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A GUIDE TO TELESCOPIC FUNCTORS

NICHOLAS J. KUHN

(communicated by Donald M. Davis)

Abstract
In the mid 1980s, Pete Bousfield and I constructed cer-

tain p–local ‘telescopic’ functors Φn from spaces to spectra,
for each prime p, and each n > 1. They are constructed using
the full strength of the Nilpotence and Periodicity Theorems
of Devanitz–Hopkins–Smith, and have some striking properties
that relate the chromatic approach to homotopy theory to infi-
nite loopspace theory.

Recently there have been a variety of new uses of these func-
tors, suggesting that they have a central role to play in cal-
culations of periodic phenomena. Here I offer a guide to their
construction, characterization, application, and computation.

1. Introduction

Let T and S be the categories of based spaces and spectra, localized at a fixed
prime p, and Σ∞ : T → S and Ω∞ : S → T the usual adjoint pair. For n > 1, in [K1],
the author constructed functors between the homotopy categories

ΦK
n : ho(T )→ ho(S)

such that
ΦK

n (Ω∞X) ' LK(n)X,

where LK(n) denotes Bousfield localization with respect to the Morava K-theory
K(n). Thus the K(n)-localization of a spectrum depends only on its zero space.

This mid 1980s result was modeled on the n = 1 version that had been newly
established by Pete Bousfield in [B2], and heavily used the newly proved Nilpotence
and Periodicity Theorems of Ethan Devanitz, Mike Hopkins, and Jeff Smith [DHS,
HS].

Bousfield’s main application was to prove uniqueness results about certain infinite
loopspaces; for example, he gives a ‘conceptual’ proof of the Adams–Priddy theorem
[AP] that BSO (p) admits a unique infinite loopspace structure up to homotopy equiv-
alence. My main application was to note that the evaluation map ε : Σ∞Ω∞X → X
has a section after applying LK(n), and thus after applying other functors like K(n)∗.

This research was partially supported by a grant from the National Science Foundation.
Received February 2, 2008, revised March 18, 2008; published on December 5, 2008.
2000 Mathematics Subject Classification: Primary 55Q51; Secondary 55N20, 55P60, 55P65.
Key words and phrases: telescopic functors, periodic homotopy, unstable homotopy, stable homotopy.
This article is available at http://intlpress.com/HHA/v10/n3/a13

Copyright c© 2008, International Press. Permission to copy for private use granted.



292 NICHOLAS J. KUHN

The functors ΦK
n as described above allow for two important refinements.

Firstly, let T (n) be the mapping telescope of any vn-self map of a finite CW
spectrum of type n. It is a well known application of the Periodicity Theorem that
the associated localization functor LT (n) is independent of choices, and it is evident
that K(n)-local objects are T (n)-local1. This suggests that ΦK

n might refine to a
functor

ΦT
n : ho(T )→ ho(S)

with LK(n) ◦ ΦT
n = ΦK

n , such that

ΦT
n (Ω∞X) ' LT (n)X.

Indeed, a careful reading of the arguments in [K1] shows that this is the case. One
application of this refined functor is that there is a natural isomorphism of graded
homotopy groups

[B, ΦT
n (Z)]∗ ' v−1π∗(Z; B),

for all spaces Z, where v : ΣdB → B is any unstable vn self map. Thus the spectrum
ΦT

n (Z) determines ‘periodic unstable homotopy.’ Secondly, what one really wishes to
have is a functor on the level of model categories,

Φn : T → S,

inducing ΦT
n on associated the homotopy categories. Once again, inspection of the

papers [B2, K1] suggests that this should be possible. However, it was not until
Bousfield revisited these constructions in his 2001 paper [B5] that this was carefully
worked out. One new consequence that emerged was Bousfield’s beautiful theorem
that every spectrum is naturally T (n)-equivalent to a suspension spectrum.

Along with Bousfield’s new application, there has been recent use of Φn by the
author [K2, K3] and C. Rezk [Re], and new methods for computation available using
the work of Arone and Mahowald in [AM]. All of this suggests that the functors Φn

have a fundamental role in the study of homotopy, both stable and unstable, as
chromatically organized.

Bousfield’s detailed paper [B5] is not an easy read: the partial ordering on that
paper’s set of lemmas, propositions, and theorems induced by the logical flow of the
proof structure is poorly correlated with the numerical total ordering. One could
make a similar statement about [B3], on which [B5] relies in essential ways.

By contrast, my paper [K1] offers a quite direct approach to the construction
of the ΦK

n , while being admittedly short on detail. If one fills in details, and adds
refinement as described above, it emerges that Bousfield and I have slightly different
constructions. It turns out that both flavors satisfy basic characterizing properties,
and thus they are naturally equivalent.

Motivated by all of this, here we offer a guide to the Φn. This includes

• a listing of basic properties, and characterization of the functors by some of
these,

1The Telescope Conjecture, open for n > 2, asserts that the converse is also true, so that LT (n) =
LK(n).
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• a step by step discussion of their construction, including model category issues
that arise,

• Bousfield’s ‘left adjoint’ Θn : S → T and its basic application,

• a discussion of the uniqueness of the section to LT (n)(ε), and

• a discussion of calculations of Φn(Z) for various spaces Z including spheres.

Though most of the results surveyed appear in the literature, a few haven’t. Among
those that have, I have tweaked the order in which they are ‘revealed.’ For example,
and most significantly, our Theorem 4.2, which describes important properties of the
functor Φv (see just below) when v is a vn-self map, is proved in a direct manner here,
en route to proving our main theorem Theorem 1.1, which lists important properties
of Φn. By contrast, in [B5], these properties of Φv first occur as consequences of the
properties of Φn. We hope readers appreciate such unknotting of the logic.

We end this introduction by stating a new characterization of the Φn.
We need to briefly describe the basic construction on which the functors Φn are

based. A self map of a space v : ΣdB → B, with d > 0, induces a natural transforma-
tion v(Z) : MapT (B,Z)→ Ωd MapT (B,Z) for all spaces Z ∈ T . The map v(Z) then
can be used to define a periodic spectrum Φv(Z) of period d, such that

π∗(Φv(Z)) ' colim{[B, Z]∗
v−→ [B, Z]∗+d

v−→ · · · } = v−1π∗(Z;B).

Theorem 1.1. For each n > 1, there is a continuous functor Φn : T → S satisfying the
following properties.

(1) Φn(Z) is T (n)-local, for all spaces Z.

(2) There is a weak equivalence of spectra MapS(B, Φn(Z)) ' Φv(Z), for all unsta-
ble vn self maps v : ΣdB → B, natural in both Z and v.

(3) There is a natural weak equivalence Φn(Ω∞X) ' LT (n)X, for all Ω-spectra X.

Furthermore, properties (1) and (2) characterize Φn, up to weak equivalence of
functors.

The rest of the paper is organized as follows. Background material, about both the
model category of spectra and periodic homotopy, is given in §2. In §3, we present
the basic theory of the telescopic functor Φv associated to a self map v : ΣdB → B,
and, in §4, we study Φv when v is additionally a vn-self map. In §5, we define Φn,
and the proof of Theorem 1.1 follows quickly from the previous results. The adjoint
Θn is defined in §6, and using it, we prove Bousfield’s theorem that spectra are
T (n)-equivalent to suspension spectra. A short discussion about the section to the
T (n)-localized evaluation map is given in §7. Finally, in §8, we offer a brief guide to
known computations of Φn(Z) and periodic homotopy groups.

An outline of this material was presented in a talk at the special session on homo-
topy theory at the A.M.S. meeting held in Newark, DE in April, 2005. I would like to
offer my congratulations to Martin Bendersky, Don Davis, Doug Ravenel, and Steve
Wilson — the 60th birthday boys of that session and the March, 2007 conference at
Johns Hopkins University — and thank them all for setting fine examples of grace
and enthusiasm to us, the algebraic topologists who have followed.
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2. Background

2.1. Categories of spaces and spectra
These days, it seems prudent to be precise about our categories of ‘spaces’ and

‘spectra,’ and needed model category structures.
We will let T denote the category of based compactly generated topological spaces,

though one could as easily work instead with the category of based simplicial sets, as
Bousfield always does.

Regarding spectra, we would like a single map of the form C → ΩdC to specify a
spectrum. This suggests using the ‘plain vanilla’ category of (pre)spectra (N -spectra
in [MMSS]).

An object X in the category S is a sequence of spaces in T , X0, X1, . . . , together
with a sequence of based maps σX

n : ΣXn → Xn+1, or equivalently, based maps σ̃X
n :

Xn → ΩXn+1, for n > 0. A morphism f : X → Y in S is then a sequence of based
maps fn : Xn → Yn such that the diagram

ΣXn

σX
n

²²

Σfn // ΣYn

σY
n

²²
Xn+1

fn+1 // Yn+1

commutes for all n.
The category S is a topological category; in particular MapS(X,Y ) is an object in

T . It is also tensored and cotensored over T , with A ∧X and MapS(A,X) denoting
the tensor and cotensor product of A ∈ T with X ∈ S. Here A ∧X and MapS(A,X)
are the spectra with nth spaces A ∧Xn and MapT (A,Xn). (See [MMSS, p.447] for
more detail.) We let ΣdX and ΩdX denote Sd ∧X and MapS(Sd, X), as is usual.

The adjoint pair Σ∞ : T À S : Ω∞ is defined by letting Σ∞A have nth space ΣnA,
and letting Ω∞X = X0. For d > 0, we let sd : S → S be the d-fold shift functor with
(sdX)n = Xn+d. This admits a left adjoint s−d : S → S with

(s−dX)n =

{
Xn−d for n > d

∗ for 0 6 n 6 d.

Composing these adjoints, we see that s−d ◦ Σ∞ : T → S is left adjoint to the functor
sending a spectrum X to its dth space Xd.

2.2. Model category structures
We describe model category structures on T and S.
Our category T is endowed with the ‘usual’ model category structure (see, e.g.

[DS]): the weak equivalences are the weak homotopy equivalences, the fibrations are
the Serre fibrations, and the cofibrations are retracts of generalized CW inclusions.
(We recall that f : A→ B in T is a weak homotopy equivalence if, for each point
a ∈ A, f∗ : π∗(A, a)→ π∗(B, f(a)) is a bijection, and is a Serre fibration if it has the
right lifting property with respect to the maps Dn ↪→ Dn ∧ I+.)

Starting from this model category structure on T , S is given its stable model
category structure ‘in the usual way,’ as in [S, H2, MMSS], all of which follow the
lead of [BF].
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Firstly, S has its ‘level’ model structure2 in which the weak equivalences and
fibrations are the maps f : X → Y such that the levelwise maps fn : Xn → Yn are
weak equivalences and fibrations in T for all n. It is then easy to check that f is
a cofibration exactly when the induced maps X0 → Y0 and Xn+1 ∪ΣXn ΣYn → Yn+1

are cofibrations in T . When needed, we will write Sl for the category of spectra with
the level model structure.

Now we need to change the model structure to build in stability. Hovey’s gen-
eral method [H2] yields the following in our situation. We call a spectrum X an
Ω-spectrum if σ̃n : Xn → ΩXn+1 is a weak equivalence in T for all n. Using our
adjunctions, this rewrites as the statement that MapS(in, X) is a weak equivalence
in T for all n, where in : s−(n+1)Σ∞S1 → s−nΣ∞S0 is the canonical map in S. Let
Q : Sl → Sl denote Bousfield localization (as in [Hi]) with respect to the set of map
{in, n > 0}. Then [H2, Thm.2.2] says that there is a stable model structure on S with
cofibrations equal to level cofibrations, with weak equivalences the maps f : X → Y
such that Qf : QX → QY is a level equivalence, and with fibrant objects the level
fibrant Ω-spectra.

There are two alternative characterizations of the stable equivalences. It is formal
to see that Qf : QX → QY is a weak level equivalence if and only if f∗ : [Y, Z]l →
[X,Z]l is a bijection for all Ω-spectra Z, where [Y,Z]l denotes homotopy classes
computed using the level model structure. True, but not formal, is the fact that
weak equivalences are precisely maps of spectra inducing isomorphisms on π∗(X) =
colim

n
π∗+n(Xn): see [MMSS, Proposition 8.7] for a clear discussion of this point.

It is easy to check that S is a topological model category in the sense of [EKMM,
Definition 4.2], so that, for all spectra X and Y ,

[X, Y ] = π0(MapS(Xcof , Y fib)),

where Xcof and Y fib are respectively cofibrant and fibrant replacements for X and
Y . (Compare with [GJ, Proposition 3.10] for a nice presentation in the simplicial
setting.)

Handy observations include that the evident natural maps ΣdX → sdX and
s−dX → ΩdX are stable equivalences. Also useful in calculation is that if Xfib is
a fibrant replacement for a spectrum X, then each of the evident maps

Ω∞Xfib → hocolim
n

ΩnXfib
n ← hocolim

n
ΩnXn

is a weak equivalence of spaces.
In one proof of ours — the proof of Theorem 5.2 — we make use of function spectra

in the homotopy category of spectra3: these exist in ho(S) using well known ‘naive’
constructions in S. To summarize our overuse of the notation MapS(X,Y ):

• MapS(X,Y ) is in T for X,Y ∈ S,

• MapS(X,Y ) is in S for X ∈ T and Y ∈ S, and

• MapS(X,Y ) is in ho(S) for X, Y ∈ ho(S).

2The name ‘level’ model structure is used in [MMSS, §6]. Schwede [S] refers to this as ‘strict,’ and
Hovey [H2] uses ‘projective’.
3Bousfield similarly needs this: see [B5, Thm. 11.9].
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We trust our meaning will be clear in context.
We end this subsection with a useful lemma and corollary.

Lemma 2.1 (Compare with [K1, Lemma 3.3]). Given a diagram of spectra X(0)→
X(1)→ X(2)→ · · · and an increasing sequence of integers 0 6 d0 < d1 < d2 < · · · ,
the natural diagram of spectra

s−d1Σ∞Σd1−d0X(0)d0

o ²² ++WWWWWWWWWW
s−d2Σ∞Σd2−d1X(1)d1

o ²² ++WWWWWWWWWW
s−d3Σ∞Σd3−d2X(2)d2

o ²²
((QQQQQ

s−d0Σ∞X(0)d0

²²

s−d1Σ∞X(1)d1

²²

s−d2Σ∞X(2)d2

²²
X(0) // X(1) // X(2) //_____

induces a weak equivalence between the homotopy colimit of the top zig-zag and the
homotopy colimit of the bottom.

Sketch proof. One checks that the map induces an isomorphism on π∗. Alternatively,
one can check that the map induces an isomorphism on [ , Y ] for all Y ∈ S.

Informally, this lemma says that there is a natural weak equivalence

hocolim
k

s−dkΣ∞X(k)dk

∼−→ hocolim
k

X(k).

Corollary 2.2. Given a spectrum X and an increasing sequence of integers 0 6 d0 <
d1 < d2 < · · · , the homotopy colimit of

s−d1Σ∞Σd1−d0Xd0

o
²² **UUUUUUUUUU

s−d2Σ∞Σd2−d1Xd1

o
²² **UUUUUUUUUU

s−d3Σ∞Σd3−d2Xd2

o
²² ((PPPPPPPPPP

s−d0Σ∞Xd0 s−d1Σ∞Xd1 s−d2Σ∞Xd2
. . .

is naturally weakly equivalent to X.

Proof. Apply the lemma to the case when X(k) = X for all k.

Informally, this corollary says that there is a natural weak equivalence

hocolim
k

s−dkΣ∞Xdk

∼−→ X.

2.3. Periodic homotopy
We recall some of the terminology and big theorems used when one studies homo-

topy from the chromatic point of view. A good general reference for this material is
Doug Ravenel’s book [Ra].

We let C ⊂ ho(S) denote the stable homotopy category of p-local finite CW spectra,
and then we let Cn ⊂ C be the full subcategory with objects the K(n− 1)∗-acyclic
spectra. The categories Cn are properly nested [Mi]:

C = C0 ⊃ C1 ⊃ C2 ⊃ · · · .
An object F ∈ Cn − Cn+1 is said to be of type n.

For finite spectra, the remarkable work of Ethan Devanitz, Mike Hopkins, and Jeff
Smith [DHS] tells us the following.
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Theorem 2.3 (Nilpotence Theorem [HS, Thm.3]). Given F ∈ C, a map v : ΣdF → F
is nilpotent if and only if K(n)∗(v) is nilpotent for all n > 0.

The next two consequences were proved by Hopkins and Smith.

Theorem 2.4 (Thick Subcategory Theorem [HS, Ra]). A nonempty full subcategory
of C that is closed under taking cofibers and retracts is Cn for some n.

Given F ∈ C, a map v : ΣdF → F is called a vn-self map if K(n)∗(v) is an isomor-
phism, while K(m)∗(v) is nilpotent for all m 6= n.

Theorem 2.5 (Periodicity Theorem [HS, Ra]).
(1) F ∈ Cn if and only if F has a vn-self map.
(2) Given F, F ′ ∈ Cn with vn-self maps u : ΣcF → F and v : ΣdF ′ → F ′, and f : F

→ F ′, there exist integers i, j such that ic = jd and the diagram

ΣicF

vi

²²

Σicf // ΣjdF ′

vj

²²
F

f // F ′

commutes.

Given F ∈ C of type n, we let T (F ) denote the mapping telescope of a vn-self map.
An immediate consequence of the Periodicity Theorem is that T (F ) is independent
of choice of self map. Furthermore, one deduces that the Bousfield class of T (F ) is
independent of the choice of type n spectrum F . In other words, if F and F ′ are both
of type n, then

T (F ) ∧ Y ' ∗ if and only if T (F ′) ∧ Y ' ∗.
It is usual to let T (n) ambiguously denote T (F ) for any particular type n finite
spectrum F .

Another consequence of the Periodicity Theorem was proved by the author in [K1].

Proposition 2.6 ([K1, Cor.4.3]). There exists a diagram in C,

F (1)

²²

f(1) // F (2)

{{xxx
xx

xx
xx

f(2) // F (3)

uukkkkkkkkkkkkkkkkk
// . . .

S0

such that each F (k) ∈ Cn, and hocolim
k

F (k)→ S0 induces an T (m)∗-isomorphism for

all m > n.

Remark 2.7. The statement of this proposition deserves some comment, as homotopy
colimits of general diagrams in a triangulated category like ho(S) are not always
defined. However, the hocolimit of a sequence as above is defined (as the cofiber of
an appropriate map between coproducts of the F (k)). We note also that only this
construction is used in the proof of the proposition given in [K1]; in other words, the
proposition is proved working solely in the triangulated homotopy category.
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We give standard names to some localization functors. Let Lf
n : S → S denote local-

ization with respect to T (0) ∨ · · · ∨ T (n), and then define functors Cf
n−1, M

f
n : S → S

by letting Cf
n−1X be the homotopy fiber of X → Lf

n−1X and Mf
nX be the homotopy

fiber of Lf
nX → Lf

n−1X.
It is not hard to show that Lf

n is smashing, i.e. X ∧ Lf
nS0 ' Lf

nX for all X: see [B5,
2.9 and 3.2]. It follows that Cf

n−1 and Mf
n are also smashing, and one can then quite

easily deduce that LT (n) and Mf
n determine each other. More precisely, there are

natural equivalences LT (n)M
f
nX ' LT (n)X and Cf

n−1LT (n)X 'Mf
nLT (n)X 'Mf

nX.
An alternative proof of Proposition 2.6 occurs in [B5, proof of Thm. 12.1], where

Bousfield notes that Cf
n−1S

0 can be written in the form hocolim
k

F (k) with each

F (k) ∈ Cn. This same result also was proved by Mahowald and Sadofsky in [MS,
Proposition 3.8].

We end this section with characterizations of spectra that are T (n)-local or in the
image of Mf

n .

Lemma 2.8. Consider the following three properties that a spectrum X might satisfy.

(a) [F, X] = 0 for all F ∈ Cn+1.

(b) [Y,X] = 0 whenever F (n) ∧ Y ' ∗ for some type n finite spectrum F (n).

(c) T (i) ∧X ' ∗ for 0 6 i 6 n− 1.

Properties (a) and (b) hold if and only if X is T (n)-local. Properties (a) and (c) hold
if and only if X 'Mf

nX.

Proof. We can assume that T (n) is the telescope of a vn-self map v : ΣdF (n)→ F (n).
Condition (a) is equivalent to the statement that X is Lf

n-local, while property (b)
says that X is F (n)-local. Thus if X is T (n)-local, both (a) and (b) are true.

If condition (a) holds, so that X is Lf
n-local, we observe that v : F (n) ∧X →

Σ−dF (n) ∧X is an equivalence, as the cofiber is null, since it can be written (using
S-duality) in the form MapS(F, X) with F of type n + 1. It follows that F (n) ∧X '
T (n) ∧X, and thus

F (n)∗(X) ' T (n)∗(X) ' T (n)∗(LT (n)X) ' F (n)∗(LT (n)X).

Thus if condition (b) also holds, so that X, as well as LT (n)X, is F (n)-local, we
conclude that X ' LT (n)X, i.e. X is T (n)-local.

Finally, property (c) says that Lf
n−1X ' ∗, so that Mf

nX ' Lf
nX.

3. Telescopic functors associated to a self map of a space

3.1. The basic construction
Given a space B and a map v : ΣdB → B with d > 0, we define a functor

Φv : T → S
as follows. If n ≡ −e mod d, with 0 6 e 6 d− 1, we let
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Φv(Z)n = Ωe MapT (B,Z).

The structure maps Φv(Z)n → ΩΦv(Z)n+1 identify with the identity unless n ≡ 0
mod d, in which case it equals the map

v(Z) : MapT (B, Z) v∗−→ MapT (ΣdB,Z) = Ωd MapT (B, Z).

The construction is functorial in v in the following sense: a commutative diagram

ΣdA

u

²²

Σdf // ΣdB

v

²²
A

f // B

induces a natural transformation f∗ : Φv(Z)→ Φu(Z).
We list some basic properties of Φv(Z) in the next omnibus lemma.

Lemma 3.1.

(a) π∗(Φv(Z)) = v−1π∗(Z; B).

(b) If a map of spaces Y → Z induces an isomorphism on π∗ for ∗ À 0, then
Φv(Y )→ Φv(Z) is a stable equivalence. In particular, the r-connected cover-
ing map Z〈r〉 → Z induces a stable equivalence Φv(Z〈r〉)→ Φv(Z) for all r.

(c) v∗ : Φv(Z)→ ΦΣdv(Z) is a stable equivalence.

(d) For all spaces A, Φv(MapT (A, Z)) = Φ1A∧v(Z) = MapS(A, Φv(Z)). In particu-
lar, ΦΣcv(Z) = ΩcΦv(Z) for all c.

(e) Φv takes weak equivalences to level weak equivalences (and thus stable equiva-
lences), fibrations to level fibrations, and homotopy pullbacks to level homotopy
pullbacks (and thus stable homotopy pullbacks).

(f) Given a commutative diagram

ΣdA

u

²²

Σdf // ΣdB

v

²²

Σdg // ΣdC

w

²²
A

f // B
g // C,

if A
f−→ B

g−→ C is a homotopy cofiber sequence of spaces, then the induced
sequences

Φw(Z)
g∗−→ Φv(Z)

f∗−→ Φu(Z)

are homotopy fibration sequences of spectra for all Z.

(g) If B is a finite CW complex, there is a natural stable equivalence

hocolim
d

Φv(Zd) ' Φv(hocolim
d

Zd)

for all diagrams Z1 → Z2 → Z3 → · · · of spectra.
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(h) If v0, v1 : ΣdB → B are homotopic maps, then Φv0(Z) is naturally stably equiv-
alent to Φv1(Z).

(i) There is a natural stable equivalence Φv(Z) ∼−→ Φvr (Z), where vr : ΣrdB → B
denotes the evident r-fold composition of v with its various suspensions.

Proof. All of this is quite easily verified. Part (a) is clear, and then parts (b) and (c)
follow by check of homotopy groups. Part (d) follows by inspection, since MapT (A ∧
B, Z) = MapT (A,MapT (B, Z)). Parts (e) and (f) follow from the fact that MapT (B,
Z) takes cofibrations in the B-variable and fibrations in the Z-variable to fibra-
tions. Similarly, part (g) follows from the fact that hocolim

n
MapT (B, Zn) ' MapT (B,

hocolim
n

Zn) if B is a finite complex.

To check part (h), suppose v0, v1 : ΣdB → B are homotopic maps. If H : ΣdB ∧
I+ → B is a homotopy from v0 to v1, let V : ΣdB ∧ I+ → B ∧ I+ be defined by
V (x, t) = (H(x, t), t). Then there is a commutative diagram

ΣdB

v0

²²

Σdi0 // ΣdB ∧ I+

V

²²

ΣdB
Σdi1oo

v1

²²
B

i0 // B ∧ I+ B,
i1oo

which induces natural equivalences

Φv0(Z)
i∗0←−
∼

ΦV (Z)
i∗1−→
∼

Φv1(Z).

Finally the stable equivalence of part (i) is defined as follows. Write n in the form
n = mrd− sd− e, with 0 6 s 6 r − 1 and 0 6 e 6 d− 1. Then let

Φv(Z)n → Φvr (Z)n

be the map

Ωe MapT (B,Z)
Ωe(vs)∗−−−−−→ Ωe MapT (ΣsdB, Z) = Ωe+sd MapT (B, Z).

Corollary 3.2. Φv(Z) is a periodic spectrum with period d : Φv(Z) ' ΩdΦv(Z). Fur-
thermore, the induced functor Φv : ho(T )→ ho(S) is determined by the stable homo-
topy class of vr for any r.

Proof. Combine properties (c), (d), (h), and (i) of the lemma.

Our last property needs some notation. Given an unstable map u : ΣcA→ A and
X ∈ S, let u−1 MapS(A,X) denote the homotopy colimit of the diagram

MapS(A,X) u∗−→ MapS(ΣcA,X) u∗−→ MapS(Σ2cA,X)→ · · · .

Lemma 3.3. Given maps u : ΣcA→ A and v : ΣdB → B, there are natural stable
equivalences u−1 MapS(A,Φv(Z)) ' Φu∧v(Z) ' v−1 MapS(B, Φu(Z)).
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Sketch proof. By symmetry, we need just verify the first of these equivalences. By
Lemma 3.1(d), u−1 MapS(A,Φv(Z)) is equal to

hocolim{ΦA∧v(Z) u∗−→ ΦΣcA∧v(Z) u∗−→ ΦΣ2cA∧v(Z) u∗−→ · · · }.
By Lemma 2.1, this is stably equivalent to

hocolim
k

s−kdΣ∞MapT (ΣkcA ∧B, Z).

This, in turn, maps to

hocolim
k

s−k(c+d)Σ∞MapT (A ∧B,Z),

using evident natural maps of the form Σ∞ΩrW → s−rΣ∞W , and a check of homo-
topy groups shows this map between homotopy colimits is an equivalence. Finally, by
Lemma 2.1 again, this last homotopy colimit is equivalent to Φu∧v(Z).

3.2. Identifying Φv(Ω∞Z)
Recall that for X ∈ S, Ω∞X = X0. The following elementary ‘swindle’ is critical

to our arguments. Note that it says that the functor that assigns v−1 MapS(B, X) to
a spectrum X depends only on the space X0.

Proposition 3.4 (Compare with [K1, Prop.3.3(4)]). If X ∈ S is fibrant (i.e. is an Ω-
spectrum), then, given v : ΣdB → B, there is a natural weak equivalence

Φv(Ω∞X) ' v−1 MapS(B,X).

Proof. We have natural equivalences:

v−1 MapS(B, X) ∼←− hocolim
r

s−rdΣ∞MapS(ΣrdB, X)rd

= hocolim
r

s−rdΣ∞MapT (ΣrdB,Xrd)

= hocolim
r

s−rdΣ∞MapT (B, ΩrdXrd)
∼←− hocolim

r
s−rdΣ∞MapT (B, X0)

∼−→ Φv(Ω∞X).

Here the first equivalence follows from Lemma 2.1, the last equivalence similarly
follows from Corollary 2.2, and the second to last equivalence holds because X is
fibrant.

Remark 3.5. It is not easy to spot the analogue of this proposition in [B5], but [B5,
Thm. 11.9] is a more elaborate result of this type, and its proof, given in [B5, §§ 11.10–
11.11] uses arguments very similar to our proof of Lemma 2.1.

Remark 3.6. Using the proposition, we can give an alternative proof of part of
Lemma 3.3: that u−1 MapS(A, Φv(Z)) ' v−1 MapS(B, Φu(Z)). If we let Φfib

u (Z) be
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a fibrant replacement for Φu(Z), then Ω∞Φfib
u (Z) ' hocolim

r
MapT (ΣrcA,Z). Thus

v−1 MapS(B, Φu(Z)) ' Φv(hocolim
r

MapT (ΣrcA,Z)) (by the proposition)

' hocolim
r

Φv(MapT (ΣrcA,Z))

= hocolim
r

MapS(ΣrcA, Φv(Z)) = u−1 MapS(A, Φv(Z)).

4. Φv when v is a vn-self map of a space

Note that if v : ΣdB → B is nilpotent, Φv(Z) will be contractible for all Z. So that
this might not be the case, in this section, we study the case when v is a vn-self map
of a finite CW complex B of type n.

First we discuss a construction in the homotopy category of spectra.
Given F ∈ Cn, it is convenient to let Φ(F,Z) ∈ ho(S) denote ΣtΦu(Z), where

u : ΣcA→ A is an unstable vn-map of a finite CW complex A such that ΣtF '
Σ∞A. Similarly, given a map f : F → F ′ between finite spectra in Cn, we define
f∗ : Φ(F ′, Z)→ Φ(F, Z) to be Σtα∗ : ΣtΦv(Z)→ ΣtΦu(Z) where

ΣdA

u

²²

Σdα // ΣdB

v

²²
A

α // B

is a commutative diagram of spaces with vn-self maps, and Σtf ' Σ∞α.

Lemma 4.1. Φ: Cop
n × ho(T )→ ho(S) is a well defined functor and satisfies the next

two properties.

(a) Φ takes cofibration sequences in the Cn-variable to fibration sequences in ho(S).

(b) MapS(F, Φ(F ′, Z)) ' Φ(F ′ ∧ F, Z) ' MapS(F ′,Φ(F, Z)).

Proof. This follows from the Periodicity Theorem and the results in the last section.

Now we prove that, when v is a vn-self map, Φv : T → S satisfies versions of the
properties listed in Theorem 1.1.

Theorem 4.2. Let v : ΣdB → B is an unstable vn-self map.

(1) Φv(Z) 'Mf
nΦv(Z) and is also T (n)-local, for all spaces Z.

(2) Φv(Ω∞X) ' MapS(B, LT (n)X) for all fibrant X ∈ S.

Proof of Theorem 4.2(1). We need to verify that Φv(Z) satisfies the three properties
listed in Lemma 2.8.

Property (a) says that [F, Φv(Z)] = 0 for all F ∈ Cn+1. To see this, we first note
that, since Φv(Z) is periodic, we can assume that F = Σ∞A for some finite CW
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complex A of type at least n + 1. But then [F, Φv(Z)] = π0(MapS(A,Φv(Z)) = 0,
because

MapS(A, Φv(Z)) = Φ1A∧v(Z) ' ∗,
as A ∧B will have type greater than n, so that 1A ∧ v : ΣdA ∧B → A ∧B will be
nilpotent.

Property (b) says that, with F (n) a fixed finite spectrum of type n, [Y, Φv(Z)] = 0
whenever F (n) ∧ Y ' ∗. To prove this, we make use of the properties of the functor
Φ listed in Lemma 4.1.

So suppose that F (n) ∧ Y ' ∗. Let

CY = {F ∈ Cn | [Y, Φ(F,Z)]∗ = 0 for all Z}.
Using the Thick Subcategory Theorem, we check that CY = Cn, thus verifying prop-
erty (b). Firstly, CY is a thick subcategory by Lemma 4.1(a). Secondly, it contains at
least one type n complex, as it contains all type n complexes of the form F (n) ∧ F ,
with F of type n. To see this, using Lemma 4.1(b), we have

[Y, Φ(F (n) ∧ F, Z)]∗ = [Y, MapS(F (n), Φ(F, Z)]∗ = [Y ∧ F (n),Φ(F, Z)]∗ = 0.

Property (c) says that T (i) ∧ Φv(Z) ' ∗ for i 6 n− 1. We can assume that T (i) is
the telescope of the S-dual of an unstable v(i)-map u : ΣcA→ A, where A is a finite
CW complex of type i. Then

T (i) ∧ Φv(Z) ' u−1 MapS(A,Φv(Z))

' v−1 MapS(B, Φu(Z)) (by Lemma 3.3)

= hocolim
r

ΩrdΦu∧1B (Z))

' ∗,
as A ∧B has type greater than i, so that u ∧ 1B : ΣcA ∧B → A ∧B is nilpotent, and
thus Φu∧1B

(Z) ' ∗.

Proof of Theorem 4.2(2). This is similar to the author’s proof of [K1, Prop. 3.4].
Thanks to Proposition 3.4, we just need to show that if v : ΣdB → B is a vn-map,
then there is a weak equivalence

v−1 MapS(B, X) ' MapS(B, LT (n)X).

This is easy to do. We claim that each of the maps

v−1 MapS(B, X)→ v−1 MapS(B, LT (n)X)← MapS(B,LT (n)X)

is an equivalence. If we let T (n) be modeled by the telescope of the dual of v, then
the first map identifies with the equivalence T (n) ∧X

∼−→ T (n) ∧ LT (n)X. The second
map is an equivalence as v is a T (n)∗-isomorphism, so each map in the diagram

MapS(B, LT (n))
v∗−→ MapS(ΣdB, LT (n))

v∗−→ MapS(Σ2dB, LT (n))→ · · ·
is an equivalence.
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5. The construction of Φn and the proof of Theorem 1.1

5.1. The construction on the level of homotopy categories
Recall that we have a functor

Φ: Cop
n × ho(T )→ ho(S)

defined by letting Φ(F,Z) denote ΩtΦu(Z), where u : ΣcA→ A is an unstable vn-map
of a finite CW complex A such that ΣtF ' Σ∞A.

Now consider a resolution of S0 as in Proposition 2.6: a diagram

F (1)
q(1)

²²

f(1) // F (2)
q(2)

{{xxx
xx

xx
xx

f(2) // F (3)
q(3)

uukkkkkkkkkkkkkkkkk
// . . .

S0

(1)

such that each F (k) ∈ Cn, and such that the map

q = hocolim
k

q(k) : hocolim
k

F (k)→ S0

induces an isomorphism in T (m)∗ for all m > n.

Definition 5.1. Define ΦT
n : ho(T )→ ho(S) by the formula

ΦT
n (Z) = holim

k
Φ(F (k), Z)

We have the following theorem, which is Theorem 1.1 on the level of homotopy
categories.

Theorem 5.2. ΦT
n satisfies the following properties.

(1) ΦT
n (Z) is T (n)∗-local for all Z ∈ ho(T ).

(2) MapS(F, ΦT
n (Z)) ' Φ(F,Z) ∈ ho(S) for all F ∈ C and Z ∈ ho(T ).

(3) ΦT
n (Ω∞X) ' LT (n)X, for all X ∈ ho(S).

Proof. By Theorem 4.2(1), each Φ(F (k), Z) is T (n)∗-local. Since the homotopy limit
of local objects is again local, statement (1) follows.

To see that (2) is true, given F ∈ C, we compute in ho(S):

MapS(F, ΦT
n (Z)) ' MapS(F, holim

k
Φ(F (k), Z))

' holim
k

MapS(F, Φ(F (k), Z))

' holim
k

MapS(F (k), Φ(F,Z))

' MapS(hocolim
k

F (k), Φ(F, Z))
∼←− MapS(S0,Φ(F, Z)) = Φ(F, Z).

Here the third equivalence is an application of Lemma 4.1(b), while the last map
is an equivalence because it is induced by the T (n)∗-isomorphism q and Φ(F, Z) is
T (n)∗-local (by Theorem 4.2(1)).
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The proof that (3) is true is similar:

ΦT
n (Ω∞X) = holim

k
Φ(F (k), Ω∞X)

' holim
k

MapS(F (k), LT (n)X) (by Theorem 4.2(2))

= MapS(hocolim
k

F (k), LT (n)X)
∼←− MapS(S, LT (n)X) = LT (n)X.

5.2. Rigidifying the construction
Definition 5.3. A rigidification of diagram (1) consists of the following data.

(i) Finite complexes B(k) of type n.

(ii) Natural numbers d(k) such that d(k)|d(k + 1) together with unstable vn-self
maps v(k) : Σd(k)B(k)→ B(k).

(iii) Natural numbers t(k) such that t(k) 6 t(k + 1) together with maps p(k) : B(k)
→ St(k) and β(k) : Σe(k)B(k)→ B(k + 1), where e(k) = t(k + 1)− t(k).

These are required to satisfy three properties:

(a) Σ∞B(k) ∈ S represents Σt(k)F (k) ∈ ho(S), Σ∞p(k) represents Σt(k)q(k), and
Σ∞β(k) represents Σt(k+1)f(k).

(b) With r(k) = d(k + 1)/d(k), the diagram

Σe(k)+d(k+1)B(k)

Σe(k)v(k)r(k)

²²

Σd(k+1)β(k) // Σd(k+1)B(k + 1)

v(k+1)

²²
Σe(k)B(k)

β(k) // B(k + 1)

commutes in T .

(c) The diagram

Σe(k)B(k)
β(k) //

Σe(k)p(k)

%%LLLLLLLLLL
B(k + 1)

p(k+1)

yyssssssssss

St(k+1)

commutes.

Lemma 5.4. Rigidifications exist.

Sketch proof. This is basically Bousfield’s construction of ‘an admissible spectral Lf
n-

cospectrum’ given in [B5, Thm.12.1]. One proceeds by induction on k. Having con-
structed B(k), v(k), and p(k), using the Periodicity Theorem in the stable range, one
chooses e(k) so large that there exist B(k + 1), v(k + 1), p(k + 1)), and β(k) making
property (a) hold, and so that the diagrams in (b) and (c) commute up to homotopy.
Then one replaces B(k + 1) and β(k), so that the new β(k) is a cofibration. Finally,
one uses the homotopy extension property of cofibrations (applied to both β(k) and
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Σd(k+1)β(k)) to replace v(k + 1) and p(k + 1) by homotopic maps so that the new
diagrams (b) and (c) strictly commute.

Given a rigidification of (1), we will make use of two families of induced natural
maps.

The maps β(k) : Σe(k)B(k)→ B(k + 1) induce natural maps

Φv(k+1)(Z)→ ΦΣe(k)v(k)r(k)(Z) = Ωe(k)Φv(k)r(k)(Z).

Adjointing these, and suspending t(k)-times, yield natural maps

β(k)∗ : Σt(k+1)Φv(k+1)(Z)→ Σt(k)Φv(k)r(k)(Z).

The ‘top cell’ maps p(k) : B(k)→ St(k) induce maps

s−t(k)X → Ωt(k)X = MapS(St(k), X)→ MapS(B(k), X).

Adjointing these yields natural maps

p(k)∗ : X → st(k) MapS(B(k), X).

The last maps are compatible as k varies, and so induce a natural map

p∗ : X → holim
k

st(k) MapS(B(k), X).

Lemma 5.5. p∗ is an equivalence if X is T (n)-local.

Proof. In the homotopy category, p(k)∗ corresponds to

q(k)∗ : X → MapS(F (k), X)

so that p∗ corresponds to

q∗ : X = MapS(S0, X)→ MapS(hocolim
k

F (k), X).

This is an equivalence if X is T (n)-local.

Definition 5.6. Given a rigidification of (1), we define Φn : T → S by letting Φn(Z)
be the homotopy limit of the diagram

Σt(3)Φv(3)r(3)(Z) Σt(2)Φv(2)r(2)(Z) Σt(1)Φv(1)r(1)(Z)

. . .

88ppppppppp
Σt(3)Φv(3)(Z)

o
OO

β(2)∗

55kkkkkkkkk
Σt(2)Φv(2)(Z)

o
OO

β(1)∗

55kkkkkkkkk
Σt(1)Φv(1)(Z).

o
OO

Informally, we write Φn(Z) = holim
k

Σt(k)Φv(k)(Z).

Proof of Theorem 1.1. By construction, in ho(S), Φn(Z) represents the holimit of
the diagram

· · · −→ Φ(F (3), Z)
f(2)∗−−−→ Φ(F (2), Z)

f(1)∗−−−→ Φ(F (1), Z),

i.e. ΦT
n (Z). The various properties of Φn stated in Theorem 1.1 are verified by giving

proofs similar to those given in proving the analogous properties of ΦT
n listed in
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Theorem 5.2, with the constructions of natural equivalences ‘rigidifying’ as needed in
straightforward ways.

We run through some details.
Property (1) is clear: Φn(Z) is the homotopy limit of T (n)-local spectra, thus is

itself T (n)-local.
For property (2), we have

MapS(B, Φn(Z)) = MapS(F, holim
k

Σt(k)Φv(k)(Z))

= holim
k

MapS(B, Σt(k)Φv(k)(Z))

∼←− holim
k

Σt(k) MapS(B, Φv(k)(Z))

' holim
k

Σt(k) MapS(B(k),Φv(Z)) (by Lemma 3.3)

∼−→ holim
k

st(k) MapS(B(k), Φv(Z))
∼←− Φv(Z),

since Φv(Z) is T (n)-local.
For property (3), we have

Φn(Ω∞X) = holim
k

Σt(k)Φv(k)Ω∞X)

∼−→ holim
k

st(k)Φv(k)Ω∞X)

' holim
k

st(k) MapS(B(k), LT (n)X) (by Theorem 4.2(2))
∼←− LT (n)X (by Lemma 5.5).

Finally suppose that a functor Φ′n : T → S satisfies the next two properties, ana-
logues of properties (1) and (2).

(1′) Φ′n(Z) is T (n)-local, for all spaces Z.

(2′) There is a weak equivalence of spectra MapS(B, Φ′n(Z)) ' Φv(Z), for all unsta-
ble vn self maps v : ΣdB → B, natural in both Z and v.

Then we have:

Φ′n(Z) ∼−→ holim
k

st(k) MapS(B(k), Φ′n(Z)) (by (1′))
∼←− holim

k
Σt(k) MapS(B(k), Φ′n(Z))

' holim
k

Σt(k)Φv(k)(Z)) (by (2′))

= Φn(Z).

Thus properties (1) and (2) characterize Φn.

6. Bousfield’s adjoint Θn

In [B5], Bousfield constructs a functor Θn : S → T , which serves as a left adjoint
of sorts to Φn. In this section, we run through how this works.
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6.1. The construction of Θv

Given a self map of a space v : ΣdB → B, the functor

Φv : T → S
admits a left adjoint

Θv : S → T ,

defined as follows. Given a spectrum X with iterated structure maps σr : ΣdXrd →
X(r+1)d, Θv(X) is defined to be the coequalizer of the two maps

∨
r

ΣdB ∧Xrd

v−→−→σ
∨
r

B ∧Xrd,

where, on the rdth wedge summand, v is ΣdB ∧Xrd
v∧1−−→ B ∧Xrd, while σ is ΣdB ∧

Xrd ' B ∧ ΣdXrd
1∧σr−−−→ B ∧X(r+1)d.

It is easy and formal to check that Θv and Φv form an adjoint pair. However, to
be homotopically meaningful, one would like these functors to form a Quillen pair so
that they induce an adjunction on the associated homotopy categories. For this to be
true, it is necessary and sufficient to check that Φv preserves trivial fibrations, and
also fibrations between fibrant objects. (See, e.g. [B5, Lem.10.5] or [Hi, Prop.8.5.4].)

Φv certainly preserves trivial fibrations, as it takes a trivial fibration to a levelwise
trivial fibration, which will then be a stable trivial fibration.

Suppose that W → Z is a fibration in T . In the stable model category structure,
Φv(W )→ Φv(Z) will be a fibration between fibrant objects only if the obvious nec-
essary condition holds: Φv(W ) and Φv(Z) must both be fibrant, i.e. Ω-spectra.

Unravelling the definitions, Φv(Z) will be an Ω-spectrum if and only if the map

v∗ : Map(B, Z)→ Map(ΣdB, Z)

is a weak equivalence.
One can force this condition to be true as follows. Let Lv : T → T denote localiza-

tion with respect to the map v, and then let Tv denote T with the associated model
category structure in which the weak equivalences in Tv are the maps f such that Lvf
is a weak equivalence in T . (See e.g. [Hi] for these constructions and many references
to the literature.) We recover a variant of [B5, Lem.10.6].

Lemma 6.1. For any v : ΣdB → B, we have the following.
(a) Θv : S → Tv and Φv : Tv → S form a Quillen pair.
(b) For all X ∈ S and Z ∈ T , there is a natural bijection

[Θv(X), LvZ] ' [X, Φv(LvZ)].

6.2. Periodic localization of spaces
In [B5, § 4.3], Bousfield defines

Lf
n : T → T

to be localization with respect to the map ΣA→ ∗, where A is chosen so that Σ∞A
is equivalent to a finite spectrum of type n + 1, and the connectivity of H∗(A;Z/p) is
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chosen to be as low as possible. His proof that this is independent of choice appears
in [B3, Thm. 9.15], and depends on the Thick Subcategory Theorem.

For our purposes, Lf
n : T → T satisfies two elementary properties that we care

about.

Lemma 6.2. If X is a Lf
n-local spectrum, then Ω∞X is Lf

n-local space.

Proof. Let A be chosen as in the definition of Lf
n : T → T . For all t, πt(MapT (ΣA,

Ω∞X)) = [Σ∞Σt+1A,X] = 0, since Lf
n-local spectra admit no nontrivial maps from

objects in Cn+1. Thus MapT (ΣA,Ω∞X) ' ∗, and so Ω∞X is Lf
n-local.

Lemma 6.3. If Z is a Lf
n-local space, then it is also Lv-local for all unstable vn-self

maps v : ΣdB → B that are double suspensions.

Proof. Since v is a double suspension, it fits into a cofibration sequence of the form

ΣC → ΣdB
v−→ B → Σ2C,

where Σ∞C has type n + 1. This induces a fibration sequence

MapT (Σ2C, Z)→ MapT (B, Z) v∗−→ MapT (ΣdB,Z)→ MapT (ΣC, Z),

in which the first and last of these mapping spaces are null if Z is Lf
n-local. Thus the

middle map is an equivalences, and so Z is Lv-local.

A deeper property of Lf
n goes as follows.

Proposition 6.4. If v is a vn-self map, the natural map Φv(Z)→ Φv(Lf
nZ) is a stable

equivalence.

Proof. We wish to show that the map of spaces

hocolim
r

MapT (ΣrdB, Z)→ hocolim
r

MapT (ΣrdB, Lf
nZ)

induces an isomorphism on homotopy groups (in high dimensions). This is pretty
much [B3, Theorem 11.5], and we sketch how the proof goes.

The map we care about factors in the homotopy category:

hocolimr MapT (ΣrdB, Z)

²²

// hocolimr MapT (ΣrdB,Lf
nZ)

Lf
n hocolimr MapT (ΣrdB, Z) hocolimr Lf

n MapT (ΣrdB, Z),∼oo

OO

where the indicated equivalence is [B3, Lemma 11.6].
The right vertical arrow induces an isomorphism on homotopy groups in high

dimensions, due to [B3, Theorem 8.3], a general result which describes to what extent
functors like LΣC preserve fibrations. Applied to the case in hand, one learns that
there is a number δ such that the natural map

Lf
n MapT (C, Z)→ MapT (C, Lf

nZ)

will induce an isomorphism on πi for i > δ for all finite complexes C. Thus our right
vertical map will induce isomorphisms on πi in the same range.
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It follows that we need just check that the left vertical map is an equivalence, or,
otherwise said, that hocolim

r
MapT (ΣrdB, Z) is Lf

n-local. Recalling that Lf
n = LΣA

for a well chosen A of type (n + 1), we have

MapT (ΣA, hocolim
r

MapT (ΣrdB, Z)) ' hocolim
r

MapT (ΣA, MapT (ΣrdB,Z)

= hocolim
r

MapT (ΣA ∧ ΣrdB, Z)

' ∗,
since 1ΣA ∧ v will be nilpotent by the Nilpotence Theorem.

Remark 6.5. It would interesting to have a proof of this proposition that avoided the
use of [B3, Theorem 8.3].

Combining this proposition with Lemma 6.1 and Lemma 6.3 yields the next theo-
rem.

Theorem 6.6. If v : ΣdB → B is a vn-self map and a double suspension, there is a
natural bijection

[Θv(X), Lf
nZ] ' [X, Φv(Z)],

for all Z ∈ T and X ∈ S.

6.3. The definition of Θn

Let the following data make up a rigidification of diagram (1), as used in the
definition of Φn:

(i) Finite complexes B(k) of type n.
(ii) Natural numbers d(k) such that d(k)|d(k + 1) together with unstable vn-self

maps v(k) : Σd(k)B(k)→ B(k).
(iii) Natural numbers t(k) such that t(k) 6 t(k + 1) together with maps p(k) : B(k)

→ St(k) and β(k) : Σe(k)B(k)→ B(k + 1), where e(k) = t(k + 1)− t(k).
By double suspending everything, we can also assume that each v(k) is a double

suspension.

Definition 6.7. Given this data, we define Θn : S → T by letting Θn(Z) be the
homotopy colimit of the diagram

Θv(1)r(1)(Ωt(1)X)

²²
β(1)∗

))TTTTTTTTT
Θv(2)r(2)(Ωt(2)X)

²²
β(2)∗

))TTTTTTTTT
Θv(3)r(3)(Ωt(3)X)

²²
β(3)∗

''OOOOOOOOO

Θv(1)(Ωt(1)X) Θv(2)(Ωt(2)X) Θv(3)(Ωt(3)X) . . . ,

where each vertical map will be an Lf
n-equivalence, and each β(k)∗ is itself a natural

zig-zag diagram

Θv(k)r(k)(Ωt(k)X) ∼←− Θv(k)r(k)(Σe(k)Ωt(k+1)X)
β(k)∗−−−→ Θv(k+1)(Ωt(k)X).

Informally, we write Θn(X) = hocolim
k

Θv(k)(Ωt(k)X).

From Theorem 6.6, we deduce
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Theorem 6.8 ([B5, Theorem 5.4(iii)]). There is a natural bijection

[Θn(X), Lf
nZ] = [X, Φn(Z)]

for all Z ∈ T and X ∈ S.

Proof. The idea is that since Φn is the limit of functors of the form Φv, and Θn is
the colimit of their adjoints Θv, the theorem should follow from Theorem 6.6. The
only detail needing a careful check is that the zig-zag natural map

Θv(k)r(k)(Ωt(k)X) ∼←− Θv(k)r(k)(Σe(k)Ωt(k+1)X)
β(k)∗−−−→ Θv(k+1)(Ωt(k+1)X)

used in the definition of Θn above really is adjoint to the more directly defined map

Σt(k+1)Φv(k+1)(Z)
β(k)∗−−−→ Σt(k)Φv(k)r(k)(Z)

used in the definition of Φn.
To see this we have a commutative diagram:

MapT (Θv(k+1)Ω
t(k+1)X, Z)

o

²²

β(k)∗// MapT (Θ
v(k)r(k)Σ

e(k)Ωt(k+1)X, Z)

o

²²

MapT (Θ
v(k)r(k)Ω

t(k)X, Z)

o

²²

∼oo

MapT (Θv(k+1)s
−t(k+1)X, Z)

β(k)∗// MapT (Θ
v(k)r(k)Σ

e(k)s−t(k+1)X, Z) MapT (Θ
v(k)r(k)s−t(k)X, Z)

∼oo

MapS(X, st(k+1)Φv(k+1)Z)
β(k)∗// MapS(X, st(k+1)Ωe(k)Φ

v(k)r(k)Z) MapS(X, st(k)Φ
v(k)r(k)Z)

∼oo

MapS(X, Σt(k+1)Φv(k+1)Z)

o

OO

β(k)∗ // MapS(X, Σt(k)Φ
v(k)r(k)Z)

o

OO

MapS(X, Σt(k)Φ
v(k)r(k)Z).

o

OO

Remark 6.9. The lack of elegance in the proof of the ‘detail’ checked above reflects
the fact that, though our functor Φn : T → S is intuitively the homotopy limit of right
adjoint functors Φv(k), it does not make up the right part of an adjoint pair. Note
that our official definition involves the use of Σ: S → S, which induces an equivalence
of homotopy categories, but is a left adjoint, not a right one. It doesn’t seem possible
to somehow replace Σt(k) by st(k) (which is a right adjoint) in Definition 5.6. This
same problem shows up in Bousfield’s construction: see the paragraph before [B5,
Theorem 11.7].

Corollary 6.10. In ho(S), there is a natural equivalence

LT (n)Σ∞Θn(X) ' LT (n)X.

Proof. In the last theorem, let Z be the space Ω∞LT (n)Y , which is Lf
n-local by
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Lemma 6.2. We see that, for all X, Y ∈ S, there are natural isomorphisms

[Σ∞Θn(X), LT (n)Y ] ' [Θn(X), Ω∞LT (n)Y ]
' [X, Φn(Ω∞LT (n)Y )]
' [X,LT (n)Y ].

The corollary then follows from Yoneda’s lemma.

Remark 6.11. The careful reader will note that this corollary is not dependent on
Proposition 6.4 (and thus not dependent on Bousfield’s careful study of the behavior
of localized fibration sequences), as we have derived it by only applying our other
results to a space Z that is Lf

n-local.

Remark 6.12. From the corollary, it follows that the Telescope Conjecture is equiva-
lent to the statement that if a space is K(n)∗-acyclic, then it is T (n)∗-acyclic.

7. The section ηn

One of the main applications of the functor Φn is that it leads to the construction
of a natural transformation

ηn(X) : LT (n)X → LT (n)Σ∞Ω∞X

which is a natural homotopy section of the T (n)-localization of the evaluation map

ε(X) : Σ∞Ω∞X → X.

The construction is immediate: ηn is defined by applying Φn to the natural map

η(Ω∞X) : Ω∞X → QΩ∞X.

This section is both used and studied in [K3, Re].
It seems plausible that ηn is the unique section of LT (n)ε. We have a couple of

partial results along these lines.
The first was discussed in [K4].

Proposition 7.1. ηn is unique up to ‘tower phantom’ behavior in the Goodwillie tower
for Σ∞Ω∞ in the following sense: for all d, the composite

LT (n)X
ηn(X)−−−−→ LT (n)Σ∞Ω∞X

LT (n)ed(X)−−−−−−−→ LT (n)P
∞
d (X)

is the unique natural section of LT (n)P
∞
d (X)

LT (n)pd(X)−−−−−−−→ LT (n)X.

Here Σ∞Ω∞X
ed(X)−−−−→ P∞d (X) is the dth stage of the Goodwillie tower, and pd is

the canonical natural transformation such that ε = pd ◦ ed. The uniqueness asserted
in the proposition is an immediate consequence of the main theorem of [K2].

Our second observation is in the spirit of observations by Rezk in [Re]. As usual,
we let QZ denote Ω∞Σ∞Z.

Proposition 7.2. Any natural transformation f(X) : X → LT (n)Σ∞Ω∞X will be de-
termined by f(S0) : S0 → LT (n)Σ∞QS0.
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Proof. We begin by showing that we can reduce to the case when X = Σ∞Z, a
suspension spectrum. As the range of f is T (n)-local, we can extend the domain to
LT (n)X. In the diagram

LT (n)Σ∞Ω∞X

ε∗
²²

f(Σ∞Ω∞X) // LT (n)Σ∞QΩ∞X

ε∗
²²

LT (n)X
f(X) // LT (n)Σ∞Ω∞X,

the left vertical map has a section given by ηn(X). Thus the bottom map is determined
by the top map.

Next we observe that any continuous functor G : T → S comes with a natural
transformation Z ∧G(W )→ G(Z ∧W ), and this structure is natural in G. Applied
to our situation, for any space Z, we have a commutative diagram

Z ∧ Σ∞S0

o
²²

1Z∧f(S0) // Z ∧ LT (n)Σ∞QS0

²²
Σ∞Z

f(Z) // LT (n)Σ∞QZ.

Thus the bottom map is determined by the top.

Question 7.3. Is it true that the map

LT (n)Σ∞QS0 →
∏

d

LT (n)Σ∞BΣd+,

arising from the James–Hopf maps QS0 → QBΣd+, is monic on π0?

If so, then the last propositions combine to show that ηn is the unique natural
section to the localized evaluation map.

8. A guide to computations

In this section we briefly survey calculations that have been made of Φn(Z) for
various pairs (n,Z). Before jumping into this, we first explain that there is also
interest in explicit calculations of π∗(Φn(Z)), or variants thereof.

8.1. Periodic homotopy groups of spaces
Recall that there is a sequence of spectra

F (1)→ F (2)→ F (3)→ · · ·
such that each F (k) is finite of type n and hocolim

k
F (k) ' Cf

n−1S
0.

Dualizing this in the stable homotopy category, one gets a diagram

DF (1)← DF (2)← DF (3)← · · · .
Furthermore, each DF (k) comes with a vn-self map which we will generically call
‘v,’ these are compatible in the usual way, and any given finite part of this data
‘eventually’ desuspends to spaces. Thus the following definition makes sense.
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Definition 8.1. The vn-periodic homotopy groups of a space Z are defined to be

v−1
n π∗(Z) = colim

k
v−1π∗(Z;DF (k)).

Example 8.2. When n = 1, one takes F (k) to be a Moore spectrum of type Z/pk,
and the self maps are ‘Adams maps.’ Using traditional notation,

v−1
1 π∗(Z) = colim

k
v−1π∗+1(Z;Z/pk).

This definition first appeared in Davis and Mahowald’s 1992 paper [DM].

Lemma 8.3. The groups v−1
n π∗(Z) can be rewritten in terms of Φn(Z) in various

ways:

v−1
n π∗(Z) = colim

k
π∗(MapS(DF (k),Φn(Z)))

= colim
k

π∗(F (k) ∧ Φn(Z))

= π∗(C
f
n−1Φn(Z))

= π∗(Mf
nΦn(Z)).

The next lemma relates Φn-equivalences to isomorphisms on localized homotopy
groups.

Lemma 8.4. Given a map f : W → Z between spaces, the following conditions are
equivalent.
(a) Φn(f) : Φn(W )→ Φn(Z) is a weak equivalence.
(b) f∗ : v−1

n π∗(W )→ v−1
n π∗(Z) is an isomorphism.

(c) f∗ : v−1π∗(W ;B)→ v−1π∗(Z; B) is an isomorphism for all unstable vn-self maps
v : ΣdB → B.

(d) f∗ : v−1π∗(W ; B)→ v−1π∗(Z; B) is an isomorphism for some unstable vn-self
map v : ΣdB → B.

Proof. Let g = Φn(f). Then condition (a) says that g is an equivalence, (b) says that
Mf

ng is an equivalence, and conditions (c) and (d) say that DB ∧ g is an equivalence
for appropriate B’s. As g is a map between T (n)-local spectra, the three conditions are
all equivalent: clearly (a) implies all the other statements, LT (n)M

f
ng ' g so that (b)

implies (a), (c) obviously implies (d), and finally (d) implies that v−1DB ∧ g is an
equivalence, so that g is a T (n)∗-isomorphism and thus (a) holds.

8.2. Basic observations
From properties of Φv listed in Lemma 3.1, one deduces the next two useful basic

calculational rules.

Lemma 8.5. MapS(A, Φn(Z)) ' Φn(MapT (A,Z)) for all A,Z ∈ T .

Lemma 8.6. Φn takes homotopy pullbacks in T to homotopy pullbacks in S.

One might wonder to what extent Φn might take the homotopy limit (‘microscope’)
of a sequence Z1 ← Z2 ← Z3 ← · · · to the corresponding holimit in S. Unfortunately
this will not always be the case; the correct statement can be formally deduced from
Theorem 6.8.
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Lemma 8.7. Given a sequence of spaces Z1 ← Z2 ← Z3 ← · · · , we have

holim
k

Φn(Zk) ' Φn(holim
k

Lf
nZk).

Since Φn(holimk Zk) ' Φn(Lf
n holimk Zk), one sees that the failure of Φn to com-

mute with microscopes is caused by the failure of Lf
n : T → T to commute with

microscopes.
More constructively, one has the following consequence of Lemma 8.4.

Lemma 8.8. Given a sequence of spaces Z1 ← Z2 ← Z3 ← · · · , the natural map

Φn(holim
k

Zk)→ holim
k

Φn(Zk

is an equivalence if and only if

v−1 lim
k

π∗(Zk; B)→ lim
k

v−1π∗(Zk; B)

is an isomorphism for some unstable vn-self map v : ΣdB → B.

Since Φn(Z) can be ‘calculated’ as LT (n)X if Z = Ω∞X, the following strategy for
computing Φn(Z) emerges: try to ‘resolve’ Z by towers of fibrations with fibers which
are infinite loopspaces, and hope that Lemma 8.8 can be applied when needed.

8.3. Φn(Sm) when m is odd
The strategy just described was implemented in the beautiful work of Arone and

Mahowald [AM] on the Goodwillie tower of the identity functor. It allows for the
identification of a short resolution of Φn(Z) with ‘known’ composition factors when
Z is an odd dimensional sphere. We will be brief here; for a slightly different overview
of how this goes, see the last sections of our survey paper [K4].

We need some notation. Let mρk denote the direct sum of m copies of the reduced
real regular representation of Vk = (Z/p)k. Then GLk(Z/p) acts on the Thom space
BV mρk

k . Let ek ∈ Z(p)[GLk(Z/p)] be any idempotent in the group ring representing
the Steinberg module, and then let L(k, m) be the associated stable summand of
BV mρk

k :

L(k,m) = ekΣ∞BV mρk

k .

The spectra L(k, 0) and L(k, 1) agree with spectra called M(k) and L(k) in the
literature from the early 1980s: see e.g. [MP, KP]. Two properties of the L(k, m)
play a crucial roles for our purposes:

• When m is odd, the cohomology H∗(L(k,m);Z/p) is free over the finite subal-
gebra A(k − 1) of the Steenrod algebra A.

• Fixing m, the connectivity of L(k,m) has a growth rate like pk.

The first fact here implies that L(k, m) is T (n)∗-acyclic for k > n. Indeed, the E2-
term of the Adams spectral sequence which computes [B, L(k, m)]∗ for any finite B
will have a vanishing line of small enough slope so that one can immediately deduce
that v−1E2 = 0 if v is a vn-self map of B.
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Arone and Mahowald’s analysis in [AM], supported by [AD], shows that, for odd
m, there is a tower of fibrations under the p-local sphere Sm:

...

²²
R2(Sm)

p2

²²
R1(Sm)

p1

²²
Sm

e0 //

e1

55jjjjjjjjjjjjjjjjjjj

e2

::uuuuuuuuuuuuuuuuuuuuuuuu
R0(Sm),

such that Sm ' holim
k

Rk(Sm), R0(Sm) = QSm, and, for k > 1, the fiber of pk is

equivalent to Ω∞Σm−kL(k, m). (The space Rk(Sm) is the pkth stage of the Goodwillie
tower of the identity functor applied to Sm.)

Using the two properties of the L(k, m) bulleted above, Arone and Mahowald then
deduce that

v−1 lim
k

π∗(Rk(Sm); B)→ lim
k

v−1π∗(Rk(Sm); B)

is an isomorphism for any self map v : ΣdB → B. See [AM, § 4.1]. It follows that

en∗ : v−1π∗(Sm;B)→ v−1π∗(Rn(Sm); B)

is an isomorphism for any vn-self map v : ΣdB → B. One deduces the following about
Φn(Sm).

Theorem 8.9 (see [K4, Theorem 7.18]). Let m be odd. The map

Φn(en) : Φn(Sm)→ Φn(Rn(Sm))

is an equivalence. Thus the spectrum Φn(Sm) admits a finite decreasing filtration
with fibers LT (n)Σm−kL(k, m) for k = 0, . . . , n.

With a little diagram chasing, one can do better than this. Let L(k)m−1
1 be the fiber

of the natural map of spectra L(k, 1)→ L(k,m). The fibration sequence of spectra

L(k)m−1
1 → L(k, 1)→ L(k, m)

induces a short exact sequence in mod p cohomology, and is thus split as A(k − 1)-
modules. By applying Φn to the fiber sequence Ωm

0 Sm → S1 → Ωm−1Sm and applying
the previous theorem, one deduces an improved result.

Theorem 8.10 ([K4, Theorem 7.20]). Let m be odd. The spectrum Φn(Sm) admits a
finite decreasing filtration with fibers LT (n)Σm+1−kL(k)m−1

1 for k = 1, . . . , n.
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Example 8.11. When p = 2, L(1)m
1 = RPm. Specializing to n = 1, we learn that

there is a weak equivalence

Φ1(S2k+1) ' LT (1)Σ2k+1RP 2k.

Specializing to n = 2, we learn that there is a fibration sequence of spectra

Φ2(S2k+1)→ LT (2)Σ2k+1RP 2k → LT (2)Σ2kL(2)2k
1 .

The first of these is equivalent to an older theorem of Mahowald [Ma] that said that
the James–Hopf map Ω2kS2k+1 → QΣRP 2k induces an isomorphism on v1-periodic
homotopy groups. The odd prime version of this is due to Rob Thompson [T].

8.4. Φ1(Z) for many Z
There is a huge amount known about v−1

1 π∗(Z) thanks to the prodigious efforts
of Bousfield, together with Don Davis and his collaborators. A survey article by
Davis [D1] describes computations known by the mid 1990s. In recent years, begin-
ning with [B4], there has been an explosion of new, more elegantly organized compu-
tations, often explicitly describing Φ1(Z) en route: see the references below for entries
into the recent literature.

Ingredients special to the n = 1 case that enter the story include the following:
• The identification of Φ1(S2k+1) as described above.
• The fact that LT (1) = LK(1).
• The identification of LK(1)S

0 as the fiber of an appropriate map of the form
Ψr − 1: KOp → KOp [B1].

• A tight relationship between maps of spaces which induce K(1)∗-isomorphisms
and maps which induce Φ1-equivalences [B3].

In summary, for appropriate spaces Z, v−1
1 π∗(Z) is essentially determined by

KO∗(Z;Zp), together with Adams operations. Bousfield’s recent careful study [B6]
is state of the art in this area. Davis [D2] gives many complete calculations when Z is
a compact Lie group, with calculations beginning with knowledge of the Lie group’s
representation ring. A very recent amusing result in this spirit is due to Martin Ben-
dersky and Davis [BD], and says that there is a 2–primary homotopy equivalence

Φ1(DI (4)) ' LK(1)Σ725019T ∧M,

where DI (4) is the Dywer–Wilkerson exotic 2-compact group, T is the three cell finite
spectrum S0 ∪η e2 ∪2 e3, and M is a mod 221 Moore spectrum.
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