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We propose four conservative schemes for the regularized long-wave (RLW) equation.
The RLW equation has three invariants: mass, momentum, and energy. Our schemes
are designed by using the discrete variational derivative method to inherit appropriate
conservation properties from the equation. Two of our schemes conserve mass and
momentum, while the other two schemes conserve mass and energy. With one of our
schemes, we prove the numerical solution stability, the existence of the solutions, and
the convergence of the solutions. Through some numerical computation examples, we
demonstrate the efficiency and robustness of our schemes.
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1. Introduction

In this study we propose four conservative schemes for the regularized long
wave (RLW) equation for u = u(x, t),

(
1 − ∂2

∂x2

)
∂u

∂t
= − ∂

∂x

(
δG

δu

)
, x ∈ R, t > 0, (1)

where
δG

δu

def= u +
1
2
u2. (2)

For this equation we adopt periodic boundary conditions with a virtual length
L > 0,

∂l

∂xl

∂m

∂tm
u(x + kL, t) =

∂l

∂xl

∂m

∂tm
u(x, t), l = 0, 1, m = 0, 1, (3)

for any k ∈ Z, x ∈ R, and t > 0.
This equation, also known as the Benjamin–Bona–Mahony (BBM) equa-

tion, has been proposed as a model equation for the undular bore problem by
Peregrine [17]. Benjamin et al. [1] have investigated this equation as a regularized
version of the Korteweg–de Vries (KdV) equation. This equation has solitary wave



16 S. Koide and D. Furihata

solutions which are similar to those of the KdV equations. Although the KdV
equation has an infinite number of conserved quantities, Olver [16] has proved that
the RLW equation admits only three independent conserved quantities:

M [u( · , t)] def=
∫ L

0

u(x, t) dx, (4)

I[u( · , t)] def=
1
2

∫ L

0

{
u2 +

(
∂u

∂x

)2}
dx, (5)

J [u( · , t)] def=
1
2

∫ L

0

(
u2 +

1
3
u3

)
dx. (6)

Here, M , I, and J are called ‘mass,’ ‘momentum,’ and ‘energy.’ Since the number
of conserved quantities is limited, we are not able to use the inverse-scattering
technique, which is a powerful mathematical tool to obtain the theoretical solutions
of integrable equations such as the KdV equation.

A large number of studies have been carried out in order to obtain the numerical
solutions of the RLW equation [1, 2, 3, 4, 5, 6, 17]. For example, Peregrine [17]
has proposed a simple finite difference scheme, which is first-order accurate in time.
Further, Eilbeck and McGuire [5, 6] have proposed a linear scheme and a nonlinear
scheme, which are second-order accurate schemes. Dağ and Özer [2] have used a
finite element method based on cubic and quadratic B-splines. Dağ et al. [3] have
used a cubic B-spline collocation method to find the numerical solutions of the
RLW equation. Durán and López-Marcos [4] have investigated some advantages
of conservative numerical methods. Although Durán and López-Marcos scheme
conserves momentum, it is different from our proposed scheme described in the next
section. For a brief summary of the computational studies on the RLW equation,
refer [3].

We propose four finite difference schemes for the RLW equation. These schemes
are constructed using the discrete variational derivative method (DVDM), which
is a methodology used to design conservative numerical schemes. Furihata and
Mori [10] have used the DVDM to design a stable finite difference scheme for the
Cahn–Hilliard equation. Furihata [7, 8] has carried out some general studies on the
DVDM. Further, Matsuo and Furihata [14] have extended the general studies to
include complex-valued PDEs such as the nonlinear Schrödinger equation. Hanada
et al. [11] have used the DVDM to design a numerical scheme for the Eguchi–Oki–
Matsumura equation, and Ide et al. [12] have used the DVDM for the numerical
solutions of the Fujita problem. For a standard study on the DVDM, refer [7]. For
more details on the proposed linear schemes, refer [9].

This paper is structured as follows. In Section 2, we propose the four finite
difference schemes and describe their conservations properties. In Section 3, we
show three important features of our proposed momentum-conserving scheme. The
three features are solution stability, existence, and convergence. In Section 4, we
present some numerical computation examples using our proposed schemes.
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2. Four proposed finite difference schemes

In this section, we propose the four finite difference schemes that conserve
either discrete momentum or discrete energy. Two of them are nonlinear schemes,
while the other two are linear schemes. As described in the introduction, they have
been designed using the DVDM.

We define U
(n)
k (k ∈ Z, n = 0, 1, 2, . . . ) as the approximation to u(x, t) at loca-

tion x = kΔx and time t = nΔt, where Δx = L/N (N ∈ Z) is the space mesh size
and Δt is the time mesh size. For the computation, we adopt the following discrete
periodic boundary conditions:

U
(n)
k = U

(n)
k mod N for ∀k ∈ Z. (7)

We assume that the numerical solutions U
(n)
k always satisfy the abovementioned

condition. For simplicity, we denote a variable set under the abovementioned
boundary condition by

R(N) def=
{
f = {fk}k∈Z | fk ∈ R, fk = fk mod N for ∀k ∈ Z

}
. (8)

2.1. Concrete form of proposed schemes
The concrete form of the first proposed finite difference scheme, which con-

serves momentum and mass, is given by

(
1 − δ

〈2〉
k

)
δ+
n U

(n)
k = −δ

〈1〉
k

(
δGd

δ
(
V

(n)
+ ,V

(n)
−

)
)

k

, k ∈ Z, n = 0, 1, . . . , (9)

where δGd
δ(f ,g) is an R(N) × R(N) → R(N) function given as follows:

(
δGd

δ(f , g)

)
k

def=
(

fk + gk

2

)
+

1
2

(
(fk)2 + fkgk + (gk)2

3

)
, k ∈ Z, (10)

(
V

(n)
+

)
k

def=
1
2
(
U

(n+1)
k+1 + U

(n)
k+1

)
,

(
V

(n)
−

)
k

def=
1
2
(
U

(n+1)
k−1 + U

(n)
k−1

)
,

k ∈ Z, n = 0, 1, . . . (11)

Here, δ
〈2〉
k is a second-order difference operator defined by δ

〈2〉
k fk

def= (fk−1 − 2fk +

fk+1)/(Δx)2, δ
〈1〉
k is a first-order difference operator defined by δ

〈1〉
k fk

def= (fk+1 −
fk−1)/(2Δx) and δ+

n is a forward difference operator defined by δ+
n g(n) = (g(n+1) −

g(n))/Δt. We note that V
(n)
+ ,V

(n)
− ∈ R(N) and δGd

δ(V
(n)
+ ,V

(n)
− )

∈ R(N).

Using the scheme (9), we have to solve nonlinear equations to obtain a new
time-step solution, U (n+1). Because of this nonlinearity and the conservation of
momentum we call the scheme (9) as the nonlinear momentum-conserving (NM)
scheme.



18 S. Koide and D. Furihata

Remark 1. δGd
δ(f ,g) is a discrete variational derivative of the function

Gd(f)k
def=

1
2
(fk)2 +

1
6
(fk)3, (12)

and they satisfy

N−1∑
k=0

{Gd(f)k − Gd(g)k}Δx =
N−1∑
k=0

(
δGd

δ(f , g)

)
k

(fk − gk)Δx. (13)

The second scheme is also a nonlinear scheme. Since it conserves energy and
mass, we call it as the nonlinear energy-conserving (NE) scheme. It is given as

(
1 − δ

〈1〉
k δ

〈1〉
k

)
δ+
n U

(n)
k = −δ

〈1〉
k

(
δGd

δ(U (n+1),U (n))

)
k

, k ∈ Z, n = 0, 1, . . . (14)

The third scheme conserves momentum and mass, but we do not have to solve
nonlinear equations to obtain a new time-step solution. To obtain the solution, we
have to solve linear equations; hence, we call it as the linear momentum-conserving
(LM) scheme. Its forms given by

(
1 − δ

〈2〉
k

)
δ〈1〉n U

(n)
k = −δ

〈1〉
k

(
δGd

δ
(
U

(n)
+ ,U

(n)
−

)
)

k

, k ∈ Z, n = 1, 2, . . . , (15)

where (
U

(n)
+

)
k

def= U
(n)
k+1,

(
U

(n)
−

)
k

def= U
(n)
k−1, k ∈ Z, n = 0, 1, . . . (16)

Here, δ
〈1〉
n is a first-order difference operator defined by δ

〈1〉
n g(n) def= (g(n+1) −

g(n−1))/(2Δt).
The last scheme is a linear scheme that conserves energy and mass; hence,

we call it as the linear energy-conserving (LE) scheme. The form of the scheme is
given by

(
1 − δ

〈1〉
k δ

〈1〉
k

)
δ〈1〉n U

(n)
k = −δ

〈1〉
k

(
δG̃d

δ(U (n+1),U (n),U (n−1))

)
k

, k ∈ Z, n = 1, 2, . . . ,

(17)
where δG̃d

δ(f ,g,h) is an R(N) × R(N) × R(N) → R(N) function and

(
δG̃d

δ(f , g,h)

)
k

def= gk +
1
2

(
(fk + gk + hk)gk

3

)
, k ∈ Z. (18)
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Remark 2. δG̃d
δ(f ,g,h) is a discrete variational derivative of the function

G̃d(f , g)k
def=

1
2
fkgk +

1
6

(
(fk)2gk + fk(gk)2

2

)
, (19)

and they satisfy

N−1∑
k=0

{G̃d(f , g)k − G̃d(g,h)k}Δx =
N−1∑
k=0

(
δG̃d

δ(f , g,h)

)
k

(
fk − hk

2

)
Δx. (20)

2.2. Conservation properties of proposed schemes
We first study three conservation properties of the solution of the RLW equa-

tion, which are mentioned in the introduction, namely,

d

dt
M [u( · , t)] = 0, (21)

d

dt
I[u( · , t)] = 0, (22)

d

dt
J [u( · , t)] = 0. (23)

Equations (21), (22), and (23) are called the equations of mass conservation, mo-
mentum conservation, and energy conservation, respectively. Under the periodic
boundary condition, the conservation of mass (21) can be easily proved as follows:

d

dt
M [u( · , t)]=

∫ L

0

∂u

∂t
dx =

∫ L

0

{
∂2

∂x2

∂u

∂t
− ∂

∂x

(
δG

δu

)}
dx =

[
∂

∂x

∂u

∂t
− δG

δu

]L

x=0

= 0.

(24)
The conservation of momentum (22) is also proved similarly,

d

dt
I[u( · , t)] =

∫ L

0

(
u

∂u

∂t
+

∂u

∂x

∂2u

∂x ∂t

)
dx

=
∫ L

0

{
u

(
1 − ∂2

∂x2

)
∂u

∂t

}
dx +

[
u

∂2u

∂x ∂t

]L

x=0

= −
∫ L

0

u
∂

∂x

δG

δu
dx +

[
u

∂2u

∂x ∂t

]L

x=0

=
∫ L

0

∂u

∂x

δG

δu
dx +

[
u

(
∂2u

∂x ∂t
− δG

δu

)]L

x=0

=
∫ L

0

∂

∂x
G dx +

[
u

(
∂2u

∂x ∂t
− δG

δu

)]L

x=0

=
[
G + u

(
∂2u

∂x ∂t
− δG

δu

)]L

x=0

= 0, (25)

where

G(u) def=
1
2
u2 +

1
6
u3. (26)
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The conservation of energy (23) is proved as follows:

d

dt
J [u( · , t)] =

∫ L

0

δG

δu

∂u

∂t
dx =

∫ L

0

{(
δG

δu
− ∂2u

∂x ∂t

)
∂u

∂t
+

∂2u

∂x ∂t

∂u

∂t

}
dx

=
∫ L

0

{
−
(

∂2u

∂x ∂t
− δG

δu

)
∂

∂x

(
∂2u

∂x ∂t
− δG

δu

)
+

1
2

∂

∂x

(
∂u

∂t

)2}
dx

=
1
2

∫ L

0

∂

∂x

{
−
(

∂2u

∂x ∂t
− δG

δu

)2

+
(

∂u

∂t

)2}
dx

=
1
2

[
−
(

∂2u

∂x ∂t
− δG

δu

)2

+
(

∂u

∂t

)2]L

x=0

= 0. (27)

The main purpose of this subsection is to prove conservation properties of the
proposed schemes corresponding to (21)–(23).

2.2.1. Conservation properties of NM scheme
The solutions U (n) of the NM scheme (9) exhibit the following properties,

i.e. discrete mass conservation property and discrete momentum conservation
property:

Md[U (n)] = Md[U (0)], (28)

Id[U (n)] = Id[U (0)], (29)

where

Md[f ] def=
N−1∑
k=0

fkΔx, (30)

Id[f ] def=
1
2

N−1∑
k=0

{
(fk)2 +

(δ+
k fk)2 + (δ−k fk)2

2

}
Δx. (31)

Here, δ+
k is a forward difference operator defined by δ+

k fk = (fk+1 − fk)/Δx and
δ−k is a backward difference operator defined by δ−k fk = (fk − fk−1)/Δx.

The discrete mass conservation property (28) of the NM scheme is proved
below. For simplicity, we denote U (n+1) by U+, U (n) by U , and U (n−1) by U−

in this subsection. We obtain

1
Δt

(Md[U+] − Md[U ]) =
N−1∑
k=0

(
U+

k − Uk

Δt

)
Δx

=
N−1∑
k=0

{
δ
〈2〉
k δ+

n Uk − δ
〈1〉
k

(
δGd

δ
(
V

(n)
+ ,V

(n)
−

)
)

k

}
Δx

= 0 (32)

by (121) and (122) (refer Appendix) because δ+
n U , δGd

δ(V
(n)
+ ,V

(n)
− )

∈ R(N).
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The discrete momentum conservation property (29) of the NM scheme can be
shown as follows:

1
Δt

(Id[U+] − Id[U ])

=
N−1∑
k=0

[(
U+

k + Uk

2

)
(δ+

n Uk)

+
1
2

{
δ+
k

(
U+

k + Uk

2

)
δ+
k (δ+

n Uk) + δ−k

(
U+

k + Uk

2

)
δ−k (δ+

n Uk)
}]

Δx

=
N−1∑
k=0

{(
U+

k + Uk

2

)(
1 − δ

〈2〉
k

)
(δ+

n Uk)
}

Δx

= −
N−1∑
k=0

{
V

(n)
k δ

〈1〉
k

(
δGd

δ
(
V

(n)
+ ,V

(n)
−

)
)

k

}
Δx

=
N−1∑
k=0

(
δ
〈1〉
k V

(n)
k

)( δGd

δ
(
V

(n)
+ ,V

(n)
−

)
)

k

Δx =
N−1∑
k=0

δ
〈1〉
k Gd(V (n))kΔx = 0, (33)

where V
(n)
k

def=
(
U

(n+1)
k + U

(n)
k

)
/2. The second, fourth, fifth, and sixth equalities

are derived from (123), (124), (13), and (121), respectively.

2.2.2. Conservation properties of NE scheme
The solutions U (n) of the NE scheme (14) exhibit the following properties,

i.e. discrete mass conservation property and discrete energy conservation property:

Md[U (n)] = Md[U (0)], (34)

Jd[U (n)] = Jd[U (0)], (35)

where

Jd[f ] def=
N−1∑
k=0

Gd(f)kΔx. (36)

The discrete mass conservation property (34) of the NE scheme can be proved in a
manner similar to the proof of (32) as follows:

1
Δt

(Jd[U+] − Jd[U ])

=
N−1∑
k=0

(
δGd

δ(U+,U)

)
k

δ+
n UkΔx

=
N−1∑
k=0

[{(
δGd

δ(U+,U)

)
k

− δ
〈1〉
k δ+

n Uk

}
δ+
n Uk +

(
δ
〈1〉
k δ+

n Uk

)
δ+
n Uk

]
Δx

= −
N−1∑
k=0

[{(
δGd

δ(U+,U)

)
k

− δ
〈1〉
k δ+

n Uk

}
δ
〈1〉
k

{(
δGd

δ(U+,U)

)
k

− δ
〈1〉
k δ+

n Uk

}]
Δx

= 0, (37)
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where the third and fourth equalities are derived from (125).

2.2.3. Conservation properties of LM scheme
The solutions U (n) of the LM scheme (15) exhibit the following properties,

i.e. discrete mass conservation property and discrete momentum conservation
property:

Md[U (n)] =

{
Md[U (1)], for odd n > 0,

Md[U (0)], for even n ≥ 0,
(38)

Ĩd[U (n+1),U (n)] = Ĩd[U (1),U (0)], for n ≥ 0, (39)

where

Ĩd[f , g] def=
1
2

N−1∑
k=0

{
fkgk +

(δ+
k fk)(δ+

k gk) + (δ−k fk)(δ−k gk)
2

}
Δx. (40)

The discrete mass conservation property (38) of the LM scheme can be proved in
a manner similar to the proof of (32) as (Md[U (n+1)] − Md[U (n−1)])/(2Δt) = 0.
The discrete momentum conservation property (39) can be proved as follows:

1
Δt

(Ĩd[U+,U ] − Ĩd[U ,U−])

=
N−1∑
k=0

[
Uk

(
δ〈1〉n Uk

)
+

1
2
{
(δ+

k Uk)
(
δ+
k δ〈1〉n Uk

)
+ (δ−k Uk)

(
δ−k δ〈1〉n Uk

)}]
Δx

=
N−1∑
k=0

{
Uk

(
1 − δ

〈2〉
k

)(
δ〈1〉n Uk

)}
Δx

= −
N−1∑
k=0

{
V

(n)
k δ

〈1〉
k

(
δGd

δ
(
U

(n)
+ ,U

(n)
−

)
)

k

}
Δx

=
N−1∑
k=0

(
δ
〈1〉
k U

(n)
k

)( δGd

δ
(
U

(n)
+ ,U

(n)
−

)
)

k

Δx =
N−1∑
k=0

δ
〈1〉
k Gd(U (n))kΔx = 0. (41)

2.2.4. Conservation properties of LE scheme
The solutions U (n) of the LE scheme (17) exhibit the following properties,

i.e. discrete mass conservation property and discrete energy conservation property:

Md[U (n)] =

{
Md[U (1)], for odd n > 0,

Md[U (0)], for even n ≥ 0,
(42)

J̃d[U (n+1),U (n)] = J̃d[U (1),U (0)], for n ≥ 0, (43)

where

J̃d[f , g] def=
N−1∑
k=0

G̃d(f , g)kΔx. (44)
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The discrete mass conservation property (42) of the LE scheme can be proved in a
manner similar to the proof of (32). The discrete momentum conservation property
(43) can be proved as follows:

1
Δt

(J̃d[U+,U ] − J̃d[U ,U−])

=
N−1∑
k=0

(
δG̃d

δ(U+,U ,U−)

)
k

δ〈1〉n UkΔx

=
N−1∑
k=0

[{(
δG̃d

δ(U+,U ,U−)

)
k

− δ
〈1〉
k δ〈1〉n Uk

}
δ〈1〉n Uk +

(
δ
〈1〉
k δ〈1〉n Uk

)
δ〈1〉n Uk

]
Δx

= −
N−1∑
k=0

[{(
δG̃d

δ(U+,U ,U−)

)
k

− δ
〈1〉
k δ〈1〉n Uk

}

× δ
〈1〉
k

{(
δG̃d

δ(U+,U ,U−)

)
k

− δ
〈1〉
k δ〈1〉n Uk

}]
Δx = 0, (45)

where the third and fourth equalities are derived from (125).

3. Solution stability, existence, and convergence of NM scheme

3.1. Solution stability of NM scheme
The purpose of this subsection is to prove that if the numerical solutions of

the NM scheme exist, they are bounded by the maximum norm. The proof of
the property consists of a lemma—discrete Sobolev lemma—which shows that the
maximum norm of a discrete function is bounded when its discrete Sobolev norm
is bounded.

Lemma 1 (Discrete Sobolev lemma).

max
k∈Z

|fk| ≤ 2max
(

1√
L

,
√

L

)
‖f‖d-(1,2), (46)

where

‖f‖d-(1,2)
def=

[
N−1∑
k=0

{
(fk)2 +

(δ+
k fk)2 + (δ−k fk)2

2

}
Δx

]1/2

. (47)

Proof. There exists a simple proof for this lemma in [13, §8.6]. �

Applying this lemma to (29), we obtain the following inequality:

Theorem 2.

max
k∈Z

∣∣U (n)
k

∣∣ ≤ 2
√

2 max
(

1√
L

,
√

L

)√
Id[U (0)]. (48)

This inequality implies that the NM scheme (9) is stable for any time step n

if the numerical solutions of the scheme exist.
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3.2. Existence of solutions of NM scheme
In this subsection, using the fixed-point theorem for contraction mapping, we

show that the NM scheme (9) has unique solutions under some conditions of Δt

and Δx. For the scheme (9), we define a mapping TU(n) : RN → RN as

2
Δt

(I − D2)
(
TU(n)v − Ũ

(n)) def= D1A(v), (49)

where I is the identity matrix of order N ; D2 is the second difference operator
matrix of order N under the boundary condition (7),

D2
def=

1
(Δx)2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 1
1 −2 1 0

1 −2 1
. . . . . . . . .

0 1 −2 1
1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (50)

Ũ
(n) is an RN vector defined as Ũ

(n)
k

def= U
(n)
k for k = 0, 1, . . . , N − 1; D1 is the

first difference operator matrix,

D1
def=

1
2Δx

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1
−1 0 1 0

−1 0 1
. . . . . . . . .

0 −1 0 1
1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (51)

and

{A(v)}k

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
v1 +vN−1

2

)
+

(v1)2 +(v1)(vN−1)+(vN−1)2

6
, for k = 0,

(
vk+1 +vk−1

2

)
+

(vk+1)2 +(vk+1)(vk−1)+(vk−1)2

6
, for k = 1, 2, . . . , N −2,

(
v0 +vN−2

2

)
+

(v0)2 +(v0)(vN−2)+(vN−2)2

6
, for k =N −1.

(52)

Note that the operator (I − D2) is a nonsingular matrix. The eigenvalues of
(I − D2) are

1 − 2
(Δx)2

{
cos

(
2kπ

N

)
− 1

}
, k = 0, 1, . . . , N − 1. (53)
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It is clear that all eigenvalues are larger than 1, implying that the operator is a
nonsingular matrix.

When v is assumed to be (U (n+1) + U (n))/2, the equation TU(n)v = v is
essentially no different from the NM scheme (9). Therefore, we prove the existence
of solution of the NM scheme using the fixed-point theorem for the mapping TU(n) .

Theorem 3 (Local solution existence and uniqueness). If

Δt ≤ 2Δx

1 + 2K(n)
, (54)

then the mapping TU(n) has a unique solution in a closed ball B(n), where

‖f‖ def=

{
N−1∑
k=0

(fk)2
}1/2

, (55)

K(n) def=
∥∥Ũ

(n)∥∥, (56)

B(n) def= {f ∈ RN | ‖f‖ ≤ 2K(n)}. (57)

Proof. We assume that v ∈ B(n) and v′ ∈ B(n) in this proof. Using the
mapping TU(n) , we obtain

‖TU(n)v − TU(n)v′‖ ≤ Δt

2
‖(I − D2)−1‖ ‖D1‖ ‖A(v) − A(v′)‖

≤ Δt

2Δx
‖A(v) − A(v′)‖, (58)

where the norm of a matrix is defined as an operator norm. In order to evaluate the
abovementioned matrix norm, using the eigenvalues of (I −D2) (53), we determine
‖(I − D2)−1‖ = 1. Using D1, we can show that ‖D1‖ ≤ 1

Δx because

|λk| =
sin

(
2kπ
N

)
Δx

, k = 0, 1, . . . , N − 1, (59)

for the eigenvalues λk of D1. On the right-hand side of the inequality (58),

‖A(v) − A(v′)‖ ≤ 1
2
(‖v+ − v′

+‖ + ‖v− − v′
−‖)

+
1
6
(‖w+ − w′

+‖ + ‖w − w′‖ + ‖w− − w′
−‖), (60)

where

(v+)k
def=

{
vk+1, k = 0, 1, . . . , N − 2,

v0, k = N − 1,
(61)

(v−)k
def=

{
vN−1, k = 0,

vk−1, k = 1, 2, . . . , N − 1,
(62)
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(w+)k
def= {(v+)k}2, k = 0, 1, . . . , N − 1, (63)

(w)k
def= (v+)k(v−)k, k = 0, 1, . . . , N − 1, (64)

(w−)k
def= {(v−)k}2, k = 0, 1, . . . , N − 1. (65)

Further, v′
+, v′

−, w′
+, w′, and w′

− are defined in a similar manner. First,

‖v+ − v′
+‖ = ‖v− − v′

−‖ = ‖v − v′‖ (66)

is obvious. Next,

‖w+ − w′
+‖2 =

N−1∑
k=0

(vk + v′
k)2(vk − v′

k)2

≤ max
0≤k≤N−1

(vk + v′
k)2‖v − v′‖2

≤ 2 max
0≤k≤N−1

{(vk)2 + (v′
k)2}‖v − v′‖2

≤ 2{‖v‖2 + ‖v′‖2}‖v − v′‖2

≤ 16(K(n))2‖v − v′‖2. (67)

Similarly, ‖w− − w′
−‖ ≤ 4K(n)‖v − v′‖ can be obtained. Further, w − w′ =

(z1 + z2)/2, where

(z1)k
def= {(v+)k + (v′

+)k}{(v−)k − (v′
−)k}, (68)

(z2)k
def= {(v+)k − (v′

+)k}{(v−)k + (v′
−)k}. (69)

Since

‖z1‖2 ≤ max
0≤k≤N−1

(vk + v′
k)2‖v − v′‖2 ≤ 16(K(n))2‖v − v′‖2 (70)

and ‖z2‖2 ≤ 16(K(n))2‖v − v′‖2, we obtain ‖w − w′‖ ≤ 4K(n)‖v − v′‖. Hence,
we obtain

‖A(v) − A(v′)‖ ≤ (1 + 2K(n))‖v − v′‖, (71)

and

‖TU(n)v − TU(n)v′‖ ≤ Δt

2Δx
(1 + 2K(n))‖v − v′‖. (72)

This implies that the mapping TU(n) contracts when Δt satisfies

Δt

2Δx
(1 + 2K(n)) < 1 ⇐⇒ Δt <

2Δx

1 + 2K(n)
. (73)

�
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Substituting K(n) in Theorem 3, we obtain

(K(n))2 =
1

Δx

{
N−1∑
k=0

(
U

(n)
k

)2Δx

}
≤ 1

Δx
‖U (n)‖2

d-(1,2) =
2

Δx
Id[U (n)] =

2
Δx

Id[U (0)]

(74)
because U (n) are the solutions of the NM scheme. Using this inequality, we obtain
the following corollary.

Corollary 4 (Global solution existence and uniqueness). If

Δt ≤ Δx
3
2

(2Id[U (0)])
1
2 + Δx

1
2

2

, (75)

the NM scheme (9) has unique numerical solutions U (n) for any n ≥ 0.

3.3. Error estimate for NM scheme

Theorem 5. We assume that 0 ≤ t ≤ T with T < ∞ and N = L/Δx ≥ 12.
When the RLW equation solution u(x, · ) satisfies the condition∣∣∣∣ ∂l

∂xl

∂m

∂tm
u(x, t)

∣∣∣∣ < ∞, for x ∈ R, 0 ≤ t ≤ T , 0 ≤ l ≤ 5, 0 ≤ m ≤ 3, (76)

and the time mesh size Δt satisfies the condition

Δt <
2
3λ

, (77)

the difference between the NM scheme solution U
(n)
k and the PDE solution u(x, t)

is evaluated as follows:

max
k∈Z

∣∣U (n)
k − u(kΔx, nΔt)

∣∣ ≤ √
6T max(1, L)E0e

3
4 λT , for n ≤ T

Δt
, (78)

where

λ
def= 29/8 max

(
(4/L)1/4, 1

)(
I[u( · , 0)]+

7
4
LL2Δx2

)1/2

+1, (79)

E0
def= (Δx2 +Δt2)(1+Δx2 +Δt2 +Δx4 +Δt4)

(
(49/32)L+(14245/3456)L2

)
,

(80)

L def= sup
0≤t≤T , x∈R, 0≤m≤3, l∈a(m)

{∣∣∣∣ ∂l

∂xl

∂m

∂tm
u(x, t)

∣∣∣∣
}

, (81)

a(m) def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{0, 1, 2, 3, 4, 5}, m = 0,
{3, 4}, m = 1,
{0, 1, 2, 3, 4, 5}, m = 2,
{0, 1, 2, 3, 4}, m = 3.

(82)
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We require a small lemma to obtain the proof of this theorem.

Lemma 6. For any function f(x) ∈ C3[−Δx,L], which satisfies the periodic
boundary conditions,

f(x) = f(x + L), for x ∈ [−Δx, 0], (83)

the estimate

|Id[f ] − I[f ]| ≤ 7
4
LC2Δx2 (84)

is obtained, where

(f)k
def= f(kΔx), (85)

C def= sup
x∈[0,L], 0≤l≤3

{∣∣∣∣ ∂l

∂xl
f(x)

∣∣∣∣
}

. (86)

Proof.

|Id[f ] − I[f ]| ≤
∣∣∣∣∣
N−1∑
k=0

Hd(f)kΔx −
N−1∑
k=0

H(f)kΔx

∣∣∣∣∣
+

∣∣∣∣∣
N−1∑
k=0

H(f)kΔx −
∫ L

0

H(f) dx

∣∣∣∣∣, (87)

where

Hd(f)k
def=

1
2

{
(fk)2 +

(δ+
k fk)2 + (δ−k fk)2

2

}
, (88)

H(f) def=
1
2

{
f2 +

(
∂f

∂x

)2}
, (89)

H(f)k
def= H(f)|x=kΔx. (90)

The first term on the right-hand side of (87) is evaluated as

∣∣∣∣∣
N−1∑
k=0

Hd(f)kΔx −
N−1∑
k=0

H(f)kΔx

∣∣∣∣∣ ≤ 5
4
LC2Δx2 (91)

by the iterative applications of the Taylor expansion. The second term is evalu-
ated as∣∣∣∣∣

N−1∑
k=0

H(f)kΔx −
∫ L

0

H(f) dx

∣∣∣∣∣ ≤ Δx2

8

∫ L

0

∣∣∣∣ ∂2

∂x2
H(f)

∣∣∣∣ dx ≤ 1
2
LC2Δx2 (92)

by using the Euler–Maclaurin summation formula since H(f) ∈ C2[0, L]. �
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Proof of Error estimate. The NM scheme (9) is identical to

0 =
(
1 − δ

〈2〉
k

)
δ+
n U

(n)
k + δ

〈1〉
k s

〈1〉
k

(
U

(n+1)
k + U

(n)
k

2

)
+

1
2
δ
〈1〉
k ξ

(
U (n+1) + U (n)

2

)
k

,

(93)
where

s
〈1〉
k fk

def= (fk+1 + fk−1)/2, (94)

ξ(f)k
def= {(fk+1)2 + (fk+1)(fk−1) + (fk−1)2}/3. (95)

By the iterative applications of the Taylor expansion, we obtain the following equa-
tion as to the solution of the RLW equation as follows:

0 =
(
1−δ

〈2〉
k

)
δ+
n u

(n)
k +δ

〈1〉
k s

〈1〉
k

(
u

(n+1)
k +u

(n)
k

2

)
+

1
2
δ
〈1〉
k ξ

(
u(n+1) +u(n)

2

)
k

+E
(n)
k ,

(96)
where E

(n)
k is the summation of residual factors using the Taylor expansion,

(u(n))k
def= u

(n)
k , (97)

u
(n)
k

def= u(kΔx, nΔt), (98)∣∣E(n)
k

∣∣ ≤ E0. (99)

For simplicity, we denote error in the numerical solutions by

e
(n)
k

def= U
(n)
k − u

(n)
k . (100)

Subtracting (96) from (93), we obtain

0 =
(
1 − δ

〈2〉
k

)
δ+
n e

(n)
k + δ

〈1〉
k s

〈1〉
k ẽ

(n)
k

+
1
2
δ
〈1〉
k

{
ξ

(
U (n+1) + U (n)

2

)
k

− ξ

(
u(n+1) + u(n)

2

)
k

}
− E

(n)
k

=
(
1 − δ

〈2〉
k

)
δ+
n e

(n)
k + δ

〈1〉
k s

〈1〉
k ẽ

(n)
k

+
1
3
δ
〈1〉
k

{
2
(
s
〈1〉
k μ

(n)
k

)(
s
〈1〉
k ẽ

(n)
k

)
+ s

〈1〉
k

(
μ

(n)
k ẽ

(n)
k

)}
− E

(n)
k , (101)

where

ẽ
(n)
k

def=
e
(n+1)
k + e

(n)
k

2
, (102)

μ
(n)
k

def=
1
4
(
U

(n+1)
k + U

(n)
k + u

(n+1)
k + u

(n)
k

)
. (103)
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Multiplying the equation by 2ẽ(n)
k and operating

∑N−1
k=0 Δx, we obtain

0 =
1
Δt

(
‖e(n+1)‖2

d-(1,2) − ‖e‖2
d-(1,2)

)
+

1
6

N−1∑
k=0

μ
(n)
k+2 − μ

(n)
k−2

4Δx

(
ẽ
(n)
k

)24Δx

+
1
6

N−1∑
k=0

μ
(n)
k+1 − μ

(n)
k−1

2Δx

(
ẽ
(n)
k+1ẽ

(n)
k−1

)
2Δx − 2

N−1∑
k=0

ẽ
(n)
k E

(n)
k Δx. (104)

Applying the Schwartz inequality, we can evaluate the second term o the right-hand
side of this equation as

1
6

N−1∑
k=0

μ
(n)
k+2 − μ

(n)
k−2

4Δx

(
ẽ
(n)
k

)24Δx

=
1
6

N−1∑
k=0

(
δ+
k μ

(n)
k+1 + δ+

k μ
(n)
k + δ−k μ

(n)
k + δ−k μ

(n)
k−1

)(
ẽ
(n)
k

)2Δx

≤ 2
3

{
N−1∑
k=0

(
δ+
k μ

(n)
k

)2Δx

}1/2{N−1∑
k=0

(
ẽ
(n)
k

)4Δx

}1/2

≤ 2
3
‖µ(n)‖d-(1,2)‖ẽ(n)‖2

d-(0,4), (105)

where

‖f‖d-(0,4)
def=

{
N−1∑
k=0

(fk)4Δx

}1/4

. (106)

Similarly, evaluating the third term on the right-hand side of (104), we get

1
6

N−1∑
k=0

μ
(n)
k+1 − μ

(n)
k−1

2Δx

(
ẽ
(n)
k+1ẽ

(n)
k−1

)
2Δx ≤ 1

3
‖µ(n)‖d-(1,2)‖ẽ(n)‖2

d-(0,4). (107)

The last term on the right-hand side of (104) is evaluated as

∣∣∣∣∣2
N−1∑
k=0

ẽ
(n)
k E

(n)
k Δx

∣∣∣∣∣ ≤
N−1∑
k=0

{(
ẽ
(n)
k

)2 +
(
E

(n)
k

)2}Δx

≤ ‖ẽ(n)‖d-(1,2) + L(E0)2. (108)

According to the discrete Gagliardo–Nirenberg inequality given by Matsuo
et al. [15, §5.2],

‖f‖d-(0,4) ≤ 321/8 max
(
(4/L)1/4, 1

)
‖f‖d-(1,2) (109)
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when N ≥ 12. Using Lemma 6, ‖µ(n)‖d-(1,2) can be evaluated as

‖µ(n)‖d-(1,2)

≤
√

2
4
{
(Id[U (n+1)])1/2 + (Id[U (n)])1/2 + (Id[u(n+1)])1/2 + (Id[u(n)])1/2

}
=

√
2

4
{
2(Id[U (0)])1/2 + (Id[u(n+1)])1/2 + (Id[u(n)])1/2

}
=

√
2

4
{
2(Id[u(0)])1/2 + (Id[u(n+1)])1/2 + (Id[u(n)])1/2

}
≤

√
2
(

I[u( · , 0)] +
7
4
LL2Δx2

)1/2

. (110)

From these evaluations for (104), we obtain

‖e(n+1)‖2
d-(1,2) ≤ ‖e‖2

d-(1,2) + Δt λ‖ẽ(n)‖2
d-(1,2) + L(E0)2Δt. (111)

Thus,

(
1 − λ

2
Δt

)
‖e(n+1)‖2

d-(1,2) ≤
(

1 +
λ

2
Δt

)
‖e‖2

d-(1,2) + L(E0)2Δt. (112)

When Δt satisfies the condition (77), the above inequality implies

‖e‖2
d-(1,2) ≤ γ‖e(n−1)‖2

d-(1,2) +

(
L(E0)2Δt

1 − λ
2 Δt

)

≤ γn‖e(0)‖2
d-(1,2) +

(
n−1∑
s=0

γs

)(
L(E0)2Δt

1 − λ
2 Δt

)

≤ nγn

(
L(E0)2Δt

1 − λ
2 Δt

)
=
(

2L(E0)2

2 − λΔt

)
Tγn

≤ 3L(E0)2

2
Te

3
2 λT , (113)

where

γ
def=

1 + λ
2 Δt

1 − λ
2 Δt

< 1 +
3
2
λΔt < e

3
2 λΔt. (114)

In the above evaluation, we have assumed that there exists no error in the initial
state. From (113) and the discrete Sobolev lemma inequality (46), we obtain the
theorem inequality (78). �
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4. Computation examples

The purpose of this section is to demonstrate through some numerical compu-
tations that the proposed schemes give reasonable solutions.

4.1. One solitary wave
It is known that the RLW equation has a one-solitary-wave solution,

u(x, t) = 3 sech2

(
x − x0 − 2t

2
√

2

)
, (115)

where x0 + 2t is the location of solitary wave peak. In this subsection, we set x0

equal to 20 and an initial state for the numerical computation is given by

u0(x) = 3 sech2

(
x − x0

2
√

2

)
. (116)

For our linear schemes, the LM and the LE schemes, we need one more initial
state, U (1). We use the NM scheme to compute U (1) for the LM scheme and the
NE scheme to compute U (1) for the LE scheme.

The relative errors in mass, energy, momentum, and the peak value of the
numerical solutions and computation time obtained using the four proposed schemes
and the Runge–Kutta scheme at t = 40 are listed in Table 1. We note that the
peak value of the exact solution (115) is constant and equal to 3. The computation
parameters are Δx = 1/4, Δt = 1/16, and L = 100. The Runge–Kutta scheme is
derived from ordinary differential equations of U : R → RN ,

d

dt
U(t) = −(I − D2)−1D1

(
U(t) +

1
2
V (t)

)
, (117)

where (V (t))k
def= (Uk(t))2. In order to obtain new time-step solutions using our

nonlinear schemes (the NM and the NE schemes), we use Newton’s method.

Table 1. Relative errors in mass, energy, momentum, and peak value of numerical

solutions and computation time obtained using the proposed schemes and

Runge–Kutta scheme at t = 40. Computation parameters are Δx = 1/4, Δt =

1/16, and L = 100.

mass err. energy err. momentum
err.

peak value
err.

CPU time

NM scheme 4.18691E−16 4.40752E−03 1.91544E−10 1.54169E−02 41 m 2.236 s

NE scheme 2.09345E−16 3.16232E−11 3.97717E−06 1.39999E−03 30 m 8.084 s

LM scheme 9.21120E−15 3.94501E−03 1.11896E−10 1.51433E−02 12 m 21.904 s

LE scheme 1.25607E−15 3.66348E−10 9.29801E−07 3.44311E−05 15 m 27.625 s

Runge–Kutta
scheme

1.06307E−17 3.66779E−01 3.12369E−01 2.04904E−01 10 m 36.502 s
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Energy fluctuations obtained by using our proposed schemes and the Runge–
Kutta scheme are shown in Fig. 1. From Fig. 1, we find that the discrete energy
values are conserved well, even when the non conservative schemes, the NM and
the LM schemes, are used. On the other hand, the discrete energy value of the
solutions obtained by using the Runge–Kutta scheme decreases monotonically.

Fig. 1. Energy fluctuations obtained using our proposed schemes and Runge–Kutta

scheme.

Momentum fluctuations obtained by using our proposed schemes are shown in
Fig. 2. From Fig. 2, we find that the discrete momentum values are conserved well,
even when the non conservative schemes, the NE and the LE schemes, are used.
On the other hand, discrete momentum value of the solutions obtained by using
the Runge–Kutta scheme decreases monotonically. In Fig. 2, around t ≤ 4, there
exists some vibrational fluctuation in the discrete momentum obtained by using
the LE scheme. We guess that the second numerical initial state U (1) is slightly
inappropriate for the LE scheme.

Peak value fluctuations are indicated in Fig. 3. Thus far, no scheme, except
our proposed schemes, conserves the peak value well.

Using the initial state (116), we are able to estimate the exact error values
because the exact solution (115) is known. In Figs. 4 and 5, the numerical solution
errors obtained by using the four proposed schemes are indicated. The left-hand
side figure in Fig. 4 shows errors for the fixed time mesh size Δt = 1/16. The Δx

for the figure are 1, 1/2, 1/4, 1/8, and 1/16. The right-hand side figure in Fig. 4
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Fig. 2. Momentum fluctuations obtained using our proposed schemes and Runge–Kutta

scheme.

shows the errors for fixed space mesh size Δx = 1/16. The Δt for the figure are
1, 1/2, 1/4, 1/8, and 1/16. Fig. 5 shows the errors for Δx = Δt. Using the NM
scheme, the max norm of errors is estimated at O(Δx2+Δt2) using Theorem 5, and
these figures illustrate the theorem. With the other three schemes, these figures
also indicate a possibility of similar error estimates.
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Fig. 3. Peak value fluctuations obtained using our proposed schemes and Runge–Kutta

scheme.

Fig. 4. Numerical solution errors (max norm) at t = 5 using our proposed schemes. L =

100 and the initial state is given by (116). Left: errors for fixed time mesh size

Δt = 1/16 and right: errors for fixed space mesh size Δx = 1/16.
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Fig. 5. Numerical solution errors (max norm) at t = 5 for Δx = Δt. L = 100 and the

initial state is given by (116).

4.2. Two-solitary wave
In order to demonstrate the efficiency of our proposed schemes, we apply them

to another problem with a different initial state, which is given by

u0(x) = 3 sech2

(
x − x1√

2

)
+

3
2

sech2

(
x − x2√

3

)
, (118)

where x1 = 20 and x2 = 50. This function approximates closely to a two-solitary
wave with the peak locations x1 and x2. Fig. 6 shows the profiles of the numerical
solutions, energy evolution, and momentum evolution obtained using the linear
schemes for Δx = 1/5, Δt = 1/32, and L = 200. From these figures, we find that a

Fig. 6. Computation for two-solitary-wave initial state (118) with Δx = 1/5, Δt = 1/32,

and L = 200. Top left: profiles of numerical solutions obtained using the LM

scheme, bottom left: energy evolution obtained using the LM scheme, top right:

profiles of numerical solutions obtained using the LE scheme, bottom right:

energy evolution obtained using the LE scheme.
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phenomenon similar to ‘phase shift’ occurs when two peaks of a wave collide. The
non conserved quantities, i.e. energy for the LM scheme and momentum for the LE
scheme, vary to some extent when two peaks of a wave collide, after which they
attain their initial values.

4.3. Undular bore
In this subsection, we consider the parametric RLW equation

∂u

∂t
+

∂u

∂x
+ u

∂u

∂x
− σ

∂3u

∂t ∂x2
= 0 (119)

with the initial state

u(x, 0) =
1
20

{
1 − tanh

(
|x − x0| − w

d

)}
, (120)

where σ = 1/6, x0 = 80, and w = 60. The computation of this problem is a simu-
lation of the undular bore behaviour. Here, w is the bore support width and 1/d is
the bore slope sharpness. Some computational studies have been carried out on this
equation under similar initial conditions, for example [3] and [17]. Figs. 7–9 show
the profiles of the numerical solutions obtained by using the LE scheme, which
is modified for the parametric RLW equation. The computation parameters are
Δx = 1/5, Δt = 1/16, and L = 300. The parameter d is equal to 1, 2, and 3 in

Fig. 7. Numerical solutions for undular bore problem (119) for (120) and d = 1.

Computation parameters are Δx = 1/5, Δt = 1/16, and L = 300.



38 S. Koide and D. Furihata

Fig. 8. Numerical solutions for undular bore problem (119) for (120) and d = 2.

Computation parameters are Δx = 1/5, Δt = 1/16, and L = 300.

Fig. 9. Numerical solutions for undular bore problem (119) for (120) and d = 3.

Computation parameters are Δx = 1/5, Δt = 1/16, and L = 300.
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Figs. 7, 8, and 9 respectively. From these figures, we can say that undulation be-
comes gentler as d increases. These computation results agree with those obtained
by Dağ [3]. This agreement proves that the computations carried out by using our
schemes are reliable.

5. Conclusion

We have proposed four new finite difference schemes for the RLW equation,
which conserve either discrete energy or discrete momentum. Using the nonlinear
scheme that conserves momentum and mass, we show that it has unique solutions
under some condition, the solutions are stable in the maximum norm, and the
errors in the solutions are essentially estimated at O(Δx2 + Δt2). Through some
numerical computations, the efficiency and robustness of our proposed schemes have
been demonstrated.

Appendix. Discrete calculus under discrete boundary condition

Some relationships between difference operators and summations are described
in this appendix. First, we describe the summations of difference equal to zero under
the discrete boundary condition (7). The summations are given as

N−1∑
k=0

δ
〈1〉
k fkΔx =

1
2
{(fN − f0) + (fN−1 − f−1)} = 0, (121)

N−1∑
k=0

δ
〈2〉
k fkΔx =

1
Δx

{(fN − f0) − (fN−1 − f−1)} = 0, (122)

for f ∈ R(N). The following relationship is ‘summation by parts,’ which corre-
sponds to integration by parts:

N−1∑
k=0

fk(δ+
k gk)Δx +

N−1∑
k=0

(δ−k fk)gkΔx = fN−1gN − f−1g0 = 0, (123)

for f , g ∈ R(N). The application of summation by parts yields

N−1∑
k=0

fk

(
δ
〈1〉
k gk

)
Δx +

N−1∑
k=0

(
δ
〈1〉
k fk

)
gkΔx = 0, (124)

N−1∑
k=0

fk

(
δ
〈1〉
k fk

)
Δx = 0, (125)

for f , g ∈ R(N).
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