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TOWARD HIGHER CHROMATIC ANALOGS OF
ELLIPTIC COHOMOLOGY II

DOUGLAS C. RAVENEL

(communicated by Donald M. Davis)

Abstract

Let p be a prime and f a positive integer, greater than 1 if
p = 2. We construct liftings of the Artin-Schreier curve C(p, f)
in characteristic p defined by the equation y¢ = x — 2P (where
e=p/ —1) to a curve C(p, f) over a certain polynomial ring
R’ in characteristic 0 which shares the following property with
C(p, f). Over a certain quotient of R’, the formal completion of
the Jacobian J(C(p, f)) has a 1-dimensional formal summand
of height (p — 1) f.

Along the way we show how Honda’s theory of commutative
formal group laws can be extended to more general rings and
prove a conjecture of his about the Fermat curve.

1. Introduction

This paper is a sequel to [Rav07]. The main result there was the following.

Theorem 1.1. Let p be a prime and f a positive integer, greater than 1 if p = 2. Let
C(p, f) be the Artin-Schreier curve over F,, defined by the affine equation
y® =P —z, where e =p’ —1.

(Assume that (p, f) # (2,1).) Then its Jacobian J(C(p, f)) has a 1-dimensional for-
mal summand of height h = (p—1)f.

In this paper we will work instead with the curve defined by

Y =x— 2P

in order to simplify certain signs.

When the Jacobian of an algebraic curve over a ring R has a 1-dimensional formal

summand as above, it defines a 1-dimensional formal group law over R, and hence
by Quillen’s theorem a homomorphism ¢: MU, — R (called a genus), where MU, is

Research partly supported by NSF grant DMS-0404651

Received August 16, 2007, revised June 7, 2008; published on December 5, 2008.

2000 Mathematics Subject Classification: Primary: 55N34; Secondary: 14H40, 14H50, 14105, 55N22.
Key words and phrases: formal group law, elliptic cohomology, algebraic curve.

This article is available at http://intlpress.com/HHA/v10/n3/al1b

Copyright (© 2008, Douglas C. Ravenel. Permission to copy for private use granted.



336 DOUGLAS C. RAVENEL

the complex cobordism ring. One can then ask if the functor from spaces or spectra
to R-modules defined by

X — MU,(X) @yu. R

(using the MU,-module structure on R defined by ¢) is a generalized homology
theory. This boils down to asking if the functor has suitable exactness properties.
The Landweber Exact Functor theorem spells out explicit algebraic conditions on
o which characterize this exactness. Landweber’s conditions are not satisfied in the
example above, and it would be desirable to have a curve for which they are. Here is
such an example.

Conjecture 1.2. Let L(p, f) be the curve over over L = Z,[uy,...,up—1] defined by

h—2
ye =T — :Cp + Z ui+1xp*17[i/f]ypf_1*p
=0

i—[i/f1f

Then its Jacobian has a formal 1-dimensional subgroup isomorphic to the Lubin-Tate
lifting of the formal group law above, and the resulting genus is Landweber exact.

We can think of L(p, f) as a family of curves over Z, parametrized by the affine
scheme Spec(L) in which the curve at the origin is an integral lifting of the Artin-
Schreier curve. The methods of the present paper only allow us to make the necessary
calculations over the ring L/(u1, ..., u,_1)?. This means we only get the formal split-
ting over an infinitesimal neighborhood of the origin.

In this paper we will also study the deformed Artin-Schreier curve C (p, f) defined
by the equation

p
Y=z —aP + E €sxP™8, where €, = E ase,pqtyqt (1.1)
s=1 0<t<se/pq

with ¢ = p — 1. It is defined over the ring
R=12Zpa,: v eN],
where
N={se—pqt: 1 <s<p, 0<t<se/pg}. (1.2)

Note that the ring L of (1.2) is a quotient of this R. We will see below that the Jacobian
of this curve over R does not have a suitable 1-dimensional formal summand. In order
to get such a splitting it is necessary to pass to a quotient of R by making some of
the a, decomposable. The resulting ring is

R' =1Z,[a,: v e N'] (1.3)
with
N ={se+p'—1:0<s<p—-1,1<i<f}
{se—pgt:2<s<p, tog<t<se/pg}t forp>2 (1.4)
{2t:1<t<2f_1—1} for p =2,

where to = (p/ 71 +1)/q.
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which motivated us to make some improvements, namely spelling out the generality
of Honda’s formal group law theory and to proving Lemma 1.13. This in turn led us
to Theorem 1.14, in which we prove a conjecture of Honda about the Fermat curve.

Some results from Honda’s theory of commutative formal group laws

We will restate some of the results in [Hon70].

Hypothesis 1.3. R is an algebra over Z, or Zy, (for a fixed prime p) that is free
as a module over its ground ring. Let

K=R®Q=p 'R and k=R/(r),

where w generates a maximal principal ideal containing p. Moreover R has an endo-
morphism o (denoted by a — a° ) inducing the p?-th power map in k for some j > 0,
which extends to K by linearity.

Honda indicates (on page 220) that R (which he denotes by 0) is the ring of integers
in a discrete valuation field K, but his proofs of the results we are quoting do not make
use of any properties of R other than those stated above.

We need more generality than he states, for example the case where R is a finitely
generated polynomial algebra over Z,,. In our case K and k need not be fields or even
integral domains. We are claiming that he has proved his theorems in more generality
than he indicates. This is admittedly an awkward assertion since the only way the
skeptical reader can verify it is to read Honda’s paper carefully. However there is no
point in repeating all of Honda’s proofs verbatim here.

Let K, [[T]] and R,[[T]] denote noncommutative power series rings in a variable
T over K and R subject to the rule Ta = 7T for a in K or R. Let B,, ,, and A, »,
denote the modules of m x n matrices over K,[[T]] and R,[[T]], with B,, = B,, ,, and
2, = A, , the rings of n x n matrices over K, [[T]] and R,[[T]]. We will denote the
n x n identity matrix by I,,.

K{[z]]y and R[[z]]y will denote the set of n-dimensional column vectors of power
series (in a set of variables x) over K and R with trivial constant terms. We omit the
superscript when n = 1.

For a multi-index I = (41,...,74) of nonnegative integers, let pI = (pi1,...,piy),
[I| =i+ +i, and o/ = 2% -2y, Thus an element f(z) € K[[z]]o has the form
fl@)= > fia"  with fr € K,

[1]>0

and we define
Txf=Y_ ffar'l (1.5)
[I|>0

In this way K{[z]]p and R[[z]]o become modules over K,[[T]] and R,[[T]]. In a similar
way, B, and Uy, , act by left multiplication on K[z]]§ and R[[z]]§.
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Definition 1.4. Two power series f,g € K|[[z]] (in any number of variables) over
K are congruent (f =g) if their coefficients differ by elements in R, i.e., if

f—g € R[[«]].

Definition 1.5. An element H € B,, is a Honda matrix if H = I,, modulo T and
mH € 2,. Given an invertible matrix P € M, (R), an element f € K[[z]]§ is of type
(P; H) if f(x) = Pz modulo (z)? and H * f as defined in (1.5) is congruent (as defined
above) to 0. When P = I,,, we say f has type H.

Honda [Hon70, page 221] calls #H (which he typically denotes by u) a special
element in 2A,,. He proves the following results without using his stronger hypotheses
on K and R.

Theorem 1.6 ([Hon70, Theorem 2]). Assume K and R satisfy Hypothesis 1.3. Let
P be an invertible matriz in M, (R) and let H € B,, be a Honda matriz. If f € K[[z]]§
is of type (P; H), then

F(z,y) = 7' (f(2) + f(y)
is a formal group law over R. If Q€ M,(R) is another invertible matriz and
g € K[[z]]g is of type (Q; H), then the formal group law G(z,y) = g~ " (g9(x) + g(y))
is isomorphic to F. If P = @, then F and G are strictly isomorphic.

Here is a simple example where n =1, P = Q = I, R = Z(,) and the component
of the 1 x 1 matrix H is 1 — T/p. Then let

=Y % ad g =Y 2

>0 Jj=0

F' is the multiplicative formal group law, and G is its p-typical isomorph. Then we

have
i pi i
(-3 =T TR =TT ezl

while

so f and g both have type H and are thus strictly isomorphic over Z,).

Theorem 1.7 ([Hon70, Theorem 3]). Assume K and R satisfy Hypothesis 1.3.
Let Hy € A, and Hy € A,,, be Honda matrices. Let f € K[[z]]§ and g € K|[z]]§"
have types Hy and Ha respectively. Let F(z,y) = f~1(f(z) + f(y)) and G(z,y) =
g (g(z) + g(y)). Then g~ o (Cf) for C € My, n(R) is an element of Hompg(F,G)
if and only if there exists M € Uy, ,, with HoC = M H;.

Moreover, Hompg(F,G) is canonically isomorphic to My, n(R) N H{lﬂm,nHl.

In [Hon70, Prop. 1.6] Honda shows that Homg (F, G) is isomorphic to My, ,,(K).
Theorems 1.6 and 1.7 are in [Hon70, §2]. The next two results are from his §3,
where an additional hypothesis is needed.
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Hypothesis 1.8. Let K, R and o be as in 1.3 with j =1 and m = p.

Hence we are now assuming that the prime p is unramified in R, so a Honda matrix
has the form

A,T" )
H=1I,+) with A, € M,(R).
v>0

Theorem 1.9 ([Hon70, Prop. 3.3]). Let F be an n-dimensional formal group law
over R (satisfying 1.8) with logarithm f. Then there is a Honda matriz H such that
f s of type H.

Definition 1.10. Two Honda matrices Hy, Hy € B,, are left associate if there is a
matrix U € ,, with Hy = UH;.

Note that the matrix U above is invertible since it is congruent to I,, modulo T
It is often possible to simplify a Honda matrix by p-adic completion. For example,
when R = Z(,), a Honda matrix of the form

A,TY
H=1I,+Y_ - with A; invertible and A, € M, (R)
v>0

is left associate to one of the form
AT

H,=1I,+
Iz n »

o3 AWTY with AW € M, (R)

v>2

for each integer u > 0, with the sequence {Ag“ )} converging p-adically as p increases.

Hence H is left associate over Z, to a Honda matrix of the form

!
H’:1+A1T.
P

In this paper we will study certain formal group laws defined over a Z,-algebra
R and then construct Honda matrices for them defined over R ® Z,.

Theorem 1.11 ([Hon70, Theorem 4]). For R as in 1.8, every n-dimensional formal
group law over R is obtained from a Honda matriz by the method of Theorem 1.6.
The strict isomorphism classes of such formal group laws correspond bijectively to the
left associate classes of Honda matrices in B,,.

Let M C R be a complete set of representatives of the elements of k. Then the
strict isomorphism classes of such formal group laws correspond bijectively to the set
of Honda matrices H such that the coefficients of TV for v > 0 in pH lie in M.

With this in mind we make the following definition.

Definition 1.12. Let K, R and o be as in 1.8, and let f € K[[z]]j be a vector of
n power series over K in some number of variables. Then f is a Honda vector of
type H if there is a Honda matrix H with H * f =0 and any two Honda matrices
with this property are left associate.

Hence Theorem 1.11 says that the logarithm of a formal group law over R is a
Honda vector.
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Honda’s method for studying the formal completion of a Jacobian

Let J be an abelian variety of dimension g over a torsion free ring R. Let {y1,...,y,}
be a coordinate system centered at the identity. Then the holomorphic (or equiva-
lently, invariant) 1-forms of J form a free R-module of rank g and they have power
series expansions in the y; about the origin. This module has a unique basis of the
form {wy,...,wy} so that

g
w; = Zgom-(yl, .o Yg)dy; =dy; mod (Y1, .., Yg)- (1.6)
j=1

These differential forms are known to be exact, so there are power series f;(y1,...,vg)
over K = R® Q with

fi=y; mod (y1,... ,yg)2 and w; = df;.

These g power series in ¢ variables constitute the logarithm of the g-dimensional
formal group law F' associated with J. More precisely,

F(z,y)=f""(f(z)+ f(v)),

where = and y denote the sets of g variables (z1,...,24) and (y1,...,yq), and
f="f1,.-.,[fg) is a vector of g power series in g variables. It is invertible since its
Jacobian (in the sense of multivariable calculus) at the origin is the identity matrix.
Hence if R satisfies Hypothesis 1.8, then Theorem 1.11 says that f is a Honda vector
(1.12).

Now suppose that J is the Jacobian (in the sense of algebraic geometry) J(C') of
a curve C over R of genus g. Then there is a canonical map A: C — J inducing an
isomorphism between the R-module (which is free of rank g) of holomorphic 1-forms
(also called differentials of the first kind) on J(C) with those on C; see [Mil86]. If
{m,...,ng} is a basis of the latter, we can choose a basis {w1,...,wy} of the former
so that w; o A = n; for each i. The n; are also known to be exact and at any point
on the curve they have power series expansions in terms of a local parameter x. Let
Vi = [ wi, s0 U ="(y,9s,...) € K[[z]]{.

It turns out that ¥ is a Honda vector with the same type as f, but contrary to what
we claimed in [Rav07], Honda did not prove this in full generality in [Hon73]. In
Theorem 1 of that paper (which we will restate and reprove below as Theorem 1.15),
he showed that if ¥ is a Honda vector, then it has the same type as f. In Lemma 1
(which we will generalize below in Lemma 1.13), he showed that ¥ is a Honda vec-
tor under certain hypotheses (spelled out below) which are too restrictive for our
purposes.

He was interested in the Fermat curve defined by the affine equation 2V + "V =1
for N > 2. He determined the vector ¥ in that case and observed that it satisfied
the hypotheses of his Lemma 1 for almost all primes. He conjectured but did not
prove that it is a Honda vector at all primes not dividing N, the primes at which
the curve has good reduction. Modulo this conjecture, he determined the formal
structure of the curve’s Jacobian for all such primes. We will verify his conjecture
below in Theorem 1.14.

Here is our generalization of [Hon73, Lemma 1].
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Lemma 1.13. For K, R and o as in Hypothesis 1.8, let f € K[[z]]s (for a single
variable x) with

filz) = Z ald x> for 1<i<n.
aZa;
Assume that there is a Honda matriz H with H * f € R[[z]]§ and that the following
conditions are satisfied:

(a) For each i, a;al) is a unit in R.

b)) 0<ag <+ < ay.
(c) ozag)eRforlgign and o > 0.
(d) If v is divisible by p, then there is an i < i with pay = «;.

Then f is a Honda vector.

Note that (c) is satisfied whenever the derivative of f has coefficients in R.
Honda’s hypotheses were the following.

(a) For each 1, a(()fi) is a unit in R.

(b) 0<ay <+ < ay < gag, where ¢ is the power of p used in the definition of o.
(c) ag)GRforlgignandagan.

Note that when K is a number field, any vector of the form shown in Lemma 1.13
satisfies Honda’s hypotheses for all but a finite number of primes.

Proof. We can assume without loss of generality that f satisfies a fifth condition,
namely
(@)

(e) The coeflicient aq; vanishes for i # j, and a,(i.) =1/q;.

A vector f satisfying (a)—(c) can be converted to one satisfying (e) by left multiplica-
tion by an invertible upper triangular matrix P € M,,(R). Then PHP~! is a Honda
matrix satisfying PHP~ !+« Pf = PH * f = 0.

We are trying to show that any two Honda matrices sending f to R[[z]]j are left
associate. It suffices to show this is true if we replace f by its image induced by the
K-linear projection of K{[[z]]§ onto the free K-module on the set

{z¥:1<i<n}.
In other words, we can replace f by the vector *(z%! /ayq, ..., 2% /a,), which depends
only on the leading exponent set

E={a1,...,an}.

(This does not mean that the Honda matrices are determined by E. For example,
when F = {1}, f we could be the logarithm of any 1-dimensional formal group law.)
Let

Hi=I,+Y CT/p and Hy=1I,+Y D/T"/p

v>0 v>0

with Hy = f, Hy * f = 0 and C,, D, € M, (R).
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We claim that
C, =D, for 0 <v <y implies C, =D, mod p. (1.7)
Let
=> BJT"/p with  B,=C,—D, € MR).

12>

We will denote the entries of B, by b(u)
We will illustrate what happens next in the case £ = {1, p}. There we have

(Hy = H) * f/p = (BuT" + B T 4 --0) + f/p
= (Bu+ By T+---) % Lf’”l//ip}

bgﬂ)xp /p+ b(“)—i—pb pt1) xp““/pz
b(ﬂ)xp /p_|_ b(M) +pb H""l mp“+1/p2

Here we are only considering terms with exponents lying in p*FE = {p“ p”“} The
integrality of this, i.e., the fact that it lies in R[[z]]3, implies that B, =0 mod p as
desired.

More generally, let g = (H; — Hs) * f and only consider the monomials with expo-
nents lying in p*E. Then we have

Ha

Z g”x with g;; € R, (1.8)
Jj=1

and we will show that g; ; = b%) mod p, so the integrality of g implies that C, = D,,
mod p. In order to do this it is convenient to use «; as an index rather than . Thus
we replace (1.8) by

Pt
Js = Z Js.t for sel,
teE

where o, o; = ¢i ;. We define BF;Q similarly. Then for s € E we have

ety

- Nt 2P
gs—zbs,t ot

teE
v=0

oyt
_ E jlntv) prar’
= s,t//p” pt, Y
t'/pYEE
v>=0

where t' = p¥, so
Jsit = Z Vbi‘g; = b(“) mod p.
t/pv€EE

Note that if ¢ € E and t/p” is an integer, then ¢/p” is also in F by our hypothesis
(d). This gives the desired congruence for g; ;, thereby proving (1.7).
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Now we will use Honda’s method to show that if H; and Hs are Honda matrices
with Hy * f, H3 x f = 0, then they are left associate. We will construct a sequence of

Honda matrices {Hé“ )} left associate with Hs converging to H; by induction on p.

We start the induction with H:go) = Hj3. Suppose we have a Honda matrix Hé“_l)
that is left associate with Hs and congruent to H; modulo T*. We will use (1.7) with

Hy = Hig“*l). It says that C}, = D, mod p, so we can define
H = (I, + (C, — D,)T* /p) H* ™V
= (In+ (Cu = D)T"/p) (In + CiT/p+--- Cpu a T" "V p+ DT [p+ - --)
:In+C'1T/p+~~~+C’/LT“71/p+~~ .

Hé“) is left associate with Hé”fl) and hence with Hj since I, + (C, — D,)T" /p € Ay,
This completes the inductive step. O

Now we will apply this lemma to the Fermat curve of degree N studied by Honda
in [Hon73] and prove the conjecture stated there after Theorem 3.

Theorem 1.14. Let C be the affine plane curve over Z, defined by the equation
oV +yN =1, where N > 2 is not divisible by p. Using x as a local parameter at
the point (0,1), the power series expansions for the integrals of the first kind form a
Honda vector.

Honda noted that for a given IV, the power series expansions form a Honda vector
for all sufficiently large primes, and he conjectured that they do so for all primes not
dividing N.

Proof. As explained in [Hon73, §3], the space of differentials of the first kind is
spanned by
n(i,j) =2ty Jde =211 — 2N) I/ Ndg
for 0 <i < j < N. In order to get differentials with distinct leading exponents, we
need a change of basis. Let
N

z:y_l—lz(l—mN)_l/N—lz%—f—---
and replace 7(i, j) by
Mg = 21— xN)—(i+1)/NZj—i—1dx
S
Integrating these gives a collection of power series with leading exponent set
E={i+NGH—-i—-1):0<i<j<N}
={i+Ns:1<i<N-20<s<N—-i—2}.
We claim this satisfies the hypotheses of Lemma 1.13.

The only hard part of this is verifying (d). Let ¢ = pi; + 149, s = ps1 + so and
N = pN; + Ny with 0 < g, sg, Ng < p. Our assumption that p does not divide N
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means that Ny > 0, but we do not need that condition to verify (d). Now suppose
pr € E for a positive integer r with
pr =1+ sN withe¢>0andi+s< N -2

= pi1 +io + (ps1 + so)(pN1 + No)

= p(s1.N + soN1 +41) + io + soNo.
This means that i + soNp is divisible by p, so let ¢t = (ig + s9Np)/p, which satisfies
0 <t < psince

io+soNo <p—1+(p—1)? =p® —p.
We want to show that r € E. We have

r=sN+sN +i1+t=s5N+7.

To show that r € E, it suffices to verify that i’ > 0 and i’ + s; < N — 2. For the lower
bound on ' we have

pi/ = psoN1 + pi1 + 9 + so0Nog = soN +i >0
since ¢ > 0. For the upper bound on s; + i’ we have

ps1 +pi’ =psy+ soN + i
=s+so(N—1)+i
<so(N—-1)+ N -2 sincei+s< N —2
<pN —p—1<p(N—1) since sg <p-—1,

sos;+9 <N—-2andrekFE. O

Now here is Honda’s result [Hon73, Theorem 1] linking integrals of the first kind
on an algebraic curve to the formal completion of its Jacobian.

Theorem 1.15. For K, R and o as in Hypothesis 1.8, let C be an algebraic curve
of genus g over R and let ¥ € K|[[z]]] be a vector of power series expansions of its
integrals of the first kind in terms of a local parameter x at a point P € C. Then if
U s a Honda vector of type H, then the same is true of the logarithm of the formal

o~

completion J(C) of the Jacobian J(C').

Proof. Following Honda, we use the canonical map A: C — J(C) sending P to the
identity element of J(C). Let n; = dy;. Let y = (y1,...,y4) be a system of local
parameters at the origin of J(C'), and let w; be invariant differentials on J(C') such
that 7; = w; o A. Then we have

g
wi = 9iiy,- - Yg)dy;
j=1

with ¢; ; € K[[y1,--.,Yyg]]- These differentials are known to be exact, so there are
power series ®;(y) € K[[y1,...,Yyq]] with w; =d®; and ®;(0) = 0. Since the y; o A
are functions in R(C), there is a g-tuple £ =*(&y,...,&,) of algebraic functions in

R[[z]] such that y o A = £ 0 2. Then w = d®(y) implies n = d (P(£{(y))), so Po & = V.
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Let A € My(R) be the invertible matrix such that

O(y) = Ay mod (y1,...,y,)*
replacing the local parameters y by Ay, we may assume that A = I, so ®(y) is the

~

logarithm of J(C). Hence there is Honda matrix H € B, with H * ® € R[[y]]. Then
H+U =Hx(®o¢) and it follows from [Hon70, Lemma 2.3] that

Hx(®o&)=(Hx*P)ol.

so H * ¥ = 0. Conversely if there is another Honda matrix H’ with H' * ¥ = 0, then
H' =UH for some U € 2, since ¥ is a Honda vector. This means that ® and ¥ are
Honda vectors of the same type. O

A concrete example: (p, f) = (3,2)

We will illustrate this calculation in more detail for the lifting of the curve C(3,2)
to Zj3 defined by the affine equation

Y = — 2.

It has genus 7 and we are looking for a 1-dimensional formal summand of height 4 in
its Jacobian. The vector W is

q] = (d)l, 1/1271/13>1/J471/J57¢97¢10)7

where

6=3 (31' +lr+1) /g]) e

= ) 167 4+ r

and £ =11, 2, 3,4, 5,9, 10}.
The form of ¢, implies that T™, is congruent (modulo power series with p-local
integer coefficients) to a multiple of 1, only if

r = 3" mod 16,

i.e., only if the indices r and 7/, regarded as elements in Z/(16), lie in the same orbit
under iterated multiplication by 3. Thus if we denote the entries of the Honda matrix
by hs: with s,t € E, then it follows that hs; is nonzero only s and ¢ lie in the same
orbit. The relevant orbits are

{1,3,9,11},{2,6},{4,12},{5,15,13,7}, and {10,14}.

The intersection of E with the first of these has three elements, while each of the
others intersects F in a singleton. This means that H has a block decomposition into
four 1-dimensional summands and one 3-dimensional summand. It turns out that the
height of each summand is equal to the cardinality of the corresponding orbit.

In particular,
3Z y16i+5
¢5Z<i>16i+5

i>0

is an eigenseries corresponding the desired 1-dimensional formal summand of height
4. A binomial coefficient exercise reveals that the i-th coefficient of this power series
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is a 3-local integer unless 16 + 5 is divisible by 3%, i.e., unless ¢ has the form 815 + 25,
so modulo p-local integer terms we have

3 81] 4925 y16(81j+25)+5
s = Z ( ( )>

S\ 8Lj+25 ) 16(815 + 25) + 5
243i + 75\ y3 (16i+5)
- ;) (81i+25)34(16i+5)’

and
T4 3 34(16i+5)
O ) e
S\ 3(16¢ + 5)

Thus if there is a 3-adic unit u such that

uT*
1— — =0
( 3 ) * ¢5 )
it must be such that

3%+ 75 1 3i 1
__1 _1 .y 1.
<34i+25>34(16i+5) u(i>3(16i+5) <L (1.9)

for every nonnegative integer i. This suggests setting

e
t—-5/16 33 (3:)
where the limit is taken 3-adically, assuming that the indicated function of t is
3-adically continuous and unit valued. In Theorem 2.2 below we will show that the
function has these properties, the limit can be expressed in terms of the 3-adic Gamma
function (first defined by Morita [Mor75]), and that the resulting value of u satisfies
the congruences required by (1.9).
In the general case there is always an orbit of cardinality A whose intersection with
E is a singleton, namely the orbit of ¢ = p/ — p/=! — 1, which we will denote by L.
This was proved in [Rav07, Lemma 3.13]. The corresponding series is

. mi+~£
_ i\ y
W_Z<z‘)mz‘+e‘

i>0

In Theorem 2.4 we will show there is a p-adic unit u (denoted there by 7(h)) such

that
Th
(1 _ “) 1y = 0.
p

It follows that the corresponding 1-dimensional formal summand is isomorphic to one
whose logarithm is
unxphn

p'r’L

> :

n>=0

this has height h as claimed.
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Deformations of the Artin-Schreier curve

Let

where

— t
€s = § apefsequtyq .
0<t<(p—s)e/pq

Let F(i, y) = u™% — P + ¢ — y° and consider the curve defined by the equation

F(z,y) = 0. (1.10)

We will refer to it as the deformed Artin-Schreier curve. This curve is defined over
the ring

R = Zp[[aV: Ve N]][“7 u_l]’

where N is as in (1.2). For reasons that will be explained below, we will also want
to consider the quotient ring R’ of (1.3). The cardinality (for any prime) of N’ (the
indexing set of polynomial generators of R’ given in (1.4)) is

;[P\ (P t-1 i +p2f—-1)
() (52 o=

For topological purposes we define a grading on the rings R[Z,y] and R[z,y] by
Jul = 2, 7] = || = 2e,ly] = 2p, and |a,| = 20,
S0
les| = 2(p — s)e, |e| = 2e and |F(Z,y)| = 2e.
The Honda operator T" multiplies this grading by p, sending v and a, to their p-th

powers.

Let R and R denote the ungraded quotients of R and R’ obtained by setting
u equal to 1. From now on all calculations will be understood to be in R/(a,)? or

El/(ay)2. This means that T'(a,) = 0, where T is Honda’s p-th power operator.

We will show that over the quotient ring & /(a,)? the Jacobian of our curve has a
1-dimensional formal summand, and the resulting formal group law can be canonically
lifted to R’ itself. The Honda eigenseries for this splitting is ¢’ defined below in
Theorem 3.5.

In §2 we will collect some arithmetic lemmas that we need to prove our theorems.

In §3 we will use our arithmetic results to analyze the holomorphic 1-forms on the
deformed Artin-Schreier curve.
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2. Some arithmetic results

Some power series formulas

Lemma 2.1. The power series solution to x — xP = z (where p > 1 need not be a
prime) which vanishes when z = 0 satisfies

) =277 g ci 2",

i>0

] <pi +j)
Cij = — -
pr+ (

(and co0 = 1), which is always an integer.

where ¢ =p —1 and

We will prove this below.
More generally, we define integers c; ;, for k£ > 0 by

k
d ik ) . .
<dz> 2t = (j + k)2 Zciﬂ}k’qu'
=0
In particular, we have

Ci,j,0 = Ci 5,
pi+J
Cij1 = i 5

L pi+ 7 . pi+7+1
ci’j’QZ(mﬂH)( i )Z(ZH)( i1 )

and

Let w =1 — px?. Then we have
dett  (j+1)ad

dz w (2.1)
zJ ) ) .
i>0
and
1 d\? i1 xj+s+p—2
Il Jj+s+1 — (4

j+s+1(dz) v (+9) vz TP w3 2.9)
) . 2.2

) x]-{-s—l x]+8+1)—2 o .

(J+s) CR L = Z7Fe 1zci,j+sflqu~

>0
To study the Artin-Schreier curve defined by
Fz,y) =z —2? —y* =0,
we substitute z = y©. Then (2.1) and (2.2) give
xj ej mi
E =y J Zci,j,ly (23)

i>0
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and
) ijrsfl ZL.j«kerpf?
U +s)— s +pa

= yUtsmbe Z Cijrs—1,20™, (2.4)
i>0

w3

where m = qe.
Hence we can define holomorphic 1-forms

J,’jykdy mjykdy . )
Nik = = =y Y gy ™ dy

F, w >0
for ej + pk < q(e — 1). These integrate to
p’L +] ymi+ej+k:+1
i = ) —_— 2.5
Veji1 Z( i )mz+ej+k—|—1 (25)

>0
Proof. Clearly we have
z) = 2I E fijz"?
>0

for some integers f; ;. We will show that f; ; = ¢; ; by induction on 7, and for each
by induction on j. To start the induction, note that fo ; = co; =1 for all j > 0 and
fio=cio=0for all i > 0.

Take the defining equation

x—aPl =z
Multiplying both sides by 27~ gives

ol — pdtp=l — ij—17

which implies that
fij = fij—1+ fic1,j4p—1-

We can assume inductively that f; ;_1 and f;_1 j4+p,—1 have the expected values. Then
we have

(pi4j—1)fi;=@i+j—1)(cij-1+ci—1j4p-1)

G-o(" T -0

1—1

_ (-1 [(pi+j'—1> _i_(pi:—_jl—l)} +p<pizr_j1—1)

~6-0(") (")

_G=D@iti)+p (pi +j)
(pi + j) i
Jjpi+j—1) (pi +j>
(pi +7) i
=(pi+j—1)c ;. O
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Lemma 2.1 can also be derived from the Lagrange inversion formula, originally
published in 1770, and cited in Whitaker-Watson [WW62, page 133]. It says that
for ¢ = a +1t¢(),

> tn qn-1

n! dan—1
n=1

(f'(a)¢(a)")

for analytic functions ¢ and f, with [t¢(2)| < |z — al.
Consider the case t = 1, ( = x, a = z, ¢(z) = 2P and f(x) = 27. Then the equation
reads x = a 4+ zP and the series is

J— J pn+j—1
SRERS!
n! dz" 1 )
(o]

i 4 J d" opntj

The arithmetic function ®, ,

In order to state our next result, we need the p-adic Gamma function of
Morita [Mor75], defined on positive integers n by

Ty(n+1) 1)t j=
( 1;1171 n/p "/P]

pti

n+l,n|

It is known to extend uniquely to a continuous function from the p-adic integers to
the p-adic units. Details can be found in [Rob00, VII.1].

Theorem 2.2. Given integers n > 0, and a,b > 0 satisfying b < p and ga +b < p",
for a nonnegative integer t, let

p(p"t+a)+b o (a,p) (P
(I)”’a’b(t):< pt+a ey t)’

for nonnegative integers t, where o/(a,b) = (a(qa +b) —b)/q, and a(z) is the sum
of the digits in the p-adic expansion of x, denoted in [Rob00] by S,(z). It extends
uniquely to a continuous function from the p-adic integers to the p-adic units and has
the following properties:

. B (14 p*t)
(i) ®10,0(t) = _Fp(l + pt)Lp(1 4 gpt)

(i) Buoo(t) = [ ro0('t)
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patb  ni1 ;
(bn,a,b(t) . Hzl 1 ( T+ Zl)

(iii) = — .
Cno0(t)  por(@b) [T0F0 (gprt + io) TIE _, (07t + i3)
(iv) Ift' =t" modulo p*, then @, 4p(t') = @,y 0.(t") modulo pF+t

a, which is a unit for all t.

Proof. Unit valued continuity will follow from (i)—(iii). For (i) we have

_ (Pt /(pt) _ _(@*D)'t(qt)!
P1,0,0(t) = [N Tl
pt t)  (pt)! (pqt) (pt)!
= H = 1p2ti1 /H - Pqti2 H s = 1pti3
ptia pliz pfis
B Ip(1+ p?t)
Tp(1+pt)Tp(1 + pgt)”
(ii) follows directly from the definition of ®, as does the formula in (iii). To see
that the ratio of (iii) is a unit, note that the p-adic valuation v of (pa;b) satisfies
qu = a(a) + alga+b) — a(pa +b)
ala) + a(qga+b) —ala) — b
=a(ga+b) —b

and
v=a(a,b),
and that the ratio
[ (e + i)
[T (gpt + i) TT, =y (07t + i)

is a unit multiple of

Hflaﬁb ~ (pa+0d)! (pa—i—b)
H?;"'lszng 113 "~ (qa+b)la! a .

For (iv), we first reduce to the case (n,a,b) = (1,0,0). Let g(t) be the ratio of (iii).
A simple calculation using logarithmic differentiation shows that

pa+b qa+b
/
t —
a0 (03 st S 3 )

1 W 1
=p"g(t e - d pZ
7ot p;pnﬂﬁm qz qpt +i prtti | 00 PR

qa—+b 1
= —qp"g(t — =0
qu();qp"tﬂ

in the last step we use the hypothesis that ga + b < p™. It follows that if ¢’ =¢"
modulo p*, then g(t') = g(+"") modulo p**!, provided that the Mean Value Theorem
holds. For this we refer to [Rob00, V.3.2] and note that the power series expansion
of g(t) is “restricted,” meaning that its coefficients tend to zero p-adically.
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Thus we have reduced (iv) to the case a =b = 0. Reduction to the case n =1
follows from (ii). It is known ([Rob00, VIL.1.2(3)]) that for p > 2, x = y modulo p*
implies T',(z) = T'p(y) modulo p¥, so it implies that T'y(pz) = T,(py) modulo pF+?
and the same congruence holds for ®; g .

For p =2, T, satisfies a similar congruence except when k = 2. Thus we have to
worry about ®4 o in the case k = 1. We have

Io(1+4t)

Proo®) = 7, (2

Thus for two values of ¢ differing by a multiple of 2, the numerators are congru-
ent modulo 4 while the denominators (being squares of odd integers) are congruent
modulo 8, so the two values of ® are congruent modulo 4 as required. O

Some power series congruences

Fix a prime p and a positive integer f, with f > 1 if p = 2. The following notation
will be used in the rest of this section, along with the notion of congruence defined
in Definition 1.4.

e=pl —1 q=p—1
m = qe l=e—p/t
h=qf (2.6)
pZ-l—j ymi-‘rej-i-k—i-l )
; = ——  for0< k< do<j<aq.
Yejtrkt+1 ;( ; )mz’+ej+k+1 or e an j<aq

Our next lemma is a description of the orbit of £ € Z/m under multiplication by p
(where £ = p — p/=1 — 1), which we denote by L. It has h = (p — 1) f elements. We
want to define integers A(r) between 0 and m so that A(r) is congruent to p"¢. Since
p’ is congruent to 1 modulo e, it follows that the congruence class of A(r) modulo e
depends only on the congruence of » modulo f.

Note that
pl=p'tt —pf —p=pe—pl = (p—1le—1=-1 modm,

A0)=¢=-1/p

and

We denote the mod f reduction of  — 1 by rg, so we can write
A(r) = k(r)e—p

for a suitable x(r).
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We will illustrate this for the case (p, f) = (5,4), for which h =16, e = 624,
m = 2496, and ¢ = 499. The values of A\(r) can be read down and from left to right
in the following table, in which the values of rg and k(r) are indicated in the top row
and leftmost column, respectively.

0 1 2 3
e —p> =499
de —1=2495 | 4e —p = 2491 | 4e — p? = 2471 | 4e — p? = 2371
3e —1=1871 | 3e —p = 1867 | 3e — p? = 1847 | 3e — p® = 1747
2e —1=1247 | 2¢ —p = 1243 | 2e — p? = 1223 | 2¢ — p? = 1123
e—1=623 e—p=619 e —p? =599

=N W -

Lemma 2.3. Let A(0) = £ and for 1 <r < h, let
A(r)=e—p™ + k(r)e,

where ro =1 —1— f[(r—=1)/f] and s(r)=p—2—[(r —1)/f]. (Note that A(h) =
A(0).) Then p"¢ = X(r) modulo m, and the orbit of £ € Z/m is

L={(G+1e—p":0<j<p-1,0<k<f}.

Proof. Modulo m we have

r—1

pg:p(e—pfil)fe—pfz—l, so pl=—p for r > 0.

Let T denote & — m[z/m], the mod m reduction of x. Modulo m we have
Pl = oS0/ = oy 4 )lr=1)/1]
=p (14 [(r—1)/fle) since ¢? =
=p+[(r—1)/fle since pe = e,

SO

= —p = [(r=1)/fle
=e—p°+(-2-[(r—1)/fe
=e—p" 4 k(r)e=Ar). O
Our next result concerns a congruence relating 1.y and T" ¢y /p; recall that
A(r) is congruent to p"¢ modulo m.

Before stating it we will illustrate with the case (p, f) = (3,2) (for which m = 16
and ¢ = 5) and r = 2. We have

16i+5

31\ y
we¢52<i)16i+5’
120

3i y144i+45
2 —
r *%_Z(i)wm

i>0
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and
3i+ 1\ yloi+1s
Ur@e) = Y13 = ( ) )
“\ i J16i+13
9i + 7\ yi8itds
= <3i+2)48i+45
L 0 T0146) (904 5) _y
S & @Bi+2)Bi+1)\ 30 ) 3(16i +15)
9+ T 9z‘+5>y48i+45
23i+1\ 30 )16i+15
_ g 2T (271 45) e
- o i+l 9 3(16i +5)

(270 +7)(27i +6) (27i + 5 y'*4+
9i+1)9i+2) \ 9 J9(16i +5)

(27l + 7) y144i+45
o o 9i+2 ) 9(16i +5)
For each 4, the coefficients in T2 * 95 and 3v13 have the same 3-adic valuation, so the

ratio between them is a 3-adic unit. We want a single 3-adic unit 7(2) that does the

job for each i, i.e., such that
T(2)T *
P13 = %

This means that 7(2) must satisfy

3 12T+ .

The obvious choice is
(27i+7)
9i+2
i——5/16 (?;’)

T(?) = = @272,1(*5/16),

which satisfies the required congruence by Theorem 2.2(iv).

Theorem 2.4. With notation as above, we have

T(r)T"

p

Ua@) = * g,

where
(1) = @pu(ry i) (—4/m)  with  u(r) = [p"" (m —1)/m].
In particular the i-th coefficient of Y 15 a p-local integer unless
i=(r) mod p"; (2.7)
e.g., the i-th coefficient of 1y = V) is integral unless i = 1(h) modulo pl.
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Proof. We have
mi+A(r)

T <pi +in(r)> m |

i>0

We need to show that the i-th coefficient is a p-local integer unless (2.7) holds.
Again let T denote © — m[x/m], the mod m reduction of z. (2.7) implies

mi=p ~'(m—1)—p—L(m—1) mod p”
=p" " (m=1) = —p1
=p" " (m—1) = A(r)
mi+ ANr) =p" "' (m—1)
=0 since m = 1 mod p.

Hence it implies that the denominator of the i-th coefficient of 1y, is divisible by
P

If 4 — ¢(r) is a unit multiple of p' for some t < s, then so is mi + A(r). We need to
show that the binomial coefficient is divisible by p’ in this case. Recall that its p-adic

valuation is
o' (i, k() = (a(gi + w(r)) — K(r))/q.

We claim that

r—2
=3 {’prf—"fﬂ} o (2.8)
k=0

we will verify this at the end of the proof.
It follows that

qu(r) = ]:z_:_z {W} S {pf+kf7’+1} -
—_([kf] [ - [
- pH;f )
0
qulr) +r(r) =p" —1— P”;fl_ 119”)
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where

p—2 ifk=s—1 modf
ar =
b p—1 otherwise.

Thus if 4 = ¢(r) modulo pt for t < s,

a(qi + k(r Zak qt — [t/ f]
a(gi+k(r) — K ()>qt—[t/f]—ff()

o (i, k(r)) =

q q
_at=[t/fl=(p=2-[r=1)/f)
q
_agt+ [ =1)/f1-[t/f—q+1
q
>t since it is an integer,

and we have the desired integrality condition.
This means that

e (P ) 4 () g0
VA = ; ( i+ (1) ) m(p™i + ¢(r)) + A(r)
(

L g (7 o)+ )
s i 4 (1) pr(mi + £)

and
pi yp"(7rzi+€)
" = .
* e Z(z) mi+
120

Thus to verify the congruence of the theorem, we need to compare the coeflicients of
these two series and show that

e (p(pript;fi)(:; MT)) =, (r) w(r) (/M) (p;) mod p*+?

when i is congruent to —¢/m modulo p*. This is implied by

(P R OY Jy ot (M) = i)

The left-hand side is ®,., () (- (¢) since o' (¢(r), k(1)) =7 — 1, so this is the congru-
ence of Theorem 2.2.

We still need to prove (2.8). For future reference, recall the identity

4157
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We have
1 1 B 1
m - (p=1(p/ =1)  p/HA-pH(1-p7)
= Z {k—’—ff} p ki1 in the standard topology
k=0
k—1] _ k—1] _
-2 F-sl
k>f+1 k>1
R L SRCT
k>1 k>1
Sl ) e
kE>1
£
k>1 f
SO
_[prim-1)] pf—k]\ o1k
o= [P0 ()
r—1 r—2
_ 2l AP ([pf—r+1+k]> k
,;([ f Dp ,;J f P
as claimed.

Lemma 2.5. Let 0 < s < p and let \ be a positive integer. Then
ynLi—i-)\ es — \ pl + s ynn’—i-)\

> ciszm=——2> ", )iy

mi+ A e i mi+ A

i>0 i>0

If se < A< (s+ 1)e, then the sum on the right is V).
Proof. Recall that

. i +s—1 . 7+ S
Ci,s—l,QZ(pZ+5)<p . >=(qz+s)(pi )

SO
ymi+)\ ) pZ +5s\ vy

201,5—1,2.7 = Z(q1+8) . —.
= mi+ A = 1 mi+ A

We will subtract the power series

1 Z (pi + 3) YA

e 4 i ’

20
which has p-local integer coefficients. Since
qi+ s 1 es—A

mi+A e e(mit+ )’

357
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we get the desired congruence. The relation to ) follows from the definition of the
latter. O

3. Deformations of the Artin-Schreier curve

The notation of Definition 1.4 and (2.6) is still in force in this section.

Holomorphic 1-forms on the deformed Artin-Schreier curve

Lemma 3.1. Let y* =x — 2P =% — 3 +¢€ as in (1.1). Then

x-S mod (a,)?,
w

z
where w = 1 — pz?.

Proof. Tt is clear that £ =  modulo (€), so suppose

T=x+exy mod (a,)?

2

for some z1. Then modulo (a,)? we have

TP = 2P + pexixy
T—P+e=x+ery — (2P + pexzy) + e
=z —aP+e(1+ (1 —pa?))
=z -2+ (14 nw),

0
0=(F—-3"4+¢) — (z—2P) = €(1 + 1yw)
and
x1 = —1/w mod (a,)
and the result follows. O

We will denote 1 — pz? by w. We have

w
Oe
/7? _ 5651'871
x 0<s<p
- OF (&, . P2
P éjy):w+€/_w+pq L
P2 ¢
w(l +pg—— +>
w
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Hence the holomorphic 1-forms are
#yFdy
Fy
o gaile 1 ¢ xP2e
:(ac]—w>yk(w—w2—pq e dy

() jaiTletale pgaltrTie 4
=V \w” w2 B w3 Y

5,k

xIykd jrsti—l 4 gpits—l gdtstr—2
y"dy > (] g dy

w oo w? w3
IsS<p
_ i+ej+k i+(j+s—1)et+k
= g Ci,j,lym Iy — E €s g Ci,j+5—1,2ymz (G+s=1)e dy
i>0 0<s<p 20

by (2.3) and (2.4) for ej + pk < q(e — 1). Using the definition of &, this gives

p—1 t;
~ _ mitej+k mi+n(g,k,s,t
Nik = E Cij1Y J - E § Gpe—se—pqt § Ci,j+s—1,2Y g ) dy)
i>0 s=0 =0 i>0

where t; = [(pe — se — 1)/pq] and n(j, k,s,t) = (j+s—1)e+k+qt + 1.
These integrate to

~ ymi+ej+k+1
N,
Pejrrr1 =D Wit ej+ k+1

i>0

mi+n(j,k,s,t)

p—1 t y
- Z Z Ape—se—pqt Z Ci,j+sfl,2m-
K ) Y

s=0 =0 i>0
Let
- ymiJr”(j’k,S,t)
Yejtktl,s,t = —Ope—se—pqt E Cijts—12—"——F 7%
ej s pe—se—pq : i,j+s mz—&-n@,k,s,t)’
=0
o
p—1
Vejtbt1l = Yejrk+1 + E g Yejthtl,s,ts
s=0 t=0

with ¥¢jr4+1 as in Theorem (2.6).
We want to use this to compute 1), (where ¢ = p/ — pf=1 — 1 as before), for which
we have
(G, k) = (0,e =p’ =1 = 1)

n(jk,s,t)=(s—De+e—p' 1 —14+qgt+1=se4qt—p/*
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It follows that

ymz+se+qt p -1

V5.t = —Ape—se—pgt ; Ci,s—1,2 mi + se + qt —pf—1 (3.1)
K3
. . -
Qt - pffl pi+ s ymz+se+qt7p
Ve o by Lemma 2.5
< e >Clpe se pqt§< 7 >mi+«9€+qt—pfl Yy mm
qt — pf—l . .

= (6) ap(i*SCE*pthse{»qtfpffl lf t 2 (pf 1 + 1)/q

" ifp=2andt=2/"1

Illustration for the case (p, f) = (2,3)

The case (p, f) = (2,3) is the simplest example that illustrates the need to pass
from R to R’. In this case, over R we have

F(iy) =2 -3 -y +eo+e1
6 3
=i-i -y + Z ara—oy' + T Z ar—oey’.

The genus is three and we have

1 6-3s
by =5+ > Y s,
s=0 t=0
where
B y7i+7s+t74
3,5,t — —A14-7s—2t Z Cis—125 5 1 5 1
Va5 * ST L Ts+t—4

120
t—4 2 + s y7i+7s+t—4
( 7 )“14 T 2tz( i >7i+7s+t4
=0
2 7z+t 4
tl ’ Ti+t—4

(7))
(e

p 1+1)7t+t+3

5 ( 4) <2’L + 1) y7i+t+3
ai4—2t . - .
o i Ti+t+3

by Lemma 2.5, so

1/13,0,1: =

Vv

Vv
=}

Thus we have
Titt+3

6 :
~ t—4 2141
Y3 =13+ Z (7) (2a14—2¢ + az—2t) Z ( ; )M

i>0
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where a;, = 0 for k£ < 0

3 . .
t—4 20+ 1\ yrirts
= — ) (2a14— _ -
¢3+Z< - )(a14 ot + ar 2t)Z< ; )7i+t+3
t=0 i>0
6 . .
t—4 2i4 1\ ytt?
2 — _ =
> ( 7 )‘”4 Qtz< i >7i+t+3

6 , ;
t—4 22+1 y7l+t+3
ZQ( 7 )‘““tz( i )7i+t+3
6 sy
EZ( )a14 209t 4—2 I UINY

t=5
Thus we define
_ 2\
0=13—> —a6-22Yx
/\:1 f—4 2% + 1 Ti+t+3 (3.2)
_ i y
= — ) (2a14— _ _ .
/(/)3—’_;( 7 >(a14 2t+a7 2t)i§>%( 7/ >7Z+t+3

For the original Artin-Schreier curve, Theorem 2.4 gives

3
3 = (3)T * 13,

where 7(3) = ®339(—3/7), a 2-adic unit defined in Theorem 2.2. We would like to
have a similar congruence for 6, namely

3
Z T %0 (3.3)

l\.')\»—l

for suitable values of v,.. Since # is congruent to 13 modulo (a, ), we can rewrite the
desired congruence as

2 7z+3
GE*ZUTT *wg_*ZU»,TT Z( )72,_’_3

120

Y2 (7i+3)

ey (3

=1 20

This expression has powers of y with exponents congruent to 3, 5, and 6 modulo 7.
On the other hand, the series 6 of (3.2) has exponents congruent to 3, 4, 5, and 6.
Thus we must eliminate the terms in (3.2) with exponents congruent to 4 modulo 7,

e., the ones with t = 1. We do this by passing to the ring R’ = R/(as, a12). Note
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that in this case, N and N’ as defined in (1.2) and (1.4) are

N ={14,12, 10, 8, 6, 4, 2 U {7, 5, 3, 1}
N’ = {14, 10, 8, 6, 4, 2} U{7, 3, 1} = N\ {12, 5} .

The image of 6 is R is

t—4 241\ yltits
0 = —— ) (2a14- _ -
vst > ( 7 )(a14 2t + az 2t)z< ; )71._”_’_3

=0,2,3 >0
A—7 2 + 1Y) y7tA
= — ] (2a20— — .
Y3 + Z < 7 )(azo 2x t a3 2,\)Z< ; >7i+/\
A=3,5,6 i>0

Thus we need to show that for each A,

A—7 2 + 1Y) y7 A
( 7 >Z< i )7i+>\

i>0

is congruent to a multiple of T"(13)/2 for the appropriate r.

The case of general (p, f)
Lemma 3.2. Letty = (p/ = +1)/q. (It is not an integer for p > 3.) Then fort > to,

the exponent class of ¥y s (i.e., se +qt —p' =1 € Z/m) is in the set
E={ej+k+1:j,k>0,ej+pk<m—p}.

Proof. Since the genus is g(e — 1)/2,2g9 — 1 = m — p, and the set of exponents appear-
ing in the 9 4 is
S = {se+qt—pf_1: s,t >0, es+ pqt <pe}.

The inequality here implies that ¢t < e, so the (s,t)-th element in S can be the
(4, k)-th element in E only if we set j = s and k = gt — p/~! — 1, which is nonnegative
by our assumption on t. Then

ej+pk=es+pgt—p —p<pe—pl —p=m-p-1,

so we do indeed get an element in F. O

Lemma 3.3. Let 0<t <ty ifp>2 or 0<t<tg—1=2"1ifp=2 0<s<p,
and \ = se + qt — pf~1. Note that A < 0 when s = 0. Then

m—+ pA .
p ( P ) ape—pthm-i-)\ Zfs =0
B m
we,s,t =
pPA —ms .
T a(pfs)equtw)\ ZfS >0,

and, for p=2, 'l/;g’O,Qf—l =0.
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Proof. The value of 1, 0,21 for p=2is from (3.1). For the other cases we have
s [ A—se pi+s\ [(pi+s—1\ y™Ht
Vst = < e >apesemt§<qi+s) ( i )mi+/\'

Let ig = —A/m. Then

pig+s  ms—pXA  ms—pA

qgio+s ms—q\ qles—)\)
pi+s  piots _ (1 —io)s B (mi+ A\)s

gi+s qio+s (qgi+8)(qio+s) (qi+s)gles—N)’

~ A —se
wﬁ,s,t = e Ape—se—pqt

> (e ame ) (7 i

i>0

PA —ms Z pi+s—1\ y™+A
= Ape—se— . 5
m p pat 1 mi+ A

i>0

_ Ape—se—pqt Z S Pits =1\ nipx
m : pi+ s % Y
=0
PA —ms i+ s—1\ y™tA
= () apefsequt Z (p . y . .
m 1 mi+ A

i>0

SO

For s > 0 the sum is 1. For s = 0 (which means that A < 0) we have

N B A i — mz+>\
¢€,O,t = (m> Ape—pqt Z ( )mz i 2\

i>0
_(r pitp—1\ ymimiA
<m>ape_pqt;< i+1 >mz—|—m—|—)\

= (P a3 (PR (PR 2)
=\ pe—pqti> i+1 i it maEN
Let i1 = —1 — A\/m. Then

pir+q  pH+pAm—q m-+p)
ip+1 A/m 1
pz'Jrq pi1+q7 Z.*le B Z‘fil
i+1 i1 +1 (+D(+1) (i+1)(=\/m)
—m(i —i7) mi+m—+ A

G+)r  (i+Dx
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SO

Voot = pA a Z m+p\  mitm+ A\ (pitp—2 M
60t =\ 7y ) frempat A (i + 1)\ i P

i>0
m 4+ pA
= m Ape—pgt Pm+2

_ apequt> 1 PEFDP =2\ itmta
p( m Z<i+1)< i)Y

i>0

m+ pA
=P ape—pqt¢m+)
_ ape—mﬁ) 1 Pitp =1\ iimia
p( m Z<pi+p—1)( i+1 )Y
120
m 4+ pA
=p ( m > apequtmer)\- O

Lemma 3.4. Let

p—1 p—1
0= 1/~Jz — Z Z 1[}5,5,15 =y + Z Z Q;Z,s,tv

s=0 to<t<ty s=0 0<t<to

where, as before, to = (pf =1 +1)/q and t; = [(pe — se — 1)/pq]. Then

m + pqgt — pf
1’/]2 + Z ( m (papequt + aequt)'l/}m_t,.qt_pf—l
0<t<to
se + pqt — pf
T S S e [ IS T ES
1<s<p—2 0<t<to
2t — 1
Ye + Z (21“_1> (2a2¢—2¢ + Ge—2¢) Yypor-1_1 forp=2.
0<t<2f -1

Proof. We use the values of 1/;g7s,t given by Lemma 3.3. For 0 < s < ¢, the values
given here are the same, and we have

m —+ pA

W,o,t =P ( ) apequtz/}er/\v

where A = gt — p/ =1, so m 4+ p\ = m + pgt — p/. Thus

m + pgt — pf
m

QLZ,O,t =D (

) Ape—pat U+ qt—pl 1 -

Also
~ PA —gqm
w&q,t = < m ) ae—pth)u
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where A\ = m + ¢t — pf=1, so pA — gm = m + pgt — pf. Thus

- m + pqt — pf
W,qvt - <m ae—pqt7/)m+qt—pf*17

SO
- - m + pgt — p/
wZ,O,t + w@,q,t = (m (pape—pqt + ae—pqt)merqtfpf_l .

The result follows. O

We have se + gt — p/~1 € L (defined in Lemma 2.3) when

f-1_ i
1= TP fno<i<f-1.
q
This includes all values of ¢ occurring in the expression for 6 for f < 2 but not for
f > 2. In order to get a Honda eigenseries, we must exclude the unwanted values of

t by setting the corresponding a,s equal to zero. Hence we pass from R to R/, where
R’ is the quotient of R defined in (1.3).

Theorem 3.5. Let R’ be as in (1.3), and R the quotient obtained by setting u equal
to 1. Let 0 be the power series over R/(a,)? ® Q, of Lemma 8.4, and let 0’ be its

image over El/(ay)2 ® Q. Then ' is a Honda eigenseries satisfying

h
o T" r_
r=1

where
7(r) (m;p ) (Pamipr—1 +apr—1) if 1 <r < min(f,h—1)
7(r) (m—j;—p) Gsetpi—1 if f<r<handp>?2
= -2 e — Ue .
Ur = 7(h) mT 24z a> ifr="handp=2
m
7(h) m—am> ifr="handp>2
m

0 if r > h;

here T(r) is the p-adic unit defined in Theorem 2.4, r = sf +i with 1 <i < f, and
h=(p-1)f.

We will prove this below.

The resulting 1-dimensional formal group law over R/(a,)? is induced by a homo-
morphism to that ring from BP,sending v, for r < h to the values indicated above
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and v, for r > h to 0. We can lift this to R by sending each v, to the elements of the
same name there.

We can derive Theorem 1.2 from Theorem 3.5 using the homomorphism R L
given by

Ujtst ifi=se+p’ 'with0<s<p—land1<j<f
a; —
' 0, otherwise.

We can lift Theorem 3.5 from the ungraded ring ® /(a,)? to its graded counterpart
R'/(a,)? as follows. Replace y by u~Py and a, by u~"a,, making §’ a homogeneous
expression of degree 0. We want the lifting of v, to have degree 2(p" — 1), so we
replace the congruence of Theorem 3.5 by

< ilvar>*9’=O
r=1

This means that in R'/(a?) we need to define

(r) (m_p

m

T

) (Pu™ ™ amapr—1 + apr—1) 1 <7 <min(f,h—1)

" i [ m—se—Dp
T(r)up —se7P (p) Useqpi—1 if f<r <handp>2

m
— s — 2ag. — @ .
Ur = T(h)u2’ -1 W) ifr=handp=2 (3.4)
m
7'(h)uph_1 m—am> ifr=handp>2
m
0 ifr > h.

We now define a lifting to the formal group law over R’/(a,)? to one R’ by a
homomorphism to R’ from

BP* = Z(p)[’l)h’l)g, . ]
in which the image of v,. is given by (3.4). Since the image of vy, is a unit, the functor
X +— BP,(X)®pp, R

defined on finite complexes X is Landweber exact.

We are not claiming that this formal group law over R’ is a formal summand of the
Jacobian of the curve over R defined by (1.10). We have not dealt with holomorphic
1-forms and related series over R’ itself, but only with their “linear approximations”
lifted from R’/(a,)?.
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Proof. From the formula for # given in Lemma 3.4 we have

f-1 m — pitl
9/ - W = Z <) (paerpi*lfl + a’pi+171)¢mfpi
=0

) amfse+pi+1 71wsefpi

f i
m-p
= Z < ) (paerp"'fl + api,]_)'l)[)m,pq‘,—l

/ i
m—se—p
+ E (m> ase—&-p"'—lwm—se—pi_l

f i
m-—p
= Z ( ) (PUmgpi—1 + Qpi—1)Vrg)

i=1 m
2 m—se— p
+> > (m> Usetpi—1VA(i+sf)

! r
m—-p
= Z < m ) (Pmspr—1 + apr 1))
h i
m—se—p
—+ Z < > ase+pi71¢k(7‘)7

where r = se + 4 with 1 < i < f.
We now apply Theorem 2.4 and get

m

h i
m—se—p
+ Z (m) setpi—1PA(r)

T

T(W)T" / m —
() x0' + Z < mp > (Pampr—1 + apr—1)

f r
Z m-p
0/ = 1/)@ —+ < > (pam+p7-_1 =+ apr_l)qjj)\(,.)
r=1

T(T)T * 0/

h @ T
n Z m-se—p'\ T(r)T o
m set+p'—1 D

with v, as indicated in the theorem. The result follows.

367
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