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DIAGRAMS INDEXED BY GROTHENDIECK CONSTRUCTIONS

SHARON HOLLANDER

(communicated by Haynes R. Miller)

Abstract
Let I be a small indexing category, G : Iop → Cat be a func-

tor and BG ∈ Cat denote the Grothendieck construction on G.
We define and study Quillen pairs between the category of dia-
grams of simplicial sets (resp. categories) indexed on BG and
the category of I-diagrams over N(G) (resp. G). As an appli-
cation we obtain a Quillen equivalence between the categories
of presheaves of simplicial sets (resp. groupoids) on a stack M
and presheaves of simplicial sets (resp. groupoids) overM.

1. Introduction

The motivation for this paper was the study of homotopy theory of (pre)sheaves
on a stack. Since the site associated to a stack M is a Grothedieck construction this
led us to an investigation of the homotopy theory of diagrams indexed on a category
which is itself a Grothendieck construction (of a diagram of small categories). The
body of the paper is concerned with analyzing various Quillen pairs between diagram
categories. These adjunctions are of general interest and we present some examples
not related to the theory of stacks. We conclude the paper with the applications to
stacks.

Stacks were introduced in algebraic geometry in order to parametrize families of
objects when the presence of automorphisms prevented representability by a scheme
or even a sheaf [A, DM, Gi]. Recently stacks have come to play an important role
in algebraic topology. Complex oriented cohomology theories give rise to stacks over
the moduli stack of formal groups and in certain situations, conversely, stacks over
the moduli stack of formal groups give rise to spectra [G, R2, GHMR, B]. One
fundamental example is the spectrum of topological modular forms [Hp] which is
associated to the moduli stack of elliptic curves.

Classically, stacks were defined as categories fibered in groupoids over a site C

which satisfy descent [DM, Definition 4.1]. In [H] we show that a category fibered in
groupoids F over C is a stack if and only if the assignment satisfies the homotopy sheaf
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condition; that is, for each cover {Ui → X ∈ C}, the natural map

F (X) ∼ // holim
(∏

F (Ui) +3 ∏F (Uij) _*4 ∏F (Uijk) · · ·
)

is an equivalence of categories. This characterization of stacks naturally leads to
a model structure on categories fibered in groupoids over C, in which the fibrant
objects are the stacks. Similarly, one can consider the strict functors, or presheaves
of groupoids on C, denoted P (C, Grpd). Here too there is a local model structure,
denoted P (C,Grpd)L, in which the fibrant objects are those functors which are stacks
or, equivalently, satisfy the homotopy sheaf condition. Furthermore, there is a Quillen
equivalence between these two model categories (see [H, Section 4]).

For the purposes of this paper it makes no difference which of the Quillen equivalent
model categories one chooses to work in, and for the sake of simplicity we will work
in P (C,Grpd)L.

Given a stack M on C, a sheaf on M [DM, Definition 4.10] is a sheaf on a site
C/M whose objects are morphisms X →M ∈ P (C, Grpd) with X ∈ C, and morphisms
are triangles with a commuting homotopy.1 Covers in C/M are the collections of
morphisms which forget to covers in C. The site C/M makes sense for any presheaf of
groupoids M (or even a presheaf of categories) on a site C (see [H2, Section 2.1]). If
M is represented by an object X ∈ C, then the site described above is just the usual
topology on the over category C/X.

The Grothendieck construction on a functor F : Iop → Cat is the category with
objects pairs (i, a) with i ∈ I and a ∈ F (i) and morphisms (i, a)→ (j, b) pairs (α, φ)
with α : i→ j and φ : a→ α∗(b). So the underlying category of C/M is, by definition,
just the Grothendieck construction on the functorM : Cop → Grpd.

Since we are interested in understanding the homotopy theory of (pre)sheaves on
a stack M and C/M is a Grothendieck construction, this leads naturally to consid-
ering the homotopy theory of diagrams indexed by Grothendieck constructions. The
Grothendieck construction on F : Iop → Cat is the coend in Cat:

BF = (I/−)⊗I F
def
= coeq


 ∐

i→j∈I
(I/i)× F (j)⇒

∐

i∈I
(I/i)× F (i)


 .

Our first observations are that there are adjunctions (see Propositions 2.1 and 3.2)

B : CatI
op ↔ Cat/I : Γ,

p : Cat/I ↔ CatI
op

: B.

Cat has a cofibrantly generated model structure where weak equivalences are equiv-
alences of categories [R]. This determines model structures on the above categories
for which the adjunctions above are Quillen pairs, and Quillen equivalences if I is a
groupoid (see Theorem 2.7 and Proposition 3.7). An application of the first adjunction
is a characterization of fibered categories over a category C as those categories over C

which are equivalent to BG→ C for some functor G : Cop → Cat (Proposition 2.16).

1This is not the way the definition appears in [DM] but the two definitions agree. Given a cate-
gory fibered in groupoids M, Hom(C/X,M) defines the value of the associated strict presheaf of
groupoids on C at X [H].
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The first adjunction generalizes to give a Quillen pair for diagrams of simplicial
sets:

B : sSetI
op ↔ sSet/NI : Γ,

where BF denotes the coend of the I diagrams N(I/−)⊗I F , which is the standard
model for the homotopy colimit. This adjunction is a homotopical surjection (in the
sense of Dugger [Dg, Definition 6.10]) expressing sSet/NI as the localization of sSetI

op

consisting of I-diagrams with all maps weak equivalences (see Corollary 2.12). When
I is a groupoid (B, Γ) is a Quillen equivalence (Theorem 2.7).

When I is a groupoid the second adjunction also generalizes to a Quillen equivalence
(Proposition 3.5):

p : sSet/NI ↔ sSetI
op

: B,

which is exactly the adjunction used by Dwyer, Farjoun, and Kan [DDK] to prove
that the homotopy theories of G− sSet (with G a group and weak equivalences those
on the underlying simplicial sets) and sSet/BG are equivalent.

We then proceed to generalize the above constructions for diagrams indexed on
the Grothendieck construction of a functor G : Iop → Cat. We define an adjoint pair
(Proposition 4.3)

B : sSet(I/−⊗IG)op −→ (sSetI
op

)/NG : G, (1)

which form a Quillen pair from the projective model structure on the left to the
injective model structure on the right. Furthermore we prove it is a Quillen equivalence
when G is a diagram of groupoids (Theorem 4.4). There is also a Quillen equivalence in
the opposite direction (p,B) defined only when G is a diagram of groupoids and there
are versions of these results for diagrams of categories and groupoids (Theorem 5.2).

In Section 5.1 we provide an interesting application of the above equivalence. We use
Theorem 5.2 to prove the theorem of Dwyer and Kan [DK, Theorem 3.4] describing
diagrams indexed on EI-categories (categories where all endomorphisms are isomor-
phisms) in terms of certain diagrams of fibrations (see Theorem 5.6).

Finally we return to our original motivation, taking I = C and G =M a presheaf
of groupoids, we show that one can localize the Quillen equivalence 1 and prove
that P (C/M,Grpd)L, it the homotopy theory of stacks on M is Quillen equivalent
to P (C,Grpd)L/M, the homotopy theory of stacks over M (Theorem 6.2). We also
prove the analog for presheaves of simplicial sets: namely, P (C/M, sSet)L is Quillen
equivalent to P (C, sSet)L/NM.

The Quillen equivalences above generalize the equivalence of categories between
sheaves on a stack M and fibrations in P (C,M) with target M and discrete fibers,
proved in [H2]. They will be used in [H3] to prove homotopical descent results for
complexes of sheaves on a stack.

1.1. Relation with other work
Much of the work in this paper was developed as a continuation of my 2001 Ph.D.

thesis. Since then a paper by Jardine [J] has appeared which addresses the motivating
question of the paper. Though there is considerable overlap with the present paper,
Jardine works with a different (though Quillen equivalent) model category and his
proofs and overall approach are quite different.
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2. The right adjoint to the Grothendieck construction

2.1. The coend adjunction
We will start by describing a general adjunction involving the coend and then

specialize it to the cases which interest us.
Let C be a closed monoidal category. We will assume that C is complete and cocom-

plete and write ∗ for the final object. Let I be a small category and G : I → C a functor.
If F : Iop → C is a functor, we write

G⊗I F = colim


∐

i→j
G(i)⊗ F (j) ⇒

∐

i

G(i)⊗ F (i)




for the coend of the functors F and G. Note that this is functorial in F, I and G.
More precisely, given F, F ′ : I → C and G : Iop → C, a natural transformation F → F ′

induces a map

F ⊗I G→ F ′ ⊗I G

and similarly for a natural transformation G→ G′. We also have functoriality with
respect to the indexing category: given

ι : I → J, F : J → C, G : Jop → C,

there is a canonical map in C

(F ◦ ι)⊗I (G ◦ ι)→ F ⊗J G

which is induced by the map
∐

i∈I
F (ι(i))×G(ι(i)) −→

∐

j∈J
F (j)×G(j).

Writing ∗ for the constant functor assigning the final object, there are natural maps

G(i)→ (G⊗I ∗)
which together yield a functor

G : I → (C/(G⊗I ∗)).

Proposition 2.1. Let G : I → C be a fixed diagram. Then

(G⊗I −) : CI
op ←→ C/(G⊗I ∗) : HomC/(G⊗I∗)(G,−)

is an adjunction.
Furthermore, if C is a cofibrantly generated model category satisfying the analog of

SM7 and G is a diagram of cofibrant objects, then the above adjunction is a Quillen
pair between the projective model structure on CI

op

and the usual model structure on
the over category C/(G⊗I ∗).
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Proof. We compute that

HomC/(G⊗I∗)(G⊗I F,C)

= HomC/(G⊗I∗)(coeq


∐

i→j
G(i)⊗ F (j)⇒

∐

i

G(i)⊗ F (i)


 , C)

= eq[
∏

i

HomC/(G⊗I∗)(G(i)⊗ F (i), C)⇒
∏

i→j
HomC/(G⊗I∗)(G(i)⊗ F (j), C)]

= eq[
∏

i

HomC(F (i), (C/(G⊗I ∗))(G(i), C))

⇒
∏

i→j
HomC(F (j), (C/(G⊗I ∗))(G(i), C))]

= HomCIop (F, (C/(G⊗I ∗)))(G,C)).

If C is a model category satisfying the assumptions of the statement, then the right
adjoint clearly preserves fibrations and trivial fibrations.

Example 2.2. If G is constant equal to the unit of the monoidal structure then

G⊗I F = colim
I

F

and the above adjunction is the usual adjunction between the colimit and the diagonal.

Example 2.3. Let C be abelian groups Ab with the tensor product and I be a group.
Then a functor I → C is a left Z[I]-module M . Similarly functors Iop → C are right
Z[I]-modules. The adjunction of Proposition 2.1 is

(−⊗Z[I] M) : Mod− Z[I]←→ Ab : HomZ(Z[I],−).

Remark 2.4. One can also fix a contravariant functor G and consider the coend −⊗I G
with covariant functors. We write our formulas for contravariant functors because we
are interested in presheaves.

2.2. The adjoint pair (B, Γ)
Suppose now that C is a category admitting a map from Cat. The examples of

interest to us are Cat itself with the identity functor, Grpd via the localization functor
l : Cat→ Grpd and sSet via the nerve functor N : Cat→ sSet.

Applying the functor Cat→ C to an I-diagram in Cat we obtain an I-diagram in
C and can then apply Proposition 2.1. The main example we are interested in is the
diagram I → Cat of over categories

i 7→ I/i.

When C = sSet or Grpd we will often abuse notation and omit the functor Cat→ C,
writing I for NI or lI and I/− for the diagram sending

i 7→ N(I/i) ∈ sSetI

i 7→ l(I/i) ∈ GrpdI .
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Definition 2.5. For C = Cat, Grpd, or sSet, let B denote the functor

CI
op → C/I

F 7→ (I/−)⊗I F,

and let Γ denote the functor
C/I → CI

op

X → I 7→ HomC/I(I/−, X).

For C = Cat, BF = (I/−)⊗I F is the category with
• objects the pairs (i, a), a ∈ F (i), and

• morphisms (i, a)→ (j, b), pairs (α, φ) with i
α−→ j and a

φ−→ α∗b ∈ F (i).
This is usually called the Grothendieck construction on F .

When C = sSet,
BF = N(I/−)⊗I F

is the standard model for the homotopy colimit of the diagram F : it is the geometric
realization of the simplicial replacement of F (see [BK]).

Remark 2.6. Another situation in which one can obtain a (B, Γ)-type adjunction is
when one has a category C tensored and cotensored over Cat. C could be, for instance,
sSetJ for some indexing category J with categories acting via the nerve functor.

Writing ∗ for the final object of C, we can define B : CI
op → C/(I ⊗ ∗) in the obvious

way, and then the right adjoint Γ: C/(I ⊗ ∗)→ CI
op

can be defined by the pullback

ΓX(i) //

²²

XI/i

²²
∗

φ
// (I ⊗ ∗)I/i,

where φ is the adjoint to the map (I/i⊗ ∗)→ (I ⊗ ∗).

2.3. Model structures
Recall that Cat has a cofibrantly generated, closed simplicial model category struc-

ture in which
• weak equivalences are equivalences of categories,
• cofibrations are functors which are inclusions on objects,
• fibrations are functors which satisfy the right lifting property with respect to the

inclusion ∗ ↪→ (∗ ∼= ∗) (where the target category here is the category with two
objects and a unique isomorphism between them).

Moreover these definitions restrict to give a model structure on Grpd (see [H, H2]) for
instance. It follows that there are projective model structures on CatI

op

and on GrpdI
op

,
denoted (CatI

op

)proj (resp. (GrpdI
op

)proj) where weak equivalences and fibrations are
levelwise (see [Hi]). So for C = Cat, Grpd, or sSet Proposition 2.1 implies that (B, Γ)
is a Quillen pair.
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In this case, there are also injective model structures on CI
op

where weak equiva-
lences and cofibrations are levelwise [He]. Since B preserves levelwise cofibrations for
each of these values of C, (B, Γ) is also a Quillen pair with source CI

op

inj .
The main result of this section is the following.

Theorem 2.7. If C = Cat, Grpd, or sSet, and I is a groupoid, then the pair

B : CI
op ←→ C/NI : Γ

is a Quillen equivalence between the projective model structure on diagrams and the
over category model structure.

The previous result is not formal as the following example shows.

Example 2.8. Let C = sAb. Given F ∈ CI
op

, BF = Z ·N(I/−)⊗I F . Since the final
object of C is 0, the target of B is just simplicial abelian groups. In the case when I
is a group and F is a simplicial Z[I]-module, then BF is the bar resolution

Z[EI]⊗Z[I] M ∈ sAb.

Clearly the pair (B, Γ) is not a Quillen equivalence in this case.

In the proof we will use the following observation: an n-simplex in B(F ) is repre-
sented uniquely by a pair

(i0 → · · · → in = in, x) ∈ N(I/in)n × F (in)n. (2)

Abbreviating i0 → · · · → in = in by (i0, . . . , in) and writing α : in−1 → in for the last
map in the sequence, the boundary maps are given by the formulas

dl(i0, · · · , in, x) =

{
(i0, . . . , îl, . . . , in, dl(x)) ∈ N(I/in)× F (in) if 0 6 l < n,

(i0, . . . , in−1, dnα
∗(x)) ∈ N(I/in−1)× F (in−1) if l = n.

(3)
Since B(F ) is a model for the homotopy colimit of a diagram it follows that B sends
levelwise weak equivalences of diagrams to weak equivalences of simplicial sets.

Proof of Theorem 2.7. We will check that the derived unit and counit are weak
equivalences. Note that for C = sSet, Cat, Grpd, the functor B preserves weak equiv-
alences and hence it is its own derived functor.

We will start by showing that B takes fibrant objects to fibrant objects. This will
reduce our problem to showing that the unit and counit are weak equivalences on
fibrant objects. In fact, if F → F ′ is a fibrant replacement, then

F → F ′ → ΓB(F ′)

will be the derived unit of F . The analogous statement for the counit is an immediate
consequence of the fact that B is its own derived functor.
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If C = Cat or Grpd it is clear from the definition that B takes fibrations to fibrations.
When C = sSet, we have to produce a lift in the diagram

Vn,k
ψ //

²²

BF

²²
∆n

φ //

<<y
y

y
y

BG

(4)

for each k = 0, . . . , n. Let φ be the simplex

i0 → · · · → in−1
α−→ in, φ ∈ G(in)n.

If the maps in F are isomorphisms, then formula (3) for the boundaries of simplices
in BF shows that giving a horn in BF is equivalent to giving a horn in F (in) over
φ ∈ G(in)n (or in any of the F (ik)’s). It follows that the lift exists since F (in)→ G(in)
is a fibration.

Writing η : F → ΓBF for the unit, evaluation at i yields a commutative diagram

F (i)
=

44
η(i)// Γ(BF )(i) ev //// F (i) .

When I is a groupoid, {i} → N(I/i) (respectively {i} → I/i) is a trivial cofibration
and so, if F is fibrant, the map Γ(BF )(i)→ F (i) is a weak equivalence. It follows that
η(i) is also a weak equivalence.

Let C = sSet. If X → NI is a fibration, then BΓX → NI is also a fibration so it
suffices to see that the counit

BΓX

$$III
III

II
ε // X

||yy
yy

yy
y

NI

is a weak equivalence when restricted to the fibers. The fiber of BΓX → NI over a
vertex i is Γ(X)(i) = MapNI(N(i/I), X) and the restriction of the counit to the fiber
is evaluation at {i} which concludes the proof for C = sSet.

If C = Cat or Grpd, then the same logic applies, since it is easy to check that given
a diagram of categories

C
e //

p

ÃÃA
AA

AA
AA

C ′
q

}}||
||

||
|

I

with p and q fibrations and I a groupoid, the map e is an equivalence of categories if
and only if it is when restricted to the fibers over each object of I.

Example 2.9. Let π : G→ H be a surjective group homomorphism regarded as an
object in Grpd/H. Let K ⊂ G be the kernel of π. The groupoid Γ(G π−→ H) has objects
the set theoretic sections of π over H − {1}, i.e., collections

(gh)h∈H\{1}|gh ∈ G, π(gh) = h,
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and isomorphisms (gh)
(kh)−−−→ (g′h) are K-valued functions on H

(kh)h∈H , kh ∈ K, g′h = k1ghk
−1
h ,

where the composition is given by pointwise multiplication of these K-valued functions.
The map Γ(G π−→ H)→ H is evaluation at 1 ∈ H.

There is a (right) action of H on the category Γ(G π−→ H) given on objects by

a∗(gh) = (g−1
a−1ga−1h)h, h ∈ H \ {1}

and on isomorphisms by precomposition.
The groupoid BΓ(G π−→ H) has the same objects as Γ(G π−→ H) and isomorphisms

(a, (kh)h∈H) : (gh)→ (a−1)∗((k1ghk
−1
h )h) = (kag−1

a gahk
−1
ah )h.

The counit

BΓ(G π−→ H)
ε(π) //

%%KKKKKKKKKK
G

π

ÄÄ¡¡
¡¡

¡¡
¡¡

ÄÄ¡¡
¡¡

¡¡
¡¡

H

sends an isomorphism
(

(gh)
(a,(kh)h∈H)−−−−−−−−→ (kag−1

a gahk
−1
ah )h

)
7→ gak1.

2.4. More about (B, Γ) for simplicial sets
Proposition 2.10. If Y → NI is a fibration, then the counit BΓY → Y is a weak
equivalence. Equivalently, the derived counit BΓZ → Z is always a weak equivalence.

Proof. The counit is given by the evaluation map

BΓY = N(I/−)⊗I MapNI(N(I/−), Y )→ Y.

The induced map on the fibers over i ∈ NI is the map

ΓY (i) = MapNI(N(I/i), Y )→ MapNI({i}, Y )

which is a weak equivalence since Y → NI is a fibration.
Since ΓY is a diagram of weak equivalences, a version of Quillen’s theorem B

(see [GJ, Lemma 5.7, p. 237]) shows that the fibers of the map BΓY → NI are
weakly equivalent to the homotopy fibers and it then follows that the counit is a weak
equivalence.

Proposition 2.11. The derived unit F → ΓBF is a weak equivalence if and only if
F is a diagram sending each arrow in I to a weak equivalence.

Proof. Again by Quillen’s theorem B (or more precisely [GJ, Lemma 5.7, p. 237]),
BF → NI is a quasi-fibration (i.e. the fibers agree with the homotopy fibers) and
hence the restriction of a fibrant replacement

BF → BF

to the fiber over i is a weak equivalence. Hence the unit

F (i) = BF|i → BF |i ' MapNI(N(I/i), BF ) = ΓBF
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is also a weak equivalence. The converse is clear.

Corollary 2.12. The adjoint pair (B, Γ) induces a Quillen equivalence from the local-
ization of sSetI

op

proj with respect to all maps between representable functors to sSet/NI.

Proof. Proposition 2.10 says that the derived counit is a weak equivalence. Proposi-
tion 2.11 tells us that for local objects in sSetI

op

the derived unit is a weak equivalence,
which completes the proof.

Remark 2.13. Proposition 2.10 says that the Quillen map (B, Γ): sSetI
op

proj → sSet/NI
is homotopically surjective in the sense of [Dg, Definition 6.10] and so, by [Dg, Propo-
sition 6.11], (B, Γ) induces a Quillen equivalence from a localization of sSetI

op

proj to
sSet/NI.

Remark 2.14. One can show that in fact the unit (not the derived unit) is a weak
equivalence for any diagram because in fact the canonical map sSet(N(I/i), F (i))→
ΓBF (i) is an isomorphism as every simplex in BF (i) is the boundary of a simplex
ending at i.

Using this observation we can prove a relative version of Proposition 2.11 and see
that if F ∈ sSetI

op

is a diagram of fibrant simplicial sets and we factor BG→ BF into
a trivial cofibration followed by a fibration BG→ BG→ BF , then G→ ΓBG×ΓBF F
is a weak equivalence if and only if for each map α : i→ j ∈ I, the square

G(j) //

²²

G(i)

²²
F (j) // F (i)

is homotopy cartesian.
The assignment i→ sSet/F (i) is an I-diagram of categories under pullback. The

end of this I-diagram

End((sSet/F (i))I/j) = eq


∏

i∈I
(sSet/F (i))I/i ⇒

∏

i→j∈I
(sSet/F (i))I/j




is the category sSetI
op

/F , and so we have that Γ induces a functor from sSet/BF to
End((sSet/F (i))I/j).

In an appropriate sense this is writing sSet/BF as the homotopy limit of the model
categories sSet/F (i). More precisely, the diagram

sSet/BF //

²²

End((sSet/F (i))I/j)

²²
holimCat Ho(sSet/F (i)) // End((Ho(sSet/Fi))I/j)

induces an equivalence of categories between Ho(sSet/BF ) and the homotopy category
of the pullback of the other three categories.
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2.5. Application to fibered categories
A fibered category D

π−→ C is a functor such that for each d ∈ D and α : c→ π(d) ∈
C, the over category (D/d) ↓ α has a final object projecting to α in C/π(d) (it is easy
to prove that this agrees with the original definition [Gi]).

As an application of the adjunction (B, Γ) discussed above we will now show that
fibered categories over C are precisely those which, as categories over C, are equivalent
to categories of the form BG→ C for some functor G : Cop → Cat.

Lemma 2.15. Let D
π−→ C be a fibered category. Then

(a) For ε : BΓD→ D the counit of the adjunction (B, Γ) and d ∈ D, the over category
ε ↓ d has a final object

((π(d), s(d) : C/π(d)→ D), idd).

(b) The counit ε : BΓD→ D determines a bijection

HomBΓD((π(d1), s(d1)), (π(d2), s(d2)))→ D(d1, d2).

Proof.
(a) For each object α : c→ π(d) of C/π(d) we can choose a final object α̃ : c̃→ d in

(D/d) ↓ α with π(α̃) = α. We make this choice so that if α = idπ(d) then α̃ = idd.
We define

s(d)(α) = c̃.

The universal property of α̃ implies that this assignment on objects extends to a
functor

s(d) : C/π(d)→ D

over C, and hence an object in ΓD(π(d)). (π(d), s(d)) is then an object in
BΓ(π(d)) and by our choice of lift of idπ(d), we have that ε(π(d), s(d)) = d. Thus
((π(d), s(d)), d =−→ d) is a well-defined object in ε ↓ d which we must show is final.
Let (c, s, β : s(c = c)→ d) be another object in ε ↓ d. If

(α, φ) : (c, s, β)→ (π(d), s(d), d = d)

is a map in ε ↓ d then the diagram

s(c = c)

β
''NNNNNNNNNNNN

φidc // s(d)(α) = c̃
α̃ // d

=

zzttttttttttt

d

commutes, as α̃ is the image of the map α : α→ idd ∈ D/d under s(d). It follows
that α = π(β) and φidc is necessarily the canonical map.
Given γ : c′ → c, the commutativity of the diagram

s(c′
γ−→ c)

s(γ)

²²

φγ // s(d)(αγ)s(d)(γ)

²²
s(c = c)

φidc

// s(d)(α)
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shows that there is a unique choice for φ(γ), as s(d)(γ) is a final object in (D/c̃)/γ.
Thus there is at most one map (c, s, β)→ (π(d), s(d), idd) and it is easy to check
that the canonical choices described above constitute such a map.

(b) Consider a map (α, φ) : (π(d1), s(d1))→ (π(d2), s(d2)). For each γ : c→ π(d1) we
have a commutative diagram

s(d1)(γ)

γ̃

²²

φγ // s(d2)(αγ)

s(d2)(γ)

²²
d1

φidπ(d1)

// s(d2)(α)

and the same argument as before shows that φ is completely determined by
φidπ(d1) . The counit assigns to the pair (α, φ) the composite

d1

φidπ(d1)−→ c̃
α̃−→ d2

with α̃ the final object in (D/d2) ↓ α. The universal property of α̃ easily implies
that the counit is a bijection.

Proposition 2.16. A functor D
π−→ C is a fibered category if and only if it is equiv-

alent in Cat/C to BG for some functor G : Cop → Cat.

Proof. Using the notation of Lemma 2.15, define an assignment S : D→ BΓD on
objects by

d 7→ (π(d), s(d)).

Lemma 2.15 (b) shows that S extends to a functor with image a full subcategory of
BΓD. Let D′ ⊂ BΓD denote the strictly full subcategory determined by the image of
S (i.e. the full subcategory whose objects are all those isomorphic to an object in the
image of S).

Given α : c→ π(d), there is a canonical natural isomorphism α∗s(d)→ s(c̃). This
implies that if (b, s) ∈ D′ and α : a→ b is a map, then (a, α∗(s)) is also in D′; therefore,
if we define G(c) to be the fiber over c of the projection D′ → C, G is a functor on C

and

D′ = BG.

This concludes the proof.

3. The left adjoint to the Grothendieck construction

3.1. The adjunction
It is not very surprising that the functor B discussed above admits a right adjoint.

It is more surprising that in some situations it also admits a left adjoint.

Definition 3.1. Let p : Cat/I → CatI
op

be the functor defined by

p(C π−→ I)(i) = i/I ×I C.
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Notice that i/I ×I C is isomorphic to the undercategory i/π whose objects are pairs
(c, i α−→ π(c)) and the morphisms

(c, i α−→ π(c))
φ−→ (c′, i α′−→ π(c′))

are maps φ ∈ C so that the triangle

i

α′ ÃÃA
AA

AA
AA

A
α // π(c)

π(φ)

²²
π(c′)

commutes.

Proposition 3.2. There is an adjoint pair of functors p : Cat/I −→ CatI
op

: B.

Proof. We will give a unit and a counit for the adjunction and check that they satisfy
the required identities. Let F ∈ CatI

op

. Given α : i→ j ∈ I, we will write α∗ for F (α).
The category p(BF )(i) is

pBF (i) = i/I ×I ((I/−)⊗I F )

= coeq
[∐

j→k
i/I ×I (I/j × F (k))⇒

∐

j

i/I ×I (I/j × F (j))
]
.

The counit is the canonical evaluation map from the previous coequalizer to the
coequalizer of ∐

j→k
Hom(i, j)× F (k)⇒ Hom(i, j)× F (j),

which is Hom(i,−)⊗I F = colimi/Iop F |i/Iop = F (i). Explicitly, p(BF )(i) is the cate-
gory of triples ((j, b), i α−→ j) and the counit pBF (i) εi−→ F (i) sends

((j, b), i α−→ j) 7→ α∗(b).

Given C
π−→ I,

BpC = (I/−)⊗I ((−/I)×I C) ∼= ((I/−)⊗I (−/I))×I C.

Notice that (I/−)⊗I (−/I) is the category of arrows in I, which we denote PI. The
unit is the map induced by the functor I → PI which sends i to its identity morphism.

Explicitly, BpC is the category of pairs (c, i α−→ π(c)) with c ∈ C and α ∈ mor(I)
and the unit sends c 7→ (c, idπ(c)).

We need to check that for each F ∈ CatI
op

, the composite

BF
ηBF−−−→ BpBF

BεF−−−→ BF

is the identity. We will do this just for objects: BpBF (i) is the category with objects
((j, b), i α−→ j). Now BF

ηBF−−−→ BpBF sends (j, b) 7→ ((j, b), j =−→ j) and BpBF
BεF−−−→

BF sends ((j, b), i α−→ j) 7→ (i, α∗b).
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Finally, we need to check that for each C
π−→ I, the composition

pC
pηC−−→ pBpC

εpC−−→ pC

is the identity. Again we just do this for objects: pBpC has objects (c, i α−→ j
β−→ π(c)).

The functor pC
pηC−−→ pBpC sends

(c, i α−→ π(c)) 7→ (c, i α−→ π(c) =−→ π(c))

and pBpC
εpC−−→ pC sends

(c, i α−→ j
β−→ π(c)) 7→ (c, i

β◦α−→ π(c)).

Clearly the previous result also holds (with the same proof) if we replace Cat with
Grpd, as long as I is a groupoid. The analogous adjunction for simplicial sets works
only when I is a groupoid. We can again define a functor p as before.

Definition 3.3. Let p : sSet/NI → sSetI
op

be the functor defined by

pX(i) = N(i/I)×NI X.

However, this will be the left adjoint to B only when I is a groupoid. The explana-
tion is contained in the following lemma.

Lemma 3.4. If I is a groupoid, then the canonical map

N(I/−)⊗I N(−/I)→ N((I/−)⊗I (−/I))

is an isomorphism.

Proof. First note that (I/−)⊗I (−/I) is the Grothendieck construction on the functor
i 7→ i/I and this is easily identified with the category of arrows in I. An n-simplex in
N(I/−)⊗I N(−/I) is represented uniquely (see (2)) by

(i0 → · · · → in, in → in+1 → i2n+1) ∈ N(I)×N(in/I).

The natural map sends such an n-simplex to the n-simplex

in+1
// in+2

// · · · // i2n+1

i0 //

OO

i1 //

OO

· · · // in.

OO

Clearly this is an isomorphism if I is a groupoid.

Proposition 3.5. If I is a groupoid, then

p : sSet/NI ⇔ (sSetI
op

)proj : B

is an adjoint pair.

Proof. The counit of the adjunction can be defined exactly as in the proof of Propo-
sition 3.2 (whether I is a groupoid or not). Using Lemma 3.4, the unit can also be
defined analogously when I is a groupoid and one then checks, as in Proposition 3.2,
that the required identities are satisfied.
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Remark 3.6. B has a left adjoint q when I is an arbitrary indexing category. This is in
general different from the obvious generalization of the functor p defined above (but
does agree if I is a groupoid). Using the description of the simplices of BF before the
statement of Theorem 2.7, it is not hard to check that, given Y

π−→ NI ∈ sSet/NI,
q(Y ) ∈ sSetI

op

can be defined by the formula

q(Y )(i) = colim
∆k

β−→Y ∈∆(Y )

∆k × I(i, π(β(k))).

It is not clear to us whether it is possible to define suitable model structures so that
(q, B) is a Quillen map.

3.2. Model structures
It is now easy to relate the adjunction above with the model categories on diagrams

and the over categories.

Proposition 3.7.

(a) For I an arbitrary small category, (p,B) is a Quillen map from Cat/I to
(CatI

op

)proj.

(b) If I is a groupoid and C = Cat,Grpd, or sSet, then

p : C/φ(I)←→ (CI
op

)proj : B

is a Quillen equivalence.

Proof.

(a) B sends weak equivalences to weak equivalences. Additionally, B sends objectwise

fibrations to fibrations since if (i, x)
(α,f)−→ (i′, x′) is an isomorphism in BF then α

is an isomorphism in I and f is an isomorphism in F (i). This shows (p,B) is a
Quillen pair.

(b) Let C = Cat. When I is a groupoid (B, Γ) is a Quillen equivalence by Theorem 2.7.
Since B is its own derived functor, it induces an equivalence of homotopy categories
so (p, B) is also a Quillen equivalence. It is clear that (p,B) restricts to a Quillen
equivalence Grpd/I ←→ (GrpdI

op

)proj .
When C = sSet, (p,B) is a Quillen pair since B preserves weak equivalences and
fibrations (see (4)). Since (B, Γ) is a Quillen equivalence and B is its own derived
functor, B induces an equivalence on the level of homotopy categories and hence
(p,B) is a Quillen equivalence.

Example 3.8. The equivalence between the homotopy theory of I-diagrams and fibra-
tions over NI when I is a group is a well-known theorem of Dwyer, Kan, and Dror-
Farjoun [DDK]. Their equivalence was essentially the pair (p,B) but was not stated
in the language of model categories. We now describe this case in more detail.

Suppose the indexing category I is a group G. We will adopt standard notation and
write BG instead of NI and EG for N(I/∗), which comes with a left G-action. We will
write EGop = N(∗/I). This carries a right G-action. An Iop-diagram is a simplicial
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set X with a right G-action and the previous propositions give us two adjunctions
between sSet/BG and right G-spaces. We have

BX = X ×G EG (Borel construction)

and
Γ(Y → BG) = MapBG(EG, Y ), p(Y → BG) = Y ×BG EGop.

In the (B, Γ) adjunction, the counit

BΓY = MapBG(EG, Y )×G EG→ Y

is given by evaluation. It is the universal map from a G-bundle to Y over BG. The
unit is the G-equivariant map

X → ΓBX = MapBG(EG, X ×G EG) x 7→ (e 7→ [(x, e)]).

Note that this map has a functorial retraction.
In the (p,B) adjunction, the unit

Y → BpY = (Y ×BG EGop)×G EG

gives the universal map over BG from Y to a G-bundle. Note that by Lemma 3.4,
EGop ×G EG is the free path space PBG on BG and so BpY = Y ×BG PBG.

The counit
pBX = (X ×G EG)×BG EGop → X

can be identified with the map EG×X → X with the anti-diagonal action on the
domain.

4. Diagrams indexed by a Grothendieck construction

In this section, we will give a more sophisticated version of the adjunction in Sec-
tion 2 which relates diagrams indexed on a Grothendieck construction to diagrams
indexed on the original category.

We begin by recalling the naturality of a coend. Given an indexing category I and
F, F ′ : I → C and G : Iop → C, a natural transformation F → F ′ induces a map

F ⊗I G→ F ′ ⊗I G

and similarly for a natural transformation G→ G′.
We also have functoriality with respect to the indexing category: given

ι : I → J, F : J → C, G : Jop → C,

there is a canonical map in C

(F ◦ ι)⊗I (G ◦ ι)→ F ⊗J G

which is induced by the map
∐

i∈I
F (ι(i))×G(ι(i)) −→

∐

j∈J
F (j)×G(j).

We will also make use of the following observation: given functors F : Iop → Cat
and G : BF → Cat, a map α : i→ j determines a functor α∗ : F (j)→ F (i). For each
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(j, a) ∈ BF it also determines a map (i, α∗(a))→ (j, a) and this yields a natural trans-
formation

G|F (j)
ηα−−→ G|F (i) ◦ α∗

given by
G|F (j)(a) = G(j, a)→ G(i, α∗(a)) = (G|F (i) ◦ α∗)(a).

Similarly, there is a natural transformation of functors F (j)→ Cat

F (j)/− εα−→ (F (i)/−) ◦ α∗

given by

F (j)/a
α∗−−→ F (i)/α∗(a).

Given a diagram F : Iop → Cat, we will denote by F op the diagram i 7→ F (i)op.

Definition 4.1. Let C be a closed monoidal category. Let Iop
F−→ Cat be a diagram

of categories, and G : (B(F op))op → C be a functor.
We define

BG : CBF
op → CI

op

/BG(∗)
by

BGH(i) = G|F (i) ⊗F (i) H|F (i)

with the natural projection to G|F (i) ⊗F (i)∗. The effect of BG on a morphism i
α−→ j

is given by the composite

BGH(j) = G|F (j) ⊗F (j) H|F (j)
εα⊗ηα// ((G|F (i)) ◦ α∗)⊗F (j) (H|F (i) ◦ α∗)

²²
(G|F (i)/−)⊗F (i) H|F (i) = BGH(i),

where we have written α∗ for F (α) : F (j)→ F (i).

It is straightforward to check that the assignments above make BGH functorial in
I and that BG is itself a functor.

Our main concern will be when C = sSet, Cat or Grpd and G : (BF op)op → C is
determined by the functor G : (BF op)op → Cat defined by

(i, a) 7→ F (i)/a. (5)

In this case we will omit the subscript G and simply write B. Given H ∈ CBF
op

, we
have

BH(i) = B(H|F (i)) = (F (i)/−)⊗F (i) H|F (i).

We will now define the right adjoint to BG. Let ri,a : BF op → Set be the repre-
sentable functor

ri,a(j, b) = HomBF ((j, b), (i, a)) =
∐

j
α−→i∈I

HomF (j)(b, α∗(a)).

There is a natural monoidal functor Set→ C sending S →∐
s∈S U where U is the
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unit of the monoidal structure on C. Abusing notation we will consider ri,a a functor
BF op → C.

One can check that
BG(ri,a)(j) =

∐

j
α−→i

G(j, α∗(a))

since the coend of a functor with a representable is evaluation at the representable.
We will write Fi,a for B(ri,a). This is given by the formula

Fi,a(j) =
∐

j
α−→i

F (j)/α∗(a),

with the canonical projection to F = B(∗).
Definition 4.2. We define GG to be the functor CI

op

/BG(∗)→ CBF
op

given by

(GGK)(i, a) = HomCIop
/BG(∗)(BG(ri,a),K).

In our main example (5) we will omit the subscript and write G which is given by
the formula

GK(i, a) = HomCIop
/F (Fi,a,K).

Proposition 4.3. The following is an adjoint pair

BG : CBF
op ↔ CI

op

/BG(∗) : GG.

Proof. Let H ∈ CBF
op

and K ∈ CI
op

/BG(∗). A morphism H → GG(K) consists of
compatible maps for each (i, a) ∈ BF H(i, a)→ HomCIop

/BG(∗)(BG(ri,a),K).
Explicitly, this means that for each k → l ∈ I we have commutative diagrams

∐
l

β−→i
G(l, β∗(a))⊗H(i, a) //

²²

K(l)

²²∐
k

γ−→i
G(k, γ∗(a))⊗H(i, a) // K(k),

(6)

and for each (α, f) : (i, a)→ (j, b) ∈ BF the following diagram commutes
∐
k

γ−→i
G(k, γ∗(a))⊗H(j, b)

²²

//
∐
k

γ−→i
G(k, γ∗(a))⊗H(i, a)

² ²∐
k

δ−→j
G(k, δ∗(b))⊗H(j, b) // K(k).

(7)

Diagram (7) for k = j = i and α = id gives us maps

G|F (i) ⊗F (i) H|F (i) → H(i)

and diagram (6) together with the remaining cases of (7) provide the compatibility
necessary to make this natural in i. Moreover one checks that the necessary conditions
to get the map BGH → K are precisely those expressed in diagrams (6) and (7), which
proves the adjunction.
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Theorem 4.4. Let C = Cat, sSet, or Grpd. Then

(a) The adjoint pair B : (CBF
op

)proj ←→ (CI
op

/F )inj : G is a Quillen map.
(b) If F is a diagram of groupoids, then (B, G) is a Quillen equivalence.

Proof.

(a) In the injective model structure on these categories all objects are cofibrant. As
G is defined as maps out of Fi,a, it clearly sends (trivial) fibrations in (CI

op

/F )inj
to levelwise (trivial) fibrations.

(b) First we show that the derived counit is a weak equivalence. The counit is given
by evaluation and so at an object i ∈ I factors as

B(GK)(i) = (F (i)/−)⊗F (i) HomCIop
/F (Fi,−,K)

²²
BΓ(K(i)) = (F (i)/−)⊗F (i) HomC/F (i)(F (i)/−, K(i)) // K(i).

(8)

The bottom map is a weak equivalence by Theorem 2.7 and we can see that
the first one is also a weak equivalence as follows: Let ri : Iop → Set→ C be the
representable functor. An element a ∈ F (i) corresponds to a map ri

a−→ F which
we may factor as

ri → ri ⊗ F (i)/a→ Fi,a → F.

Evaluated at some j ∈ I, this is
∐

j
α−→i

∗ →
∐

j
α−→i

F (i)/a→
∐

j
α−→i

F (j)/α∗(a)→ F (j).

Clearly the first two maps are weak equivalences and so if K ³ F is a fibration,

HomCIop
/F (Fi,a,K)→ HomCIop

/F (ri ⊗ F (i)/a,K) ' HomC/F (i)(F (i)/a,K(i))

is a weak equivalence. This induces the vertical map in (8) so we are done with
the counit.
We now check that the derived unit is a weak equivalence. It suffices to do this
for H ∈ CBF

op

levelwise fibrant. Let RBH → F denote the fibrant replacement of
BH → F ∈ (CI

op

/F )inj . Consider the diagram

H(i, a)
η //

=
((QQQQQQQQQQQQ

HomCIop/F (Fi,a,BH)

²²

ι // HomCIop/F (Fi,a, RBH)

∼
²²

HomCIop/F (ri,BH) ∼ // HomCIop/F (ri, RBH).

Here η is the unit, defined by pulling back elements in H(i, a). The left-hand
vertical map is evaluation at i = i and hence the left triangle commutes. The right-
hand vertical map is a weak equivalence because ri → Fi,a is a trivial cofibration
in the injective model structure, while the bottom map is a weak equivalence
because it is evaluation at i of the levelwise weak equivalence BH → RBH. It
follows that the derived unit ιη is a weak equivalence.
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Example 4.5. Let I = G be a group and F (∗) = H be another group. Then BF =
GoH and Proposition 4.4 gives a Quillen equivalence between (GoH)− sSet and
(G− sSet)/BH.

Example 4.6. Let I = ∆+ be the subcategory of ∆ consisting of order-preserving
monomorphisms. There is a natural functor F : ∆+ → Cat that sends [n] to the n-th
symmetric group Σn. BF is then a skeleton of the category of monomorphisms between
finite sets (and hence a subcategory Γ+ of Segal’s Γ-category).

In this case, Proposition 4.4 says that Γ+-spaces is Quillen equivalent to semicosim-
plicial spaces over the semicosimplicial space [n]→ BΣn.

Example 4.7. We can regard a simplicial set as a diagram of discrete categories

X : ∆op → Cat.

The Grothendieck construction on this functor is the category of simplices of X which
we denote cX. Proposition 4.4 gives us a Quillen equivalence

sSetcX
B // sSet∆

op

/X.

Remark 4.8. Fixing F : Iop → Cat arguments along the lines of the proof of Proposi-
tion 4.4 give the following generalizations of Propositions 2.11 and 2.10, and Corol-
lary 2.12:

(i) If K ∈ (sSetI
op

/NF )inj is fibrant, then the counit BGK → K is a weak equiv-
alence.

(ii) If each map (i, a)
(id,α)−→ (i, b) is sent by H ∈ sSetBF

op

to a weak equivalence, then
the derived unit of the adjunction (B, G) is a weak equivalence.

(iii) (B, G) induces a Quillen equivalence from the localization of sSetBF
op

with
respect to the maps between representables

{ri,a → ri,b|i ∈ I, a→ b ∈ F (i)}
to (sSetI

op

/NF )inj .

5. The adjoint pair (P ,B)

In this section we discuss the left adjoint to B and apply it to give a proof of a
theorem of Dwyer and Kan describing diagrams indexed by an EI-category.

Definition 5.1. Let C = Cat, sSet, or Grpd and fix F : Iop → Cat. We define

P : CI
op

/F → CBF
op

by the formula

PG(i, a) = (a/F (i))×F (i) G(i).

We will now prove that the functor P is a left adjoint for B when C = Cat. For
C = sSet or Grpd this is the case only when F is a diagram of groupoids.



DIAGRAMS INDEXED BY GROTHENDIECK CONSTRUCTIONS 213

Theorem 5.2.

(a) P : CatI
op

/F → CatBF
op

: B is a Quillen map when we give either the projective
or the injective model structure to both categories.

(b) If F is a diagram of groupoids then, for C = sSet, Cat and Grpd,

P : CI
op

/F → CBF
op

: B
is a Quillen equivalence when we give the projective or the injective model structure
to both categories.

Proof. We can define the unit and the counit of the adjunctions using the unit and
counit in the base case (cf. the proof of Proposition 3.2). For each (i, a) we have the
counits of the (p,B)-adjunctions

(PBG)(i, a) = (a/F (i))×F (i) GrF (i)G|F (i) = (pBG|F (i))(a) 7→ G|F (i)(a) = G(i, a).

It is easy to check from the naturality properties of the coend and the pullback that
these are natural with respect to maps (i, a)→ (j, b) and hence yield a map PBG→ G.
Naturality in G is clear.

On the other hand, for each i we have maps

H(i)→ ((F (i)/−)⊗F (i) (−/F (i)))×F (i) H(i) = (BPH)(i)

given by the unit of the adjunction in the base case. Again, naturality of the coend
and the fiber product implies that these are natural in i and, since they are clearly
natural in H, they define a natural transformation

id→ BP ∈ CI
op

/F.

These natural transformations satisfy the necessary identities because the ones in
the base case do. This proves that (P,B) is an adjunction. The statements about the
model structures follow immediately from the base case.

5.1. Diagrams indexed by EI-categories
An EI-category is a category where all endomorphisms are isomorphisms. We now

apply Theorem 5.2 to deduce the theorem of Dwyer and Kan [DK2, Theorem 3.4]
characterizing diagrams over EI-categories as certain diagrams of fibrations.

Recall [BK, Chapter IX] that a functor f : I → J is called right cofinal if the
undercategories N(j/f) are contractible for every j ∈ J . Similarly, a functor f : I → J
is called left cofinal if the overcategories N(f/j) are contractible for every j ∈ J . The
main property of right cofinal functors is that given a diagram X ∈ sSetJ , the natural
map hocolimJ X → hocolimI X ◦ f is a weak equivalence.

The following proposition is essentially [DK, 6.15] and we include a proof for the
sake of completeness.

Proposition 5.3. Let f : I → J be a functor, Lf denote the left Kan extension along
f , and let ci = HomI(i,−) ∈ sSetI . If f satisfies

(a) For each j ∈ J , the nerve N(f−1(j)) is contractible,

(b) The inclusion ιj : f−1(j)→ j/f is left cofinal for each j ∈ J ,
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then there is a Quillen equivalence

Lf : sSetIproj,loc ⇔ sSetJproj : f∗,

where sSetIproj,loc is the localization of sSetIproj with respect to the maps of corepre-
sentables {

ci → ci′ |f(i→ i′) = idf(i)

}
.

Notice that the fibrant objects in sSetIproj,loc are the diagrams X for which each
X(i) is a fibrant simplicial set and which satisfy the following property:

• for all i
α−→ i′ with f(α) = id the map X(i)→ X(i′) is a weak equivalence.

So Proposition 5.3 says that homotopy theory of J diagrams is equivalent the homotopy
theory of I diagrams in which send all the maps in the fibers of f to weak equivalences.

Proof. Let sSetIinj,loc be the localization of the injective model structure sSetIinj with
respect to the maps of corepresentables

{
ci → ci′ |f(i→ i′) = idf(i)

}
.

The fibrant objects in sSetIinj,loc are the diagrams X which are fibrant in sSetIinj and
which satisfy:

• for all i
α−→ i′ with f(α) = id the map X(i)→ X(i′) is a weak equivalence,

Let Rf denote the right Kan extension along f . We have a Quillen pair

f∗ : sSetJinj ⇔ sSetIinj,loc : Rf .

If X is fibrant holimj/f X
∼−→ holimf−1(j) X

∼−→ X(i) for any i ∈ f−1(j). Since the
right-derived functor of Rf can be computed by taking the homotopy inverse limit
along j/f one sees that both the derived unit and counit of this Quillen pair are weak
equivalences and so it is a Quillen equivalence.

The adjunction

Lf : sSetIproj,loc ⇔ sSetJproj : f∗

is a Quillen pair since f∗ sends (trivial) fibrations in sSetJproj to (trivial) fibrations in
sSetIproj,loc.

Notice that we also have a Quillen equivalence given by the identity adjunction

sSetIproj,loc ⇔ sSetIinj,loc

and so the identity is an isomorphism Ho(sSetIproj,loc) ∼= Ho(sSetIinj,loc). Since f∗ is
its own left- and right-derived functor and (f∗, Rf ) is a Quillen equivalence, it follows
that f∗ also induces an equivalence

Ho(sSetJproj)
∼=−→ Ho(sSetJinj)

f∗−→ Ho(sSetIinj,loc)
∼=−→ Ho(sSetIproj,loc)

and so

Lf : sSetIproj,loc ⇔ sSetJproj : f∗

is also a Quillen equivalence.
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Remark 5.4. The previous lemma gives another example of a homotopy surjection in
the sense of Dugger [Dg], as in Remark 2.13.

If E is an EI-category, let P denote the poset of isomorphism classes in E. Let sd+ P
the opposite of the poset of non-degenerate simplices of P . The objects of sd+ P are
the inclusions

σ : [k]→ P,

where [k] = {0 < 1 < · · · < k}, and the morphisms σ → σ′ are commutative triangles

[l] ² o

σ′ ÂÂ@
@@

@@
@@

Â Ä α // [k]
nN

σ
~~}}

}}
}}

}

P.

Let
S : sd+ P → Grpd

be the functor assigning to σ ∈ sd+ P , the groupoid of sections

E

²²
[k]

σ̃

>>~
~

~
~
Â Ä

σ
// P.

Let E′ be the coend S ⊗sd+P (−/sd+P ). Objects of E′ are lifts σ̃ (as above) and
morphisms σ̃ → σ̃′ are pairs (α, φ) where σ

α−→ σ′ and φ is a natural isomorphism
σ̃ ◦ α→ σ̃′.

There is a functor π : E′ → E given by evaluation at 0,

σ̃ 7→ σ̃(0)
(α, φ) 7→ φ|α(0) ◦ σ̃(0→ α(0)).

Proposition 5.5. Let π : E′ → E be as above. Then

Lπ : sSetE
′
proj ⇔ sSetEproj : π∗

induces a Quillen equivalence between the localization of sSetEproj with respect to the
maps of corepresentables

{
cσ̃′ → cσ̃|π(σ̃ → σ̃′) = σ̃(0) id−→ σ̃′(0)

}

and sSetEproj.

Proof. We will check that π satisfies the hypothesis of Proposition 5.3. Given a ∈ E,
π−1(a) consists of all chains of maps out of a and so has a final object. Let

b = ([a0 → a1 → · · · → an], a
f−→ a0)

be an object of a/π. If φa denotes the inclusion π−1(a)→ a/π, then φa/b has a final
object which is
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• ([a→ a1 → · · · → an], a
=−→ a)

(id,f),f−−−−−→ ([a0 → a1 → · · · → an], a→ a0) when f
is an isomorphism

• ([a
f−→ a0 → a1 → · · · → an], a

=−→ a)
(d0,id),f−−−−−→ ([a0 → a1 → · · · → an], a→ a0)

when f not an isomorphism.
It follows that φa/b is contractible.

Theorem 5.6. Let W be the set of morphisms
{Bcσ̃′ → Bcσ̃|π(σ̃ → σ̃′) = idσ̃(0)

}

in sSetsd
+ P /N(Sop). Let sSetsd

+ P /N(Sop)proj,loc denote the localization of

sSetsd
+ P /N(Sop)proj

with respect to W . There is a Quillen equivalence

sSetsd
+ P /N(Sop)proj,loc −→ sSetEproj .

Proof. Taking I = (sd+ P )op and F = Sop, we see that

BF op = (((sd+ P )op/−)⊗(sd+ P )op Sop)op ∼= S ⊗sd+P (−/sd+P ) = E′

and so applying Theorem 5.2(b) we have a Quillen equivalence

P : sSetsd
+ P /N(Sop)proj ⇔ sSetE

′
proj : B.

We may localize this to obtain a Quillen equivalence from the localization of

sSetsd
+ P /N(S)proj

with respect to the morphisms
{Bcσ̃′ → Bcσ̃ : π(σ̃ → σ̃′) = idσ̃(0)

}

to the localization of sSetE
′
proj with respect to the maps of corepresentables
{
cσ̃′ → cσ̃ : π(σ̃ → σ̃′) = idσ̃(0)

}
.

Composing with the Quillen equivalence of Proposition 5.5 we have the desired
Quillen equivalence. under which an E diagram is sent to the sd+ P diagram

σ 7→ X ◦ π|S(σ) ⊗S(σ) −/S(σ) = B(X ◦ π|S(σ)op .

Using the (B, G) adjunction it is easy to check that the fibrant objects in this
localization of sSetsd

+ P /N(Sop)proj are the diagrams Y of fibrations such that for
each

σ
α−→ σ′ ∈ sd+ P, with α(0) = 0,

the square

Y (σ) //

²²²²

Y (σ′)

²²²²
BS(σ)op // BS(σ′)op

is homotopy cartesian. It follows that the “homotopy theory” of these diagrams is
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equivalent to the homotopy theory of E diagrams of simplicial sets. So the previous
theorem can be interpreted as a model category theoretic version of [DK2, Theorem
3.4].

Example 5.7. Let E be the category with two objects a1, a2, and morphisms

End(ai) = Aut(ai) = Gi, Hom(a1, a2) = H, Hom(a2, a1) = ∅.
In this case P is the category with two objects ā1, ā2 and a single nonidentity morphism
ā1 → ā2. The subdivision sd+P is the category with three objects and morphisms as
follows

[a1]← [a1 → a2]→ [a2].

Here S([ai]) is the group Gi and S([a1 → a2]) is the groupoid Hh(G1×G2) with objects
H and morphims h1 → h2 consist of pairs (g1, g2), gi ∈ Gi with g2 ◦ h1 = h2 ◦ g1 ∈
Hom(a1, a2). By Theorem 5.6 the homotopy theory of diagrams of simplicial sets
indexed on E is equivalent to the homotopy theory of diagrams

X1

²²

X12
//oo

²²

X2

²²
BG1 B(Hh(G1×G2)) //oo BG2,

where the first square is homotopy cartesian. Notice that B(Hh(G1×G2)) is the homo-
topy orbit space H ×G1×G2 E(G1 ×G2). The equivalence is determined by sending
Y ∈ sSetE to the diagram

Y (a1)×G1 EG1

²²

(Y (a1)×H)×G1×G2 E(G1 ×G2)

²²

oo // Y (a2)×G2 EG2

²²
BG1 H ×G1×G2 E(G1 ×G2) //oo BG2.

6. Local model structures

Let C be a Grothendieck topology and let M∈ P (C, Grpd). Recall from [H2] that
the fibered site C/M is the category BM with covers the collections of maps whose
images are covers in C.

There are local model category structures on P (C, Grpd) obtained by localizing the
injective or projective model structure with respect to the maps

LC = {|U•| → X ∈ P (C, Grpd)},
where U• is the nerve of a cover {Ui → X} in C, and |U•| is the geometric realization
of the simplicial diagram of representable functors in P (C,Grpd).

Similarly, there are local model category structures on P (C, sSet) obtained by local-
izing the injective or projective model structures with respect to the maps

LC = {|U•| → X ∈ P (C, sSet)},
where U• is a hypercover of X in C (for all this see [DHI]).
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Lemma 6.1. Let D = sSet or Grpd. The functor B : P (C/M, D)→ P (C, D)/M sends
fibrations in the local projective model structure to fibrations in the local projective
model structure.

Proof. Recall (from [H2, DHI, Proposition 4.2,7.2,7.3]) that F → G ∈ P (C, D) is a
projective local fibration if and only if for all X ∈ C, the maps

F (X)→ G(X)

are fibrations and for all (hyper)covers U• → X the diagram

holimF (U•) //

²²

F (X)

²²
holimG(U•) // G(X)

is homotopy cartesian.
We have already observed that B preserves levelwise fibrations. The second condi-

tion follows from the assumption that F → G is a projective local fibration, the fact
that the squares

F (X, a)

²²

// BF (X)

²²
G(X, a) // BG(X)

are cartesian and that holim commutes with pullbacks.

The main theorem of this section is the following:

Theorem 6.2. Let D = sSet or Grpd, and M be a presheaf of groupoids on C.
(a) The adjoint pair

B : (P (C/M, D))proj,local −→ (P (C,D)/M)inj,local : G

is a Quillen equivalence.
(b) The adjoint pair

P : (P (C, D)/M)local −→ (P (C/M, D))local : B
is a Quillen equivalence when we give both categories either the injective or pro-
jective local model structures.

Proof.
(a) Proposition 4.4 tells us that the pairs (B, G) are Quillen equivalences for the

levelwise model structures.
The topology on C/M is generated by the covers of the form

{(Ui, a ◦ ui)
ui,id−→ (X, a)},

where {Ui ui−→ X} is a cover in C since all other covers in C/M are isomorphic to
these.
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There is a functorial levelwise weak equivalence

X

a

²²

∼ // B(X, a)

zzvvvvvvvv

M.

As B commutes with coproducts, fiber products and geometric realization, it sends
the maps in LC/M to weak equivalences. This implies that (B,G) descends to a
Quillen pair between the local model structures.
We still need to show that the derived unit is a weak equivalence. Given F ∈
P (C/M, D), let F → F̂ be a fibrant replacement in the local projective model

structure. Let B(F̂ )→ B̂(F̂ ) be the injective fibrant replacement. The composite

BF → BF̂ → B̂(F̂ )

is a local injective fibrant replacement for BF . Hence we can write the derived
unit as the composite

F

²²

// F̂

²²

φ

##GG
GG

GG
GG

G

GBF //
GBF̂ //

GB̂F̂ .

By Lemma 6.1, BF̂ is projective fibrant and therefore the map BF̂ → B̂F̂ is a
levelwise weak equivalence as it is a local weak equivalence between local projective
fibrant objects and hence φ is the levelwise derived unit applied to F̂ . It follows
from Proposition 4.4 that φ is a weak equivalence and hence the whole composite
is a local weak equivalence. This completes the proof.

(b) Since B preserves local weak equivalences and (by Lemma 6.1) projective local
fibrations, (P,B) descends to a Quillen pair between the projective local model
structures. An argument similar to the one in (a) shows that (P,B) is a Quillen
equivalence.
P preserves levelwise cofibrations and so it suffices to show that it sends an injec-
tive local trivial cofibration j to a local weak equivalence. Factor j as pi with p a
projective local fibration and i a projective local trivial cofibration. Since (P,B) is
a Quillen pair for the projective local model structure, P(i) is a weak equivalence.
Since p is a levelwise weak equivalence, P(p) is also a weak equivalence.

Note 6.3. This Quillen equivalence induces one between the “n-stacks overM”

P (C/M, (Sn+1)−1sSet)

and P (C, (Sn+1)−1sSet)/NM.

Corollary 6.4. A weak equivalenceM′ ∼−→M in P (C,Grpd) induces a Quillen equiv-
alence between P (C/M′, sSet) and P (C/M, sSet).

Remark 6.5. If M is a presheaf of categories on a Grothendieck topology one defines
the fibred site in the same way and the pair (B, G) will still yield a Quillen pair
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between the corresponding local model structures. This will however not be a Quillen
equivalence in general.
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