generating functions. Sullivan made several restrictive assumptions to
ensure that the action functional is globally defined, which do not hold in
general (cf. discussion in Example D earlier). He also used a stabilization
trick to sidestep the analysis of death–birth bifurcations, which applies
only to the untwisted version of Lagrangian intersection Floer theory. In
both [9] and [43], the Lagrangian submanifolds have to be non-compact for
their versions of torsion to be non-trivial. (Compare with [30], where an
adaptation of this article gives torsion invariants that are often non-trivial
for compact Lagrangian submanifolds).

One goal of this article is to provide, once and for all, a direct and
general invariance proof that should work for any version of Floer theory, by
overcoming the analytical difficulties. In this paper, we consider a general
version of the Floer theory of symplectomorphisms (cf. Section 3.1), which
covers Examples B and D provided earlier. Analogous results for the versions
of Floer theories in Examples A and C can be obtained by simple adaptations
of this paper (see e.g., [29, 30]). We study the Reidemeister torsion of the
Floer complex, denoted τF. The torsion we use is an abelian (and hence
weaker) version of the Whitehead torsion. On the other hand, since this
definition uses a standard set of bases singled out by the Morse-theoretic
context, it is also in a sense more refined. See Section 2.1 for the precise
definition.

However, τF is not an invariant for the twisted versions of Floer theories
in Example D. Nevertheless, we find that one may construct an invariant by
taking into account (perturbed) pseudo-holomorphic tori. More precisely,
we define the product

IF := τFζF,
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where the “zeta function” ζF is a generating series counting perturbed
pseudo-holomorphic tori. Our main result is that IF is a symplectic
invariant.

In fact, this result should be viewed as an infinite-dimensional analog
of our previous results on the torsion invariants of Morse 1-forms [21–
23]. Given a Morse 1-form θ on a closed, finite-dimensional manifold
M , we considered the dynamics of the flow generated by the vector field
dual to θ. The Reidemeister torsion τ of the associated Morse–Novikov
complex counts flow lines ending in critical points in a sense; whereas the
dynamical zeta function ζ counts the closed orbits. We showed that the
product I = τζ is independent of the metric or θ, though neither τ nor ζ
alone is invariant. Actually, I is equivalent to the combinatorially defined
Reidemeister torsion of the manifold M . In keeping with the picture of
the Floer theory as an infinite-dimensional Morse theory, the flow lines in
the loop space correspond to perturbed pseudo-holomorphic curves. Thus,
τF and ζF above are, respectively, the infinite-dimensional analogs of the
Reidemeister torsion of the Morse–Novikov complex and the dynamical zeta
function.

1.1.3. Relation with Gromov theory. Due to the nature of the
definition of IF as a product, one may either regard it as a refinement of
Floer homologies, or as a counting invariant of pseudo-holomorphic curves.
These two perspectives lead to different types of applications. One incentive
for our choice of the abelian version of torsion over the non-abelian White-
head torsion is so that IF counts perturbed pseudo-holomorphic curves with
homology class, which is more in keeping with the usual definition of curve-
counting invariants (Gromov invariants). In fact, IF much resembles the
Gromov–Taubes invariant. The perturbed pseudo-holomorphic tori here
has the interpretation as the perturbed pseudo-holomorphic sections of the
symplectic mapping tori (M × [0, 1]/(x, 0) ∼ (f(x), 1)) × S1, and the defini-
tion of ζF is very similar to the zeta function introduced by Ionel–Parker in
[25], which computes an averaged version of the genus 1 Gromov invariant
of symplectic mapping tori. A fascinating problem is to better understand
the precise relation between IF and genus 1 Gromov invariants: such a rela-
tion would provide a link between Floer theory and Gromov theory, which
may be applied in both directions. Some simplest cases of this relation are
discussed for two variants of IF in [30], which lead to interesting results
in symplectic topology that are beyond the reach of either Floer theory or
Gromov theory alone.

More generally, “physical reasoning” leads one to expect a Floer-
theoretic interpretation of genus 1 Gromov invariants along the line of our
construction of IF. Philosophically, mirror symmetry is a correspondence
between symplectic (A-model) and complex (B-model) geometries. Since the
complex side is typically easier to compute, mirror symmetry produces many
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interesting conjectural formulae for the curve-counting invariants on the
symplectic side. Recently, much progress has been made in mathematically
rigorous formulation and verification of 0-loop mirror symmetry, but the
higher genera case remains little understood. In their famous paper in
1993, the four physicists Bershadsky, Cecotti, Ooguri, Vafa extended mirror
symmetry to higher genera curves [2]. At the 1-loop level, this says that the
generating series of genus 1 Gromov–Witten invariants from the A-model
side should correspond to certain holomorphic analytic torsion from the
B-model side. On the other hand, Kontsevich formulated the 0-loop mirror
symmetry as an equivalence between the Fukaya–Floer category from the
A-model side, and the category of coherent sheaves on the B-model side.
In particular, the Floer cohomologies should correspond to certain sheaf
cohomologies on the B-model side. A naive generalization of Kontsevich’s
proposal leads one to expect higher-loop mirror symmetry as an equivalence
of secondary invariants on symplectic and complex sides. In particular,

generating series of genus 1 Gromov invariants “=” Floer-theoretic torsion ζF

“=” torsion on symplectic side;
holomorphic analytic torsion “=” torsion on complex side.

Our construction using ζF to “correct” the Reidemeister torsion of the
Floer complex also has a better-known analog on the complex side: log of
the holomorphic analytic torsion can be viewed as the “correction term”
to the L2-metric on the determinant line bundle of sheaf cohomologies, and
the combination of the two defines the invariant Quillen metric. (This above
observation was due to Fukaya [18].)

1.1.4. Higher torsions in Floer theories. In [24], Igusa defined higher
Franz–Reidemeister torsions via parametrized Morse theory. The bifurca-
tion analysis carried out in this paper enables one to lift Igusa’s work to the
Floer-theoretic setting. In principle, these Floer-theoretic higher torsions
may be useful for investigating homotopy groups of the symplectomorphism
groups. We hope to return to this subject in the future.

1.2. Bifurcation analysis in Floer theories. Our method of invariance
proof is very different from the traditional one.

Hitherto, the only available tool for invariance proof in Floer theory is
the “continuation method” (cf. e.g., [12]), which relies on the construction
of chain homotopy equivalences between Floer complexes. The drawback of
this method is that it is only useful for proving the invariance of homotopy
invariants such as homology or A∞ categeory. It does not apply for non-
homotopy invariants such as the Reidemeister torsion considered in this
paper.

A natural and straightforward approach, which would apply in more
general situations, is direct bifurcation analysis. Namely, consider a generic
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1-parameter family of Floer complexes, classify the possible bifurcations,
and study how the proposed invariant change at these bifurcations.

In his first paper on Floer homologies [11], Floer gave a very brief
outline of this approach in the case when the action functional is globally
defined. The details were, however, largely missing, and this method was
subsequently superceded by the continuation method mentioned earlier.
During the long gestation period of the present article, some recent papers
following Floer’s original approach have appearred, see for example, [7, 43].
As noted earlier, these papers, including Floer’s, rely on ad hoc methods
peculiar to the special cases considered. (In particular, they do not apply
to the situation considered here).

In this article, we present a fairly general invariance proof which
carries out this direct approach in its entirety. This proof is amenable
to adaptations to other versions of Floer theories (see e.g., [30]). In
addition to openning the door for the study of other more refined Floer-
theoretic invariants, it also offers a viable alternative to the conventional
continuation method in more intricate variants of Floer homology, as [7]
demonstrates.

Since we work in the general Morse–Novikov situation, where the action
functional may not be globally defined, there are several important new
features which did not appear in previous works by Floer and other authors,
making the analysis substantially harder than the situation previously
considered. Further remarks follow in Sections 1.2.1 and 1.2.2.

1.2.1. Finite-dimensional model: the Morse-theoretic picture. It
is helpful to first understand the simpler case of Morse theory on a finite-
dimensional manifold.

Given a generic 1-parameter family of Morse functions, there are two basic
types of bifurcations: a “handle-slide”, namely a flow line between two non-
degenerate critical points of the same index, or a “death–birth”, namely two
critical points cancelling each other.

Moreover, it is not hard to understand how the Morse complexes change
at a bifurcation point, thanks to the geometric interpretation of flow lines
as intersection points (of ascending/descending manifolds, or in the case of
closed orbits, as the fixed points of a local Poincaré return map).

For real-valued Morse theory, the Morse complex changes by an elemen-
tary transformation at a handle-slide, and at a death–birth, the Morse com-
plex changes by an expansion/collapse modulo elementary transformations.
(see Remark 4.4.3(b) for terminologies) This shows that not only the homo-
topy type of the Morse complex is invariant, but its simple-homotopy type
is invariant.

For Morse theory of closed 1-forms, the bifurcation behavior is more
complicated, but has been partially worked out in [21]. We list some major
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differences between the real-valued Morse theory and the Morse–Novikov
theory of a non-exact closed 1-form below.

(1) Unlike the case with real-valued Morse theory, in this case the moduli
spaces of flows between two fixed critical points are non-compact.
To obtain a well-defined Morse complex in this setting, one needs
to work with Novikov coefficients. Of crucial importance here is a
filtration, which depends on the cohomology class of the Morse 1-form,
modulo rescaling by positive numbers. (The truncated moduli space
of flows with an upper bound on energy is compact). The 1-parameter
family of Morse 1-forms {θλ}λ∈Λ used for the invariance proof should
have the same filtration, namely, their cohomology classes should be
“co-directional” in the sense that [θλ] = αλ[θ] for a fixed [θ] ∈ H1,
and a family of non-negative numbers {αλ}λ∈Λ.

(2) The flow lines may form closed orbits. At a bifurcation point,
infinitely many new isolated flow lines between critical points, or
closed orbits, may be generated by gluing arbitrarily many flow lines
simultaneously.

(3) There can be infinitely many handle-slides in a family of Morse–
Novikov theory parametrized by a compact interval Λ ⊂ R. As the
Morse complex is undefined on a possibly dense subset of Λ, even the
notion of the “change” of the Morse complex at a bifurcation point
requires careful definition.

At a handle-slide bifurcation where a flow line starts and ends at the same
critical point (called “type II handle-slide” in this article), the higher order
(in terms of energy filtration) bifurcation behavior is not understood. In
[21], Hutchings side-stepped this problem by considering the induced flow
on finite-cyclic coverings of the manifold, using the relation between the
torsion of M and of its finite-cyclic coverings to reduce the higher order
problem to the low order problem. We shall follow his approach.

1.2.2. From Morse theory to Floer theory. While Morse theory gives
a nice model for Floer theory, there are several important differences. For
example:

(1) The grading of a Floer complex often takes values not in the group Z,
but rather in Z/NZ for some N ∈ Z

+. In order for the Reidemeister
torsion to be well-defined, N has to be even. It is not hard to see
that this is the case for the version of Floer theory considered in this
article.

(2) The geometric interpretation of flow lines mentioned in Section 1.2.1 is
no longer available in the infinite-dimensional context of Floer theory.
Instead, the spaces of flow lines need to be described as moduli
spaces of certain elliptic PDEs. The verification of the bifurcation
behaviors predicted by Morse theory requires detailed understanding
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of the behaviors of moduli spaces under bifurcation, which relies on
certain gluing theorems. Proving these gluing theorems constitutes
the major difficulty in this direct approach of invariance proof. (In
comparison, the traditional continuation method only requires certain
characteristic numbers of the relevant moduli spaces to be well-
defined). Part II will deal with this problem.

(3) While a Morse function admits rather flexible perturbations, only
very restrictive perturbations to a Floer theory make good moduli
problems. Consequently, some trivial facts in Morse theory become
highly non-trivial in a Floer theory. As a well-known instance, the
transversality proofs in Floer theory can be rather involved, unlike
the case of Morse theory. Two instances relevant to this article are:
(a) To apply Hutchings’s argument for type II handle-slide bifurca-

tion, one needs non-equivariant perturbations to the induced flow
on finite-cyclic covers of the loop space (see Section 4.4.5 for a
more precise statement). In the Floer theory context, it is highly
non-trivial to construct such perturbations satsifying the desired
properties. Unless one restricts to special classes of symplectic
manifolds, the perturbation will be non-local, and new arguments
are required to establish the usual transversality and compactness
properties of the moduli spaces (see Section 6 of Part II).

(b) As explained in item 1 of Section 1.2.1 earlier, the 1-parameter
family of Morse 1-forms used in the invariance proof must be
“codirectional”. Nonetheless, the finite-dimensional invariant
I is independent of the Morse 1-form used for its definition,
regardless of its cohomology class. This is because any Morse 1-
form may be connected to an exact one via a path of co-directional
closed 1-forms. In Floer theory, it is often difficult to find a
path which both satisfies the co-direction condition and makes
a good moduli problem. In our Floer-theoretic context, the
analog of the Morse 1-form is the “action 1-form” YX . Perturbing
the symplectic vector field X by Hamiltonian vector fields does
not change the cohomology class [YX ], but perturbing by a
general symplectic vector field does. While one expects IF to
be invariant under Hamiltonian isotopies, whether it is invariant
under general symplectic isotopies depends on whether one
may find a symplectic vector field X0 such that [YX0 ] = 0.
The existence of such X0 is guaranteed by imposing strong
monotonicity conditions on the symplectic manifold; see Theorem
2.3.3(b) for a precise statement. It is not known whether IF is
invariant under symplectic isotopies in general.
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1.2.3. Adaptability of the method. We now briefly indicate which
portion of the arguments in this article is independent of the specific Floer
theory considered. By the “Floer theory”, we mean one which satisfies the
properties outlined in Section 2.1 below.

The following depend on the specific Floer theory: part of the transversal-
ity and compactness arguments, such as the structure theorems of the mod-
uli spaces proven in Section 3, and the arguments in Section 6, and the
construction of non-equivariant perturbations in Section 6.3 of Part II; the
orientability of moduli spaces, as discussed in Section 7.2 of Part II.

The following are universal for all Floer theories: the main framework of
proof for the general invariance theorem, Theorem 4.1.1 below; the analysis
for moduli space of flows ending at a degenerate critical point contained
in Section 5; the main outline of the proofs of gluing theorems in Sections
2–5 in Part II applies to any version of Floer theory; the coherentness of
orientations of moduli spaces discussed in Section 7.3 of Part II, which rely
on linear versions of gluing theorems. The estimates in the proofs of these
gluing theorems require the following additional conditions, which hold for
most of the existent Floer theories:

• Recall that the Floer theory is constructed from the formal flow of a
(densely defined) vector field V on a Banach manifold C modeling on a
function space. In local coordinates, we need V to depend only on the
function itself, not its higher derivatives, at least in a neighborhood
of the degenerate critical points.

In symplectic Floer theories, this condition holds by the assump-
tion of the degenerate critical points being in “standard d-b neighbor-
hoods” (cf. Section 5.3). In gauge theories, it follows directly from
the defining formula for V that this condition holds anywhere on C.

• We use the Sobolev embedding theorem to obtain C0 estimates
from Lp-estimates on several occasions. The applicability of Sobolev
embedding depends on the dimension 1 + l, when TC is a space of
functions/sections over an l-dimensional manifold. In this article, as
well as in other symplectic Floer theories, l = 1. In a typical gauge
theory, l = 3. In this case, we need to require p ≥ 4 for these specific
estimates to work.

We shall also consider in [30] an equivariant version of Floer theory, that
does not entirely fit in the framework of Section 2.1.2. Nevertheless, a minor
modification of the methods of this article still serves the purpose.

1.2.4. Outline of part I. In Section 2, we summarize the abstract
framework for defining the invariant IF, and give precise statements of the
main results. The concrete Floer theory considered in this article is set up
in Section 3, where structure theorems of the relevant moduli spaces needed
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for the construction of IF are established. In Section 4, we state a general
invariance theorem, Theorem 4.1.1, and show how it implies the theorems
stated in Section 2. Based on the finite-dimensional Morse theoretic picture,
we summarize the expected bifurcation behavior of a generic 1-parameter
family of Floer systems into the notion of a “regular homotopy of Floer
systems” (RHFS). Following [21], it is shown that the existence of an RHFS
with the extra property (NEP) implies the general invariance theorem 4.1.1.
Part II and the rest of Part I are devoted to establish the existence of such
an RHFS.

Since a degenerate critical point appears at a death–birth bifurcation, we
need to describe the structure of the moduli spaces of flows ending at such
degenerate critical points. This is done in Section 5. Section 6 introduces the
notion of an “admissible (J, X)-homotopy”, which is equipped with most of
the properties of an RHFS. We then establish the existence of an admissible
(J, X)-homotopy.

Based on a series of hard gluing theorems, Part II will show that an
admissible (J, X)-homotopy also possess the remaining properties of an
RHFS. There, the issue of orientation will also be addressed, thus concluding
the proof of Theorem 4.1.1. See Section 1 of Part II for a summary of these
results, and an outline of the methods of proof.

The main technical components of Part I are contained in different
sections as follows:
Section 3.3, in which we establish transversality for moduli spaces of

closed orbits in homology class A, M̂0
O(A), simultaneously for

all A. This depends on an adaptation of Taubes’s argument in
[44], which translates the problem of transversality for mul-
tiple covers into the simultaneous surjectivity of a sequence
of differential operators over simple orbits. The knowledge
of the kernels and cokernels of these differential operators as
representation spaces of finite-cyclic groups helps to solve the
latter problem.

Section 5, in which we establish the polynomial decay of flows ending at
a degenerate critical point, and the Fredholm theory for the
moduli of such flows. The decay estimates employs center
manifold theory for flows on Hilbert manifolds, modeling on
the discussion in [36]. To find the suitable Fredholm frame-
work, the appropriate spaces for the domain and range of the
deformation operator turn out to be somewhat complicated,
due to the following multiple constraints:
(i) the deformation operator must be Fredholm between

these spaces;
(ii) the domain must be big enough to contain the moduli

space considered;
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(iii) the non-linear part of the PDE must satisfy the expected
quadratic bound.

They are polynomially weighted Sobolev spaces, but the
weights on the “transversal directions” and the “longitudinal
direction” are different. The rationale for the choice is that
the deformation operator is modeled on the operator d/ds +
C, where C is a constant that is non-zero for the transversal
directions, and zero for the longitudinal directions.

Section 6.2, where we show how to perturb a 1-parameter family of
Floer systems into an admissible (J, X)-homotopy, based on
a refinement of the standard transversality arguments.

Due to the non-compactness of moduli spaces (cf. e.g., Section 1.2.1 items
2 and 3), careful filtration arguments are frequently called for throughout
the length of this article (see in particular Sections 3.3 and 6.2).

1.3. Notation and conventions. The following notation and conventions
are adopted in both parts of this article. References to section or equation
numbers in part II will be denoted as II.*. We suggest the reader to
first browse through this subsection and to return later for reference of the
notations.

• C, C ′, Ci, etc., usually denote positive constants depending on the
context. ε, ε′ usually denote small positive numbers. In contrast, the
plain ε usually denotes a fixed parameter; for example, in Sections 3
and 5 it parameterizes the weight in the exponentially weighted
Sobolev spaces; in II.2–II.5 as it denotes a fixed small number
associated with the choice of partition of Θ.

• ΠV in general denotes a projection. It denotes the projection to the
space V if V is a space; or to the direction of V if V is a vector.

• S1
T = R/TZ denotes the circle of length T .

• The top exterior power of a vector space V is denoted by detV .
• ‖ξ‖p,k denotes the Sobolev norm obtained by summing Lp norms of

derivatives of ξ up to order k. Lp
k denotes the associated Sobolev

space. Throughout this article, p is an integer p > 2.
• C∞

ε = Cε ⊂ C∞ denotes the Banach space endowed with the ‖ · ‖ε-
norm defined in [10].

• Let L be any of the norms used in this article, and F be an
Euclidean/Hermitian vector bundle over M . L(M) denotes the space
of functions on the manifold M with finite L-norm. L(M ; F ) = L(F )
denotes the space of sections of F with finite L-norm.

• In this paper, the inner product 〈·, ·〉2, and the norms ‖ · ‖ are usually
for functions or sections over the cylinder or torus Θ = {(s, t)|t ∈ S1},
s ∈ R or S1

T . We will occasionally encounter restrictions of these
functions/sections to a circle of fixed s in Θ. The inner product or
norms of such restrictions are denoted by 〈·, ·〉2,t, ‖ · ‖p,t, etc.
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• Let ξ be a section over Θ. ∂s, ∂t denote the covariant derivative with
respect to a natural connection, for example, that induced from the
Levi-Civita connection. We also often use the short hand ξ̇ := ∂tξ;
ξ′ := ∂sξ.

• Many functions in this paper depend on both the position of a point
in the symplectic manifold M , and other variables such as s, t, λ.
However, the notation ∇ is always taken to mean the gradient as a
function of M , holding other variables constant. Derivatives in the
directions of s, t, λ are denoted ∂s, ∂t, ∂λ, respectively.

• Let R be a commutative ring. Q(R) denotes the total ring of fractions
(also called quotient ring) of R. Namely, the localization at all non-
zero divisors of R.

• Let V1, V2 be two isomorphic oriented spaces. Then V1/V2 ∈ {1,−1}
denotes the relative sign of them. If V1/V2 = −1, we write V1 = −V2.
If V1 is one-dimensional and a is a non-trivial element of V1, then
[a]/V1 denotes the sign of a with respect to the orientation of V1.
sign(u) := u/|u| for u ∈ R.

• We follow the convention of calling a point in a moduli space (Zariski)
smooth or non-degenerate if the relevant deformation operator at that
point is surjective. A moduli space is said to be (Zariski) smooth or
non-degenerate if it consists of smooth points.

• Following a well-known convention, a vector field on a Banach space
refers to one that is only densely defined.

More notation and conventions will be introduced along the way in later
sections.

2. Statements of main results

Some preliminaries are required for the precise statements of our results.

2.1. The Floer theory package. As our construction of Floer-theoretic
torsions applies to many versions of Floer theories, we give here a gen-
eral outline of the abstract Floer-theoretic framework needed for this
construction. The concrete content of the specific version of Floer theory
considered in this article will be described in Section 3. The main difference
between the following discussion and those in the existent literature con-
sists of the requirement of an absolute Z/2Z-grading, the attention to the
moduli spaces of closed orbits, and the emphasis on “grading-compatible”
orientation for the moduli spaces of closed orbits.

2.1.1. Basic ingredients: (C,H, ind;Yχ, Vχ). In a typical Floer–Novikov
theory, one has an (infinite-dimensional) Banach manifold C, and a closed
1-form Yχ on C, which may depend on certain parameter χ. Together with
an L2-metric on C (also possibly dependent on χ), Yχ determines a (densely
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defined) dual vector field Vχ on C. This defines a formal flow on C in
the following sense: The moduli space of critical points, Pχ ⊂ C is defined
as the zero locus of Vχ. A flow line u is a solution to the elliptic PDE,
∂su + Vχ(u) = 0, where s ∈ R or S1. It is called a closed orbit when
s ∈ S1

T , for some T > 0, and T is said to be the period of the closed orbit.
When s ∈ R and u(s) approaches critical points as s → ±∞, it is called a
connecting flow line. The moduli spaces of non-constant closed orbits and
the moduli spaces of connecting flow lines will be denoted, respectively, by
MO(χ) and MP (χ). A closed orbit is typically written as either u or (T, u),
when one wants to emphasize its period.

In order for the Floer-theoretic torsion to be defined, we consider Floer
theories endowed with an absolute Z/2Z-grading: Let Pχ,ndg ⊂ Pχ be the
set of non-degenerate elements. There is a map

ind : Pχ,ndg → Z/2Z ∀χ

defined by the spectral flow from certain standard operator to the lineariza-
tion of Vχ at x ∈ Pχ,ndg, denoted Ax.

Let C̃ denote the regular covering of C with an abelian covering group H

and monodromy homomorphism im : π1(C) → H.

Notation. We shall frequently use the following notation for elements in
a covering space. Let γ0 ∈ C be a base point. Identify C̃ with the set
C̃γ0 of equivalence classes (x, [w]), where x ∈ C, µ is a map [0, 1] → C,
µ(0) = γ0; µ(1) = x, and two pairs (x, [w]), (x′, [w′]) are equivalent iff x = x′,
and im[µ − µ′] = 0.

We consider Floer theories in which H can be chosen so that for any χ,
• Yχ lifts to an exact form dAχ. Namely, the cohomology class

[Yχ] = im∗〈Yχ〉, where 〈Yχ〉 ∈ Hom(H, R), and im is the abelianization
of im.

• The absolute Z/2Z-valued grading lifts to a relative Z-valued grading:
Let P̃χ ⊂ C̃ denote the lift of Pχ. There is a map gr : P̃χ,ndg×P̃χ,ndg →
Z, so that for any (x, [w]), (y, [v]), (z, [r]) ∈ P̃χ,

gr((x, [w]), (y, [v])) + gr((y, [v]), (z, [r])) = gr((x, [w]), (z, [r]));

gr((x, [w]), (y, [v])) mod 2 = ind(x) − ind(y), and

there is a homomorphism (which we call the SF-homomorphism)

ψ : H → 2Z

with the following property: Let (x, [w]), (x, [w′]) = A · (x, [w])
be different lifts of the same x ∈ Pχ, where A ∈ H acts by deck
transformation. Then

(1) gr((x, [w′]), (x, [w])) = ψ(A).
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Via index theory, ψ is typically computable from the topology of the
underlying manifold and is independent of the parameter χ. However, in a
general Floer theory it is only expected to take value in Z instead of 2Z, as
we require here.

Sometimes weighted versions of ind and gr are also needed: For σ, σ1, σ2 ∈
R, indσ(x) and gr(σ1,σ2)((x1, [w1]), (x2, [w2])) are defined similarly to ind and
gr, but with the role of Ax∗ replaced by Ax∗ + σ∗.

We shall often denote a Floer theory by the five-tuple of its basic ingre-
dients: (C,H, ind;Yχ, Vχ). Note that the first three items are independent
of the parameters, while the last two do.

2.1.2. Variants of moduli spaces. We now introduce some notation and
terminologies frequently used in this article. Throughout this subsubsection,
we work with a fixed parameter χ. Therefore, though all the moduli spaces
below depend on the parameter, we shall omit χ from the notation.

Let MP (x, y) denote the moduli space of connecting flow lines starting
from the critical point x and ending at the critical point y. Given (x, [w]),
(y, [v]) ⊂ P̃χ, MP ((x, [w]), (y, [v])) ⊂ MP (x, y) denote the subset of elements
which lift to a path in C̃ starting from (x, [w]) and ending in (y, [v]).

Given A ∈ H, MO(A) ⊂ MO denotes the set of closed orbits with
homotopy class in im−1(A).

The grading of a closed orbit u ∈ MO(A) is given by ψ(A). For a
connecting flow line u ∈ MP ((x, [w]), (y, [v])), it is given by gr((x, [w]),
(y, [v])) = k. Let Mk+1

O ⊂ MO, Mk
P (x, y) ⊂ MP (x, y) denote the subset

consisting of elements with grading k.
Weighted versions of moduli spaces are occasionally needed. Roughly

speaking, M
(σ1,σ2)
P ⊂ MP consists of connecting flow lines decaying

exponentially at ±∞ ends, with the exponent > σ1 in the negative end,
and > −σ2 in the positive end. M

k,(σ1,σ2)
P consists of such connecting flow

lines with the weighted grading gr(σ1,σ2) = k.
The energy of an element u ∈ MO(A) is given by −〈Yχ〉(A); for an element

u ∈ MP ((x, [w]), (y, [v])), it is given by Ãχ(x, [w]) − Ãχ(y, [v]).
We often need truncated versions of moduli spaces: Given � ∈ R, let

MO(χ)� ⊂ MO(χ), MP (χ)� ⊂ MP (χ) be the subsets consisting of elements
with energy ≤ �. Similarly for other variants of MP , MO.

Note that there is a free R-action on MP and a semi-free S1-action on MO

by translation. The reduced moduli spaces M̂P , M̂O, are respectively, the
quotient spaces of MP , MO under this action; similarly for other variants
of MP and MO introduced above. In particular, M̂k

P = Mk+1
P /R; M̂k

O =
Mk+1

O /S1. An element in the reduced moduli space is called a reduced flow
line. Given u ∈ MP or MO, we use û to denote the corresponding element
in the reduced moduli space; conversely, u is said to be a representative
of û.
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Given an element u ∈ MO, mult(u) = mult(û) denotes the multiplicity of
u. Namely, the order of the stabilizer at u under the S1-action. A closed
orbit of multiplicity 1 is said to be simple; otherwise it is said to be a multiple
cover.

It is often convenient to identify the reduced moduli spaces with a
slice of representatives in the unreduced version. In particular, we often
identify M̂P with the set of centered elements in MP , where an element
u ∈ MP ((x, [w]), (y, [v])) is centered if

2Ãχ(u(0)) = Ãχ(x, [w]) − Ãχ(y, [v]).

The moduli spaces MP (x, y), MO embed, respectively, into certain Banach
manifolds BP (x, y), BO. They and their reduced versions are thus endowed
with the ambient topology, which we call B-topology. The reduced moduli
spaces M̂P , M̂O are included in the following bigger spaces: the moduli
space of broken trajectories, denoted M̂+

P , and the moduli space of broken
orbits, denoted M̂+

O. The latter consists of the following more general
objects:

A (k-th) broken trajectory is an ordered set {û0, û1, . . . , ûk}, where ûi are
reduced connecting flow lines, with the end point of ûi identified with the
starting point of ûi+1 ∀i ∈ {0, . . . , k − 1}. These critical points are said to
be the connecting rest points of the broken trajectory. The starting point of
the broken trajectory is defined to be the starting point of û0, while its end
point is defined to be the end point of ûk. With the notion of starting and
end points of a broken trajectory clarified, the space M̂+

P (x, y) now makes
sense. The connecting flow line ûi are said to be the i-th components of the
broken trajectory. In particular, any connecting flow line is a 0-th broken
trajectory.

Similarly, when k ∈ Z
+, a k-th broken orbit is a cyclically ordered set

{û1, û2, . . . , ûk}, where ûi are reduced connecting flow lines, with the end
point of ûi identified with the starting point of ûi+1 ∀i ∈ Z/kZ; a 0-th
broken orbit is by definition a closed orbit. Given representatives ui of the
components ûi, the homology class of the k-th broken orbit above is defined
to be the homology class of the 1-cycle

∑k
i=1 ui in C. With this explained,

the definition of M̂O(A) easily extends to give M̂+
O(A).

The spaces of broken trajectories/orbits are endowed with the chain
topology. They are stratified spaces, with the strata indexed by the set
of rest points (regarded as an ordered set for broken trajectories, and as an
cyclically ordered set for broken orbits). A stratum indexed by S1 is in the
closure of the stratum indexed by S2 iff S2 ⊂ S1 as ordered or cyclically
ordered subsets.

The notion of grading and energy extend naturally to the moduli spaces of
broken trajectories or broken orbits. Thus, we also have M̂

k,+
P (χ), M̂+

P (χ)�,
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M̂
k,+
P (χ)�, M̂

k,+
O (χ)�, etc., — moduli spaces of broken trajectories or orbits

with the indicated grading and/or energy bound.
Generically, M̂+

P (x, y) or M̂+
O are expected to be manifolds with corners.

As the construction of IF involves only moduli spaces of expected dimension
not more than 1, we limit ourselves to the following special case:

Definition (lmb). Let M̂+ be a stratified space consisting of smooth strata
of dimension no more than 1, and S ⊂ M̂+ is a stratum of dimension 0. M̂+

said to be locally a 1-manifold with boundary along S (abbreviated lmb), if
there is a homeomorphism S × [0, 1) to a neighborhood of S ⊂ M̂+, which
restricts to a diffeomorphism over S × (0, 1).

2.1.3. Floer systems. For generic parameter χ, the moduli spaces are
expected to satisfy the following regularity and compactness properties:

(FS1) (Structure of Pχ) Pχ consists of finitely many non-degenerate
points.

(FS2) (Structure of MP (χ)) For any integer k ≤ 2 and any x, y ∈
Pχ, Mk

P (x, y; χ) is a (Zariski) smooth manifold of dimension k.
Furthermore, for any real constant �, M̂0

P (χ)� consists of finitely
many (Zariski) smooth points, M̂

1,+
P (χ)� is compact, and is lmb

along the strata of 1-th broken trajectories.
(FS3) (Structure of MO(χ)) For any k ≤ 1, the space Mk

O is a (Zariski)
smooth manifold of dimension k. Moreover, for any real �,
M̂0

O(χ)� consists of finitely many elements.
(FS4) (Orientation) The moduli spaces Mk

P (x, y), Mk
O are orientable;

and hence so are their reduced versions. Furthermore, the
orientations of {Mk

P (x, y)}k∈Z;x,y∈P can be chosen coherently, and
the orientation of M1

O can be chosen to be grading-compatible.
With respect to this choice,

∂M̂
1,+
P (x, y) =

∐

z∈P

M̂0
P (x, z) × M̂0

P (z, y).

The precise definition of “coherent orientation” and “grading-compatible
orientation” will be postponed to II.7.2. Roughly speaking, a coherent
orientation is a choice of orientations consistent with gluing, and a grading-
compatible orientation is one which allows a spectral-flow interpretation
compatible with the spectral-flow interpretation of the absolute Z/2-grading
ind. Note also that the definition of orientability here means the orientability
of the relevant determinant line bundle; hence, the moduli space might be
orientable even if it is not a manifold (see II.7 for details).

Remark. The issue of orientation is simpler in the context of Morse theory,
when C is a finite-dimensional oriented manifold. In this case, the orientation
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of C gives a standard choice of the orientations of MP and MO, via their
interpretation as spaces of intersections (see e.g., [22]). As emphasized in
Section 1.2.2, item 2, this interpretation is unavailable in Floer theory.

The formal flow associated to Vχ is said to be a Floer system if (FS1–FS4)
hold. An oriented Floer system is a Floer system together with a choice of
coherent orientation on MP , a grading-compatible orientation on M1

O, and
the induced orientation on the reduced moduli spaces.

2.2. Constructing IF: the algebraic framework. Below is a straight-
forward adaptation of the construction of [23] to the Floer-theoretic settings.

2.2.1. The Novikov ring. Let G be an abelian group, R a ring, and
N : G → R a homomorphism. The Novikov ring Nov(G, N ; R) is the set of
formal sums

∑
g∈G ag · g, with ag ∈ R, such that for every C ∈ R, the set

{g ∈ G | N(g) < C and ag �= 0} is finite. Nov(G, N ; R) is a ring with the
obvious addition and the convolution product (see e.g., [20]).

Notice that Nov(G, 0, R) = R[G], and there is an inclusion

iN : R[G] ↪→ Nov(G, N ; R).

The Novikov ring should thus be viewed as a completion of the group ring.
The degree of a, denoted deg(a), is defined to be the minimum of N(g)

among g such that ag �= 0. (Such minimum exists by the definition of
Novikov rings.)

The notion of limit is defined for Novikov rings: limn→∞ an = a for a
sequence {an ∈ Nov(G, N ; R)} if ∀� ∈ R, ∃Λ(�) such that deg(an − a) ≥ �
∀n ≥ Λ(�).

Given a =
∑

g agg ∈ Nov(G, N ; R), the “leading term” of a is defined
to be

lt(a) :=
∑

N(g)=deg(a)

agg.

a − lt(a) is called “higher order terms”. Notice that lt defines a
homomorphism

Nov(G, N ; R)/(±G) → R[ker N ]/(± ker N).

In this article,

(2) G is a finitely generated abelian group; R = Z or Q.

In this case, the Novikov ring is commutative.
We shall often need to consider the rings of fractions of Novikov rings.
First, observe that a splitting

G = ker N ⊕ G/ ker N,

induces an embedding:

(3) Q(Nov(G, N ; R)) ↪→ Nov(G/ ker N, N ; Q(R[ker N ])),
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and different embeddings are related by the natural action of the space of
splittings kerN on the right hand side.

Furthermore, in the case of (2), both sides of (3) are finite sums of fields.
(As a special case, Q(R[G]) is a finite sum of fields, see e.g., [45] Section 3.1,
[21] Lemma A.4). The embedding (3) is compatible with the decompositions
on both sides as sums of fields.

Remark. In comparison with the first ring, the second ring in (3) has nicer
properties (e.g., existence of the notions of degree, order, and limit), which
the invariance proofs in [21, 23] made use of. There is a confusion between
the two rings in [23], which also propagate to later papers. In these papers,
the notion of order for elements in Q(Nov(G, N, R)) should be understood
in terms of the larger ring above through the embedding (3).

Through the embedding (3), we may extend the notion of leading term to:

lt : Q(Nov(G, N ; R))/ ± G → Q(R[ker N ])/± ker N.

Note that the above map is independent of the choice of splitting, since we
mod out kerN . The embedding iN also extends to the ring of fractions,

iN : Q(R[G]) ↪→ Q(Nov(G, N ; R)).

Later, we shall also use the same notation iN to denote the induced map
from Q(R[G])/(±G) to Q(Nov(G, N ; R))/(±G).

Let Q̃ be a ring extension of Q, for example, Q̃ = Q or the ring
Q(R[ker N ]) in (3). Let Nov+(G, N ; Q̃) ⊂ Nov(G, N ; Q̃) denote the subset
of elements of positive degree.

Let Nov1(G, N ; Q̃) ⊂ Nov(G, N ; Q̃) be the subgroup consisting of
elements of the form 1 + c, c ∈ Nov+(G, N ; Q̃). The exponential

exp : Nov+(G, N ; Q̃) → Nov1(G, N ; Q̃) ↪→ Q(Nov(G, N ; Q̃))

is well-defined via the usual power series. Conversely, the logarithm

ln : Nov1(G, N ; Q̃) → Nov+(G, N ; Q̃)

also makes sense formally.
Novikov rings arise naturally in Morse–Novikov theory as the coefficient

rings.

2.2.2. The Floer–Novikov complex. Each oriented Floer system (C,H,
ind;Yχ, Vχ) is associated with a (twisted) Floer complex as follows.

Let the chain groups C̃F be the free Nov(H,−〈Yχ〉; Z)-module generated
by elements in P̃χ, on which H acts by deck-transformation.

Let the boundary map ∂̃F : C̃F → C̃F be defined by

∂̃F(x, [w]) =
∑

(y,[v])∈P̃

χ(M̂0
P ((x, [w]), (y, [v]))) (y, [v]).
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By (FS2), ∂̃F is a well-defined Nov(H,−〈Yχ〉; Z)-linear transformation, and
∂̃2

F = 0.
Via the relative Z-grading on P̃χ, C̃F splits as:

(C̃F, ∂̃F) =
⊕

k

(C̃Fk, ∂̃F,k),

where k is in an affine space under Z. Each summand C̃Fk is a free
ΛF-module of finite rank, where

ΛF := Nov(kerψ, −〈Yχ〉; Z) ⊂ Nov(H,−〈Yχ〉; Z).

Furthermore, they satisfy the periodicity condition

(C̃Fk, ∂̃F,k) = (C̃Fk+2Nψ
, ∂̃F,k+2Nψ

),

2Nψ being the gcd of the values of ψ.
As the relative Z-valued index on P̃χ reduces to an absolute Z/2Z-valued

grading ind, there is also a reduced version of Floer complex,

(CF, ∂F) =
⊕

i

(CFi, ∂F,i),

where i takes values in the group Z/2Z, and CFi is the free ΛF-module
generated by all elements in Pχ of index i.

2.2.3. The Reidemeister torsion. We now specify the version of torsion
used in this paper.

(1) Suppose first for simplicity that the coefficient ring F is a field. Let
(Ci, ∂i), i ∈ Z/2Z be a complex of finite-dimensional F -vector spaces,
and Zi, Bi be, respectively, the subspace of cycles and boundaries in
Ci. The standard short exact sequences 0 → Zi → Ci → Bi−1 → 0
and 0 → Bi → Zi → Hi → 0 induce a canonical isomorphism

T :
⊗

i

det(Ci)(−1)i −→
⊗

i

det(Hi)(−1)i
.

Let e be an ordered basis for C∗, that is, an ordered basis ei for
each Ci. Let h be an ordered basis for H∗. Let [e] ∈

⊗
i det(Ci)(−1)i

and [h] ∈
⊗

i det(Hi)(−1)i
denote the resulting volume forms.

In this simplest case, when the coefficient ring is a field, define the
Reidemeister torsion

τ(C∗; e) :=
{

T([e])/[h] ∈ F× if H∗ = 0,
0 otherwise.

(2) For our applications, the coefficient ring of the complex is a Novikov
ring of the type specified in (2) (including group rings). We saw that
in this case it is in general not a field, but its total ring of fractions
is a direct sum of fields.
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Definition. [45] Let R be a ring, and assume that its total ring
of fractions Q(R) is a finite sum of fields, Q(R) =

⊕
j Fj . Let

(Ci, ∂i), i ∈ Z/2Z be a complex of finitely generated free R-modules
with an ordered basis e. Then

τ(C∗, e) :=
∑

j

τ(C∗ ⊗R Fj , e ⊗ 1) ∈
⊕

j

Fj = Q(R).

(3) Associated to an oriented Floer system, the Reidemeister torsion of
the Floer complex is defined as

(4) τF := τ(CF, eP) ∈ Q(ΛF)/(± ker ψ),

where eP is an ordered basis of CF given by an ordering of elements
in P, and a lift Lf : P → P̃. In the case when Nψ �= 0, we require
further:

• that the lift Lf is such that | gr(Lf(x), Lf(y))| < 2Nψ ∀x, y ∈ P,
and

• a choice of an A0 ∈ H, such that ψ(A0) = 2Nψ.
The set of all (nA0) · Lf(x), n ∈ Z, x ∈ P then forms a basis of C̃F as
a graded free ΛF-module.

Different ordering of the critical points results in a possible change
of sign for τ(CF, eP), and different such lifts and A0 result in a
multiplication of τ by an element in ker ψ; so by modding out
± ker ψ in the definition we obtain an invariant independent of these
choices.

(4) Another version of torsion that is important in topology is the Reide-
meister torsion of a manifold, denoted τ(M). Let M be a manifold
with a cell-decomposition, such that the cell chain complex C∗(M) is
a finite complex of finite-rank Z-modules. The universal abelian cov-
ering M̃ is endowed with an induced equivariant cell-decomposition,
and C∗(M̃) is a Z[H1(M ; Z)]-module.

τ(M) := τ(C(M̃), eM ) ∈ Q(Z[H1(M ; Z)])/ ± H1(M ; Z),

where eM is an ordered basis consisting of lifts of cells in M .

2.2.4. The zeta function and the counting invariant IF. Fix an
oriented Floer system (C,H, ind;Yχ, Vχ).

To count the closed orbits, we imitate the definition of the dynamical zeta
function, and define the the Floer-theoretic zeta function as
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ζF := exp

⎛

⎝
∑

A∈ker ψ,A �=0

χ(M̂O(A)) A

⎞

⎠

= exp

⎛

⎝
∑

A∈ker ψ,A �=0

∑

u∈M̂O(A)

sign(u)
mult(u)

A

⎞

⎠

∈ Nov1(ker ψ, −〈Yχ〉; Q) ⊂ Q(Nov(kerψ, −〈Yχ〉; Q)).

(5)

In (5), χ is the “orbifold Euler number”, and we shall denote the exponent
therein by ηF. By (FS3), ηF ∈ Nov+(ker ψ, −〈Yχ〉; Q), and the exponential
is well-defined.

Finally, viewing both ζF and τF as elements in Q(Nov(kerψ, −〈Yχ〉; Q))/±
ker ψ, IF is simply defined as the product

(6) IF := ζFτF ∈ Q(Nov(kerψ, −〈Yχ〉; Q))/ ± ker ψ.

Remark. Ideally, IF should be defined in Q(ΛF)/ ± ker ψ instead of the
above larger monoid. However, this would require proving a product formula
similar to [23] equation (2) to ensure that ζF ∈ Nov1(ker ψ, −〈Yχ〉; Z).

2.3. Statement of the main results. Let (M, ω) be a closed, connected
symplectic manifold of dimension 2n, and let f : M → M be a smooth,
(possibly non-Hamiltonian) symplectomorphism.

Let c1 := c1(TM). We shall need the notion of weak monotonicity and a
stronger companion version.

2.3.1. Definition. A symplectic manifold M is weakly monotone if ω(A) >
0 for all A ∈ H2(M) in the image of π2(M) under the Hurewicz map
satisfying 0 < c1(TM)(A) < n − 2.

It is said to be w+-monotone if ω(A) > 0 for all A ∈ H2(M) in the image
of π2(M) under the Hurewicz map satisfying 0 < c1(TM)(A) ≤ n − 2.

It is clear from the definition that monotonicity implies w+-monotonicity,
which in turn implies weak-monotonicity. Examples of w+-monotone sym-
plectic manifolds include Fano and Calabi–Yau manifolds, and any symplec-
tic manifold of dimension less than six.

Our main result concerns a “w+-monotone” symplectic manifold. The
assumption of w+-monotonicity is mainly here for simplicity: In view of
[17, 33, 38], we expect the result to hold for general symplectic manifolds.
In fact, most of the proofs contained in this article work for weakly
monotone manifolds. The stronger w+-monotonicity assumption is imposed
in Section 6 to shorten the discussion on the structure of parameterized
moduli spaces.
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It is convenient to introduce the mapping torus of f :

Tf :=
{

(x, t) : x ∈ M, t ∈ [0, 1]
}

/(x, 0) ∼ (f(x), 1),

which fibers over the circle of unit length S1
1 :

M
ιf−→ Tf

πS−→ S1
1 .

Notation. By restricting to the fibers of πS , a function S on Tf or a section
of a bundle over Tf corresponds to a path of functions/sections over M with
matching conditions on the two ends determined by f . We shall denote
these functions/sections over M by St, t ∈ [0, 1].

2.3.2. Definition. The f-twisted loop space LfM (usually just called the
“loop space”) is the space of L2

1 sections of Tf .
Given γ0 ∈ LfMγ0 , let LfMγ0 =: C be the path component containing γ0.

There is a natural map

im : π1(C) → H2(Tf ; Z)

sending each 1-cycle γ : S1 → LfMγ0 representing a homotopy class, to the
corresponding map from S1 × S1 to Tf .

Let K be the subbundle of TTf consisting of tangent vectors to the fibers.
A complex structure J of the bundle K is said to be ω-compatible if Jt are

ω-compatible for all t ∈ [0, 1]. Namely, ω(Jt·, ·) gives a Riemannian metric
on M1 . Let JK denote the Banach manifold of Cε ω-compatible complex
structures on K.

Let X = {X|X ∈ Cε(Tf , K), Xt is a symplectic vector field ∀t}.
Let H = Cε(Tf ). Given H ∈ H, let χH ∈ X be defined by

(χH)t = χHt ; ω(χHt , ·) = dHt.

We shall describe in Section 3, a Floer theory (C,H, ind;Yχ, Vχ) satisfying
the framework outlined in Section 2.1, in which C = LfMγ0 , H =
Image(im) ⊂ H2(Tf ), ind is a variant of the Conley–Zehnder index, and
Yχ, Vχ are parameterized by χ = (J, X) ∈ JK × X. For certain generic
(J, X) which we call “regular pairs”, the associated formal flow is an
oriented Floer system (see Section 3 and II.7.2). Thus, for each regular
pair (J, X) the construction of Section 2.2 defines an IF, which we denote
by I

f,[γ0]
F (M ; J, X).

For fixed f, [γ0], the cohomology class [Yχ] only depends on the flux of X.
In particular, I

f,[γ0]
F (M ; J, X) and I

f,[γ0]
F (M ; J ′, X ′) take values in the same

monoid if X − X ′ is Hamiltonian. Our main result concerns the invariance
properties of I

f,[γ0]
F (M ; J, X).

1This definition differs by a sign from some literature, and is convenient for constructing
Floer homology instead of Floer cohomology.
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2.3.3. Theorem.
(a) Let (M, ω) be a w+-monotone symplectic manifold, and let f be

a symplectomorphism of M and γ0 ∈ LfM be chosen as earlier.
Suppose (J1, X + χH1), (J2, X + χH2) ∈ JK × X are two regular pairs.
Then

(7) I
f,[γ0]
F (M ; J1, X + χH1) = I

f,[γ0]
F (M ; J2, X + χH2).

(b) Suppose (M, ω) is monotone. Then there exists an

I
f,[γ0]
F (M) ∈ Q(Z[ker ψ])/ ± ker ψ such that

(8) I
f,[γ0]
F (M ; J, X) = i−[YX ]I

f,[γ0]
F (M) for any regular pair (J, X).

We shall review in Section 3.1.4 a well-known principle that relates varying
f, [γ0] by symplectic isotopies and varying the symplectic vector field X.
According to this principle, the earlier theorem implies that IF is invariant
under Hamiltonian or symplectic isotopies of f, [γ0], in the case of (a) or (b),
respectively. In particular, under the assumptions of Theorem 2.3.3 (b),
this implies that IF depends only on the symplectic mapping class of f
and the conjugacy class of [γ0] ∈ π0(LfM) under the standard action of
π1(Symp0(M)) on π0(LfM). (Symp0(M) denotes the path component of
the symplectomorphism group of M containing the identity.)

Due to this principle, we shall say that IF is invariant under Hamiltonian
isotopies when (7) holds; similarly, we say that IF is invariant under
symplectic isotopies when (8) holds.

Combining this result with the main theorem in [21, 23], we can compute
I

f,[γ0]
F (M) in the following basic case:

2.3.4. Corollary. Suppose M is monotone, and f is connected to the
identity via the symplectic-isotopy ft, t ∈ [0, 1], with f0 = Id, f1 = f .
Let γ0 be the path γ0(t) = ft(p0) for a base point p0 ∈ M . In this case
ker ψ = H1(M ; Z) ⊕ ker c1(TM)

∣
∣
∣
π2(M)

; let ι : H1(M ; Z) → ker ψ denote the

inclusion, and let ι∗ : Q(Z[H1(M ; Z])/ ± H1(M ; Z) → Q(Z[ker ψ])/ ± ker ψ
denote the induced map. Then

I
f,[γ0]
F (M) = ι∗τ(M).

In Section 4, we shall state a more general invariance theorem and explain
how Theorem 2.3.3 follows as a consequence.

2.3.5. Some immediate application. Since critical points in the Floer
theory correspond to symplectic fixed points, non-triviality of the
Reidemeister torsion τF will guarantee the existence of symplectic fixed
points. Here is a sample result in this direction:
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Corollary. Let M, f, γ0 be as in Corollary 2.3.4. In addition, suppose that
lt τ(M) �= 1. Then f has a fixed point.

This is a direct consequence of the computation in Corollary 2.3.4 and
the observation that lt(ζF) = 1 by definition.

More applications shall be discussed in subsequential articles (e.g., [29–
31]), including applications exploiting higher order terms of IF. Here, we
shall content us with the following few remarks.

Remarks.
(a) The abelian version of torsion introduced in this paper is not amenable

for obtaining quantitative results (e.g., getting fixed-point-number
bounds). A possible refinement is to work with the non-abelian
Whitehead torsion instead: one would then obtain a lower bound on
fixed-point-numbers in terms of the minimal rank of representations of
the relevant Whitehead torsion. This is, however, often very difficult
to compute, and thus does not seem an effective way for obtaining
such results. Some results in this direction for the Floer theory of
Lagrangian intersections (i.e., Example 1.1.3) may be found in [9].

(b) The Morse-theoretic picture leads one to expect a converse of such
existence theorems: that the critical points of the Floer theory (i.e.,
symplectic fixed points or Lagrangian intersection points) can be
removed via a Hamiltonian isotopy when both the Floer homology and
the Floer-theoretic Whitehead torsion vanish. This is the outstanding
“symplectic s-cobordism conjecture” posed by Fukaya [15].

(c) The requirement that M is both closed and symplectic places a
very strong constraint on the topology of M , and it is not easy to
find closed symplectic manifolds with interesting Reidemeister torsion
(i.e., the field components of τ(M) are not all 0 or 1). We shall show
in the sequels to this paper that interesting examples are easier to
produce in other versions of Floer theories, for example, those in
Examples 1.1.1–1.1.3. See also an S1-equivariant version in [30]. For
instance, one may take M to be a Stein manifold in Example 1.1.1.
By the combinatorial description of Stein manifolds ([8]), M has very
flexible topology and it is easy to produce M with interesting torsion
accordingly.

3. Floer theory of symplectomorphisms

Via a simple modification of Floer’s work, the Floer homology of a general
symplectomorphism was first introduced by Dostoglou and Salamon in [6] for
monotone symplectic manifolds. The virtual moduli method being available
today, it should be defined for general symplectic manifolds. In this paper,
we however, take the middle ground by imposing the weakly monotonicity
condition, to avoid the virtual moduli method.
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Though it is more-or-less standard, there does not seem to be a good
reference that deals directly with the situation we need. We shall therefore,
go into some details on the construction of this version of Floer theory, by
indicating how the available literature should be modified.

3.1. Setup and basics. Recall the definitions and notation from
Section 2.3.

3.1.1. Topology of the loop space. Fix a base point p0 ∈ M , and let
γ0 ∈ C be a path with γ0(0) = p0. We gather some basic facts about
LfMγ0 =: C below.

First, notice that the fiber-bundle structure of Tf

M
ιf−→ Tf

πS−→ S1
1

gives rise to the following useful Mayer–Vietoris type sequence:

(9) · · ·H2(M ; Z)
1−f∗−→ H2(M ; Z)

ιf∗−→ H2(Tf )
∂f−→ H1(M ; Z)

1−f∗−→ · · ·

Let cf
1 := c1(K); since f is a symplectomorphism, ω defines a two-form

on Tf , which we denote by ωf . The restrictions of the cohomology classes
cf
1 , [wf ] define two homomorphisms ψc : H → Z, ψω : H → R, respectively.

They are related to the SF-homomorphism and the cohomology class [Yχ],
respectively.

Next, note the fibration

(10) ΩM → LfM
ef→ M,

where ΩM is the loop space (with based point) of M , and ef (γ) = γ(0) is
the end point map. Thus, we have the associated homotopy sequence:

(11) · · ·π2(M ; p) → π1(LfM ; γ0) → π1(M ; p)
δf,γ0−→ π1(M ; p) · · ·

The two exact sequences (9) and (11) fit into the following commutative
diagram with im:

(12)

π2(M ; p0)
ρf−−−−→ π1(LfM ; γ0)

ef∗−−−−→ π1(M ; p0)
⏐
⏐
�Hurewicz

⏐
⏐
�im

⏐
⏐
�Hurewicz

H2(M ; Z)
ιf∗−−−−→ H2(Tf ; Z)

∂f−−−−→ H1(M ; Z),

where “Hurewicz” denotes the Hurewicz map.

3.1.2. The space of almost complex structures. Given a ω-compatible
almost complex structure J0 over M , let S(A, J0) be the space of sim-
ple (i.e., non-constant and not multiply-covered) smooth J0-holomorphic
spheres with homology class A in M . The automorphism group of CP 1,
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G := PSL(2, C), acts freely on S(A, J0) when A is non-trivial. Let
S(J0) :=

∐
A S(A, J0).

A J ∈ JK is said to be regular if the space

S(A, J)/G :=
⋃

t

S(A, Jt)/G

is a smooth manifold of expected dimension (i.e., 2n + 2c1(A) − 5).
We denote by J

reg
K ⊂ JK the subset consisting of regular elements, and

summarize some useful facts on such regular elements as follows.

Lemma. Let M be weakly monotone.
(a) If J ∈ J

reg
K , then for all t ∈ S1, Jt is semi-positive in the sense that

any Jt-holomorphic sphere has non-negative Chern number.
(b) The subset J

reg
K ⊂ JK is Baire.

(c) Part (b) above may be refined as follows. Let y : S1 → Tf be a section,
and let Uy be a small tubular neighborhood of the image of y in Tf .
Let J ∈ JK , and let

JK(J, Uy) :=
{

J |J ∈ JK , J
∣
∣
∣
Uy

= J
∣
∣
∣
Uy

}
,

endowed with the obvious Banach manifold structure. Then the space
of regular elements in JK(J, Uy) is Baire.

Proof. (a) follows from the proof of [34] Lemma 5.1.3. (b) is a result of a
standard transversality argument (see e.g., [34] Theorem 3.1.3). To see (c),
one simply augments the proof of [34] Theorem 3.1.3 by the observation
that if Uy is small enough, every Jt-holomorphic sphere exits the small
neighborhood of y(t) obtained by restricting Uy to the fiber over t. (See
e.g., Remark 5.2 of [14] for an argument of the same type.) �

Finally, it is useful to introduce the following notation:
Let Mc(Jt) ⊂ M be the image under the evaluation map

ev :
∐

A, c1(A)≤c

S(Jt, A) ×G S2 → M, ev(u, θ) = u(θ).

Let Mc(J) ⊂ Tf be the subspace such that its intersection with the fiber
over t is Mc(Jt).

3.1.3. The action 1-form and its associated formal flow.

Notation. For X ∈ X, let θX,t := ι(Xt)ω. θX :=
∫

θX,t dt; [θX ] ∈ H1(M)
is the flux of X. In addition, given J ∈ JK , let θ̌Jt

X,t be the dual vector field
of θX,t with respect to the metric associated to Jt, and let θ̌J

X denote the
section {θ̌Jt

X,t}t∈S1 of K. The superscript Jt or J will often be omitted when
J is fixed.
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Conversely, given a closed 1-form θ on M , Xθ denotes the symplectic
vector field such that θ = ι(Xθ)ω.

In this article, Yχ and Ãχ will be the action 1-form YX and action
functional ÃX , given as follows.

For any X ∈ X and ξ ∈ TγC = L2
1(γ

∗K),

(13) YX(γ)(ξ) := −
∫

S1
ω(∂tγ(t), ξ(t)) dt +

∫

S1
θX,t(ξ(t)) dt.

Since, H2(Tf ; Z) is abelian, the map im factors as a composition of the
Hurewicz map and a homomorphism im : H1(C; Z) → H2(Tf ; Z). Similarly,
we may define the homomorphism ef∗ : H1(C; Z) → H1(M ; Z) so that
ef∗ ◦ Hurewicz = Hurewicz ◦ef∗. The cohomology class [YX ] ∈ H1(C) may
be expressed in these homomorphisms as

[YX ] = −im∗[ωf ] + e∗
f [θX ] = im∗(−[ωf ] + ∂∗

f [θX ]),

where (12) was used for the second equality. We see that [YX ] : H1(C; Z) →
R factors through im and a 〈YX〉 ∈ Hom(H, R):

〈YX〉 = −ψω + ∂∗
f [θf ].

Hence, YX lifts to an exact form on the H-cover C̃, meeting the requirement
in Section 2.1.

On the other hand, given J ∈ JK , we have a Riemannian metric on Tf

by the ω-compatibility of Jt, which in turn defines a metric for LfM .
The vector field dual to −YX with respect to this metric is −VX ,

(14) VX(γ) := Jt(γ)
∂γ

∂t
+ θ̌Jt

X,t(γ) for γ ∈ C.

Thus, a formal flow line of VX is a solution to the perturbed Cauchy–
Riemann equation

(15) ∂̄JXu :=
∂u

∂s
+ Jt(u)

∂u

∂t
+ θ̌Jt

X,t(u) = 0,

where t ∈ S1
1 , and u is a smooth M -valued function on (s, t) such that

u(s, ·) ∈ C ∀s; s ∈ R when u ∈ MP , while s ∈ S1
T for some T > 0 if u ∈ MO.

The energy of a solution u to (15) is

E(u) =
∫

|∂su|2 ds dt.

A straightforward computation confirms that this agrees with the definition
for energy of closed orbits or connecting flow lines given in terms of Yχ and
Ãχ in Section 2.1.

The various moduli spaces in this Floer theory depend on γ0, M , f , and
J, X. All these shall be incoporated in the full notation for the moduli
spaces, for example, M

γ0
P (M, f ; J, X). However, when γ0, M, f are fixed,
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they will often be omitted from the notation. So is the parameter (J, X), if
it is clear from the context.

We now introduce the chain topology on M̂+
P and M̂+

O. First, let
p2 : R × S1 → S1 denote the projection to the second factor. For a
point a ∈ S1 and a representative (T, u) of (T, û) ∈ M̂O, we define a
ua ∈ Lp

1,loc(R × S1; p∗
2Tf ) so that:

• Over [−T/2, T/2] × S1, ua agrees with a representative of (T, û);
• Over R × S1\([−T/2, T/2] × S1), ua(s, t) = u(a, t).

Let τL denote translation by L:

τLw(s) := w(s − L).

Definition (Chain topology on M̂
+
P , M̂

+
O). The chain topology of M̂+

P

and M̂+
O are, respectively, the topology with neighborhood base given by the

subsets NP (U1, . . . , Uk; Λ) and NO(U1, . . . , Uk; Λ), NO(U) defined below:
(a) Given {û1, . . . , ûk} ∈ M̂+

P (x, y), let ui be the centered representative
of ûi, and Ui be a neighborhood of ui in Lp

1,loc(R × S1; p∗
2Tf ). Let

Λ ∈ R
+, and NP (U1, . . . , Uk; Λ) ⊂ M̂+

P (x, y) be the subset consisting
of broken trajectories {v̂1, . . . , v̂m} such that:

• ∃Li ∈ R ∀i, and a surjective map j : {1, . . . , k} → {1, . . . , m}, so
that τ−Livj(i) ∈ Ui, where vj is the centered representative of v̂j ;

• The map j preserves the partial ordering. Namely, j(i + 1) =
j(i) + 1 or j(i), and in the latter case, Li+1 − Li > Λ.

(b) When {û1, . . . , ûk} is a k-th broken orbit with k > 0, and U1, . . . , Uk, Λ
be defined as in part (a), the subset NO(U1, . . . , Uk; Λ) ⊂ M̂+

O
consists of:

• broken orbits {v̂1, . . . , v̂m} with m > 0 satisfying similar condi-
tions as in part (a) above, but with j now mapping from the
indexing set of {û1, . . . , ûk} to the indexing set of {v̂1, . . . , v̂m},
which preserves partial cyclic ordering, or

• closed orbits (T, v̂) with the property that ∃Li ∈ R ∀i and a ∈ S1,
so that τ−Liva ∈ Ui ∀i, T > kΛ, and Li+1 − Li > Λ for
i = 1, . . . , k − 1.

When (Tu, û) is a closed orbit, and U is a neighborhood of ub in
Lp

1,loc(R×S1; p∗
2Tf ) for some b ∈ S1, the subset NO(U) ⊂ M̂+

O consists
of closed orbits (T, v̂) such that va ∈ U for some a ∈ S1.

The stronger B-topology on MP (x, y) and MO in this Floer theory will
be introduced in Sections 3.2.3 and 3.3.1.

3.1.4. The Conley–Zehnder index. Let Ax denote the linearization of
VX at x ∈ P(X). The critical point x is said to be non-degenerate if Ax

is surjective. In this case, any lift of x in a covering of C is said to be
non-degenerate.
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Recall that the Conley–Zehnder index assigns continuously an integer
CZ(A) to each surjective operator A ∈ ΣC , where ΣC is the space of
operators A : L2

1(S
1, R2n) → L2(S1, R2n) of the form A = J0d/dt + ν(t),

where R
2n is equipped with the standard symplectic structure and complex

structure J0, and ν is a Cε-function taking values in the space of self-adjoint
matrices. Furthermore, the spectral flow of a path of such operators A(s),
s ∈ [0, 1] is the difference in the Conley–Zehnder indices of A(1) and A(0),
and CZ(J0d/dt) = 0. (See e.g., [39]. Our CZ = µH = n − µCZ in [39]).

Let Ĉ denote the universal covering of C and P̂ be the lift of P in Ĉ.

Definition. Fix a unitary trivialization of γ∗
0K. Together with a homotopy

class of paths w from γ0 to x, this trivialization of γ∗
0K induces a (homotopy

class of) unitary trivialization Φx,[w] : x∗K → S1 ×C
n, for each (x, [w]) ∈ P̂.

The operator A(x,[w]) := (Φx,[w])∗Ax(Φx,[w])−1
∗ is contained in ΣC , and it is

surjective when (x, [w]) is non-degenerate. In this case, define

ˆind(x, [w]) = CZ(A(x,[w])) ∈ Z.

A well-known index computation shows that if (x, [w]), (x, [w′]) ∈ P̂ are
two different lifts of the same x ∈ P, then

ˆind(x, [w]) − ˆind(x, [w′]) = 2cf
1(im[w − w′]),

which factors through im. Thus, ˆind descends to define a Z-valued index
˜ind for non-degenerate critical points in C̃, with SF-homomorphism given

by 2ψc. This in turn defines an absolute Z/2Z-valued grading ind for non-
degenerate critical points in C, and a relative Z-valued grading on P̃ndg,
which satisfy the requirements in Section 2.1.

3.1.5. Varying f and varying (J, X). We now describe a well-known and
very useful observation.

We’ll write X = Xf , K = Kf to emphasize their dependence on f .
First, notice that a diffeotopy from f to f ′ induces a diffeomorphism from

LfM to Lf ′M . In particular, let Φ = {φt

∣
∣
∣ t ∈ [0, 1]} be a symplectic isotopy

connecting the identity map to φ1, where f ′ = φ1 ◦ f , and let ϑt be the path
of closed 1-forms so that Xϑt generates φt. For γ ∈ Ωγ0(M ; f), let

Φ · γ(t) := φt(γ(t)).

This defines an isomorphism

Φ: Ωγ0(M ; f) −→ ΩΦ·γ0(M ; f ′).

It also induces an action of π1(Symp0(M)) on π0(LfM).
Suppose further that the path t �→ Xϑt is in Xf . (This can always

be arranged by e.g., a suitable reparametrization of the path so that
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Xϑ0 = 0 = Xϑ1). It is easy to see that for any X ∈ Xf , there is an
X ′ ∈ Xf ′ such that

Φ∗YX′ = YX and

φ∗
t θX′,t := θX,t + ϑt.

Furthermore, if u(s, t) solves (15), then

w(s, ·) := Φ · u(s, ·)

also satisfies (15), but with f there replaced by f ′, X replaced by X ′, and
Jt replaced by J ′

t, where

J ′
t(φt(x)) := (Dφt)Jt(x)(Dφt)−1.

(Notice that J ′ ∈ JK′
f

if J ∈ JKf
).

This not only defines isomorphisms between the spaces Pγ0(M, f ; X),
M

γ0
P (M, f ; J, X), M

γ0
O (M, f ; J, X) and PΦ·γ0(M, f ′; X ′), M

Φ·γ0
P (M, f ′; J ′, X ′),

M
Φ·γ0
O (M, f ′; J ′, X ′), respectively, but also equivalences of the relevant defor-

mation operators (Ax, and Eu, D̃u in Sections 3.2 and 3.3) by similarity
transformations. Thus the Floer theories associated to (M, f ′, Φ · γ0; J ′, X ′)
and (M, f, γ0; J, X) and are completely equivalent.

Because of this equivalence, in this paper we shall fix the symplecto-
morphism f and vary the almost complex structure J and the symplectic
vector field X.

3.2. Structure of the moduli spaces: P, MP . The goal of the rest of
this section is to show that for regular (J, X) (to be defined in Section 3.3),
the associated formal flow is a Floer system.

Since the results in this subsection all follow from simple adaptations of
the literature, we shall omit most details except the notions needed for later
sections.

For the rest of this section, we fix a J ∈ J
reg
K and perturb X ∈ X by

Hamiltonian vector fields to achieve transversality.

3.2.1. The space P. Recall the definition of Mc(Jt), Mc(J) from the end
of Section 3.1.2.

Definition. Given J ∈ J
reg
K , we say that X ∈ X is J-non-degenerate if the

following hold:

(a) P(X) consists of finitely many non-degenerate points.
(b) For any γ ∈ P(X), γ(t) �∈ M1(Jt) ∀t.

Proposition. Given J ∈ J
reg
K and X ∈ X, there is a Baire set Hndg(J, X) ⊂

H such that X + χH is J-non-degenerate for all H ∈ Hndg(J, X).
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Proof. These follow from simple adaptations of [20] Theorem 3.1, using
Lemma 3.1.2(a) above. For part (b), we replace the evaluation map in [20]
by

M1(J) × PH(X) → Tf ×S1 Tf : (q, (x, H)) �→ (q, x(πS(q))),
where PH(X) =

⋃
H∈H P(X + χH) is the universal moduli space of critical

points that fibers over H, and (x, H) denotes an element in this universal
moduli space: x ∈ P(X + χH). �

In particular, this means that given a fixed pair (J, X) ∈ J
reg
K × X, the

pair (J, X + χH) satisfies (FS1) for all H ∈ Hndg(J, X).

3.2.2. The Space MP . We now show that (FS2) holds for “generic” (J, X),
in a sense we clarify next.

Consider Hamiltonian perturbations in the following space:

Definition. Let J ∈ J
reg
K and let X ∈ X be J-non-degenerate. Let δ ∈ R

+

and k ∈ Z
+. Then

V k
δ (J, X)

:=
{

H
∣
∣
∣H ∈ H, ‖H‖Cε ≤ δ; ∇iHt(x(t)) = 0 ∀x ∈ P(X), i = 0, . . . , k

}
.

(16)

Notice that P(X + χH) = P(X) ∀H ∈ V k
δ (J, X).

Given J ∈ J
reg
K , an element u of MP or MO is said to be J-regular if in

addition to being non-degenerate, it also satisfies:

u(·, t) ∩ M0(Jt) = ∅ ∀ t.

A moduli space (any variant of MP or MO) is said to be non-degenerate if it
consists of non-degenerate elements; it is J-regular if it consists of J-regular
elements.

Proposition. Let J, X be as in the previous Definition. Then for any
k ≥ 2 and any small positive number δ, there is a Baire set V k,Preg

δ (J, X) ⊂
V k

δ (J, X) such that all H ∈ V k,Preg
δ (J, X) satisfies:

(a) (FS2) holds for (J, X + χH);
(b) Mi

P (x, y; J, X + χH) is J-regular for any i ≤ 2, x, y ∈ P.

Proof. These again follow from simple adaptations of [20]. Transversality
follows the arguments of [20] Theorem 3.2, using again Lemma 3.1.2, and
replacing the evaluation map by

M0(J) × M
i,V k

δ
P (x, y); J, X) −→ Tf ×S1 Tf : (q, (u, H)) �→ (q, u(0, πS(q))),

where M
i,V k

δ
P (x, y; J, X) =

⋃
H∈V k

δ (J,X) Mi
P (x, y; J, X + χH) is the universal

moduli space which fibers over V k
δ (J, X), the term (u, H) denotes an element

over H ∈ V k
δ (J, X) in M

i,V k
δ

P (x, y; J, X), and u ∈ MP (x, y; J, X + χH).
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The compactness follows the argument of [20] Theorem 3.3. The main
ingredients are: Gromov compactness, J-non-degeneracy of X + χH , and
statement (b) in the Proposition proven by the transversality argument
above. The well-known fact that u decays exponentially near the non-
degenerate critical points x, y (see e.g., [12] p. 607, [10] pp. 801–803) is
also used. �

3.2.3. The configuration space BP , and the deformation operator
Eu. We now introduce the configuration space BP , which endows MP with
the B-topology, and the relevant deformation operator. These notions are
used in the omitted details of the proof of Proposition 3.2.2, and shall also
be needed in later sections.

Let Θ := R × S1
1 ; and recall that p2 : Θ → S1

1 is the projection to the
second factor.

Let β : R → [0, 1] be a smooth cutoff function supported on R
+ such that

β(s) = 1 as s ≥ 1.
Given J ∈ JK , we define a t-dependent exponential map exp : TC → C,

exp(x, ξ)(t) := (expgt

x(t) ξ(t), t),

where expgt

x(t) is the exponential map in the fiber M with respect to gt, the
metric on M corresponding to Jt. ξ ∈ Lp

1(x
∗K) = TxC.

Definition. Suppose V is an Euclidean or Hermitian vector bundle over
Θ; σ−, σ+ ∈ R. Let Lp

k:(σ−,σ+)(V ) be the (exponentially) weighted Sobolev
space:

{ξ | ςσ−σ+ξ ∈ Lp
k}, where ςσ−σ+(s) := e−(sβ(s)σ++sβ(−s)σ−).

Let p∗
2Tf → Θ be the pullback bundle of Tf → S1. Given two critical points

x, y ∈ P(X), the configuration space is

B
(σ1,σ2)
P (x, y) :=
⎧
⎪⎨

⎪⎩
u

∣
∣
∣
∣
∣

u ∈ Lp
1,loc(Θ, p∗

2Tf ),

u(s, ·) = exp(y, ξ+(s, ·)) for some ξ+ ∈ Lp
1:(0,σ2)

(p∗
2(y

∗K)) if s > ρ+(u),

u(s, ·) = exp(x, ξ−(s, ·)) for some ξ− ∈ Lp
1:(σ1,0)(p

∗
2(x

∗K)) if s < ρ−(u)

⎫
⎪⎬

⎪⎭
,

where ρ± ∈ R are numbers depending on u. The integer p > 2.

Understood as the space of paths in C between the two points x, y,
BP (x, y) decomposes into many components according to the homology
classes of the paths, like MP (x, y). Thus, we may define BP ((x, [w]), (y, [v])),
Bk

P (x, y) in complete analogy to MP ((x, [w]), (y, [v])), Mk
P (x, y).

The space B
(σ1,σ2)
P (x, y) is a Banach manifold (see e.g., the argument of

Theorem 3 in [10]). The local model of a neighborhood of u is Lp
1:(σ1,σ2)(u

∗K)
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via the t-dependent exponential map

exp(u, ξ) := (expgt

u(s,t)(ξ(s, t)), (s, t)).

The precise definition of weighted moduli space is:

M
(σ1,σ2)
P (x, y; J, X) := MP (J, X) ∩ B

(σ1,σ2)
P (x, y).

Notice that we do not require any non-degeneracy condition on x, y for the
definitions of B

(σ1,σ2)
P (x, y) and M

(σ1,σ2)
P (x, y; J, X). However, with suitable

non-degeneracy conditions on x, y, M
(σ1,σ2)
P (x, y; J, X) admits a description

as the zero locus of the Fredholm section ∂̄JX of a Banach bundle. (cf. e.g.,
[10]). See the next Lemma.

Let E
(σ1,σ2)
u : Lp

1:(σ1,σ2)(u
∗K) → Lp

:(σ1,σ2)(u
∗K) denote the linearization of

∂̄JX at u.
In this Floer theory, the weighted versions of gradings are defined via

˜ind
σ
:

indσ(x) = ˜ind
σ
(x, [w]) mod 2;

gr(σ1,σ2)((x1, [w1]), (x2, [w2])) = ˜ind
σ1(x1, [w1]) − ˜ind

σ2(x2, [w2]),

where ˜ind
σ

is the generalized Conley–Zehnder index, defined as follows.
Given σ ∈ R, we say that an x ∈ P(X) is σ-weighted non-degenerate if
Ax + σ is surjective. In this case,

˜ind
σ
(x, [w]) := ˜ind

σ
γ0

(x, [w]) := CZ(A(x,[w]) + σ).

A routine modification of the literature (e.g., [12], [39], [40]) yields the
next lemma.

Lemma. Let u ∈ MP ((x, [z]), (y, [w]);J, X), and suppose that x, y ∈ P(X)
are σ1-weighted non-degenerate and σ2-weighted non-degenerate, respec-
tively. Then the operator

E(σ1,σ2)
u : Lp

1:(σ1,σ2)(u
∗K) → Lp

:(σ1,σ2)(u
∗K)

is Fredholm of index indσ1(x, [w]) − indσ2(y, [v]).

In fact, the moduli space M
(σ1,σ2)
P (x, y) is independent of small perturba-

tions to the weights σ1, σ2 When x, y are σ1-weighted non-degenerate and
σ2-weighted non-degenerate, respectively.

Notation. By standard decay estimates, MP (x, y) = M
(0,0)
P (x, y). Thus,

we shall omit the superscripts (σ1, σ2) when the weights (σ1, σ2) = (0, 0),
and the critical points x, y are non-degenerate.



256 Y.-J. LEE

3.3. Structure of the moduli spaces: MO. We now verify the genericity
of the condition (FS3); more precisely, we prove:

Proposition. Given J ∈ J
reg
K , a J-non-degenerate X ∈ X, an integer k ≥ 2,

and a small δ ∈ R
+, the set

V k,reg
δ (J, X) :=

{
H
∣
∣
∣H ∈ V k

δ (J, X), (FS2), (FS3) hold for (J, X + χH)
}

is Baire in V k
δ (J, X).

Notice that by assumption, (FS1) already holds for (J, X + χH), for all
H ∈ V k

δ (J, X). We call (J, X) a regular pair if J ∈ J
reg
K , X = X0+χH , where

X0 is J-non-degenerate and H ∈ V k,reg
δ (J, X0). Since the properties (FS1),

(FS2), (FS3) hold for regular pairs, τF(J, X), ζF(J, X), IF(J, X) are well-
defined for regular pairs. Regular pairs are generic in the sense described in
this section.

This proposition follows from the combination of Lemmas 3.3.2, 3.3.3,
3.3.4 below: V k,reg

δ (J, X) is Baire since it contains
⋂

�∈R+ V k,�-reg
δ (J, X),

where V k,�-reg
δ (J, X) are the open dense sets in Lemma 3.3.4. We first

introduce some basic notions before stating these lemmas.

3.3.1. The configuration space BO and the deformation operator
D̃(T,u). Because we include closed orbits of all periods in MO, we shall often
write an element of MO as a pair (T, u), where T ∈ R

+ is the period of the
closed orbit, and u is a section of the M -bundle p∗

2Tf over S1
T × S1

1 , where
p2 : S1

T × S1
1 → S1

1 is again the projection to the second factor.
The configuration space BO for MO is then

BO :=

{

(T, u)

∣
∣
∣
∣
∣

T ∈ R
+; u ∈ Lp

1(S
1
T × S1

1 , p∗
2Tf )

s.t. u
∣
∣
{0}×S1

1
is homotopic to γ0

}

.

It is easy to see that BO is a Banach manifold modeled on R × Lp
1(u

∗K),
and it fibers over R

+ by mapping each (T, u) ∈ BO to T . MO(J, X) embeds
in BO as the zero locus of the Fredholm section ∂̄JX of a Banach bundle.

Let D̃(T,u) be the linearization of ∂̄JX at (T, u) ∈ MO(J, X). It has the
following expression:

D̃(T,u)(�, ξ) = Duξ − �/T∂su for (�, ξ) ∈ R × Lp
1(u

∗K),

where the operator Du : Lp
1(u

∗K) → Lp(u∗K) is given by the same formula
as Eu, but here s takes value in S1

T instead of R.
D̃(T,u) fits into the deformation complex:

R
du−−−−→ R ⊕ Lp

1(u
∗K)

D̃(T,u)−−−−→ Lp(u∗K)

where du is the linearization of the S1 action (by translation in s) on MO,

du(λ) = (0, λ∂su).
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It is useful to combine du and D̃(T,u) into the following operator D(T,u),
which is deformation operator of the reduced moduli space M̂O = MO/S1 :

D(T,u) = D
J,X
(T,u) : R ⊕ Lp

1(u
∗K) −→ R ⊕ Lp(u∗K),

D(T,u) = D̃(T,u) + d∗
u =

(
0 Π∂su

−1/T∂su Du

)

,

where Π∂su denotes L2-orthogonal projection to ∂su, and d∗
u is the formal

L2-adjoint of du.
The superscripts J, X are added to the operators when we wish to

emphasize their dependence on J, X.
D(T,u) is obviously Fredholm, since Du is elliptic. By Riemann–Roch

ind(D(T,u)) = ind(Du) = 2ψc(A) when (T, u) ∈ MO(A).

Notice that the non-degeneracy of a (T, u) ∈ MO is equivalent to the
non-degeneracy of its image in M̂O: Since a closed orbit is by definition
non-constant in s, du is always injective, and thus the surjectivity of D̃(T,u)
and D(T,u) are equivalent.

The standard transversality argument works (only) for the space of simple
closed orbits, which we denote by M

d,sim
O ⊂ Md

O.

3.3.2. Lemma. Let (J, X) be as in the Proposition. Then the subset
{

H
∣
∣
∣H ∈ V k

δ (J, X), Msim
O (J, X + χH) is non-degenerate

}

is Baire in V k
δ (J, X). So is the subset

(17)
{

H
∣
∣
∣H ∈ V k

δ (J, X),
∐

l≤1

M
l,sim
O (J, X + χH) is J-regular

}
.

Proof. Let M
V k

δ ,sim
O (J, X) =

⋃
H∈V k

δ (J,X) Msim
O (J, X + χH) be the universal

moduli space which fibers over V k
δ (J, X). We want to show that it is non-

degenerate, namely, for any ((T, u), H) ∈ M
V k

δ ,sim
O (J, X), the operator

D̃
V k

δ

((T,u),H): R ⊕ Lp
1(u

∗K) ⊕ V k
δ (J, X) → Lp(u∗K),

D̃
V k

δ

((T,u),H)((�, ξ), h) = D̃J,X+χH

(T,u) (�, ξ) + ∇h

is surjective. Equivalently, letting D∗
u denote the formal L2-adjoint of Du,

we want to show that there is no η such that

D∗
uη = 0,

〈∂su, η〉2 = 0,

〈∇h, η〉2 = 0 ∀h.

(18)
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To apply the standard transversality argument2, we need the following
observations: first, by unique continuation (e.g., [14] Proposition 3.1) the
set

Ω(u) :=
{

(s, t)
∣
∣
∣u(s, t) = x(t) for some x ∈ P(X)

}
⊂ S1

T × S1
1

consists of discrete points for any u ∈ MO(J, X +χH); also, for simple u the
argument of [14] Proposition 4.1 shows that the set

R(u) =
{

(s, t)
∣
∣
∣ (s, t) �∈ Ω(u), u(s, t) �= u(s′, t) ∀t, s �= s′

}
⊂ S1

T × S1
1

is open dense. One may then follow the standard arguments (e.g., in the
proof of Theorem 5.1 (i) of [14]) to show that η = g(t)∂su for some real-
valued function g(t). However, from (18), we have

∫

g(t)|∂su(s, t)|2 ds dt = 0.

This contradicts with the fact that g(t) �= 0 ∀t and ∂su(s, t) �= 0 for all but
discrete s, t (cf. [14]). To show that the set (17) is also Baire, consider in
addition the evaluation map

ev : M0(J) × M
V k

δ ,l,sim
O (J, X) → Tf ×S1 Tf ,

(y, ((T, u), H)) �→ (y, u(0, πS(y))).

This can be seen to be transverse to the diagonal by the usual argument; so
a generic fiber of ev−1(diag) is a manifold of dimension 2n−3+1+ l−2n =
l − 2 < 0 — hence empty. �

Let M
1,sim,�
O ⊂ M

1,sim
O be the subspace of simple closed orbits with energy

≤ �.

3.3.3. Lemma. Let J ∈ J
reg
K , X be J-non-degenerate, and � ∈ R

+ be
arbitrary. If M≤1,�(J, X) :=

∐
l≤1(M

l,�
O (J, X) ∪ M

l,�
P (J, X)) is J-regular,

then the reduced moduli space M̂0,�(J, X) := M̂
0,�
O (J, X) ∪ M̂

0,�
P (J, X) is

compact.

Proof. The compactness of M̂
0,�
P (J, X) was a part of the proof of Proposition

3.2.2, we therefore only need to consider M̂
0,�
O (J, X).

Note that there is a map M̂
0,�
O → M̂

0,sim,�
O by mapping a multiple-cover

to its underlying simple closed orbit. The fiber of a u ∈ M̂
0,sim,�
O consists of

n(u) points, where

(19) n(u) := [−�/YX([u])] ∈ Z
+

2There is vast literature on the transversality proof; unfortunately, many of the papers
contain (minor) errors. In [14] author is unaware of errors, and it shall be our main
reference.
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is bounded above since −YX([u]) is bounded below by a positive number. To
see this, suppose there is a sequence of closed orbits {un} with E(un) → 0
as n → ∞. By Gromov compactness, there is a subsequence converging
in C0-norm to a constant flow (i.e., a critical point). This means that the
homology class [un] = 0 for large n, contradicting the fact that closed orbits
have positive energy.

Thus, it suffices to show that M̂
0,sim,�
O is compact. Gromov compactness

assures us that there are only three ways in which compactness can fail.
One is bubbling off spheres; the second is the existence of a sequence of
elements in M̂

0,sim,�
O (J, X) with periods going to ∞, which converge weakly

to a broken orbit; the third is the existence of a sequence {(Ti, ui)} ⊂
M̂

0,sim,�
O (J, X) converging to a multiple-cover.
The first possibility is eliminated by the assumption of J-regularity. The

second possibility is a codimension 1 phenomenon, and is eliminated by
the assumption that M

≤1,�
P (J, X) is non-degenerate. In the third case, the

multiple cover that the sequence converges to cannot be non-degenerate,
contradicting the assumption that M

≤1,�
O (J, X) is non-degenerate. �

It remains to show that multiple covers are also generically non-degenerate.
For this purpose, notice that to show that M̂�

O is non-degenerate, it is equiv-
alent to show that each u ∈ M̂

sim,�
O is “n(u)-non-degenerate”, n(u) being

given by (19):
Let u ∈ M̂sim

O ; we denote the unique Z/mZ-cyclic cover of u by um. u is
said to be n-non-degenerate if u1, u2, . . . , un are all non-degenerate.

3.3.4. Lemma. Let J, X, k, δ be as in the Proposition. Then for each
� ∈ R

+, the set

V k,�-reg
δ (J, X) :=

{
H
∣
∣
∣H ∈ V k

δ (J, X), M≤1,�(J, X + χH) is J-regular
}

is open and dense in V k
δ (J, X).

Proof. Because by the previous lemma M≤1,� consists of finitely many
isolated points, the proof is reduced to showing that transversality can be
achieved by Hamiltonian perturbations near each u ∈ M≤,�.

The openness of V k,�-reg
δ (J, X) is obvious from the compactness result

of Lemma 3.3.3. To show the denseness, we shall show that for any H ∈
V k

δ (J, X), we may perturb H by some small h so that M≤1,�(J, X + χH+h)
is J-regular. By Proposition 3.2.2 and Lemma 3.3.2, we may assume
without loss of generality that M

≤1,�
P (J, X +χH) and M

≤1,sim,�
O (J, X +χH)

are already J-regular. Adding any sufficiently small h will not affect the
J-regularity of these moduli spaces. We want to show that h may be chosen
to make each (T, u) ∈ M̂

1,sim,�
O n(u)-non-degenerate.
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For this purpose, we examine how the cokernel of the deformation
operator changes under perturbation, similar to Lemma 5.13 of [44].

Let m ≤ n(u) be a positive integer. Recall that the domain of um, denoted
Θum , is a Z/mZ-cyclic covering of the domain of u, Θu:

cm : Θum → Θu.

The group Z/mZ acts on the bundle (um)∗K over Θum by deck transfor-
mation. On the other hand, let R

m denote the Euclidean space spanned
by the orthonormal basis {ei|i ∈ Z/mZ}, endowed with a Z/mZ action by
cyclic permutation of the basis vectors: let L be a generator of Z/mZ, then
Lei = ei+1. Consider

Vm := (um)∗K ⊗Z/mZ R
m.

This is an R
2nm-bundle over Θu, and there is a standard isomorphism

im : Γ((um)∗K) → Γ(Vm),

via the identification of the sheaf of sections of Vm with the direct-image
under cm∗ of the sheaf of sections of (um)∗K.

Instead of D((mT ),um), we may equivalently consider the operator mD(T,u)
induced by this isomorphism.

mD(T,u) : R ⊕ Lp
1(Vm) → R ⊕ Lp(Vm),

mD(T,u) =
(

0 Πim(∂sum)
−1/(mT )im(∂su

m) mD(T,u)

)

.

Suppose that mD(T,u) has a pm-dimensional cokernel, say spanned by
η1, η2, . . . , ηpm

. Then the kernel of mD(T,u) is also pm-dimensional, spanned
by ξ1, ξ2, . . . , ξpm

. Note that Z/mZ acts orthogonally on the kernel and the
cokernel; in fact, the action on the kernel and the cokernel are the same, since
the kernel and cokernel both vanish under some deformation of the operator.
Furthermore, since by assumption (T, u) is 1-non-degenerate, there is
no Z/mZ-invariant elements in ker mD(T,u), coker mD(T,u). Therefore,
the bases {ξ

i
}, {η

j
} may be chosen such that with respect to them, the

representations of Z/mZ on ker mD(T,u), coker mD(T,u) both have the form:

(20) Lk :=
p′
⊕

l=1

(
cos(2πqlk/m) − sin(2πqlk/m)
sin(2πqlk/m) cos(2πqlk/m)

)⊕
(−1)⊕(pm−2p′).

The (−1) components appear only when m is even. We choose the
orientation of the bases such that ql ∈ {1, 2, . . . , [(m − 1)/2]}.

Let (ker mD(T,u))⊥, (coker mD(T,u))⊥ denote the L2-orthogonal comple-
ment of the real line spanned by im(∂su

m) in ker mD(T,u), coker mD(T,u),
respectively. Then

(ker mD(T,u))
⊥ ⊂ ker mD(T,u), (coker mD(T,u))

⊥ ⊂ coker mD(T,u)
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and their L2-orthogonal complements are at most one-dimensional and are
invariant under the Z/mZ action. Say γ is a non-trivial element in either
of these one-dimensional spaces, then its R-component must be non-trivial.
Observe however that the R-component is invariant under the Z/mZ action,
so in fact Z/mZ acts trivially on these orthogonal complements; they are
therefore empty by our 1-non-degeneracy assumption. Hence

(ker mD(T,u))
⊥ = ker mD(T,u), (coker mD(T,u))

⊥ = coker mD(T,u),

and we shall regard ξ
i
, η

j
as elements in the kernel/cokernel of mD(T,u),

respectively.

Claim. Let J, X be as in the Lemma and let H ∈ V k
δ (J, X) be such

that M
≤1,�
P (J, X + χH) and M

≤1,sim,�
O (J, X + χH) are J-regular. Let

(T, u) ∈ M
1,sim,�
O (J, X + χH), and m ∈ {2, 3, . . . , n(u)}. Then there exists

an arbitrarily small h ∈ V k
δ (J, X) with the following properties:

(i) ∇ht(u(·, t)) = 0 ∀t;
(ii) the function h is supported on a small tubular neighborhood of the

image of u in Tf .
(iii) dim coker mD

J,X+χH+h

(T,u) < dim coker mDJ,X+χH

(T,u) if

dim coker mDJ,X+χH

(T,u) �= 0.

To finish the proof of the Lemma, apply the above Claim iteratively for
each u and m until the dimension of all the relevant cokernels become
0, requiring that the perturbation hi at step i to be of Cε-norm smaller
than 2−iε, while also being small enough to preserve the non-degeneracy
conditions already obtained. This can be done in finite steps since
#(M̂0,sim,�

O (J, X + χH)), n(u) and pm are all finite. Thus, we eventually
obtain an h =

∑
i hi with ‖h‖Cε < ε satisfying the desired properties. �

Proof of the Claim. Suppose dim coker mDJ,X+χH

(T,u) �= 0 and is non-decre
asing under the perturbation by h. That means that for each η

i
, i =

1, . . . , pm, there is a small η0 ∈ Lp
1(Vm) such that

( mD
J,X+χH+h

(T,u) )∗(η
i
+ η0) = ( mDJ,X+χH

(T,u) )∗(η0) + ∇∇h(u)(η
i
+ η0) = 0.

Of course, this is possible only when

Π
(ker mD

J,X+χH
(T,u) )⊥(∇∇h(u)(η

i
+ η0)) = 0.

When h is small, the set of such h’s is modeled on the solution space of the
equations:

(21) aij := 〈ξ
j
,∇∇h(u)η

i
〉2 = 0 ∀i, j ∈ {1, 2, . . . , pm}.

We shall show that there exists some choice of h such that the matrix (aij)
is non-trivial, contradicting (21).
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Since we shall choose h to be supported on a small neighborhood, it
suffices to consider restrictions of η

j
, ξ

i
to a contractible subset of Θu, over

which Vm splits as the direct sum of m copies of u∗K. Let η1
j , η

2
j , . . . , η

m
j

be the components of η
j

with respect to this splitting; similarly for ξk
i , k =

1, 2, . . . , m. Locally, aij may be written as

(22) aij =
∫ ∑

k

Tru∗K(∇∇h(u)ηk
j ⊗ ξk

i ) ds dt.

A direct computation from (20) shows that the (Γ(End(u∗K))-valued)
matrix

(Aij) :=
(∑

k

ηk
j ⊗ ξk

i

)

=
(∑

k

(Lkη1
j ) ⊗ (Lkξ1

i )
)

= F ⊕ G,

where

F :=

⎛

⎝
p′
∑

l,l′=1

mεll′

2
ιll′

(
η1
1 ⊗ ξ1

1 + η1
2 ⊗ ξ1

2 η1
1 ⊗ ξ1

2 − η1
2 ⊗ ξ1

1
−η1

1 ⊗ ξ1
2 + η1

2 ⊗ ξ1
1 η1

1 ⊗ ξ1
1 + η1

2 ⊗ ξ1
2

)
⎞

⎠ ;

G := m(ηj ⊗ ξi)pm≥i,j>2p′ .

εll′ = 1 when ql = ql′ mod n, and equals 0 otherwise; ιll′ is the embedding
of the space of 2 × 2 matrices into the space of (2p′) × (2p′) matrices

ιll′((apq)) = (bij), bij = ai−2l+2, j−2l′+2,

apq = 0 if p, q �∈ {1, 2}.
Note that by the unique continuation theorem (cf. [14]), any element

in kerDJ,X+χH

((mT ),um) or coker DJ,X+χH

((mT ),um) are non-vanishing for all but isolated
(s, t), so we can find an (s0, t0) away from Ω(u) ∪ R(u) such that in a small
neighborhood of which, ξ1

1 , η
1
1 are non-vanishing and not colinear with ∂su

(this is possible because i−1
m ξ1, i

−1
m η1 are L2-orthogonal to ∂su

m.
We shall choose h to be of the following form. Let φt : U(u(s0, t0)) →

R
2n = {(χt

0, χ
t
1, . . . , χ

t
2n−1) |χt

i ∈ R} be t-dependent local coordinate charts
on a neighborhood U(u(s0, t0)) of u(s0, t0) ∈ M such that φt(u(s, t)) =
(s − s0, 0, . . . , 0), and φt is smooth in t. Let

ht(x) = β(t − t0)βU(u(s0,t0))(x)
2n−1∑

i,j=1

Bijχt
i(x)χt

j(x),

where β : R → [0, 1] is a smooth cutoff function supported in a small
neighborhood near 0, and βU(u(s0,t0)) is a smooth cutoff function on M
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supported on U(u(s0, t0)). (Bij) is a symmetric (2n − 1) × (2n − 1) matrix;
we denote the corresponding bilinear form B : Sym2Tu(s0,t0)M → R.

This choice of h apparently satisfies ht(u(s, t)) = 0; ∇ht(u(s, t)) = 0.
Moreover, since (aij) = (

∫
Tru∗K(∇∇h Aij) ds dt), if A11 is in G, it is

obviously possible to choose a (Bij) such that

a11 ∼ CB(ξ1
1(s0, t0), η1

1(s0, t0)) �= 0

for a constant C. If A11 is in F and η1
2, ξ

1
2 are non-trivial multiples of η1

1, ξ
1
1

or ξ1
1 , η

1
1 respectively, then by elementary algebra, for generic B one of a11

and a12 must be non-vanishing, since they are of the form

a11 = C
(
B(ξ1

1(s0, t0), η1
1(s0, t0)) + B(ξ1

2(s0, t0), η1
2(s0, t0))

)
+ o(1)

a12 = C
(
B(ξ1

2(s0, t0), η1
1(s0, t0)) − B(ξ1

1(s0, t0), η1
2(s0, t0))

)
+ o(1).

In the remaining case, B(ξ1
2(s0, t0), η1

2(s0, t0)) is either zero or can be
chosen independent of B(ξ1

1(s0, t0), η1
1(s0, t0)) so it is again easy to make

a11 �= 0. �

4. Main theorems from a general invariance theorem

In this section, we derive the theorems stated in Section 2 from a general
invariance theorem, Theorem 4.1.1 below. A rough outline of the proof for
Theorem 4.1.1 is provided in Section 4.4, while the details are subjects of
the remaining sections in this paper.

4.1. Proof of Theorem 2.3.3, assuming Theorem 4.1.1. Let Λ ⊂ R

be an interval. A path {Xλ}λ∈[1,2] in X is said to be H1-codirectional if
∃ 〈Y〉 ∈ Hom(H; R) so that

(23) 〈YXλ
〉
∣
∣
∣
ker ψ

= αλ〈Y〉
∣
∣
∣
ker ψ

for some αλ ≥ 0 ∀λ.

4.1.1. Theorem. (General invariance theorem) Let M be w+-mono-
tone, and (J1, X1), (J2, X2) be two regular pairs. Suppose there exists an
H1-codirectional path {Xλ}λ∈[1,2] in X connecting X1, X2. Then

⎧
⎪⎨

⎪⎩

IF(J1, X1) = IF(J2, X2) if α1 > 0, α2 > 0, or α1 = α2 = 0;
i−〈Y〉IF(J1, X1) = IF(J2, X2) if α1 = 0, α2 > 0;
i−〈Y〉IF(J2, X2) = IF(J1, X1) if α2 = 0, α1 > 0.

4.1.2. Proof of Theorem 2.3.3. Part (a): We show that the conditions
of Theorem 2.3.3 imply the conditions of Theorem 4.1.1.

Let X1 = X + χH1 and X2 = X + χH2 . Then they are connected by
a path {Xλ} in X of the form X + χHλ

, since H is path-connected. The
cohomology class YXλ

is independent of λ in this case. Theorem 2.3.3(a)
now follows immediately from Theorem 4.1.1.
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Part (b) is the consequence of the next, more general theorem. �

4.1.3. Theorem. Let (M, ω) be w+-monotone. If M, f, [γ0] satisfy either
of the additional conditions (a) or (b) below, then I

f,[γ0]
F (M) is invariant

under symplectic isotopies in the sense of (8):
(a) There is an α ∈ R such that

(24) ω
∣
∣
∣
π2(M)

= αc1

∣
∣
∣
π2(M)

as cohomology classes of M .

(b) (f, [γ0]) is “monotone” in the sense that ψ
f,[γ0]
ω = αψ

f,[γ0]
c for some

α ∈ R.

In the last line, we added the superscripts f, [γ0] to the notation ψω, ψc

to emphasize their dependence on f, [γ0].

Examples.
(a) Condition (a) holds when (M, ω) is monotone.
(b) When M is a Kähler–Einstein manifold, any (f, [γ0]) is monotone.

A similar notion of “monotone symplectomorphisms” was introduced
for the n = 1 case in [42].

Proof of Theorem 4.1.3. Because −〈YX〉 = ψ
f,[γ0]
ω − ∂∗

f [θX ] and X is path-

connected, if for fixed f, [γ0] there exists an X0 ∈ X such that 〈YX0〉
∣
∣
∣
ker ψ

= 0,

any X ∈ X can be connected to X0 via a path satisfying (23). Invariance
under symplectic isotopies would then follow from Theorem 4.1.1.

We now verify that this is true for both cases (a) and (b). In case (b),
ψω

∣
∣
∣
ker ψ

= αψc

∣
∣
∣
ker ψc

= 0, so X0 can be simply taken to be 0.

For case (a), note that an examination of the maps in (12) shows that
there is a short exact sequence

0 → H
′ → H → H

′′ → 0,

where H′ = Image(ιf∗ ◦ Hurewicz), and H′′ = Image(∂f ◦ im). On the
other hand, (24) and the fact that [c1(TM)] = ι∗f [cf ], [ω] = ι∗f [ωf ] imply

(ψf,[γ0]
ω − αψ

f,[γ0]
c )

∣
∣
∣
H′

= 0. Thus, there exists a (non-unique) θ ∈ H1(M)

such that
ψf,[γ0]

ω − αψf,[γ0]
c = ∂∗

fθ
∣
∣
∣
H
.

Now choose X0 ∈ X such that its Calabi invariant [
∫

θX0,t dt] = θ. �

4.2. A fundamental example. We explain here how Corollary 2.3.4
follows from Theorem 2.3.3(b). It is restated in a slightly more general
form as follows.
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4.2.1. Corollary. Let (M, ω) be w+-monotone and supppose it satisfies
(24). Let Φ = {φλ |λ ∈ [0, 1]} be a symplectic isotopy with φ0 = id,
φ1 = f , and γ0 = Φ · γp, γp being the constant path at p ∈ M . Then
IF is invariant under symplectic isotopies in the sense of (8); furthermore,
I

f,[γ0]
F (M) = τ(M).

Proof. In this case, the fibration (10) has a standard section, and therefore
via the homotopy exact sequence of the fibration, we have the decomposition
π1(C) = π1(M)×π2(M). On the other hand, since in this case Tf � M ×S1,
H2(Tf ; Z) = H1(M ; Z)⊕H2(M ; Z), and im is simply the abelianization map.
Thus,

(25) H = H1(C; Z) = H1(M ; Z) ⊕ π2(M).

In terms of this decomposition,
ψc = 0 ⊕ [c1(TM)] : H1(M) ⊕ π2(M) → Z,

ψω = θΦ ⊕ [ω] : H1(M) ⊕ π2(M) → R,

θΦ being the Calabi invariant of Φ. The coefficient ring for the Floer
complex is

ΛF = Nov(H1(M) ⊕ Ker(ψc|π2(M)),−θ ⊕ [ω]; Z).

By the monotonicity of M , Theorem 4.1.3(a) ensures the invariance under
symplectic isotopies. Furthermore, by Section 3.1.4, we may assume without
loss of generality that f = id, and γ0 = γp.

Thus, I
id,[γp]
F (M) can be computed at a regular pair (J, X) which is

t-independent, with X = χH , H being a small Morse function on M . By a
standard argument (see e.g., [12] and Section 7 of [40]), such regular pairs
exist, and P(X), MP (J, X), MO(J, X) in this case consist of t-independent
elements, namely, critical points, gradient flow lines, and periodic orbits of
H, respectively. Thus,

CFk∈Z/2Z(J, X) = CMk∈Z/2Z(H) ⊗Z[H1(M ;Z)] Z[H1(M ; Z) ⊕ Ker(ψc|π2(M))],

where CM∗(H) is the twisted Morse complex of H. Namely, it is defined in
exactly the same way as the construction of CF in Section 2.2.2, modeling
on the lift of the gradient flow of H to the universal abelian covering M̃ .

We also need to compare the orientations on the moduli spaces that enter
into the definition of the boundary maps ∂F and ∂M . As mentioned in
Remark 2.2.4, while on the Floer theory side the moduli spaces are endowed
with coherent orientations (as in [13], and II.7.2 later), on the Morse theory
side the moduli spaces are oriented via their interpretation as intersection
spaces (as in e.g., [22]). Linearized versions of the adiabetic analysis which
identified the Floer-theoretic moduli spaces with the Morse-theoretic moduli
spaces also identify the Floer-theoretic coherent orientations with coherent
orientations of solution spaces of the gradient flow equation of H. On the
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other hand, the arguments in [41] Section 3 and Appendix B shows that
this analytic version of orientation agrees with the geometric version of
orientation. Thus, the complexes CF∗(J, X) and CM∗(H) have the same
boundary map ∂F = ∂M .

Lastly, MO(J, χH) = ∅ since the gradient flow of the real-valued function
H has no periodic orbits. Thus,

I
id,[γp]
F (M) = ι∗τ(CM(H)) = ι∗τ(M).

The second equality above is the well-known equivalence between torsions of
Morse complexes (of real-valued Morse functions) and torsions of cell chain
complexes (see e.g., [35]). �
Remark. In [32], Le and Ono considered a Floer theory under assumptions
similar to Theorem 4.1.3. There they showed that in this case, a (twisted
version of) Floer homology is equivalent, up to a change of coefficients, to a
Novikov homology (a version of twisted Morse homology).

Their definition of Floer complex is different from ours in that they used
a smaller covering of the loop space. The advantage of this choice is that
the associated homology retains more information (i.e., is less likely to be
trivial), though it has worse invariance properties. In this paper, our main
concern is torsion, and the torsions associated to different coverings are
related by a simple change of coefficients induced by maps between covering
groups. For our purpose the larger covering is therefore the better choice.

4.3. Regular homotopy of Floer systems. The proof of Theorem 4.1.1
will rely on the existence of a certain path of formal vector fields {Vλ}
connecting the two generated by (J1, X1) and (J2, X2). The purpose of this
subsection is to describe such paths of vector fields, called “regular homotopy
of Floer systems”.

We shall work on an abstract level for the rest of this section, as we did
in Section 2.1. The eventual goal is to give a formal proof of the invariance
of IF (cf. Proposition 4.4.6), which applies to any Floer theory satisfying
the outline in Section 2.1.

4.3.1. CHFSs. A codirectional homotopy of Floer systems (CHFS for
short) is a 1-parameter family of formal flows {(C,H, ind;Yλ, Vλ)}λ∈Λ=[1,2]
(abbreviated as {Vλ}λ∈Λ=[1,2]) such that:

• V1, V2 generate Floer systems with the same SF-homomorphism
ψ, and

• ∃ λ-independent 〈Y〉 ∈ Hom(H, R), so that 〈Yλ〉
∣
∣
∣
ker ψ

= αλ〈Y〉
∣
∣
∣
ker ψ

for

some αλ ≥ 0 ∀λ.
Such a 〈Y〉 will be called a c-class of the CHFS. Notice that for a CHFS, the
associated Novikov ring Nov(kerψ, −〈Yλ〉; Z) = Nov(kerψ, −〈Y〉; Z) remains
the same through the homotopy.
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Given a closed interval S ⊂ Λ, we say that {Vλ}λ∈S is a sub-homotopy
over S of the CHFS {Vλ}λ∈Λ.

Define the parametrized moduli spaces PΛ =
⋃

λ Pλ, M
Λ,k+1
P =

⋃
λ Mk

P,λ,

M
Λ,k+1
O =

⋃
λ Mk

O,λ, where Pλ, MP,λ, MO,λ are moduli spaces of the formal
flow generated by Vλ. We denote the projection of these parametrized
moduli spaces to Λ by ΠΛ in general. In addition, define

PΛ,deg = PΛ\
⋃

λ∈Λ

Pλ,ndg.

A CHFS is regular (i.e., is an RHFS) if the parametrized moduli spaces
satisfy all the properties (RHFS*) below. These properties are written
modeling on the generic behavior of a 1-parameter family of flows in finite-
dimensional Morse–Novikov theory.

4.3.2. Properties of PΛ, PΛ,deg.

(RHFS1) PΛ is a compact Zariski smooth 1-manifold with boundary ∂PΛ =
P2 − P1. The space PΛ,deg coincides with the set of critical points of ΠΛ; in
addition, it consists of finitely many points in the interior of PΛ, which are
extrema of ΠΛ.

In fact, the identifcation of PΛ,deg with critical points of ΠΛ is a direct
consequence of the Zariski smoothness of PΛ. To see this, note that the
deformation operator for PΛ at xλ, denoted Âxλ

, is a rank 1 extension of
Axλ

given by

Âxλ
(α, ξ) = α∂λVλ + Axλ

ξ for α ∈ R, ξ ∈ Txλ
C.

Apparently, kerAxλ
⊂ ker Âxλ

. Zariski smoothess of PΛ implies that the
latter is one-dimensional, and therefore, the former is either zero-dimensional
or one-dimensional. In the first case, xλ is a non-degenerate element of Pλ; in
the second case, it is said to be minimally degenerate. Furthermore, notice
that dΠΛ : Txλ

PΛ → TλΛ is given by projecting ker Âxλ
⊂ R ⊕ Txλ

C to
the R-summand. This projection is trivial precisely when xλ is minimally
degenerate, and hence PΛ,deg consists precisely of critical points of the
map ΠΛ.

(RHFS1i) (Injectivity) The restriction ΠΛ

∣
∣
∣
PΛ,deg

is injective.

Elements of PΛ,deg are called death–births: a local maximum of ΠΛ is
called a death, and a local minimum is called a birth. We denote

Λdb := ΠΛ(PΛ,deg) ⊂ Λ.

A small neighborhood S of a subset P ⊂ Λdb is called a death–birth
neighborhood. The half ΠΛ(PS\PS,deg) ⊂ S is called a birth-neighborhood,
and the other half S\ΠΛ(PS) is called a death-neighborhood.
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Let P̃Λ, P̃Λ,deg be, respectively, the lifts of PΛ, PΛ,deg ⊂ Λ × C to Λ × C̃.
Note that ind (respectively gr) defines a locally constant function on

PΛ\PΛ,deg (respectively (P̃Λ\P̃Λ,deg)×2). Let gr+, gr− : (P̃Λ)×2 → Z denote
the upper-semicontinuous and the lower-semicontinuous extension of gr,
respectively. Similarly for ind+, ind− : PΛ → Z/2Z. It follows from the
definition of ind, gr via spectral flow and the fact that kerAxλ

= 1 for any
xλ ∈ PΛ,deg that:

gr−((xλ, [wλ]), ·) = gr+(·, (xλ, [wλ])) − 1;

gr−(·, (xλ, [wλ])) = gr+((xλ, [wλ]), ·) − 1;

ind−(xλ) = ind+(xλ) − 1 for any (xλ, [wλ]) ∈ P̃Λ,deg.

(26)

By (RHFS1, 1i), PΛ\PΛ,deg consists of finitely many path components,
and ΠΛ restricts to a diffeomorphism from each such component x to its
image in Λ, which we denote by Λx. Denote the set of such path components
by ℵΛ. Similarly, let ℵ̃Λ be the set of path components of P̃Λ\P̃Λ,deg. Given
λ ∈ Λ, we denote by xλ

xλ = Π−1
Λ (λ) ∩ x.

Since ind is constant over x, we denote ind(x) = ind(xλ) for an arbitrary
λ ∈ Λx. Similarly for gr.

4.3.3. Weight truncation associated to 〈Y〉 and eP. Before proceeding
to the next property of RHFS, we shall describe a truncation of the moduli
spaces by certain weight determined by 〈Y〉. This is essentially equivalent
to truncating by energy, but is better suited for a uniform description of the
moduli spaces in a CHFS.

Given a formal flow (C,H, ind;Yχ, Vχ), choose a Y ∈ Hom(H, R) and an
basis eP for CF as in Section 2.2.3 (2.3). Namely, a lifting Lf : P → P̃, and
a choice of A0 ∈ H such that ψ(A0) = 2Nψ when Nψ �= 0. In this case, this
choice decides a splitting

H = ker ψ ⊕ ZA0.

A connecting flow line u belongs to certain MP (Lf(x), A · Lf(y)) for a
unique A ∈ H, and [u]H := A is said to be the H-class of u. On the
other hand, when u is a closed orbit, then [u]H := A when u ∈ MO(A).
The ker ψ-class of u, denoted [u]ker ψ, is the projection of [u]H to ker ψ
according to the above splitting determined by A0; in the case when Nψ = 0,
[u]ker ψ := [u]H. Similarly, for A ∈ H, [A]ker ψ denotes its projection to kerψ,
in accordance with the above splitting when Nψ �= 0 (otherwise ker ψ = H,
and [A]ker ψ = A). The weight of a u ∈ MP or MO, denoted wt−Y,eP

(u), is
defined to be −Y [u]ker ψ.
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For a CHFS, we define the weight for elements in MΛ
P or MΛ

O by fixing
a lifting PΛ → P̃Λ (which in turn gives a consistent system of liftings
Lf : Pλ → P̃λ for each λ ∈ Λ), fixing a λ-independent A0, and letting
Y = 〈Y〉 ∀λ for a c-class 〈Y〉. Such a weight is said to be adapted to the
CHFS {Vλ}.

Given � ∈ R, let

M
S,k
P (x,y; wt−〈Y〉,eP

≤ �), M̂k
P,λ(xλ, yλ; wt−〈Y〉,eP

≤ �)

be the moduli spaces consisting of flows with weight ≤ � and appropriate
additional constraints. Similarly, for other variants of moduli spaces and
MO, MΛ

O.
Let Ãλ be the primitive of Yλ with Ãλ(γ0) = 0. Then

E(uλ) =

{
−〈Yλ〉[uλ]H − Ãλ(Lf(yλ)) + Ãλ(Lf(xλ)) if uλ ∈ MP,λ(xλ, yλ);
−〈Yλ〉[uλ]H if uλ ∈ Mλ,O.

Thus, we have the following relation between energy and weight:
(27)

E(uλ) =

⎧
⎪⎨

⎪⎩

αλ wt−〈Y〉,eP
(uλ) + βλψ([uλ]H) + Ãλ(Lf(xλ)) − Ãλ(Lf(yλ))

if uλ ∈ MP,λ(xλ, yλ);
αλ wt−〈Y〉,eP

(uλ) + βλψ([uλ]H) if uλ ∈ Mλ,O,

where βλ = −〈Yλ〉(A0)/(2Nψ) is continuous in λ.
For elements in Mk

P,λ or Mk
O, all terms above are fixed except for the

first term involving the weight. Thus, the filtration by weights on these
moduli spaces are equivalent to filtration by energy when αλ > 0, while
when αλ = 0, the energy filtration is the trivial filtration. Furthermore, as
the constant terms above vary continuously in λ, and PΛ is compact, the
above formula gives a uniform bound on energy by weight.

4.3.4. Structure of MP,λ for λ ∈ Λdb. In the case when x, y ∈ P are
either non-degenerate or minimally-degenerate, let Mk

P (x, y) be the moduli
space of connecting flow lines which lift to be paths from (x, [w]) to (y, [v])
in C̃, with gr+((x, [w]), (y, [v]) = k.

(RHFS2d) (moduli at Death–births) For any λ ∈ Λdb, any integer k < 2,
and any pair xλ, yλ ∈ Pλ, MP,λ((xλ, [wλ]), (yλ, [vλ])) is a Zariski smooth
manifold of dimension k. Furthermore, for any real constant �, the moduli
space M̂0

P (xλ, yλ; wt−〈Y〉,eP
≤ �) consists of finitely many Zariski smooth

points.

When xλ, yλ are both non-degenerate, the above statement is part of
property (FS2).
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4.3.5. The Structure of MΛ
P . Consider the parameterized moduli spaces

over an interval S ⊂ Λ:

M̂S
P ((x, [w]), (y, [v])) :=

⋃

λ∈S∩Λx∩Λy

M̂P,λ((xλ, [wλ]), (yλ, [vλ])),

M̂S
O :=

⋃

λ∈S

M̂O,λ.

These are included in parameterized versions of moduli spaces of broken
trajectories/orbits,

M̂
S,+
P ((x, [w]), (y, [v])) :=

⋃

λ∈S̄∩Λ̄x∩Λ̄y

M̂+
P,λ((x, [w]), (y, [v])),

M̂
S,+
O :=

⋃

λ∈S̄

M̂+
O,λ,

where M̂+
P,λ((x, [w]), (y, [v])) is the reduced, broken-trajectories variant of:

MP,λ((x, [w]), (y, [v])) := M
(σ1,σ2)
P,λ ((xλ, [wλ]), (yλ, [vλ])),

with weights σ1, σ2 chosen such that

gr(σ1,0)((xλ, [wλ]), ·) = gr((x, [w]), ·); gr(σ2,0)((yλ, [vλ]), ·) = gr((y, [v]), ·).

Other variants of the moduli spaces such as M̂
S,k,+
P (x,y; wt−〈Y〉,eP

≤ �) can
be defined in a similar way. The definition of chain topology extends to
these parameterized versions in an obvious manner.

(RHFS2) Given x,y ∈ ℵΛ, an integer k ≤ 1, and an interval S ⊂ Λ,
the parameterized moduli space M̂

S,k
P (x,y) is a Zariski smooth-manifold of

dimension gr(x,y); furthermore, the parameterized moduli space of broken
trajectories M̂

Λ,k,+
P (x,y; wt−〈Y〉,eP

≤ �) is compact for any �.

Notice that since M̂
S,0,+
P (x,y; wt−〈Y〉,eP ≤ �) = M̂

S,0
P (x,y; wt−〈Y〉,eP ≤

�), (RHFS2) implies that this moduli space consists of finitely many
non-degenerate points.

(RHFS2i) (Injectivity) The projection ΠΛ is injective on the space

M̂
S,0
P :=

∐

x,y∈ℵΛ

M̂
S,0
P (x,y).
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Elements in this space are called handle-slides. They are said to be of
type II if x = y. Otherwise they are of type I. Let

Λ�
hs := ΠΛ

( ∐

x,y∈ℵΛ

M̂
Λ,0
P (x,y; wt−〈Y〉,eP ≤ �)

)
;

Λ�
hs:ii := ΠΛ

( ∐

x∈ℵΛ

M̂
Λ,0
P (x,x; wt−〈Y〉,eP ≤ �)

)
;

Λhs :=
⋃

�
Λ�

hs; Λhs:ii :=
⋃

�
Λ�

hs:ii.

These subsets of Λ are disjoint from Λdb.

To state the next property, introduce the following zero-dimensional
stratum in M̂

Λ,1,+
P (x,y; wt−〈Y〉,eP ≤ �): let TP,hs-m(x,y; �) be the subset

consisting of k-th broken trajectories connected at non-degenerate critical
points, with k > 1. (RHFS2i) implies that such broken trajectories occur
(only) with Type II handle-slides (namely, ΠΛTP,hs-m(x,y; �) surjects to
Λ�

hs:ii).
Let IP (x,y; �) := M̂

Λ,1,+
P (x,y; wt−〈Y〉,eP ≤ �)\M̂

Λ,1
P (x,y; wt−〈Y〉,eP ≤ �).

(RHFS2c) (Corner structure) The moduli space of broken trajectories,
M̂

Λ,1,+
P (x,y; wt−〈Y〉,eP ≤ �), is lmb along IP (x,y; �)\TP,hs-m(x,y; �).

4.3.6. The Structure of MΛ
O.

(RHFS3) Given k ≤ 1, the parameterized moduli space M
S,k+1
O (A) is a

Zariski smooth-manifold of dimension k + 1 with a semi-free S1 action.
Furthermore, The space M̂

S,k,+
O (wt−〈Y〉 ≤ �) is compact.

(RHFS3c) (Corner structure) The moduli space of broken orbits,
M̂

Λ,1,+
O (wt−〈Y〉,eP ≤ �)), is lmb along IO(�)\TO,hs-m(�), where IO(�) and

TO,hs-m(�) are defined similarly to IP (x,y; �), TP,hs-m(x,y; �).

4.3.7. Orientations. Let sign(p : P ) denote the sign of p ∈ ∂P oriented as
a boundary point of the oriented 1-manifold P , and the sign of an xλ ∈ PΛ,deg

be defined by

sign(xλ) =

{
+1 when xλ is a death;
−1 when xλ is a birth.

Notice that that sign(xλ) = sign(λ : Λx) when xλ ∈ PΛ,deg are on the
boundary of the path component x ⊂ P\PΛ,deg.

The notions of coherent orientation and grading-compatible orientation
can be extended to parameterized moduli spaces, as will be explained in
II.7.2.
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(RHFS4)The parameterized moduli spaces of connecting flow lines
{M̂

S,k
P (x,y)} can be endowed with a coherent orientation, and the parame-

terized moduli space of closed orbits M
S,2
O can be endowed with a grading-

compatible orientation. With respect to these orientations, the strata

IP (x,y; �)\TP,hs-m(x,y; �) and IO(�)\TO,hs-m(�),

oriented, respectively, as boundary components of the parameterized moduli
spaces

M̂
Λ,1,+
P (x,y; wt−〈Y〉,eP ≤ �) and M̂

Λ,1,+
O (wt−〈Y〉,eP ≤ �),

are expressed in terms of lower-dimensional moduli spaces as follows:

IP (x,y; �)\TP,hs-m(x,y; �) = JP (x,y; �) � TP,db(x,y; �) � TP,hs-s(x,y; �);

IO(�)\TO,hs-m(�) = JO(�) � TO,db(�) � TO,hs-s(�),

where

JP (S,x,y; �) =
∐

λ∈∂(S∩Λx∩Λy)

sign(λ : S ∩ Λx ∩ Λy) M̂0
P,λ(x,y; wt−〈Y〉,eP ≤ �),(28)

TP,db(x,y; �) = M̂
Λ,1,+
P (x,y; wt−〈Y〉,eP ≤ �)∩

∐

zλ∈PΛ,deg

∞∐

k=0

sign(zλ)(−1)k M̂0
P,λ(xλ, zλ) × M̂0

P,λ(zλ, zλ)×k × M̂0
P,λ(zλ, yλ),

(29)

TP,hs-s(x,y; �) = M̂
Λ,1,+
P (x,y; wt−〈Y〉,eP ≤ �)∩

∐

i=0,1

∐

z∈ℵΛ

(−1)iM̂
S,i
P (x, z) ×S M̂

S,1−i
P (z,y),(30)

(31) JO(S, �) =
∐

λ∈∂S

sign(λ : S)M̂0
O,λ(wt−〈Y〉,eP ≤ �),

TO,db(�) = M̂
Λ,1,+
O (wt−〈Y〉,eP ≤ �) ∩

∐

yλ∈PΛ,deg

∐

k∈Z+

sign(yλ)(−1)k+ind+(yλ)M̂0
P,λ(yλ, yλ)×k,(32)

(33) TO,hs-s(�) =
∐

x∈ℵλ

(−1)ind(x)+1M̂
S,0
P (x,x; wt−〈Y〉,eP ≤ �).
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Remarks. TP,db, TO,db consist of broken trajectories/orbits connected at a
degenerate critical point (a death–birth); TP,hs-s, TO,hs-s consist of once-
broken trajectories/orbits connected at a non-degenerate critical point,
which occur with handle-slides.

The local structure of the parameterized moduli spaces of broken
trajectories/orbits near TP,hs-m, TO,hs-m is not understood. In fact, it seems
that this is very sensitive to perturbations, and thus is not described by a
universal formula. (See II.1.2.5 for more discussion of this difficulty from
the perspective of gluing theory).

We shall show later (Section 6 and Part II) that under the assumptions of
Theorem 4.1.1, there is an RHFS connecting the Floer systems associated
with the pairs (J1, X1), (J2, X2).

4.4. Invariance from RHFS. Let {(C,H, ind;Yλ, Vλ) |λ ∈ [1, 2]} be an
RHFS. If (C,H, ind;Yλ, Vλ) is a Floer system, let (CF(Vλ), ∂F(Vλ)) denote
the associated Floer complex. Let ηF(Vλ), ζF(Vλ), IF(Vλ), etc., be similarly
defined. We are interested in how they vary with λ. By understanding this,
we will see in this subsection that the existence of an RHFS satisfying some
extra condition ((NEP) in 4.4.5 below), imply that IF(V1) = IF(V2).

The condition (NEP) roughly says that the induced CHFSs on finite-
cyclic covers of C may be perturbed into RHFSs. It is needed because
(RHFS*) says nothing about the structure of the parameterized moduli
spaces near TP,hs-m and TO,hs-m; thus from an RHFS one may only conclude
the invariance of IF “up to first order”. By considering induced CHFSs on
finite-cyclic covers of C, the higher order contributions are recovered from
the relation between torsion invariants of a space and its finite-cyclic covers.

The contents of this subsection are included only for the sake of
completeness: they are straightforward consequences of (RHFS*), and are by
no means new. We shall, therefore, leave out some details of the arguments
which the reader may easily fill in, or find in the literature. A similar account
with complete details may be found in [21].

4.4.1. Preparations. Recall that throughout an RHFS with c-class 〈Y〉,
the associated Novikov ring is ΛF = Nov(kerψ, −〈Y〉; Z). Its ring of fractions
Q(ΛF) embeds via (3) into a Novikov ring, which we denote by ΩF. Both
Q(ΛF) and ΩF decompose as finite direct sums of fields,

Q(ΛF) =
⊕

κ

Fκ, ΩF =
⊕

κ

Kκ,

where each κ corresponds to an equivalence of characters κ : Tors(ker ψ) →
C

×, each Kκ is again a Novikov ring, and the embedding (3) is compatible
with the decomposition.

For the invariance proof, it is convenient to work with the Novikov ring
ΩF instead of Q(Λ), namely, we identify Q as an element in ΩF via the
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embedding (3), for Q = ∂F, τF, ηF, ζF, or IF. It is also sometimes convenient
to work with a field component of ΩF at a time. In such case, we denote
by Qκ = Q ⊗ΛF Kκ, namely, the image of Q under the composition of (3)
and the projection to the field component Kκ. Of course, invariance of Iκ

F
for each κ will imply invariance of the total IF.

Given a =
∑

g agg ∈ Nov(G, N ; R), let

TcN ;�[a] :=
∑

g∈G,N(g)≤�
agg.

Choose an ordered basis eP for each CF(Vλ) as in Sections 2.2.3 and
4.3, thus identifying ∂F(Vλ) = (∂F(Vλ)ij) with a matrix with entries
in ΩF. We will use Tc−〈Y〉;�[∂F(Vλ)] to denote the matrix with entries
Tc−〈Y〉;�[∂F(Vλ)ij ]. With the basis so fixed, τF(Vλ) and IF(Vλ) will now
be viewed as elements in the Novikov ring ΩF.

In contrast, let ∂F(Vλ; �), ηF(Vλ; �) be defined in the same way as ∂F, ηF
in Section 2.2 using weight-truncated versions of moduli:

∂F(Vλ; �)xλ,yλ
:=
∑

A∈H

χ
(
M̂0

P,λ(Lf(xλ), A · Lf(yλ); wt−〈Y〉,eP ≤ �)
)

[A]ker ψ;

ηF(Vλ; �) :=
∑

A∈ker ψ

χ
(
M̂0

O,λ(A); wt−〈Y〉,eP ≤ �)
)

A.

4.4.2. Invariance in regular range and left/right limits. Below are
some simple consequences of the smoothness and compactness properties of
the parameterized moduli spaces in (RHFS2, 3). Let

Λreg := Λ\(Λhs ∪ Λdb);

Λfloer := {λ |λ ∈ Λ, Vλ generates a Floer system}.

Lemma.
(a) Λfloer ⊂ Λreg ⊂ Λ is Baire.
(b) ∂F(Vλ; �) is well-defined and locally constant for λ in Λ\(Λ�

hs ∪ Λdb).
ηF(Vλ; �) is well-defined and locally constant for λ in Λ\(Λ�

hs:ii ∪ Λdb).
(c) For Q = ∂F, ηF, τF, ζF, or IF, Q(Vλ) is well-defined for all λ ∈ Λreg.

In fact, for Q = ∂F or ηF, Q(Vλ; �) = Tc−〈Y〉;�[Q(Vλ)] for any
λ ∈ Λreg.

(d) The statements (i)–(iii) below hold for Q = ∂F, ηF, ζF. They also hold
for Qκ = τκ

F , Iκ
F under the additional condition that

(34) H∗(CF(Vλ)κ) = 0 ∀λ ∈ Λreg,

(i) For all λ ∈ Λ, the following left and right limits are well-defined.

Qλ− := lim
λ′∈Λreg, λ′↗λ

Q(Vλ′), Qλ+ := lim
λ′∈Λreg, λ′↘λ

Q(Vλ′).

(ii) Qλ− = Qλ+ = Q(Vλ) when λ ∈ Λreg.
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(iii) For all sufficiently large �, Tc−〈Y〉;�[Qλ−] = Tc−〈Y〉;�[Qλ+] is
locally constant on Λ\(Λdb ∪ Λ2�

hs ).

Sketch of proof. Given x,y ∈ ℵΛ, and [a, b] ∈ Λ\(Λdb ∪ Λ�
hs), (RHFS2)

implies that M̂
[a,b],1
P (x,y; wt−〈Y〉,eP ≤ �) is a compact 1-manifold with

boundary M̂0
P,b(xb, yb; wt−〈Y〉,eP ≤ �)−M̂0

P,a(xa, ya; wt−〈Y〉,eP ≤ �). Namely,
the parameterized moduli space forms a cobordism between M̂0

P,b and M̂0
P,a.

Given λ ∈ [a, b], the fiber over λ of ΠΛ : M̂
[a,b],1
P (x,y; wt−〈Y〉,eP ≤ �) → Λ

is M̂0
P,λ(xλ, yλ; wt−〈Y〉,eP ≤ �), which is Zariski smooth and compact unless

λ is a critical value of ΠΛ. (This is because ker Euλ
⊂ ker DΠλ, where Euλ

is the deformation operator of the fiber at uλ.) By Sard’s theorem, non-
critical values form a Baire set. Claim (a) follows from this observation and
its analog for M̂O.

On the other hand, notice that one does not need λ ∈ Λfloer for
∂F(Vλ; �), ηF(Vλ; �) to be well-defined. Their definitions involve only Euler
characteristics of various moduli spaces M̂0

λ, and as long as there is a smooth
compact parameterized moduli space ΠΛ : M̂[a,b],1 → [a, b] containing M̂0

λ as
a fiber, χ(M̂0

λ) is well-defined and constant in λ ∈ [a, b]. Claims (b) and (c)
then follow.

To justify (d), one just needs to show that the terms in Tc−〈Y〉;�[Qλ]
(λ ∈ Λreg) only depend on Euler characteristics of moduli spaces with weight-
truncation wt−〈Y〉,eP ≤ 2�. The local constancy of Tc−〈Y〉;�[Qλ] in λ, and
hence the existence of left/right limits, would then follow from the same
cobordism argument used for (b).

For Q = ∂F, ηF, ζF, this is clear from the definitions; in fact, only flows
with wt−〈Y〉,eP ≤ � contribute.

The story with Q = τκ
F , Iκ

F is less straightforward and requires the
assumption that � is sufficiently large. We shall concentrate on Q = τκ

F ,
since the case of Q = Iκ

F follows from the cases of Q = τκ
F and Q = ζF.

First, note that by the compactness of M̂
Λ,1
P (wt−〈Y〉,eP ≤ �), there is a

constant C > 0 such that

(35) wt−〈Y〉,eP(uλ) ≥ −C ∀uλ ∈ M̂
Λ,1
P .

Write Λ\Λdb =
∐

k Sk, where each Sk is a path component of Λ\Λdb. The
Floer groups CF(Vλ) are independent of λ on each Sk. By the acyclicity of
(CF(Vλ)κ, ∂F(Vλ)κ), there is a splitting CFκ

i = Aκ
i ⊕ Bκ

i , Aκ
i , Bκ

i being each
spanned by elements in P, such that the submatrices ∂κ

i := ∂κ
F : Aκ

i → Bκ
i−1

are isomorphisms. (See [23] Lemma 2.7.) By the local constancy of
∂F(Vλ; �) and (RHFS2*) (see also Lemmas 4.4.4, 4.4.5 below), Aκ

i and Bκ
i

may be chosen independently of λ in each Sk. Furthermore, deg(∂κ
i ) is well
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defined and constant for each λ in Sk; we denote this value by Mi,k. Let
M := supk

∑
i |Mi,k|.

By (RHFS2), we may require � to be large enough so that the square
matrices ∂F(Vλ; �)κ : Aκ

i → Bκ
i−1 are isomorphisms for all i and λ ∈

Λ\(Λdb ∪ Λ�
hs). In addition, suppose

(36) � > 2M + C · #(ℵΛ).

According to [23] Lemma 2.7, τκ
F =

∏
i(det ∂κ

i )(−1)i
. Expanding, we see that

for λ ∈ Sk, the degree of any term in τF(Vλ)κ can be written as
∑

i(−1)i
Mi,k

plus a sum of non-negative terms of the form
dim Ai∑

j=1

wt−Y,eP
(uj) − Mi,k,

where uj are flows from an index i critical point to an index i − 1 critical
point. The constraint that deg ≤ � for any term in Tc−〈Y〉;�[τF(Vλ)κ],
together with (36) and (35) then imply that wt−Y,eP

(uj) ≤ 2� for any flow
uj contributing to Tc−〈Y〉;�[τF(Vλ)κ]. �

4.4.3. At a death–birth bifurcation. We shall focus on the case of a
death, since the case of a birth may be obtained from the case of a death
by reversing the orientation of Λ.

Suppose zλ ∈ PΛ,deg is a death with ind+(zλ) = i. Let λ−, λ+ ∈ Λfloer be
close to λ with λ− < λ < λ+. By (RHFS1*), Pλ− = Pλ+ � {z+

λ−
} � {z−

λ−
},

where ind(z+
λ−

) = i, ind(z−
λ−

) = i − 1. Thus,

CFi(Vλ−) = R{z+
λ−

}⊕CFi(Vλ+); CFi−1(Vλ−) = R{z−
λ−

}⊕CFi−1(Vλ+).

Since the left and right limits CFλ±,i = CFi(Vλ±), they have similar
decompositions.

The properties (RHFS2*, 3*, 4), especially those describing the structures
of the moduli spaces near TP,db and TO,db, lead to:

Lemma.
(a) In terms of the above decomposition of CFλ−,i, CFλ−,i−1, the left limit

(∂F,λ−)i : CFλ−,i → CFλ−,i−1 is:

(∂F,λ−)i =
(

1 + b v
w N

)

,

where

b =
∑

A∈ker ψ

χ(M̂0
P,λ(Lf(zλ), Lf(zλ)) A =

∑

j

bj

bj = sign(uj)[uj ]ker ψ where uj ∈ M̂0
P (zλ, zλ), uj �= zλ,
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v = (vyλ
), w = (wxλ

), N = (Nxλ,yλ
) are, respectively, a row vector, a

column vector, and a matrix, with entries given by

vyλ
=
∑

A∈H

χ(M̂0
P,λ(Lf(zλ), A · Lf(yλ)) [A]ker ψ,

wxλ
=
∑

A∈H

χ(M̂0
P,λ(Lf(xλ), A · Lf(zλ)) [A]ker ψ,

Nxλ,yλ
=
∑

A∈H

χ(M̂0
P,λ(Lf(xλ), A · Lf(yλ)) [A]ker ψ,

xλ, yλ ∈ Pλ being non-degenerate critical points with indices i and
i − 1, respectively. On the other hand,

(37) (∂F,λ+)i = N +
∞∑

k=0

(−1)k+1wbkv,

(b) (∂F,λ−)k = (∂F,λ+)k when k �= i, i ± 1. When k = i + 1 or i − 1,
(∂F,λ+)k is obtained from (∂F,λ−)k by deleting the row corresponding
to zλ−, or the column corresponding to zλ+, respectively.

(c) We have

(38) ηF,λ+ − ηF,λ− =
∞∑

k=1

∞∑

i1,...,ik=1

(−1)k+i+1

k
bi1 · · · bik .

(d) Hence, by elementary algebra

τF,λ+/τF,λ− = (1 + b)(−1)i+1

ζF,λ+/ζF,λ− = (1 + b)(−1)i

IF,λ+ = IF,λ−.

Remarks.
(a) By (RHFS2), the entries of b, v, w, N all take values in ΛF.
(b) Let eij denote a square matrix with the ij-th entry 1, and 0 for all

other entries. We refer to the conjugation action by an elementary
matrix of the form Id +eij as an elementary transformation. By an
expansion, we mean the direct sum with the rank 1 identity matrix,
and a collapse refers to the converse operation. When 〈Y〉 = 0, b = 0,
and the above lemma shows that in this case the left and right limits
∂F,λ−, ∂F,λ+ are related by expansion/collapse modulo elementary
transformations.

4.4.4. At a Type I handle-slide. Let uλ ∈ M̂
Λ,0
P (x,y), where x �= y.

Let T = ⊕iTi, where Ti : CFi(Vλ) → CFi(Vλ) is

Ti =
{

Id when i �= ind xλ,
Id + sign(uλ)[uλ]ker ψexλ,yλ

when i = indxλ = ind yλ.
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Lemma. In this case,
(a) ∂F,λ+ = T∂F,λ−T−1.
(b) ηF,λ+ = ηF,λ−.
(c) Hence, Qλ+ = Qλ− for Q = ζF, τF, IF.

This is again a consequence of (RHFS2*, 3*, 4): (a) follows from the
description of the structure of the moduli spaces near TP,hs-s, and (b)
follows from the fact that in this case, λ ∈ Λhs\Λhs:ii, and hence Π−1

Λ (λ)
∩∂M̂

Λ,1,+
O = ∅.

4.4.5. At a Type II handle-slide. Up to “first order”, this can be
described similar to Section 4.4.4 above. To understand the higher order
contributions, we need to further assume (NEP) below to apply Hutchings’s
argument. Some preparation is required to state the assumption (NEP).

For convenience, we introduce the following weaker version of RHFS: a
homotopy of formal flows is R-regular with respect to a weight truncation
wt−〈Y〉,eP , if in addition to (RHFS1*), the statements in (RHFS2*, 3*, 4)
are only required to hold for all weight-truncated versions

M̂0
P (xλ, yλ; wt−〈Y〉,eP ≤ �), M̂S,k

P (x,y; wt−〈Y〉,eP ≤ �), M̂S,k
O (wt−Y,eP

≤ �)

with � ≤ R. Notice that we do not require an R-regular homotopy to be a
CHFS.

A finite-cyclic cover of C is said to be H-adapted if it is a subcover of C̃,
and its monodromy factors as

πm ◦ ν ◦ im : π1(C) → Z/mZ,

where ν is a homomorphism ν : H → Z, and πm is the epimorphism
Z → Z/mZ. We shall denote the m-cyclic cover of such monodromy by
Cν,m.

Let uλ ∈ M̂
Λ,0
P (Lf(x), A · Lf(x)) be a Type II handle-slide. Let div(A)

denote the divisibility of A ∈ ker ψ ⊂ H.
An H-adapted m-cyclic cover, Cν,m, is said to be uλ-breaking if ν(A) =

div(A), and m > 1 does not devide div(A). Indeed, in this case the end
points of uλ lift to different points in Cν,m.

We are now ready to state the assumption. Let {(C,H, ind, Yλ, Vλ)}λ∈Λ
be an RHFS, and wt−〈Y〉,eP be a weight filtration adapted to this RHFS. Let

uλ ∈ M̂
Λ,0
P (Lf(x), A · Lf(x)) be a Type II handle-slide.

(NEP) Existence of non-equivariant perturbations. We say that
(NEP) holds for uλ if, given:

• an arbitrarily large � ∈ R
+,

• a small neighborhoods S′
λ, Sλ ⊂ Λ about λ, such that S′

λ is a proper
sub-interval of Sλ, and M̂

Sλ,0
P (wt−〈Y〉,eP ≤ �) contains an unique

element, uλ,
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• an arbitrary uλ-breaking, H-adapted finite-cyclic cover Cν,m,
there is an �-regular homotopy of formal flows, {V+

λ |λ ∈ Sλ} over Cν,m,
such that V+

λ agrees with the lift of Vλ to Cν,m ∀λ ∈ Λ\S′
λ.

Lemma. Assuming that (NEP) holds for uλ ∈ M̂
Λ,0
P (Lf(x), A ·Lf(x)). Then

(a) ∂F,λ+ = T∂F,λ−T−1, where T = ⊕iTi, Ti : CFi(Vλ) → CFi(Vλ) being

Ti =
{

Id when i �= indxλ,
Id + χexλ,xλ

when i = indxλ,

and χ = sign(u)[u] +
∑∞

j=2 χj [u]j ∈ Nov+(ker ψ, −〈Y〉; Z).
(b) ηF,λ+ − ηF,λ− = χ′, where χ′ = (−1)ind x sign(u)[u] +

∑∞
j=2 χ′

j [u]j ∈
Nov+(ker ψ, −〈Y〉; Z).

(c) τF,λ+ = (1 + χ)(−1)ind x+1
τF,λ−.

(d) IF,λ+ = IF,λ−.

Sketch of proof.
(a) follows from the description of the structure of the parameterized

moduli space of broken trajectories near TP,hs-s in (RHFS2c, 4), the
property (NEP), and the proof of [21] Lemma 3.7.

(b) is a consequence of the description of the structure of parameterized
moduli space of broken orbits near TO,hs-s in (RHFS3c, 4).

(c) follows from (a) by elementary algebra, and (b), (c) together imply
IF,λ− = cIF,λ+, where c = 1 +

∑∞
i=2 ci[u]i.

Now by (NEP), the proof of [21] Lemma 3.10 can be applied to
verify (d).

�

4.4.6. Conclusion. Summarizing the above, we state:

Proposition. Let {Vλ}λ∈[1,2] be an RHFS such that (NEP) holds for all
Type II handle-slide bifurcations. Then IF(V1) = IF(V2).

More precisely, IF(Vi) needs to be replaced by i−〈Y〉IF(Vi) when 〈Yi〉 = 0
for the above equality to make sense.

Proof. We shall show that IF(V1)κ = IF(V2)κ for each κ.
It follows from the invariance of Floer homology that either H∗(CF(Vλ)κ)

= 0 ∀λ ∈ Λreg, or H∗(CF(Vλ)κ) �= 0 ∀λ ∈ Λreg. (cf. [32]. Alternatively, one
may derive it from the description of bifurcation behaviors in Section 4.4.3–
4.4.5). In the latter case, IF(V1)κ = IF(V2)κ = 0 and we are done. Thus,
we may assume H∗(CF(Vλ)κ) = 0 ∀λ ∈ Λreg. The invariance of Iκ

F then
follows from Lemma 4.4.2 (d) and the comparison of left and right limits at
bifurcation points in Lemmas 4.4.3–4.4.5. �
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With this Proposition in place, the proof of Theorem 4.1.1 then consists
in showing that the conditions of Theorem 4.1.1 imply the existence of an
RHFS with property (NEP), that connects the Floer systems associated
to (J1, X1), (J2, X2). This is the goal of the rest of this paper. First, to
obtain (RHFS2d) we need to generalize the structural results for MP (x, y)
in Section 3.2 to case where one or both of the critical points x, y are
degenerate. This is done in the next section. In Section 6, we show that the
conditions of Theorem 4.1.1 imply the existence of certain CHFSs satisfying
all the properties (RHFS*) except for (RHFS2c, 3c, 4), called “admissible
(J, X)-homotopies”. It will be shown in part II that the remaining properties
(RHFS2c, 3c, 4), (NEP) can be derived from the definition of admissible
(J, X)-homotopies. This will then conclude the proof of Theorem 4.1.1.

5. Near a minimally degenerate critical point y

We now return to the context of the specific version of Floer theory described
in Section 3. This section contains detailed description of the behaviors of
various flows in the loop space near a minimally degenerate critical point
y: In Section 5.1 we give decay estimates of a flow in MP ending at y; in
Section 5.2, these estimates are applied to obtain the structure theory of
moduli spaces such as MP (x, y); in Section 5.3 we assume that y belongs
to a family y ∈ PΛ for a homotopy of Floer systems generated by a 1-
parameter family {(Jλ, Xλ)}λ∈Λ, and describe the neighborhood of y in PΛ.
These results will be useful for verifying the property (RHFS2d), and the
estimates will be important for the proofs of the gluing theorems in Part II.

5.1. A decay estimate for the flows. Following [36], we use center
manifold theory on Hilbert manifolds to describe the asymptotics of flows
ending at y (Proposition 5.1.3 below).

5.1.1. Preparations. Some preliminaries are required to state the assump-
tions of the Proposition.

First, notice that for any (possibly degenerate) (y, [v]) ∈ P̃, the
generalized Conley–Zehnder index ˜ind

σ
(y, [v]) is well-defined for any non-

zero σ with sufficiently small |σ|. Furthermore, it only depends on the sign
of σ.

Definition. For any (y, [v]) ∈ P̃,
{

˜ind+(y, [v]) := ˜ind
σ
(y, [v]) for a σ ∈ R

− with |σ| � 1;
˜ind−(y, [v]) := ˜ind

σ
(y, [v]) for a σ ∈ R

+ with |σ| � 1;

It is immediate from the definition that
˜ind+(y, [v]) − ˜ind−(y, [v]) = dim cokerAy,

in particular, it is 0 if y is non-degenerate; 1 if y is minimally degenerate.
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It is also immediate that ˜ind+, ˜ind− are, respectively, the upper semicon-
tinuous and lower semicontinuous extension of the function ˜ind on P̃\P̃deg.
Thus, with the definitions

ind± := ˜ind mod 2,

gr+((x, [w]), (y, [v])) := ˜ind+(x, [w]) − ˜ind−(y, [v]),

gr−((x, [w]), (y, [v])) := ˜ind−(x, [w]) − ˜ind+(y, [v]),

(26) indeed follows from (RHFS1).
Next, given a small positive ε, let

Uε ⊂ L2
2(y

∗K) = TyC

be an ε-neighborhood of 0. It corresponds to a small neighborhood of y in
C via the exponential map exp(y, ·). The vector field VX on C pulls back to
a vector field Ξ on Uε:

(39) Ξ(ξ) = Ay(ξ) + ny(ξ),

ny being the non-linear term. We leave the reader the easy task of finding
the explicit formula for ny, and limit ourselves to the following remark: ny

is in general a function of both ξ and ξ̇, but when Jt is integrable near
y(t), it depends on ξ only. (A formula for ny in an analogous situation
may be found in [10] Lemma 3.2. Note that in the second line of Floer’s
formula, X and Y should be interchanged. Moreover, since we consider
perturbation by symplectic vector fields, there will be an additional term
ΘN , Θ(θ, y, ξ) := (D3e)−1θ̌X(θ, exp(y, ξ)) in the notation of [10]).

We now state the conditions of the Proposition.

5.1.2. The conditions. Let (x, [w]), (y, [v]) ∈ P̃(X) be either non-
degenerate or minimally degenerate, with gr+((x, [w]), (y, [v])) = i ≤ 1. We
want to describe the asymptotic behavior of any u ∈ MP ((x, [w]), (y, [v]))
when one of x, y is minimally degenerate. (The non-degenerate case is
well-known.) Without loss of generality, suppose y is minimally degenerate;
the case when x is minimally degenerate is completely analogous. Assume
additionally the following:

(1) J ∈ J is such that ∀t ∈ S1, Jt is integrable in a small neighborhood
of y(t) ∈ M .

(2) Let ey be a unit vector in kerAy. Then Πker Ay∇ey∇eyny(0) �= 0. In
fact, we shall choose ey to be the unique unit vector such that

(40) Πker Ay∇ey∇eyny(0) = Cyey for a real Cy > 0.

(3) For any sufficiently small σ > 0, M
(σ,−σ)
P ((x, [w]), (y, [v])) = ∅.

Note that conditions (2) and (3) above are in fact generic: Condition (2)
holds for Hamiltonian perturbations in an open dense set of V 2

δ (J, X).
Condition (3) holds for a Baire set in V k

δ (J, X), k > 1, by the weighted
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version of Proposition 3.2.2, since according to Lemma 3.2.3, the expected
dimension of M̂

(σ,−σ)
P ((x, [w]), (y, [v])) is

gr+((x, [w]), (y, [v])) − 1 < 0.

We now state the main result in this subsection:

5.1.3. Proposition. Assuming Section 5.1.2, let u(s, t) be any element in
the moduli space MP ((x, [w], (y, [v])), and write

u(s) = exp(y, µ(s))

for large s. Then there exist constants Ci, C ′
i, i = 0, 1, 2, such that:

C ′
0/s ≤ ‖µ(s)‖2,2,t ≤ C0/s;

C ′
1s

−2 ≤ ‖∂sµ(s)‖2,1,t ≤ C1s
−2;

C ′
2s

−3 ≤ ‖∂2
sµ(s)‖2,t ≤ C2s

−3.

In fact, the argument below also yields estimates for higher derivatives,
but we shall only need them up to order 2.

The rest of this subsection is devoted to the proof of this Proposition.

First, recall that the usual Gromov compactness (such as in the proof of
[10] Theorem 1) implies:

5.1.4. Lemma. For any sufficiently small ε, there is an s0 = s0(ε) � 1
such that

(41) ‖µ(s)‖2,2,t + ‖∂sµ(s)‖2,1,t + ‖∂2
sµ(s)‖2,t ≤ ε for all s ≥ s0.

In fact, ‖µ‖Cε([s0,∞)×S1) is small.
This enables us to focus on the neighborhood Uε.

5.1.5. Existence of center manifold. Let ker A⊥
y be the L2-orthogonal

complement of ker Ay ⊂ L2(y∗K).

Lemma. There is a smooth map

ζ : ker Ay ∩ Uε → ker A⊥
y ∩ Uε,

such that its graph is a 1-submanifold of Uε tangent to ker Ay at 0, and
tangent to Ξ elsewhere.

This lemma follows from [36] Theorem 5.1.1 and the smoothness of J, X,
since Ay is L2-self adjoint with one-dimensional zero-eigenspace. The graph
of ζ above is a “center manifold” of the flow generated by VX ; It can be
made unique by extending Ξ linearly outside Uε ⊂ L2

2(y
∗K). (See [36].)
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A simple example. Let M = R
2 = {(x, y)|x, y ∈ R}, ω = dx ∧ dy.

Suppose J and H are both t-independent; J = J0 is the standard complex
structure, and Hλ(t, x, y) = x2 + λy2 + y3. For the Floer system generated
by (J, χH0), the center manifold is simply the y-axis, and the flow on the
center manifold (to 0) is easily seen to decay as C/s by a straightforward
computation.

5.1.6. Estimates for flows on the center manifold. We now show that
in general, the flow on the center manifold has the same decay behavior
exhibited by the example.

To solve for the flow on the center manifold, it suffices to solve for the
flow on its projection to kerAy.

Let b : R → ker Ay. If b(s) + ζ(b(s)) is a flow of Ξ, then b(s) satisfies:

(42)
db
ds

+ Πker Ayny(b + ζ(b)) = 0,

where Πker Ay denotes the L2-orthogonal projection from L2(y∗K) to ker Ay.

Lemma. Assuming (40) and (41), then any non-constant flow on the center
manifold b(s) + ζ(b(s)) satisfies the following estimate:

C̄ ′
k/sk+1 ≤ ‖∂k

s (b(s) + ζ(b(s))‖2,t ≤ C̄k/sk+1

for some positive constants C̄k, C̄
′
k, k = 0, 1, 2.

Proof. First observe the useful fact that on kerAy, all the Sobolev norms
are commensurate. Let b(s) = β(s)ey for an R-valued function β(s). We
have the following key inequalities: for all sufficiently small b,

(43) C ′β2 ≥ |〈ey, ny(b + ζ(b))〉2,t| ≥ Cβ2.

The left inequality is straightforward from the form of ny; the right
inequality is also straightforward from the definitions of ny and ζ by (40).

By the right inequality in (43) and (42) we have

dβ

ds
≤ −Cβ2 for a positive constant C.

Suppose β is a non-trivial solution. Then β is nowhere zero, since it satisfies
an ODE. We may thus divide both sides of the above expression by β2

and integrate over s, which gives β(s) ≤ 1/(Cs + B) if β(s0) ≥ 0, and if
β(s0) < 0, β(s) goes to −∞ as s increases, contradicting our assumption.
Similarly, using the left inequality of (43), we obtain β(s) ≥ 1/(C ′s + B′).
(B, B′ are some constants.) These estimates together with the fact that ζ
vanishes up to first order establish the k = 0 case of the lemma.

The k = 1 case of the lemma follows from (42) and (43). Taking the
s-derivative of (42) and using the k = 0, 1 cases of the lemma and (40), we
get the k = 2 case of the lemma. �
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5.1.7. Approximation of u(s) to the center manifold. Next, we show
that other flows to y approach the center manifold exponentially.

Lemma. Let u(s) = exp(y, µ(s)) be a flow (i.e., a solution of (15)) to y
satisfying (41). Write

µ(s) = a(s) + c(s),
where a(s) := b(s) + ζ(b(s)) is a path on the center manifold, b(s) ∈ ker Ay,
and c(s) ∈ ker A⊥

y . Then there exists positive constants C, γ such that

‖c(s)‖2,2,t + ‖∂sc(s)‖2,1,t + ‖∂2
s c(s)‖2,t ≤ Ce−γs ∀s ≥ s0.

Proof. Observe that since a(s) is in the center manifold, the vector field Ξ
is parallel to ∂sa. Thus, the flow equation (15) becomes:

−da

ds
= (1 + ∇bζ)Πker Ayny(a + c);(44)

−dc

ds
= Ayc + (1 − Πker Ay − ∇bζΠker Ay)((ny(a + c) − ny(a)).(45)

Let’s further decompose c into

c = c+ + c−,

where c+ is in the completion of the direct sum of eigenspaces of Ay with
positive eigenvalues; similarly for c−.

Note that the estimate

(46) ‖c(s)‖2,t ≤ Ce−γs

follows from the routine arguments in [36] pp. 91–92 and the next lemma.
The constant γ is a positive number slightly smaller than the number ν−
below.

Sublemma. Assume Section 5.1.2. Let ν+ be the minimal positive
eigenvalue of −Ay, and let −ν− be the maximal negative eigenvalue. Then
there exist positive constants ε±, with ε± � ν±, such that the following hold:

d

ds
‖c+‖2,t ≥ ν+‖c+‖2,t − ε+‖c‖2,t;

d

ds
‖c−‖2,t ≤ −ν−‖c−‖2,t + ε−‖c‖2,t,

Proof. The first inequality follows by taking the inner product of (45) with
c+, using the facts that C1 ⊂ L2

2 in one-dimension, that ‖a‖2,2,t + ‖c‖2,2,t is
small, and that ny is a function of ξ only under the assumption Section 5.1.2
(2.1).

The second inequality is similar. �
To get estimates on higher derivatives of c, we perform elliptic bootstrap-

ping in the following way. Re-arranging (45) and writing

Ay = Jt∂t + Υy,
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we have

(47) (∂s + Jt∂t)c = −Υyc + (1 − Πker Ay − ∇bζΠker Ay)(ny(a + c) − ny(a)).

Let βs,j : R → R be a smooth cutoff function that is supported on
(s − 2j, s + 2j), and is 1 over [s − j, s + j]. Let Θs,j := [s − j, s + j] × S1.
Multiplying the above expression by βs,1(s) and squaring both sides, we
obtain

‖βs,1∂sc‖2
L2(Θs,2) + ‖βs,1∂tc‖2

L2(Θs,2)

≤ C‖βs,1c‖2
L2(Θs,2) + C ′‖β′

s,1c‖L2(Θs,2)‖βs,1∂tc‖L2(Θs,2)

≤ C ′′‖c‖2
L2(Θs,2) + 1/2‖βs∂tc‖2

L2(Θs,2)

by the triangle inequality. Rearranging, we get:

(48) ‖∂sc‖2
L2(Θs,1) + ‖∂tc‖2

L2(Θs,1) ≤ C3‖c‖2
L2(Θs,2) ≤ C4e

−2γs

by integrating (46).
Now, we may iterate this argument, replacing (47) by s- or t-derivatives

of the equation, and using (41) repeatedly. The generalizaton of (4.26)
boundes ‖∇kc‖2

L2(Θ
s,21−k ) in terms of ‖∇jc‖2

L2(Θ
s,21−j ) for j = 0, 1, . . . , k −1,

and hence by C ′
ke

−2γs.
On the other hand, by Sobolev embedding

‖η(s)‖2,t ≤ Cε‖η‖L2
1(Θs,ε);

so the above estimates of ‖∇kc‖L2(Θs,ε) gives the other estimates in Lemma
5.1.7. �
5.1.8. Approximation of a(s) to a flow on the center manifold. In
Lemma 5.1.7, we showed that the flow u(s) approximates a path a(s) in the
center manifold. However, a(s) might not be a flow itself. Nevertheless, the
next lemma shows that a(s) approximates the flow on the center manifold
described in Lemma 5.1.6 exponentially fast.

Lemma. Let a(s) be a path in the center manifold in Uε satisfying

‖∂sa(s) + Ay(a(s)) + ny(a(s))‖2,1,t + ‖∂s[∂sa(s) + Ay(a(s))(49)

+ ny(a(s))]‖2,t ≤ Ce−γs for all s ≥ s0.

Then there is a unique flow z(s) on the center manifold such that

‖z(s) − a(s)‖2,2,t + ‖∂s(z(s) − a(s))‖2,1,t + ‖∂2
s (z(s)

− a(s))‖2,t ≤ C ′e−γs for all s ≥ s0.

Proof. The estimate for ‖z(s) − a(s)‖2,t is proved in [36] Lemma 5.3.1 by a
simple contraction mapping theorem argument. In fact, it is proved there
that ‖Πker Ay(z(s) − a(s))‖2,t ≤ C1e

−γs. However, as we noted before, since
on the one-dimensional space ker Ay the Sobolev norms are commensurate,
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this implies ‖Πker Ay(z(s) − a(s))‖2,2,t ≤ C2e
−γs, which in turn implies the

exponential decay of ‖z(s) − a(s)‖2,2,t by the uniform bounds on ∇ζ in
Uε. Now the estimates for ‖∂s(z(s) − a(s))‖2,1,t, ‖∂2

s (z(s) − a(s))‖2,t can
be derived from this iteratively via the condition (5.11) and the fact that
∂sz(s) + Ayz(s) + ny(z(s)) = 0. �

5.1.9. Concluding the proof of Proposition 5.1.3. Following the
notation of Lemma 5.1.7, if exp(y, a(s)+c(s)) is a flow to y, then a(s) satisfies
(5.11) by the estimates on c(s) in Lemma 5.1.7. So we may apply Lemma
5.1.8. On the other hand, the flow z(s) obtained in Lemma 5.1.8 cannot be
constant, because otherwise by Lemmas 5.1.7 and 5.1.8, u(s) approaches y
exponentially. This would then contradict the assumption Section 5.1.2 (3).
Proposition 5.1.3 now follows from the combination of Lemmas 5.1.6, 5.1.7,
and 5.1.8.

5.2. Fredholm theory and structure theorem for MP (x, y). In this
subsection we prove the structure theorem for moduli spaces MP (x, y) when
one or both of x, y are minimally degenerate, analogous to the standard
Proposition 3.2.2. (See Proposition 5.2.6 below).

Without loss of generality we again assume that y is minimally degenerate.
Because of the degeneracy of y, the usual Lp Fredholm theory fails in

this situation. One does have a good Fredholm theory by working with
the exponentially weighted Sobolev spaces introduced in Section 3.2.3:
in particular, Lemma 3.2.3 works in this situation for a non-zero weight
σ2 �= 0. However, these Fredholm theories are unsuitable for the purpose of
describing MP (x, y) for the following reasons: Let σ ∈ R with |σ| � 1. If
σ > 0, one may work with the Lp

k:(σ,−σ) norms to describe the moduli space

M
(σ,−σ)
P (x, y) = MP ∩B

(σ,−σ)
P (x, y). However, M

(σ,−σ)
P (x, y) does not contain

the whole MP (x, y), since the former contains only exponentially decaying
flows, while the latter contains flows that are polynomially decaying, as
seen in Section 5.1. On the other hand, one cannot take σ < 0 either,
because Lp

k:(σ,−σ) would be too large for an appropriate local description of
the moduli space: for example, the Kuranishi map would not be suitably
bounded with respect to these norms (i.e., estimates for non-linear terms of
the type of (II.3) fail).

The decay estimates in Section 5.1 suggest that polynomially weighted
spaces would be the natural alternative. Fredholm theories of such spaces
is relatively uncommon in the literature, see however [10, 28] for similar
theories. We shall follow [10] Section 4 closely.

5.2.1. LT-decomposition and polynomial weights. Let u ∈ Mi
P (x, y),

and write u(s) = exp(y, µ(s)) as before. Assume without loss of generality
that x is non-degenerate and y is minimally degenerate.
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We saw in last subsection that as s → ∞, µ′(s)/‖µ′(s)‖2,t converges to
the degenerate direction kerAy. We shall call it the “longitudinal direction”.
Given an section of u∗K, ξ, we denote its longitudinal and transversal
component by ξL and ξT, respectively. Namely,

(50) ξ = ξT + ξL,

where
ξL(s) := ‖u′(s)‖−2

2,t 〈u′(s), ξ(s)〉2,tu
′(s).

Roughly speaking, in the transversal direction, things go the same way
as in the non-degenerate case, while in the longitudinal direction novelties
arise. Let ΠL, ΠT denote the L2-orthogonal projection to the longitudinal/
transversal directions, respectively.

Define the weight

σu(s) =
{

‖u′(0)‖−1
2,t for s ≤ 0.

‖u′(s)‖−1
2,t for s ≥ 0.

From the previous subsection we know that C ′/s2 ≥ σu ≥ C/s2 for large s.

Definition. Let u ∈ Mi
P (x, y) as above. We define the following norms on

C∞
0 (u∗K):

‖ξ‖Wu := ‖σ1/2
u ξ‖p,1 + ‖σuξ′

L‖p;

‖ξ‖Lu := ‖σ1/2
u ξ‖p + ‖σuξL‖p.

Let Wu = Wu(u∗K), Lu = Lu(u∗K) denote the completion of C∞
0 with

respect to the above two norms, respectively.

5.2.2. Proposition. (Fredholmness) Let u ∈ Mi
P (x, y), where i ≤ 1,

y is minimally degenerate, and x is non-degenerate. Then the operator
Eu : Wu → Lu is bounded and Fredholm of index i.

With the obvious modification of the defnition of Wu and Lu, the
statement of this Proposition also holds when x is minimally degenerate,
and y is non-degenerate or minimally degenerate.

Notation. In the case when at least one of the two end critical points
is minimally degenerate, we shall always reserve the notation Eu for the
deformation operator between Wu and Lu. The deformation operator
between exponentially weighted Sobolev spaces will come with a superscript,
of the form E

(σ1,σ2)
u (cf. Section 3.2.3).

The proof of this Proposition occupies Section 5.2.3–5.2.5 below. Since it
is not very different from the proof of [10] Theorem 4a, we shall only provide
details where modification or clarification is needed.
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5.2.3. Boundedness of Eu. Via (50), Eu decomposes into four compo-
nents:

ELT := ΠTEuΠL,

and similarly ETT, ETL, ELL. The boundedness is straightforward to check
by looking at each of these components: The boundedness of ETT is the
same as the usual (non-degenerate) case; the boundedness of ELT, ETL, ELL
follows, respectively, from the observations (5.14), (5.16), (54) below.

5.2.4. Fredholmness of Eu. Simple linear algebra shows that if the
diagonal components ETT, ELL are Fredholm, and one of the off-diagonal
components vanishes while the other is bounded, then Eu is Fredholm
and

ind Eu = ind ETT + ind ELL.

Our task is thus to verify each of the above.
• ELT is zero:(51)

This follows immediately from the fact that Euu′ = 0.
• ETL is bounded:(52)

Following Floer’s computation (4.18) of [10] (but replacing J∂t

there by Au(s)), when s is large

(EuξT)L(s) = −2σ2
u(s)〈u′′

T(s), ξT(s)〉2,tu
′(s).

‖u′′
T(s)‖2,t is estimated as follows. Write u(s) = exp(y, µ(s)), where

µ(s) = b(s) + ζ(b(s)) + c(s)

as in the previous subsection, we see that

µ′ = (1 + ∇ζ)b′ + c′

µ′′ = b′′ + ∇b′′ζ + ∇b′∇b′ζ + c′′.

We know from Lemma 5.1.7 that ‖c′(s)‖2,t, ‖c′′(s)‖2,t decays expo-
nentially. Thus, modulo exponentially decaying terms, ‖u′′

T(s)‖2,t

is bounded by

C‖b′(s)‖2
2,1,t + C̃‖b(s)‖2,1,t‖b′′(s)‖2,t ≤ C ′s−4.

Thus, for large s

‖(EuξT)L‖Lu = ‖σu(EuξT)L‖p

≤ 2‖σ2
u〈u′′, ξT〉2,t(s)‖p

≤ C‖ ‖ξT‖2,t(s)‖p,s

≤ C ′‖ξT‖p,

(53)

where the subscripts s and t in the third line above indicate which
variable the norm is respect to; and the final Lp norm is with
respect to both variables s and t. In the last step we used the fact
that on S1 the L2-norm is bounded by the Lp norm.
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• ETT and ELL are Fredholm: By a typical excision argument (see
e.g., [10]), it suffices to consider only ξ supported on {(s, t) : s ∈
(R, ∞)} for a large R, and to replace u by v, which is a small loop
in C from y to itself, such that v agrees with u for large s. We
assume further that ‖v′(s)‖2,1,t �= 0 and that v is symmetric about
s = 0 for simplicity.

The Fredholmness of ETT is shown in [10] in a way similar to
the non-degenerate case. To see the Fredholmness of ELL, write
ξL =: fσvv

′, where f is an R-valued function on s. Then ELL
is equivalent to the operator d

ds + σ′
vσ

−1
v with domain and range

being the completion of C∞
0 (R) with respect to the norms N1, N2,

respectively:

‖f‖N1 := ‖σ1/2
v f‖p + ‖σvf

′‖p; ‖f‖N2 := ‖σvf‖p.

Conjugating this operator by σv makes it the operator d
ds

between the completion with respect to the N norm and Lp, where

‖g‖N := ‖σ−1/2
v g‖p + ‖g′‖p.

(54) This operator
d

ds
: N → Lp is obviously bounded,

and has a one-dimensional kernel, namely, the space of constant
functions. Let N0 ⊂ N be the codimension 1-subspace

N0 := {g(s) | g(s) ∈ N, g(0) = 0}.

We claim that the restriction d/ds|N0 has a bounded inverse. This
would then imply the Fredholmness of d/ds : N → Lp, and
hence ELL.

A natural candidate for its right-inverse is the integral:

(55)
(

d

ds

)−1

q(s) :=
∫ s

0
q(s̃) ds̃.

To see that this is well-defined and bounded, notice the following
estimate for compactly supported Lp

1,loc functions on (0,∞):

‖g′‖p + ‖σ−1/2
v g‖p ≤ ‖g′‖p + C‖s−1g‖p

≤
∥
∥
∥
∥s

d

ds
(s−1g)

∥
∥
∥
∥

p

+ (C + 1)‖s−1g‖p

≤ C ′
∥
∥
∥
∥

(

s
d

ds
+ 1
)

(s−1g)
∥
∥
∥
∥

p

= C ′
∥
∥
∥
∥

d

ds
g

∥
∥
∥
∥

p

.

(56)

The third step above follows from the fact that the integral kernel
of the operator s d

ds + 1 decays as s−1 for large s.
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Let g(s) = χR(s)g̃(s), where g̃(s) =
∫ s
0 q(s̃) ds̃, and χR(s) =:

χ(s/R), χ being a smooth cutoff function supported on (−2, 2),
with χ(s) = 1 for s ∈ [−1, 1]. Then the above estimate (56) yields

‖χRg̃′‖Lp(R+) + ‖σ−1/2
v χRg̃‖Lp(R+)

≤ C ′‖χRq‖Lp(R+) + C ′′R−1‖χ′(s/R)g̃(s)‖Lp(R+)

≤ C ′‖χRq‖Lp(R+) + C2‖q‖Lp([0,2R]).

(cf. Lemma II.3.3.3(c) for the second step). Taking R → ∞ and
combining with the analogous estimates on the other half of the
real line, we see that g̃ ∈ N0 when q ∈ Lp; in fact,

‖g̃‖N ≤ Cn‖q‖p.

Thus, the expression (4.33) does give a well-defined, bounded
inverse of d/ds : N0 → Lp.

We may now conclude that ELL is Fredholm, and hence so is Eu.

5.2.5. Computation of the index. Let σ be a small positive number. We
claim that

ind Eu = ind E(−σ,σ)
u .

The index computation of Eu stated in Proposition 5.2.2 would then follow
from Lemma 3.2.3.

Since Lp
1:(−σ,σ) and Lp

(−σ,σ) contain Wu and Lu, respectively, it suffices

to show that ker(E(−σ,σ)
u ) ⊂ Wu, and cokerEu ⊂ (Lp

(−σ,σ))
∗. We shall only

show the first, since the second is similar. This boils down to estimating the
solution ξ of E

(−σ,σ)
u ξ = 0 where s is large. If ξ solves E

(−σ,σ)
u ξ = 0, then

(57) (E(−σ,σ)
u ξT)T = 0;

(58) (E(−σ,σ)
u ξL)L + (E(−σ,σ)

u ξT)L = 0,

since as noted before, (E(−σ,σ)
u ξL)T = 0.

Using these, we estimate ‖ξT(s)‖2,t like (4.23) of [10] as follows.

d2

ds2 〈ξT, ξT〉2,t

= 2
d

ds
〈ξ′

T, ξT〉2,t

= −2
d

ds
〈Au(s)ξT, ξT〉2,t

= −4〈Au(s)ξT, ξ′
T〉2,t − 2〈A′

u(s)ξT, ξT〉2,t

= 4‖Au(s)ξT‖2
2,t + 4〈(Au(s)ξT)L, (E(−σ,σ)

u ξL)L〉2,t − 2〈A′
u(s)ξT, ξT〉2,t
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When s is large (so that u(s) is close to y), the terms in the last line above can
be estimated as follows. For the first term, we have the standard estimate:

4‖Au(s)ξT‖2
2,t ≥ 4ν2‖ξT(s)‖2

2,t,

where ν is a positive number slightly smaller than min(|µi|), and µi are
non-zero eigenvalues of Ay.

For the second term, use the fact that (ξ′
T)L = −σu〈u′′

T, ξT〉2,t (take the
s-derivative of the equation 〈u′, ξT〉2,t = 0 to see this) and the estimates for
ETL and ‖u′′

T‖2,t obtained earlier. We get:

4〈(Au(s)ξT)L, (E(−σ,σ)
u ξL)L〉2,t

= −4〈(E(−σ,σ)
u ξT)L, (E(−σ,σ)

u ξT)L〉2,t + 4〈(ξ′
T)L, (E(−σ,σ)

u ξL)L〉2,t

≥ −Cσ−2
u ‖ξT(s)‖2

2,t.

Under the assumption Section 5.1.2 (1), the last term can both be bounded
below by

− C‖u′(s)‖∞,1,t‖ξT(s)‖2
2,t

≥ −C ′‖u′(s)‖2,2,t‖ξT(s)‖2
2,t

≥ −C ′′s−2‖ξT(s)‖2
2,t for large s.

In summary, letting q(s) := ‖ξT(s)‖2
2,t, we have

(59) q′′(s) ≥ 4ν2q(s) for all large enough s.

Now if q′ > −2νq at some s0, then q must grow faster than e2νs for large s.
This is because that by comparison principle, q is larger than the solution
of q′′

0 = 4ν2q0 with initial conditions q
(k)
0 (s0) = q(k)(s0) for k = 0, 1. And

when q′(0) > −2νq(0) such a solution grows exponentially with exponent
2ν at infinity. However, such a q cannot come from an ξ ∈ Lp

1:(−σ,σ), since
the weight σ is chosen to be much smaller than min |µi|, and thus smaller
than ν. On the other hand, if q′ ≤ −2νq for all sufficiently large s, by
integration one easily sees that q ≤ Ce−2νs; namely ‖ξT(s)‖2,t ≤ C ′e−νs.
Since ξ′

T = −AuξT − (E(−σ,σ)
u ξT)L by (57), we have a similar estimate for

ξ′
T(s), and therefore ‖ξT‖Wu < ∞.
Next we estimate the ξL component. Writing ξL(s) = f(s)σu(s)u′(s)

again, it satisfies the equation:

f ′(s) + σ′
u(s)σ−1

u f + 〈u′, E(−σ,σ)
u ξT〉2,tσu = 0.
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We have seen that ‖(E(−σ,σ)
u ξT(s))L‖2,t ≤ Cσu(s)−1‖ξT(s)‖2,t decays

exponentially. Thus

f(s) = Cσ−1
u (s) + exponentially decaying terms,

|σuf ′(s)| ≤ |σ′
u(s)f(s)| + exponentially decaying terms.

|σ′
u(s)| = σ3

u(s)|〈u′(s), u′′(s)〉2,t| ≤ σ2
u(s)‖u′′(s)‖2,t ≤ Cσu(s)s−1.

Thus ‖ξL‖Wu ≤ C‖βs−1‖p + ε is bounded. The proof of Proposition 5.2.2 is
now complete.

5.2.6. Proposition. (Structure of MP (x, y)) Suppose P(X) consists of
either non-degenerate or minimally degenerate critical points, and that J
satisfies Section 5.1.2 (1) near any minimally degenerate critical point. Let
δ be an arbitrary small positive number, and either k > 2, X satisfies (40),
or k = 2, X arbitrary. Then there is a Baire set V k,Preg

δ (J, X) ⊂ V k
δ (J, X),

such that for any H ∈ V k,Preg
δ (J, X), (RHFS2d) holds for the Floer system

generated by (J, X+χH) (regarded as a constant homotopy of Floer systems).

With the Fredholm theory established, this basically follows from the
routine arguments in Section 3. Thus, we shall only very briefly comment
on the proof.

Since we restrict the Hamiltonian perturbation to be within V 2
δ (J, X), the

set of critical points P(X +χH) is independent of H, so are the deformation
operators Ax for any x ∈ P(X + χH). The definition of the norms Wu, Lu

given in Section 5.2.1 involves u, and hence depends on H; however, it is
useful to observe that the spaces Wu and Lu have an alternative description
which is independent of H, as follows.

Notation. Let p, q ∈ C, and q = exp(p, q̃), then Tp,q := D2 exp(p, q̃) denotes
the isomorphism from TpC to TqC, where Di denotes the differential with
respect to the i-th variable.

The following Lemma follows from Proposition 5.1.3 by straightforward
estimates.

Lemma. Let x, y, u be as in Proposition 5.2.2. Then on C∞
0 (u∗K), the

norms Wu and Lu are commensurate with the the norms Wy, Ly below,
respectively:

‖ξ‖Wy := ‖σ1/2
y ξ‖p,1 + ‖σyΠTy,u(s)eyξ

′(s)‖p;

‖ξ‖Ly := ‖σ1/2
y ξ‖p + ‖σyΠTy,u(s)eyξ‖p,

where σy(s) = s−2 for s ≥ 1, and σy = 1 otherwise.

As usual, Wy(u∗K), Ly(u∗K) will denote the completion of C∞
0 (u∗K)

with respect to these norms. The necessary modification on the definition
in the case when x is minimally degenerate, y is non-degenerate or minimally
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degenerate will also be implied. We usually prefer to work with the original
defintions of Wu, Lu in Section 5.2.1, because they give simpler estimates
due to the fact that Euu′ = 0. However, the alternative definition just given
is more convenient for describing the configuration space: Let

BW
P (x, y) =
⎧
⎪⎨

⎪⎩
u

∣
∣
∣
∣
∣

u ∈ Lp
1,loc(Θ, p∗

2Tf ),

u(s, ·) = exp(y, ξ+(s, ·)) for some ξ+ ∈ Wy(p∗
2(y

∗K)) if s > ρ+(u),

u(s, ·) = exp(x, ξ−(s, ·)) for some ξ− ∈ Lp
1(p

∗
2(x

∗K)) if s < ρ−(u)

⎫
⎪⎬

⎪⎭
,

where ρ+, ρ−, p2 are as in Definition 3.2.3. The usual arguments show
that this is a Banach manifold, with open neighborhoods modeling on
TuBW

P (x, y) = Wu, and there is a Banach bundle over BW
P (x, y) with

fibers Lu. Thus, M
i,W
P (x, y) := Mi

P ∩ BW
P (x, y) is again described as

the zero locus of a Fredholm section. Since we showed in Section 5.2.5
that coker Eu = coker E

(−σ,σ)
u , an exponentially weighted version of the

transversality arguments in Section 3 implies that M
i,W
P (x, y; J, X + χH)

is non-degenerate for H in a Baire set U1 ⊂ V 2
δ (J, X). On the other

hand, as remarked before, the conditions Section 5.1.2 (2) and (3) hold
for a Baire set, say U2, in V 2

δ (J, X). The decay estimate of Proposition
5.1.3 implies that for H ∈ U2, M

i,W
P (x, y; J, X + χH) contains the whole

Mi
P (x, y; J, X + χH). (Thus we are justified in dropping the superscript

W henceforth.) Let V 2,reg
δ (J, X; x, y) := U1 ∩ U2. V 2,Preg(J, X) is the

intersection of such V 2,reg
δ (J, X; x, y) for all pairs of x, y.

The compactness of the moduli space is the consequence of Gromov
compactness plus the decay estimate of Proposition 5.1.3.

5.3. Estimates for the new critical points y+, y−. Let {(Jλ, Xλ)}λ∈Λ
be a path in JK × X generating a CHFS, where Λ = [−1, 1]. Let y ∈ PΛ,deg,
with ΠΛ(y) = λ0. We saw that if y is a (Zariski) smooth point of PΛ, then it
is a minimally degenerate element of P(Xλ0). For explicit estimates near y,
it is convenient to further assume that y is standard in the following sense.

5.3.1. Definition. A minimally degenerate y in PΛ,deg is said to be in a
standard d-b neighborhood if the following hold:
(1a) Section 5.1.2 (2) holds, namely Πey(∇ey∇eyny(0)) = Cyey for Cy > 0,
(1b) Πey(∇ey∇cny(0)) = 0 for all c ⊥ ey,
(1c) Πey(∇ey∇ey∇eyny(0)) = 0.
(2a) Jλ is constant in λ in a small neighborhood of Λ containg λ0, and

Jλ,t is integrable in a small neighborhood of y(t) ∈ M for all t ∈ S1.
(Namely Section 5.1.2 (1)).

(2b) At λ = λ0, ∂λθ̌Xλ
(y) = C ′

yey for a constant C ′
y �= 0,

(2c) At λ = λ0, Πey∂λ∇v θ̌Xλ
(y) = 0 ∀v ∈ L2

t (y
∗K),
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(2d) ∂λθ̌Xλ
is supported in a neighborhood of y away from all the other

critical points.

This assumption will be particularly useful in the proofs of the gluing
theorems discussed in Part II.

Assuming this, in this subsection we show that y bifurcates into two non-
degenerate critical points yλ±, and give some essential estimates of these
new critical points. These estimates will be useful for the gluing theorems
in Part II.

5.3.2. Lemma. Let y ∈ PΛ,deg be in a standard d-b neighborhood. Then y
is a local extremum of ΠΛ: it is a local maximum when the constant C ′

y in
Section 5.3.1 (2b) is positive, and a local minimum otherwise.

Furthermore, let λ ∈ Λ be close to λ0 := ΠΛ(y), and λ < λ0 when C ′
y > 0;

λ > λ0 otherwise. Let

yλ+ = exp(y, ηλ+), yλ− = exp(y, ηλ−) ∈ Pλ

be the two points near y ∈ C. Then they are both non-degenerate, of index
ind+(y) and ind−(y), respectively. Moreover,

C±|λ − λ0|−1/2 ≤ ±〈ey, ηλ∓〉2,t ≤ C ′
±|λ − λ0|−1/2,

where C±, C ′
± are positive constants. Furthermore, the eigenvalue of Ayλ∓

with minimal absolute value is bounded above and below by multiples of
±|λ − λ0|1/2, respectively.

Proof. Without loss of generality, let C ′
y > 0.

For each η ∈ L2
t (y

∗K), write

ηL := Πker Ayη =: ηLey, ηT := η − ηL.

Using the assumption that y is in a standard d-b neighborhood, the defining
equation of critical points, VX = 0, takes the following form in the local
coordinates about y:

AyηT + (1 − Πker Ay)ny(ηL + ηT, ηL + ηT)

(60)

+ O(|λ − λ0|2) + O(|λ − λ0|(‖ηL‖2
2,1,t + ‖ηT‖2

2,1,t)
1/2) = 0;

Cyη
2
L + C ′

y(λ − λ0) + Πker Ayny(ηT, ηT) + O(‖η‖2,1,t(‖ηL‖2,1,t + ‖ηT‖2
2,1,t))

+ O(|λ − λ0|2) + O(|λ − λ0|(‖ηL‖2
2,1,t + ‖ηT‖2

2,1,t)) = 0.

Notation. In this paper, O(·) or o(·) can be either a number, or a function
of t whose L2

1,t norm is of the order indicated.
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When |λ − λ0| is small, we can assume that (‖ηL‖2
2,1,t + ‖ηT‖2

2,1,t)
1/2 is

small, and thus the first equation above implies:

(61) ‖ηT‖2,1,t ≤ C1(‖ηL‖2
2,1,t + |λ − λ0|2);

Substituting this into the second equation in (60), we see that there are
two solutions for ηL, and for both

(62) C2|λ − λ0|1/2 ≤ ‖ηL‖2,1,t ≤ C ′
2|λ − λ0|1/2.

This then implies via (61) that

‖ηT‖2,1,t ≤ C3|λ − λ0|.

The solution with positive/negative value of ηL is denoted by ηλ−, ηλ+,
respectively.

We now estimate the small eigenvalue of Ayλ± . Let ξλ ∈ L2
1,t(y

∗
λ−K), and

let (ξλ)0 ∈ L2
1,t(y

∗K) be defined by

exp(y, ηλ− + (ξλ)0) = exp(yλ−, ξλ).

Using the relation between ξλ and (ξλ)0, we see that the lowest order term
of Ayλ− is conjugate to the linearization of the left hand side of (60) at ηλ−.
The latter has the form

(63)
(

Ay + O(‖(ηλ−)L‖2,1,t) O(‖(ηλ−)T‖2,1,t)
0 2Cy(ηλ−)

L
+ o(‖(ηλ−)L‖2,1,t)

)

in terms of the decomposition L2
t (y

∗K) = (ker Ay)⊥ ⊕ ker Ay. Using the
estimates on ‖(ηλ−)L‖2,1,t, ‖(ηλ−)T ‖2,1,t above, we see that the smallest
eigenvalue is bounded above and below by positive multiples of |λ − λ0|1/2.
Similarly for Ayλ+ . �

6. Existence of admissible (J, X)-homotopies

In this section, we show that given a path {Xλ}λ∈Λ as in the statement of
Theorem 4.1.1, and an arbitrary path {Jλ}λ∈Λ connecting J1, J2, the path
{Jλ, Xλ}λ∈Λ can be perturbed into an “admissible (J, X)-homotopy” fixing
the end points. (See Definition 6.2.1, Proposition 6.2.2 below.)

6.1. Structure of parameterized moduli spaces. In this subsection we
discuss structure theorems of moduli spaces parameterized by an interval,
parallel to the results in Sections 3.2 and 3.3. Since they follow from routine
modification of Section 3, we shall omit most of the proofs, except for
some brief comments on the form of the relevant deformation operators
and configuration spaces, which we shall need in Part II.
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6.1.1. Some terminologies. Let Λ ⊂ R be an interval. We shall use
the notation JΛ to denote either a Cε complex structure on the pull-back
bundle p∗

2K, where p2 : Λ×Tf → Tf is the projection, or the path of complex
structures {Jλ}λ∈Λ ⊂ JK this defines. Similarly, XΛ denotes either a section
in Cε(p∗

2K), or a path {Xλ}λ∈Λ. We denote XΛ := Cε(p∗
2K), and let JΛ

K be
the space of Cε complex structures on p∗

2K.
A (J, X)-homotopy is an element (JΛ, XΛ) ∈ JΛ

K × XΛ, or equivalently,
the path {(Jλ, Xλ)}λ∈Λ in JK ×X this defines. Λ is said to be the parameter
of this (J, X)-homotopy.

A (J, X) ∈ JK × X is said to belong to a (J, X)-homotopy {(Jλ, Xλ)}λ∈Λ
if (J, X) = (Jλ, Xλ) for some λ ∈ Λ. If S ⊂ Λ is a sub-interval, the (J, X)-
homotopy {(Jλ, Xλ)}λ∈S is said to be a sub-homotopy (over S) of the (J, X)-
homotopy {(Jλ, Xλ)}λ∈Λ.

Let Λ ⊂ R be an interval, and N ⊂ Λ consists of finite points. Then

HΛ := C∞
ε (Λ × Tf ), HΛ

N := {HΛ |HΛ ∈ HΛ, Hλ = 0 ∀λ ∈ N}.

We shall often call an HΛ ∈ HΛ a Hamiltonian isotopy, since it corresponds
to a path of Hamiltonians {Hλ}λ∈Λ, and hence also a path of Hamiltonian
sympletomorphisms. Let χHΛ ∈ XΛ denote the path of symplectic vector
fields {χHλ

}λ∈Λ.

6.1.2. The structure of PΛ.

Definition. Let JΛ ∈ JΛ
K be such that Jλ,t is semipositive for all λ, t. (Such

shall be called a semipositive path). An XΛ ∈ XΛ is said to be JΛ-non-
degenerate if the following hold:

(a) PΛ(XΛ) is a (Zariski) smooth, compact 1-manifold;
(b) for any xλ ∈ PΛ(XΛ), xλ(t) �∈ M0(Jλ,t) ∀t;
(c) The projection ΠΛ : PΛ(XΛ) → Λ is smooth.

Proposition. Fix a semipositive path JΛ, and an XΛ ∈ XΛ. Then there is
a Baire set HΛ,ndg(JΛ, XΛ) ⊂ HΛ such that XΛ+χHΛ is JΛ-non-degenerate
for all HΛ ∈ HΛ,ndg(JΛ, XΛ).

Suppose in addition that (Jλ, Xλ) are regular pairs ∀λ ∈ ∂Λ, then
H

Λ,ndg
∂Λ (JΛ, XΛ) := HΛ,ndg(JΛ, XΛ) ∩ HΛ

∂Λ is Baire in HΛ
∂Λ.

Note that HΛ,ndg is in fact open dense, by the compactness of PΛ.
The deformation operator that describes the local structure of PΛ is an

extension of Ax: Let xλ ∈ PΛ,

Âxλ
: R ⊕ Lp

1(x
∗
λK) → Lp(x∗

λK),

Âxλ
(α, ξ) = Axλ

ξ + α∂λθ̌Xλ
(xλ) + α∂λJλ(∂txλ − Xλ).

Note that the last term vanishes when xλ ∈ P(Xλ).
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Notation. When necessary, we shall insert J, X or JΛ, XΛ as superscripts
to emphasize the dependence of the operators on them.

6.1.3. The structure of PΛ,deg.

Proposition. Let (JΛ, XΛ) be as in Proposition 6.1.2. Then there is a
Baire set

HΛ,rg(JΛ, XΛ) ⊂ HΛ,ndg(JΛ, XΛ)

such that PΛ
deg(X

Λ + χHΛ) consists of finitely many (Zariski) smooth points
for any HΛ ∈ HΛ,rg(JΛ, XΛ).

Proof. Let

PHΛ
(XΛ) :=

⋃

HΛ∈HΛ

PΛ(XΛ + χHΛ) ⊂ Λ × C × HΛ,

and let
pr : PHΛ

(XΛ) → HΛ, Π̃Λ : PHΛ
(XΛ) → Λ

denote the projections.
We denote an element of PHΛ

(XΛ) by a pair (xλ, HΛ), where HΛ ∈ HΛ;
xλ ∈ PΛ(XΛ + χHΛ). An element in

(64) T(xλ,HΛ)P
HΛ

(XΛ) ⊂ TλΛ × Txλ
C × THΛHΛ

shall be written as a triple (α, ξ, hΛ), the three components belonging to the
three factors in the RHS of (4.42) respectively.

The kernel of pr∗ : TPHΛ
(XΛ) → THΛ, when restricted to

PHΛ,ndg
(XΛ) := pr−1HΛ,ndg(JΛ, XΛ),

has constant rank. Thus it defines a real line bundle T,

ΠT : T → PHΛ,ndg
(XΛ),

so that for each HΛ ∈ HΛ,ndg(JΛ, XΛ),

T
∣
∣
∣
PΛ(JΛ,XΛ+χ

HΛ )
= TPΛ(JΛ, XΛ + χHΛ).

Regarding T as a sub-bundle of TPHΛ
(XΛ), the induced map Π̃Λ∗ : T → TΛ

corresponds to a section s of T ⊗ Π̃∗
ΛT ∗Λ. The zero locus

s
−1(0) =

⋃

H∈HΛ,ndg

PΛ,deg(XΛ + χHΛ)

is the universal moduli of degenerate critical points. If s is transversal to
the zero section, then the claim of the Proposition follows from the usual
argument via the Sard–Smale theorem.
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The transversality is verified as follows. Consider (xλ, HΛ) ∈ s−1(0) ⊂
PHΛ,ndg(XΛ), and let (β, 0, hΛ) ∈ T(xλ,HΛ)P

HΛ
(XΛ), where β �= 0. It

satisfies:

β∂λ(θ̌Xλ
+ ∇Hλ)(xλ) + ∇hλ(xλ) = 0;

Πexλ
∂λ(θ̌Xλ

+ ∇Hλ)(xλ) �= 0.(65)

To prove transversality, it suffices to show that for some (β, 0, hΛ) as above,

(Â
JΛ,XΛ+χ

HΛ
xλ )−1

(

δ(β,0,hΛ)Â
JΛ,XΛ+χ

HΛ
xλ

)

(0, exλ
) ∈ R ⊕ Lp

1(x
∗
λK)

has non-trivial R-component. (The expression δ(β,η,hΛ)Â
JΛ,XΛ+χ

HΛ
xλ above

denotes the variation of Â
JΛ,XΛ+χ

HΛ
xλ , regarded as an operator-valued

function on PHΛ
(XΛ).)

According to (65), this is equivalent to requiring

Πexλ

(

δ(β,0,hΛ)Â
JΛ,XΛ+χ

HΛ
xλ

)

(0, exλ
)(66)

=
〈
exλ

,∇exλ

(
∇hλ(xλ) + β∂λθ̌Xλ

(xλ) + β∂λ∇Hλ(xλ)
) 〉

2,t
exλ

�= 0.

Notice that exλ
is nowhere vanishing, being a non-trivial solution of a

linear ODE. Thus, one may easily choose a pair of β, hΛ satisfying (66).
Transversality is now verified.

To verify the compactness, suppose the opposite, that there are infinitely
many degenerate critical points of PΛ,deg(JΛ, XΛ + χHΛ) for an HΛ ∈
HΛ,rg(JΛ, XΛ). Since PΛ,deg(JΛ, XΛ + χHΛ) lies in the compact 1-manifold
PΛ(JΛ, XΛ + χHΛ), it must contain a subset accumulating at a point xλ ∈
PΛ(JΛ, XΛ+χHΛ). This xλ cannot be in PΛ(JΛ, XΛ+χHΛ)\PΛ,deg(JΛ, XΛ+
χHΛ), since non-degeneracy (as a critical point) is an open condition. Thus,
xλ is an accumulation point in PΛ,deg(JΛ, XΛ+χHΛ). On the other hand, the
assumption HΛ ∈ HΛ,rg means that HΛ is a regular value of the projection
map pr

∣
∣
∣
s−1(0)

, hence the linearization of s

∣
∣
∣
PΛ(JΛ,XΛ+χ

HΛ )
at xλ must be

surjective. This implies that xλ is an isolated point in PΛ,deg(JΛ, XΛ+χHΛ),
and we have arrived at a contradiction. �
Remarks.

(a) Notice that the linearization of s

∣
∣
∣
PΛ

corresponds to the second

derivative of the projection map ΠΛ : PΛ → Λ. Thus, a (Zariski)
smooth point of PΛ,deg is a local extremum of ΠΛ. In another word,
(RHFS1) holds for the CHFS generated by (JΛ, XΛ + χHΛ), for any
HΛ ∈ HΛ,rg(JΛ, XΛ).
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(b) A simple computation shows that xλ is a (Zariski) smooth point of
PΛ,deg if it is in a standard d-b neighborhood.

6.1.4. The structure of MΛ
P , MΛ

O. Let (JΛ, XΛ) be a (J, X)-homotopy
such that JΛ is semipositive, and XΛ is H1-codirectional. Furthermore,
suppose (RHFS1) and (RHFS2d) hold for the CHFS associated to (JΛ, XΛ).
Our next goal is show that (RHFS2, 3) hold for generic Hamiltonian
perturbations in the following set: Given integers k, κ, k > 1, κ ≥ 0, and a
small positive real number δ, let

(67) V Λ;k
δ (JΛ, XΛ) :=

{

HΛ

∣
∣
∣
∣
∣

‖HΛ‖Cε ≤ δ; ∇iHλ,t(xλ(t)) = 0

∀xλ ∈ P(Jλ, Xλ), λ ∈ Λ, 0 ≤ i ≤ k

}

;

V Λ;k,κ
δ (JΛ, XΛ) :=

⎧
⎨

⎩
HΛ

∣
∣
∣
∣
∣

HΛ ∈ V Λ;k
δ (JΛ, XΛ), ∂j

λ∇iHλ

∣
∣
∣
λ=λ0

= 0

∀λ0 ∈ Λdb 0 ≤ i ≤ k, 0 ≤ j ≤ κ

⎫
⎬

⎭
;

V Λ;k,κ
N,δ (JΛ, XΛ) :=

{
HΛ

∣
∣
∣ HΛ ∈ V Λ;k,κ

δ (JΛ, XΛ), Hλ = 0 ∀λ ∈ N
}

,

where N ⊂ Λ consists of finitely many points.
Given a semi-positive path JΛ, an element uλ ∈ MΛ

P or MΛ
O is said to be

JΛ-regular if it is non-degenerate and satisfies:

uλ(·, t) ∩ M0(Jλ,t) = ∅ ∀t.

A moduli space MΛ
P or MΛ

O is said to be JΛ-regular if it consists of JΛ-regular
elements.

Proposition. Let (JΛ, XΛ) be a (J, X)-homotopy such that JΛ is semi-
positive, and XΛ is H1-codirectional. Suppose furthermore that XΛ is JΛ-
non-degenerate, and (RHFS1), (RHFS2d) hold for the CHFS generated by
(JΛ, XΛ). Let k, κ, δ be numbers specified before (67). Then there is a Baire
set

V Λ;k,κ,reg
δ (JΛ, XΛ) ⊂ V Λ;k,κ

δ (JΛ, XΛ)

such that for any HΛ ∈ V Λ;k,κ,reg
δ (JΛ, XΛ) and any subinterval S ⊂ Λ:

(a) the properties (RHFS2, 3) hold for the CHFS associated to (JΛ, XΛ +
χHΛ);

(b) for any integer i ≤ 1, the parameterized moduli spaces M̂
S,i
P (JΛ, XΛ +

χHΛ), M̂
S,i,sim
O (JΛ, XΛ + χHΛ) are JΛ-regular.

Suppose, in addition, that there is a subset N ⊂ Λ of finitely many
elements such that (Jλ, Xλ) is a regular pair for any λ ∈ N . Then statements
(a) and (b) above hold for HΛ in a Baire subset

V Λ;k,κ,reg
N ;δ (JΛ, XΛ) ⊂ V Λ;k,κ

N ;δ (JΛ, XΛ).
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Notice that if (JΛ, XΛ) satisfies the conditions of this proposition, then
any of its sub-homotopy satisfies the same conditions.

A (J, X)-homotopy is said to be regular if it can be written in the
form (JΛ, XΛ + χHΛ), where (JΛ, XΛ) satisfies the conditions of the above
proposition, and HΛ ∈ V Λ;k,κ,reg

δ (JΛ, XΛ). If we only require statements (a)
and (b) in the Proposition to hold for weight-truncated versions of moduli
spaces M̂

S,i
P (JΛ, XΛ +χHΛ ; wt−Y,Lf ≤ �), M̂

S,i
O (JΛ, XΛ +χHΛ ; wt−Y,Lf ≤ �),

∀� < R, then (JΛ, XΛ + χHΛ) is said to be a R-regular (J, X)-homotopy.

6.1.5. Configuration spaces and deformation operators: parame-
terized versions. We introduce here the configuration space BΛ

P and the
deformation operator Êuλ

. These notions will be needed in Part II.
Let (JΛ, XΛ), S be as in Proposition 6.1.4, and let x,y ∈ ℵΛ. The

topology of M
S,(σ1,σ2)
P (x,y) is given by its embedding into:

B
S,(σ1,σ2)
P (x,y) :=

⋃

λ∈S∩Λx∩Λy

B
(σ1,σ2)
P (xλ, yλ),

which is a Banach manifold, according to the argument of [10] Theorem 3a.
As usual, we omit the superscript (σ1, σ2) when it is (0, 0).

Notation. An element of BS
P (x,y) will be denoted either by uλ, as before,

or as a pair (λ, u), where λ ∈ S and u ∈ BP (xλ, yλ). The second notation is
better suited for the discussion that follows.

The local model of a neighborhood of (λ, u) ∈ B
S,(σ1,σ2)
P (x,y) is

T(λ,u)B
S,(σ1,σ2)
P (x,y) = R × Lp

1:(σ1,σ2)(u
∗K),

given via the map sending (µ, ξ) ∈ R×Lp
1:(σ1,σ2)(u

∗K) to (λ+µ, e(λ, u; µ, ξ))

∈ B
S,(σ1,σ2)
P (x,y), where e(λ, u; µ, ξ) ∈ B

(σ1,σ2)
P (xλ+µ, yλ+µ) is:

e(λ, u; µ, ξ)(s) = eR,R′(λ, u; µ, ξ)(s)

:= exp
(
u(s), ξ(s) + β(−R − s)x̄λ,u

µ (s) + β(s − R′)ȳλ,u
µ (s)

)
,

(68)

R, R′ being two large positive constants, and x̄λ,u
µ (s), ȳλ,u

µ (s) ∈ Tu(s)C are
defined by

exp(u(s), x̄λ,u
µ (s)) = xλ+µ; exp(u(s), ȳλ,u

µ (s)) = yλ+µ.

Note that the manifold structure of B
S,(σ1,σ2)
P (x,y) does not depend on

the choice of R, R′, though the local coordinates certainly do. For later
applications, we often choose R, R′ to depend on u, λ. (See e.g., II.2.2.2).
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There is a Banach bundle over B
S,(σ1,σ2)
P (x,y), of which the parameterized

moduli space M
S,(σ1,σ2)
P (x,y; JΛ, XΛ) is the zero locus of the Fredholm

section ∂̄JΛ,XΛ ,
∂̄JΛ,XΛ(λ, u) := ∂̄Jλ,Xλ

u.

The linearization of ∂̄JΛ,XΛ with respect to the above local coordinates of
BS

P (x,y) has the form:

(69) Ê(λ,u)(α, ξ) = EJλ,Xλ
u ξ + αY(λ,u),

where Y(λ,u) ∈ Lp(u∗K) has the following properties:
• It is supported on (−R−1, R′ +1)×S1, R, R′ being the real numbers

in (68).
• Over (−R, R′) × S1, it agrees with ∂λθ̌Xλ

(u) + ∂λJλ(∂tu − Xλ).
• The difference Y(λ,u) −

(
∂λθ̌Xλ

(xλ) + ∂λJλ(∂txλ − Xλ)
)

consists of
terms supported on (−R−1, R′+1)\(−R, R′)×S1, that either involves
a product of a i-th order derivative of β(s − R′) and a j-th order
derivative of ȳλ,u

α , or in parallel, a product of a i-th order derivative
of β(−R − s) and a j-th order derivative of x̄λ,u

α , i, j being 0 or 1.
We shall see later that for practical purposes, the difference described in item
3 above is usually ignorable. Finally, note that the form of Ê(λ,u) depends
on the choice of local coordinates, and hence on the numbers R, R′.

6.2. From a CHFS to an admissible homotopy. The purpose of this
subsection is to use the structure theorems in Section 6.1 to establish the
existence of admissible (J, X)-homotopies. We first state the definition:

6.2.1. Definition. A (J, X)-homotopy (JΛ, XΛ) is said to be admissible,
if the following three conditions hold:

(1) JΛ is a semi-positive path in JK , and XΛ is H1-codirectional. Plus,
for λ ∈ ∂Λ, (Jλ, Xλ) is regular.

(2) All the properties (RHFS*) hold except for (RHFS2c, 3c, 4).
(3) Any xλ ∈ PΛ,deg(JΛ, XΛ) lies in a standard d-b neighborhood.

6.2.2. Proposition. Let M be w+-monotone, and (J1, X1), (J2, X2) be
two regular pairs. Suppose there is a H1-codirectional path XΛ

(0), Λ =
[1, 2], connecting X1, X2. Then there exists an admissible (J, X)-homotopy
connecting (J1, X1), (J2, X2).

Remark. The Morse-theoretic picture leads one to expect that a generic
(J, X)-homotopy satisfying condition 1 of Definition 6.2.1 always generates
an RHFS. In particular, condition 3 of Definition 6.2.1 should be unneces-
sary. Since we only need the existence, not the genericity of RHFSs, there
is no harm in imposing this condition to simplify the estimates in Part II.

The rest of this subsection is devoted to the proof.
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First, we give a linear ordering of the properties of an admissible (J, X)-
homotopy. We shall find a sequence of (J, X)-homotopies, {(JΛ

(k), X
Λ
(k))}K

k=0,
so that the k-th step (JΛ

(k), X
Λ
(k)) satisfies Properties (0)–(k). Thus, the last

of the sequence will be an admissible (J, X)-homotopy.

6.2.3. Ordering the properties of admissibility.
(0) Definition 6.2.1, item 1. (Semi-positivity of JΛ and H1-codirection of

XΛ.)
(1) (RHFS1). (Smoothness and compactness properties of PΛ, PΛ,deg.)
(2) (RHFS1i). (Injectivity of ΠΛ

∣
∣
∣
PΛ,deg

.)

(3) Condition (2a) of Definition 5.3.1 ∀y ∈ PΛ,deg. (Integrability and
λ-independence of JΛ near PΛ,deg.)

(4) Conditions (1a)–(1c) of Definition 5.3.1 ∀y ∈ PΛ,deg. (Constraints on
higher derivatives of ny for degenerate critical points.)

(5) (RHFS2d). (Smoothness and compactness properties of MP (Xλ), for
λ ∈ Λdb.)

(6) Conditions (2b)–(2d) of Definition 5.3.1 ∀y ∈ PΛ,deg. (Constraints on
∂λθ̌Xλ

and its derivatives for λ ∈ Λdb.)
(7) (RHFS2, 3). (Smoothness and compactness properties of MΛ

P , MΛ
O.)

(8) (RHFS2i). (Injectivity of ΠΛ

∣
∣
∣
M̂

Λ,0
P

.)

To achieve these properties, we allow JΛ to vary among semi-positive
paths, and XΛ to vary within the set {XΛ

(0) + χHΛ |HΛ ∈ HΛ}. Notice that
such XΛ is H1-codirectional if XΛ

(0) is. This ordering is chosen so that JΛ
(k),

PΛ
(k) are fixed from Step (3) on. (So that notions such as Λdb is independent

of k for sufficiently large k, and we are free to suppress the superscript
or parenthetical reference to (JΛ

(k), X
Λ
(k)) from the notations in this case).

The Hamiltonian perturbation HΛ is fixed step by step: The low order
derivatives of Hλ at yλ for yλ ∈ PΛ,deg are fixed in Step (4). The functions
Hλ for λ ∈ Λdb are fixed in Step (5). The low order derivatives of ∂λHλ at
yλ ∀yλ ∈ PΛ,deg are fixed in Step (6). Steps (7) and (8) use the remaining
freedom of HΛ.

6.2.4. Achieving properties (0)–(7). Step (0). By assumption, XΛ
(0)

and (J1, X1), (J2, X2) already satisfy the requirements of Property (0). To
obtain the 0-th (J, X)-homotopy, we just need to find a semipositive path
JΛ

(0) connecting J1, J2.
This is easy under the assumption that M is w+-monotone: in this case,

any two regular elements in JK can be connected by a semi-positive path.
To see this, notice that JK is path-connected, and by an analog of Lemma
3.1.2 (b), any path connecting J1, J2 may be perturbed into a “regular path”,
namely, a path {Jλ} such that the space

⋃
λ S(A, Jλ)/G is a smooth manifold
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of expected dimension (2n + 2c1(A) − 4). On the other hand, the analog of
Lemma 3.1.2 (a) says that regular paths are semi-positive.

Let JΛ
(0) be one such regular path; (JΛ

(0), X
Λ
(0)) is our 0-th (J, X)-homotopy.

Step (1). Let (JΛ
(1), X

Λ
(1)) = (JΛ

(0), X
Λ
(0) + χHΛ

(1)
), where HΛ

(1) is in

HΛ,rg(JΛ
(0), X

Λ
(0)). By Propositions 6.1.2, 6.1.3, (JΛ

(1), X
Λ
(1)) satisfies Proper-

ties (0) and (1).

Step (2). There might be two distinct x, y ∈ PΛ
deg(J

Λ
(1), X

Λ
(1)) with

ΠΛx = ΠΛy. However, a simple perturbation to XΛ
(1) may distinguish their

values under the projection map ΠΛ. For example, one may vary XΛ
(1) locally

near the image of x, setting XΛ
(2) so that

X(2),λ =

{
X(1),f(λ) over Ux

X(1),λ outside Vx,

where Ux ⊂ Vx are two small regular neighborhoods of the image of the
section x : S1 → Tf , and f : Λ → Λ is a diffeomorphism that agrees with
the identity outside a neighborhood of ΠΛ(x), and that f(ΠΛ(x)) �= ΠΛ(x).

Notice that since x and y have disjoint image (being distinct solutions
of a first-order ODE), Ux, Vx may be chosen so that the image of y lies
outside of Vx. On the other hand, since the difference between X(2),λ and
X(1),λ is supported on a contractible space, it is necessarily Hamiltonian.
Thus, such XΛ

(2) is still H1-codirectional. Now, (JΛ
(1), X

Λ
(2)) might no

longer satisfy Property (1), but one may add a further small Hamiltonian
perturbation to regain Property (1), using again Propositions 6.1.2, 6.1.3.
As long as the perturbation is sufficiently small, Property (2) is preserved.
Setting JΛ

(2) = JΛ
(1), we have obtained our 2nd (J, X)-homotopy, (JΛ

(2), X
Λ
(2)),

satisfying Properties (0), (1), (2).

Step (3). For each λ ∈ ΠΛPΛ,deg(XΛ
(2)), we choose J(3);λ such that:

• J(3);λ ∈ J
reg
K ;

• J(3);λ,t

∣
∣
∣
Uyλ

∩π−1
S {t}

is integrable ∀t ∈ S1, where yλ ∈ P(Xλ) is the

unique degenerate critical point, Uyλ
, Vyλ

are as in Step (2) above,
and πS : Tf → S1 is the projection.

• J(3);λ is close to J(2);λ in Cε-norm over Tf\Vyλ
.

This is possible because of Lemma 3.1.2 (c). Moreover, arguing as in Step
(0), such {J(3);λ}λ∈Λdb may be extended into a semi-positive (in fact, regular)
path JΛ

(3). If one so desires, one may also take JΛ
(3) to Cε-approximate

JΛ
(2), away from the image of all x ∈ PΛ,deg(XΛ

(2)) in Λ × Tf . By a
reparametrization of Λ, one may assume that JΛ

(3) is constant in λ in a
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small neighborhood of ΠΛPΛ,deg(XΛ
(2)) ⊂ Λ. Noticing that reparametrizing

Λ preserves semipositivity, we now have a semipositive path JΛ
(3) satisfying

Property (3).
The (J, X)-homotopy (JΛ

(3), X
Λ
(2)) now satisfies Properties (0), (2), (3), but

Property (1) may be lost. In this case, one again apply Propositions 6.1.2,
6.1.3 to find a XΛ

(3) = XΛ
(2) + χHΛ

(3)
, so that (JΛ

(3), X
Λ
(3)) satisfies Properties

(0), (1), (3). If HΛ
(3) is sufficiently small, Property (2) will still be preserved.

Step (4). Property (4) may be obtained by simply setting XΛ
(4) = XΛ

(3)

+χHΛ
(4)

, with HΛ
(4) ∈ V Λ;2

∂Λ,δ(J
Λ
(3), X

Λ
(3)), varying ∇2θ̌Xλ

(yλ), ∇3θ̌Xλ
(yλ) for

yλ ∈ PΛ,deg(XΛ
(3)), but leaving the lower order derivatives unchanged. Notice

that the fact that HΛ
(4) ∈ V Λ;k

∂Λ,δ for k > 1 implies that PΛ(XΛ
(4)) = PΛ(XΛ

(3))

in Λ × C, and the deformation operators Ayλ
, Âyλ

also remain the same.
Thus, Properties (0)–(3) are still valid for (JΛ

(4), X
Λ
(4)) := (JΛ

(3), X
Λ
(4)).

Step (5). Let (JΛ
(5), X

Λ
(5)) = (JΛ

(4), X
Λ
(4) + χHΛ

(5)
), where HΛ

(5) is such that

H(5);λ ∈ V k,Preg
δ (J(4);λ, X(4),λ), ∀λ ∈ Λdb. By Proposition 5.2.6, Property

(5) then holds for (JΛ
(5), X

Λ
(5)). By taking HΛ

(5) ∈ V Λ;k,κ
∂Λ,δ (JΛ

(4), X
Λ
(4)) for k > 2,

Properties (0)–(4) remain valid.

Step (6). Set (JΛ
(6), X

Λ
(6)) = (JΛ

(5), X
Λ
(5) + χHΛ

(6)
), where

HΛ
(6) ∈ V Λ;k,0

∂Λ,δ (JΛ
(5), X

Λ
(5)) for k > 2, choosing ∂λ∇H(6),λ near the neighbor-

hood of all yλ ∈ PΛ,deg(JΛ
(5), X

Λ
(5)) so that Conditions (2b)–(2d) of Definition

5.3.1 are met. The smallness of HΛ
(6) and the constraints on its low order

derivatives imply that Properties (0)–(5) remain valid.

Step (7). Set (JΛ
(7), X

Λ
(7)) = (JΛ

(6), X
Λ
(6) + χHΛ

(7)
), where

HΛ
(7) ∈ V Λ;k,κ,reg

∂Λ,δ (JΛ
(6), X

Λ
(6)) for k > 2, κ ≥ 1. By Proposition 6.1.4, Property

(7) holds for (JΛ
(7), X

Λ
(7)); on the other hand, Properties (0)–(6) remain valid

by the constraints on k, κ.

6.2.5. The final step: injectivity of ΠΛ
∣
∣
M̂

Λ,0
P

. More care is required for

this last step, because unlike the case of Step (2), M̂
Λ,0
P consists of possibly

infinitely many elements, while we are also under the extra constraints to
preserve the many properties already established above.

To obtain Property (8), we shall again set (JΛ
(8), X

Λ
(8)) = (JΛ

(7), X
Λ
(7) +

χHΛ
(8)

), where HΛ
(8) ∈ V Λ;k,κ,reg

∂Λ,δ (JΛ
(7), X

Λ
(7)) for k > 2, κ ≥ 1. The Hamiltonian

perturbation HΛ
(8) will be chosen iteratively below, via a refinement of the

standard transversality argument.
First, observe the following
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Lemma. Suppose Properties (0)–(7) above hold for the (J, X)-homotopy
(JΛ, XΛ), and let

{(λ1, u1), (λ2, u2, ), . . . , (λn, un)} ⊂ M̂
Λ,0
P (JΛ, XΛ)

be such that λ1, λ2, . . . , λn−1 ∈ Λ are mutually distinct, and λn agrees with
one λi, for some i ∈ {1, . . . , n− 1}. Let k, κ be as in Step (7). Then for any
sufficiently small δ, there exists an HΛ ∈ V Λ,k,κ,reg

∂Λ,δ (JΛ, XΛ), such that:

Denoting by (λ̃j , ũj) the unique element in M̂
Λ,0
P (JΛ, XΛ + χHΛ) close to

(λj , uj) in BΛ
P , the points λ̃1, λ̃2, . . . , λ̃n−1, λ̃n are mutually distinct in Λ.

Proof. Ideally, we would like the Hamiltonian perturbation to:
(i) shift λn, but meanwhile
(ii) leave λ1, . . . , λn−1 unchanged.

To guarantee (ii), one may try an hΛ ∈ V Λ,k,κ
∂Λ,δ (JΛ, XΛ), such that:

hλ vanishes when λ ∈ Λ\Sλn , where Sλn ⊂ Λ is a small interval about λn,

so that Sλn ∩ (Λdb ∪ {λ1, . . . , λn−1}) = ∅;
(70)

(71) hλ is supported away from the image of ui in Tf ,∀i ∈ {1, . . . , n − 1}.

To explain how to achieve (i), some preliminary discussion is required.
Let BΛ

P =
∐

x,y∈ℵΛ
BΛ

P (x,y), and

M
1,V Λ;k,κ

∂Λ,δ

P (JΛ, XΛ) :=
⋃

HΛ∈V Λ;k,κ
∂Λ,δ (JΛ,XΛ)

M
Λ,1
P (JΛ, XΛ + χHΛ) ⊂ BΛ

P

be the universal moduli space. Let (λ, u) ∈ M
Λ,1
P (JΛ, XΛ), and let ((λ, u), 0)

denote the associated element in M
1,V Λ;k,κ

∂Λ,δ

P (JΛ, XΛ). An element in its
tangent space

(α, ξ, hΛ) ∈ R × Lp
1(u

∗K) × V Λ;k,κ
∂Λ,δ (JΛ, XΛ) = T((λ,u),0)M

1,V Λ;k,κ
∂Λ,δ

P (JΛ, XΛ)

satisfies

(72) EJλ,Xλ
u (ξ) + αY(λ,u) + ∇hλ(u) = 0,

Y(λ,u) being as in (69).
Let fu be a unit vector in cokerEu. Since (JΛ, XΛ) is assumed to satisfy

(RHFS2), (λj , uj) is an non-degenerate point of M
Λ,1
P (JΛ, XΛ) for any j;

hence coker Euj = Span{fuj} and

Πfuj
Y(λ,u) �= 0.

Thus, by (72), a small hΛ would satisfy (i) if

(73) Πfu
∇hλ(un) �= 0.
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We now show the existence of hΛ satisfying all the three conditions (6.7),
(6.8), (6.10).

As in the standard transversality argument (as in the proof of Theorem
5.1 (i) of [14]), consider the following three possibilities for fun :

Case 1: The set

Q1 :=
{

(s, t)
∣
∣
∣ (s, t) ∈ R × S1

1 , fun(s, t) �= Cu′
n(s, t) ∀C ∈ R

}

is non-empty.
Case 2: fun = g(s, t)u′

n, and the set

Q2 := {(s, t) | ∂sg(s, t) �= 0}

is non-empty.
Case 3: fun = g(t)u′

n.

Case 3 was shown to be impossible in the proof of Theorem 5.1 (i) of [14].
For the other two cases, apply unique continuation (cf. [14]) as in

Section 3 to see that the image of ui, un at most intersect at discrete points.
On the other hand, both sets Q1 and Q2 are open. Thus, in both cases 1
and 2, we can find a neighborhood B in Q1 or Q2, such that un(B) does not
intersect the image of ui.

In either case, we can choose a small Hλn
∈ V k

δ (Jλn , Xλn) supported in a
small neighborhood B ⊂ Tf , so that u−1

n (B) ⊂ B, and 〈fun ,∇Hλn
(un)〉2 �=

0, as in the proof of Theorem 5.1 (i) of [14]. This Hλn
can be extended

smoothly to get a small HΛ ∈ V Λ;k,κ
∂Λ,δ (JΛ, XΛ) satisfying (6.7).

HΛ now satisfies (6.7), (6.8), (6.10) by construction. Since V Λ,k,κ,reg
∂Λ,δ

(JΛ, XΛ) is dense in V Λ;k,κ
∂Λ,δ (JΛ, XΛ), we can approximate HΛ by an element

HΛ ∈ V Λ;k,κ,reg
∂Λ,δ (JΛ, XΛ), still keeping ΠΛ injective on

{(λ̃1, ũ1), . . . , (λ̃n−1, ũn−1), (λ̃n, ũn)} ⊂ M̂
Λ,0
P (JΛ, XΛ + χHΛ). �

We now return to Step (8) of the proof of Proposition 6.2.2.
Since (JΛ

(7), X
Λ
(7)) satisfies (RHFS2), there are countably many elements in

M̂
Λ,0
P (JΛ

(7), X
Λ
(7)); let’s enumerate them as (λ1, u1), (λ2, u2), . . . (λn, un), . . .,

such that the weight wt−〈Y〉,eP increases monotonically in n. An small
Hamiltonian perturbation to XΛ

(7) will only change them slightly.
We now apply the previous Lemma recursively to the first n elements of

M
Λ,0
P (JΛ, XΛ) (in the order of wt−〈Y〉,eP) for each n, labeling the (JΛ, XΛ)

used in the n-th step by (J̃Λ
[n], X̃

Λ
[n]), the number δ used in the n-th step by

δ̃[n], and the small Hamiltonian pertubation HΛ obtained in the n-th step
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by H̃Λ
[n]. Set

J̃Λ
[n] = JΛ

(7) ∀n ∈ Z
+,

X̃Λ
[1] := XΛ

(7), X̃Λ
[n] = X̃Λ

[n−1] + χH̃Λ
[n−1]

for n > 1.

Notice that

V Λ;k,κ
∂Λ,δ (JΛ, XΛ) = V Λ;k,κ

∂Λ,δ (JΛ, XΛ + χHΛ) if HΛ ∈ V Λ;k,κ
∂Λ,δ (JΛ, XΛ).

Thus, all the various H̃Λ
[n−1], or any sum of them, are actually in the same

space, namely V Λ;k,κ
∂Λ,δ (JΛ

(7), X
Λ
(7)) for certain δ > 0.

To explain our choice of δ̃[n], we need to first give an explicit description of
the Baire set V Λ;k,κ,reg

∂Λ,δ (JΛ, XΛ) as a countable intersection of certain open
dense sets.

Let V Λ;k,κ,R-reg
∂Λ,δ (JΛ, XΛ) ⊂ V Λ;k,κ

∂Λ,δ (JΛ, XΛ) be the subset consisting of all
HΛ such that (JΛ, XΛ+χHΛ) is R-regular. By the compactness of truncated
moduli spaces, this is an open dense set. By construction,

V Λ;k,κ,reg
∂Λ,δ (JΛ, XΛ) =

⋂

R>0

V Λ;k,κ,R-reg
∂Λ,δ (JΛ, XΛ).

When (JΛ, XΛ) is regular, given R ∈ R
+, there is an εR(JΛ, XΛ) ∈ R

+ such
that

V Λ;k,κ,R-reg
∂Λ,δ (JΛ, XΛ) = V Λ;k,κ

∂Λ,δ (JΛ, XΛ) ∀δ ≤ εR(JΛ, XΛ).

Now we are ready to state:

(74) δ̃[n] := min
{

2−n+j−1εRj (J̃
Λ
[j], X̃

Λ
[j])
∣
∣
∣ 1 ≤ j ≤ n

}
,

where Rj = wt−〈Y〉,eP(uj). Since the weight is defined by cohomological
pairing, this is independent of Hamiltonian perturbations. Namely, Rj =
wt−〈Y〉,eP(ũj) also, in the notation of the above lemma.

Finally, set

JΛ
(8) = JΛ

(7);

XΛ
(8) = XΛ

(7) +
∞∑

n=1

χH̃Λ
[n]

= lim
n→∞

X̃Λ
[n].

Notice that the limit exists by (6.11). The limit of a sequence of regular
(J, X)-homotopies might not be regular; however, (6.11) also implies:

∥
∥
∥

∞∑

j=n

H̃Λ
[j]

∥
∥
∥

Cε

≤ εRn(J̃Λ
[n], X̃

Λ
[n]).
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Thus,
XΛ

(8) := X̃Λ
[n] + χ∑∞

j=n H̃Λ
[n]

is Rn-regular, for any n ∈ Z
+.

Depending on whether M̂
Λ,0
P (JΛ

(7), X
Λ
(7)) consists of finitely many points,

either n has a maximum, or Rn → ∞. Either way, (JΛ
(8), X

Λ
(8)) will be

a regular (J, X)-homotopy: in the first case, (JΛ
(8), X

Λ
(8)) = (J̃Λ

[n], X̃
Λ
[n]) for

certain n, and is regular by definition; in the second case, the above argument
shows that it is R-regular for all R > 0.

(JΛ
(8), X

Λ
(8)) is the admissible (J, X)-homotopy we desire. End of the proof

of Proposition 6.2.2.
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